THE ACOUSTO-OPTIC INTERACTION IN AN INFINITE SLAB OF ISOTROPIC --ETC(U)

S. D. SCHARF

UNCLASSIFIED HDL-TR-1921

END DATE 5-81

DTIC
<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>HDL-TR-1921</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>The Acousto-Optic Interaction in an Infinite Slab of Isotropic Material</td>
</tr>
<tr>
<td>AUTHOR(s)</td>
<td>William D. Scharf</td>
</tr>
<tr>
<td>PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>Harry Diamond Laboratories; 2800 Powder Mill Road; Adelphi, MD 20783</td>
</tr>
<tr>
<td>CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>U.S. Army Material Development and Readiness Command; Alexandria, VA 22333</td>
</tr>
<tr>
<td>MONITORING AGENCY NAME AND ADDRESS</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTION STATEMENT</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>KEY WORDS</td>
<td>Acousto-optics, Diffraction, Mathieu functions</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>A perturbation theory approach is taken to the problem of the diffraction of an optical plane wave by an acoustic wave propagating in an infinite slab of isotropic material. This treatment does not, like earlier treatments, neglect reflections at the interfaces, and thus can be applied to transparent solids, for which there is an abrupt wave-impedance mismatch at the interfaces.</td>
</tr>
</tbody>
</table>
CONTENTS

1. INTRODUCTION .. 5
2. THEORY ... 6
3. GEOMETRICAL INTERPRETATION 8
4. COMPUTATIONAL RESULTS ... 9

LITERATURE CITED .. 11
NOTATION ... 11
APPENDIX A. — The Acousto-Optic Interaction for Bragg Angles 13

FIGURES
1. Incident wave is split by acoustic wave into discrete diffracted orders 5
2. Representation of zero-order interactions (Snell’s law) in physical and wave-vector space . . 9
3. Internal backward and forward travelling waves .. 9
4. An example of Bragg resonance, which occurs for \(\frac{\lambda}{\Lambda} \sin \theta = \frac{N}{2} \) ... 9
5. Comparison of Nomoto solution and seventh-order plane-wave expansion 10
6. Second-order term of undeflected beam as function of angle, illustrating Bragg resonance ... 10
1. INTRODUCTION

Many treatments of the acousto-optic effect — the interaction of light with sound — have been published.1-7 These treatments assume an infinite slab of isotropic material in which an acoustic wave is propagating parallel to the slab surfaces. A coherent, monochromatic electromagnetic plane wave is incident on the medium from one side, and emerges from the other side broken up into discrete diffracted plane waves of all integral orders (fig. 1). The acoustic disturbance modulates the refractive index of the medium, producing what may usefully be visualized as a diffraction grating.

In previous work, the researchers have used a scalar wave theory (neglecting polarization effects) and have assumed that reflection from the two interfaces can be neglected. Berry has considered reflections (in a scalar theory) and shows that reflected diffracted beam intensities for a slab of a certain thickness are directly proportional to the transmitted diffracted beam intensities for a slab of twice that thickness. (Actually he, like the other authors, had in mind a liquid medium.)

In an attempt to model the acousto-optic effect in a transparent solid, the author has undertaken to generalize previous results to include reflected waves, and also to consider anisotropic media. The work reported here uses a scalar theory for an isotropic medium (like earlier work), but with rigorous boundary conditions — i.e., solving for reflection as well as transmission. The problem is treated by using a series expansion in the parameter

\[\delta \frac{\lambda^2}{\lambda} \]

(where \(\delta \) is the intensity of acoustic modulation, and \(\Lambda \) and \(\lambda \) are acoustic and optical wavelengths respectively); hence, the expansion converges only when this parameter is small. A vector treatment of the interaction in an anisotropic medium will be reported in a subsequent paper.

Motivation for this research is given by the experimental work of Berg, Lee, and Udelson,8,9 who are investigating the acousto-photorefractive effect in y-cut slabs of lithium niobate, an anisotropic material. In their work, the acoustic disturbance is given by a surface acoustic wave (SAW) excited by interdigital transducers and

For liquids, this quantity tends to be small (0.01, or so), whereas for solids it may be appreciably larger.

Figure 1. Incident wave is split by acoustic wave into discrete diffracted orders.
propagating along the c-axis. The slab is subjected to a high-intensity short-duration laser pulse, which produces a "freezing" of the instantaneous refractive index, an effect which can be used in a memory correlator. Also, work is being done on real-time acousto-optic correlators and convolvers using two SAW's simultaneously. For a complete understanding of these processes, a thorough theoretical treatment of the diffraction is needed. This paper treats the isotropic time-independent case, and can be regarded as a preparation for treatment of the full time-dependent anisotropic case. (The time dependence is a trivial addition giving a frequency shift of the diffracted waves. Anisotropy, however, introduces considerable complication, because of the acoustic coupling of ordinary and extraordinary modes.) This paper does not treat the spatial dependence normal to the surface (exponential falloff).

2. THEORY

The physical system to be analyzed is an infinite, isotropic, and lossless slab of thickness L. An acoustic disturbance is propagated through the medium in the z-direction parallel to the slab surfaces, and the x-direction is chosen normal to the slab surfaces. A plane wave of monochromatic light is incident in the x-z plane, at an arbitrary angle and linearly polarized in the y-direction.

The motion of the acoustic disturbance is neglected and its effect is incorporated as a variation in the dielectric property of the material according to

$$\varepsilon = \varepsilon + \delta \cos qz$$

where

$$\varepsilon = \text{dielectric constant of unmodulated material.}$$

$$\delta = \text{modulation amplitude, and}$$

$$q = \frac{2\pi}{\lambda}$$

This assumption corresponds approximately to the interaction of a pulsed light wave whose duration is short compared with the acoustic wave period. The wave equation for a light beam of radian frequency ω and amplitude E is then

$$- \left(\nabla^2 + \frac{\omega^2}{c^2} \varepsilon \right) E = \left(\frac{\omega^2}{c^2} \delta \cos qz \right) E \quad (1)$$

where c is the velocity of light.

A propagating electromagnetic mode inside the medium can be resolved into plane waves as follows:

$$E = \sum_{nm} E_{nm} \exp(ikx) \exp(i\gamma_nz) \Delta \quad (2)$$

where

$$\gamma = \text{z-component of incident light wave vector,}$$

$$\gamma_n = \gamma + nq \quad (3)$$

$$k^2 = \sum_{l=0}^{\infty} K_l \Delta^l \quad (4)$$

$$\Delta = \delta \frac{\omega^2}{c^2 q^2} = \delta \frac{\lambda^2}{\lambda^2} \quad (5)$$

Note that this is not a power series expansion in Δ, since $k = k(\Delta)$, and therefore it is not unique. It can more aptly be termed a plane-wave expansion. Substitution of equations (2) and (4) into the wave equation (1) yields

$$\sum_{nm} \left[(K_n + \gamma_n^2 - \frac{\omega^2}{c^2} \varepsilon) E_{nm} + \sum_{l=1}^{\infty} K_l E_{n+m-l} \Delta^l \right] \exp(ikx) \exp(i\gamma_n z) \Delta =$$

$$\sum_{nm} \frac{q^2}{2} \left(E_{n-1,s-1} + E_{n+1,s+1} \right) \exp(ikx) \exp(i\gamma_n z) \Delta \quad (6)$$
The zero-order component E_0 represents a "normal" mode of propagation for the medium — i.e., a solution of the homogeneous equation

$$
\left(\Delta^2 + \frac{\omega_j^2}{c^2} \right) E = 0 \,.
$$

From this we see that

$$
K_0 = \frac{\omega_j^2}{c^2} = \gamma^2 \,.
$$

Equating like powers of Δ in equation (6) yields the recursion relation in E_{ns}

$$
n(n + 2a)E_{ns} = \frac{1}{q} \left(E_{n-1,s-1} + E_{n+1,s-1} \right) - \frac{1}{q} \sum_{t=1}^{q} K_t E_{n,s-t} \,.
$$

(7)

where

$$
a = \frac{\gamma}{q} \,.
$$

Given the angle of incidence of the light wave, θ, γ is determined by $\gamma = \omega/c \sin \theta$, and equation (7) generates the corresponding propagating optical mode of the perturbed medium.

The above solution can be written as

$$
E = \exp(i kx) e(z), \text{where } e(z) \text{ will be shown to be a Mathieu function. Equation (1) becomes}
$$

$$
\left[\frac{d^2}{dz^2} + \frac{\omega_j^2}{c^2} \epsilon - k^2 + \frac{\omega_j^2}{c^2} \delta \cos qz \right] e(z) = 0 \,.
$$

This is Mathieu's equation:

$$
\frac{d^2 f}{dz^2} + (a - 2h \cos 2\xi)f = 0 \,.
$$

where

$$
2\xi = qz \,.
$$

$$
a = -\frac{4}{q^2} \left[\frac{\omega_j^2}{c^2} \xi - k^2 \right] = (2a)^2 + \mathbf{0}(\Delta^2) \,.
$$

$$
h = -2 \frac{\omega_j^2}{c^2} \delta = -2\Delta \,.
$$

Thus

$$
e(z) = \sum_{ns} E_{ns} \exp(i\gamma_nz)\Delta^e = f(a, \xi) \,.
$$

where $f(a, \xi)$ is a Mathieu function. This function will not in general be one of the well-known tabulated periodic functions c_{en} and s_{en}, but, in general, will be a Floquet solution, \footnote{V. B. McLachlan, Theory and Application of Mathieu Functions, Oxford Press, Oxford (1947)} of the form $\exp(\omega \phi(z))$, where $\phi(z)$ is periodic. However, when $\alpha = N/2$ (N an integer, the Bragg condition), the solution is a linear combination of the c_{en} and s_{en} (see appendix A).

The preceding paragraphs characterize the natural propagating modes for an infinite sinusoidally modulated medium. For a finite thickness slab, $0 < x < L$, the electromagnetic boundary conditions require that the solution be an expansion in a subset of these natural modes, requiring a new index:

$$
E = \sum_{mns} E_{mns} \exp(i k_m x) \exp(i \gamma_n z) \Delta^n \,.
$$

(8)

Also a backward-traveling, reflected, and a transmitted wave are required:

$$
F = \sum_{mns} F_{mns} \exp(-i k_m x) \exp(i \gamma_n z) \Delta^n \,.
$$

(9)

$$
R = \sum_{mns} R_{mns} \exp(-i p_n x) \exp(i \gamma_n z) \Delta^n \,.
$$

(10)

$$
T = \sum_{mns} T_{mns} \exp(i p_n x) \exp(i \gamma_n z) \Delta^n \,.
$$

(11)

where

$$
p_n^2 = \frac{\omega_j^2}{c^2} - \gamma_n^2 \,.
$$

(12)

Now the wave equation (1) yields a new recursion relation:

$$
E_{mns} = \frac{1}{2} (E_{m,n-1,s-1} + E_{m,n+1,s-1}) - \frac{1}{2} (E_{m,n-1,s-1} + E_{m,n+1,s-1}) \,.
$$
There is a similar recursion relation for F.

The boundary conditions, applied at $x = 0$ and $x = L$, guarantee continuity of tangential E and H:

$$-R_{ns} + E_{ns} + F_{ns} = -\sum_{m} (E_{mns} + F_{mns})$$

(14a)

$$p_n R_{ns} + k_{n0} E_{ns} - k_{n0} F_{ns} = -\sum_{m} \sum_{t=0}^{s} (k_{m,s-t} E_{mnt} - k_{mns-t} F_{mnt})$$

(14b)

$$p_{n0} E_{ns} + M_{n0} F_{ns} - \exp(ipnL)T_{ns} = -\sum_{m} \sum_{t=0}^{s} (P_{ms-t} E_{mnt} + M_{ns-t} F_{mnt})$$

(14c)

$$k_{n0} P_{n0} E_{ns} - k_{n0} M_{n0} F_{ns} - p_n \exp(ipnL)T_{ns} = -\sum_{m} \sum_{t=0}^{s} \sum_{j=0}^{L-1} (k_{m,s-t} P_{m,t-j} E_{mnj} - k_{m,s-t} M_{m,t-j} F_{mnj})$$

(14d)

where

$$\exp(ikmL) = \sum_{t=0}^{\infty} P_{mt} \Delta^t$$

$$\exp(-ikmL) = \sum_{t=0}^{\infty} M_{mt} \Delta^t$$

(15)

If the incident plane wave strikes the $x = 0$ interface with a z-direction cosine of γ_e, the zero-order terms E_{000}, F_{000}, R_{00}, and T_{00} are just those given by the familiar Fresnel relations for an unperturbed medium. The first-order terms are then generated from the recursion relations (which yield E_{011}, E_{0-11}, F_{011}, and F_{0-11}) and the boundary conditions (which yield R_{11}, E_{1111}, F_{1111}, T_{11}, and R_{-11}, E_{-1111}, F_{-1111}, T_{-11}). This process can be continued indefinitely, and is an unambiguous way of generating the solution for a given incident plane wave, provided Δ is “small,” so that the series converges. The recursion relation (13) serves not only to generate the E_{mns}, but also to generate the K_m. When $m = n$, the left-hand side of (13) is clearly zero. The $K_{m,n-m}$ is determined in terms of low-order values of $K_{m,t}$ and E_{mns} (E_{ns} and F_{nns} are determined, as previously stated, by the boundary conditions.)

The left-hand side of equation (13) is also zero whenever $n + m + 2\alpha = 0$. This is a fundamental problem and in fact invalidates the procedure, but it occurs only when $\alpha = N/2$ for some integer N — the Bragg condition. This difficulty can be dealt with in practice by simply treating an approximate problem $\alpha = N/2 + \epsilon$. An elaboration of the theory is given in appendix A.

3. GEOMETRICAL INTERPRETATION

There is a simple geometrical construction which is a useful aid in visualizing the above treatment of the acousto-optical interaction. This construction derives from one often used to demonstrate Snell’s law. Thus, in figure 2, two views of the simple unmodulated boundary-value problem are given: (a) is self-explanatory; (b) is more abstract. Here the circles (in wave-vector space) represent the naturally propagating modes in the various media. Their diameters are

$$\frac{\omega}{c}, \frac{\omega}{c} + \epsilon, \text{ and } \frac{\omega}{c}$$

Figure 3 represents the acoustically modulated medium. Here are represented the higher-order (m,n) terms — plane waves generated by the recursion relation (13) and the boundary conditions (14). The $(0,0)$ vectors are as in figure 2. Equation (13) generates $(0,1)$ and $(0,-1)$. Then
Also, in the more general anisotropic case, even the zero-order surface will no longer be a circle, but a more general second-, fourth-, or sixth-order surface.

BRAGG RESONANCE (N=1)

Figure 4. An example of Bragg resonance, which occurs for $\Delta \lambda \sin \theta = N \pi$; this arises analytically from a singularity in the recursion relation, geometrically from the "double labelling" of an on-surface lattice point.

4. COMPUTATIONAL RESULTS

It is illuminating to compare results obtained from the above formalism with those obtained from earlier efforts. Nomoto has done calculations for an isotropic acoustically modulated medium assuming normal incidence. In this case ($\alpha = 0$), the z-dependence of the internal fields reduces to the tabulated periodic Mathieu functions c_ν, disposing of the need for series expansions and so also of the requirement that Δ be small. (Nomoto neglects reflections — that is, he does not use the boundary conditions — but, under the assumption of a not-too-abrupt ε-transition at the interfaces, this is an acceptable approximation.)

Comparisons between the present author's and Nomoto's calculations are shown in figure 5. Here are compared the intensities of the undeflected

NORMAL INCIDENCE

applying also for oblique incidence and for abrupt changes in refractive index, and of being generalizable to include anisotropic media.

Figure 6 shows, for a different set of parameter values, the amplitude of the T_{02} term as a function of incident angle. The T_{02} term can be visualized as having been doubly diffracted back to its original direction. Here $\epsilon/c = 10$, $q = 0.5$, $\epsilon = 5.$ and $L = 1$ cm. The Bragg resonance at $\alpha = 1.2$ ($\gamma_0 = 0.25$) can be clearly seen.

The parameter values in figure 6 (ϵ, ω, q, L) quite closely resemble those of the system that this research is designed to model: modulation of an optical beam by microwave acoustical signals in a 1-cm-thick sample of lithium niobate.

transmitted wave, as functions of thickness L, using the two methods. For the system considered, $\Delta = 1.2$. The applicability of the expansion calculation, which was performed to seventh order, is in some doubt for such a large Δ. Also, $\omega/c = 10$, $q = 0.03$, $\epsilon = 1$, and L varies from 0 to 20 cm. The value $\epsilon = 1$ was chosen to minimize the error arising from Nomoto's no-reflection assumption. Even for $\Delta = 1.2$, the expansion technique works well up to a thickness of about 10 cm (about 500 acoustical wavelengths). It has the advantage of applying also for oblique incidence and for abrupt changes in refractive index, and of being generalizable to include anisotropic media.

Figure 6 shows, for a different set of parameter values, the amplitude of the T_{02} term as a function of incident angle. The T_{02} term can be visualized as having been doubly diffracted back to its original direction. Here $\epsilon/c = 10$, $q = 0.5$, $\epsilon = 5.$ and $L = 1$ cm. The Bragg resonance at $\alpha = 1.2$ ($\gamma_0 = 0.25$) can be clearly seen.
LITERATURE CITED

NOTATION

\(c \) free-space velocity of light
\(\omega \) optical frequency
\(\varepsilon \) dielectric constant of unmodulated material
\(\delta \) modulation amplitude
\(\Delta = \delta \frac{\lambda^2}{\Lambda^2} \) expansion parameter
\(\lambda \) free-space optical wavelength
\(\Lambda \) acoustic wavelength
\(q = \frac{2\pi}{\Lambda} \)
\(L \) slab thickness
\(\gamma \) z-component of incident light wave vector
\(\alpha = \frac{\gamma}{q} \)
\(E_{nms} \) term in expansion of internal forward-travelling wave
\(F_{nms} \) term in expansion of internal backward-travelling wave
\(R_{nms} \) term in expansion of reflected wave
\(T_{nms} \) term in expansion of transmitted wave
\(k \) x-component of wave vector in medium
APPENDIX A — THE ACOUSTO-OPTIC INTERACTION FOR BRAGG ANGLES

The acousto-optic diffraction process can be described by a perturbation procedure (see main body of paper). A recursion relation, applied in conjunction with certain boundary conditions, generates plane-wave expansion terms from lower-order terms. The expansion parameter is

\[\Delta = \delta \frac{\Lambda^2}{\lambda^2} \]

where \(\delta \) is the refractive index modulation amplitude, \(\Lambda \) is the acoustic wavelength, and \(\lambda \) is the optical wavelength. The recursion relation is

\[(n - m)(n + m + 2\alpha)E_{mns} = \frac{\Lambda^2}{4\pi^2} \sum_{l=1}^{s} K_{ml}E_{m,n,s-l} \]

(A-1)

Here, \(n, m, \) and \(s \) label the plane-wave terms which combine to give the full field pattern. Other variables appearing are

\[\alpha = \frac{\Lambda}{\lambda} \sin \theta \]

(A-2)

\[\theta = \text{angle of incidence} \]

\[k_m = \sum_{l=0}^{\infty} K_{ml} \Delta^l \]

(A-3)

\[E = \sum_{mns} E_{mns} \exp \left[i(k_m x + \gamma_{n} z) \right] \Delta^n \]

(A-4)

In the case of Bragg resonance (\(\alpha = N/2\), \(N \) an integer), the method fails, since the left-hand side of (A-1) vanishes. A consideration of the solution for such cases, and how to obtain and represent them, is given here.

Physically, the Bragg condition implies perfect periodicity of the system; displacement by \(\Lambda \) (the acoustical wavelength) in the z-direction leaves the system unaltered. (The acoustical z-period is an integral multiple of the optical z-period.) So our solution should be periodic in \(z \). After separation of variables, the \(z \)-part of the solution satisfies Mathieu’s equation; thus, in the Bragg case, a linear combination of the \(c_n \) and \(s_n \) is needed. Since we want a solution whose zero-order term is \(\exp(ik_0 x) \exp(iNqz/2) \), our solution is clearly

\[\exp(ik_0^+ x) \ c_n \left(\frac{qz}{2} \right) - 2\Delta \]

(A-5)

where

\[(k_0^+)^2 = K_0^+ = \frac{\omega^2}{c^2} \epsilon - \frac{q^2 a_n(\pm 2\Delta)}{4} \]

(A-6)

\[(k_0^-)^2 = K_0^- = \frac{\omega^2}{c^2} \epsilon - \frac{q^2 b_n(\pm 2\Delta)}{4} \]

and \(a_N \) and \(b_N \) are the Mathieu eigenvalues in McLachlan’s notation, and are functions of \(\Delta \).

This solution can be obtained by a modification of the expansion method presented in the body of this paper. The modification arises from the degeneracy (\(K_{-N_0} = K_{0_0} \)) which results in the Bragg case. For definiteness, we consider here the case \(N = 2 \) — that is, \(\gamma = q (\alpha = 1) \). We use the usual recursion relation (A-1), but we start with nonzero \(E_{mns} \) and \(E_{0-20} \). Then

\[K_{m0} = \rho_0 \epsilon - q^2 = K_{-20} \]

\[\text{Ref. H. E. McBachlan, Theory and Application of Mathieu Functions, Oxford Press, Oxford (1947).} \]
For E_{011}

\[(1)(1 + 2a)E_{011} = \frac{1}{2} E_{000} \]

$E_{011} = \frac{1}{6} E_{000}$

E_{0-11}: \((-1)(-1 + 2a)E_{0-11} = \frac{1}{2} \left(E_{000} + E_{0-20} \right)\]

$E_{0-11} = -\frac{1}{2} \left(E_{000} + E_{0-20} \right)$

E_{0-31}: \((-3)(-3 + 2a)E_{0-31} = \frac{1}{2} E_{0-20} \]

$E_{0-31} = \frac{1}{6} E_{0-20}$

E_{022}: \((2)(2 + 2a)E_{022} = \frac{1}{2} E_{011} \]

$E_{022} = \frac{1}{16} E_{011} = \frac{1}{96} E_{000}$

E_{002}: \((0)(0 + 2a)E_{002} = 0 = \)

\[\frac{1}{2} \left(E_{011} + E_{0-11} \right) - \frac{1}{q^2} K_{02} E_{000} \]

$K_{02} E_{000} = \frac{q^2}{2} \left(-\frac{1}{3} E_{000} - \frac{1}{2} E_{0-20} \right)$

E_{0-32}: \((-2)(-2 + 2a)E_{0-32} = 0 = \)

\[\frac{1}{2} \left(E_{0-11} + E_{0-31} \right) - \frac{1}{q^2} K_{02} E_{0-20} \]

$K_{02} E_{0-20} = \frac{q^2}{2} \left(-\frac{1}{3} E_{000} - \frac{1}{2} E_{0-20} \right)$

E_{0-42}: \((-4)(-4 + 2a)E_{0-42} = \frac{1}{2} E_{0-31} \]

$E_{0-42} = \frac{1}{16} E_{0-31} = \frac{1}{96} E_{0-20}$

The equations for E_{002} and E_{0-20} yield

\[
\begin{bmatrix}
\frac{K_{02}}{q^2} + \frac{1}{6} & \frac{1}{4} \\
\frac{1}{4} & \frac{K_{02}}{q^2} + \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
E_{000} \\
E_{0-20}
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Thus,

\[
\left(\frac{K_{02}}{q^2} \right)^2 + \frac{1}{3} \frac{K_{02}}{q^2} - \frac{5}{144} = 0
\]

$k_{02} = \frac{1}{12} q^2 \text{ or } -\frac{5}{12} q^2$

Thus,

\[
k_0 = k_{00} + \frac{1}{24} \frac{q^2}{k_{00}} \Delta^2 + \ldots
\]

or

\[
k_0 = k_{00} - \frac{5}{24} \frac{q^2}{k_{00}} \Delta^2 + \ldots
\]

Call the first solution k_{0}^- and the second k_{0}^+. Substitution shows that the k_{0}^- solution has the property $E_{0-20} = -E_{000}$, and the k_{0}^+ solution has the property $E_{0-20} = +E_{000}$. We thus have, to second order, the two solutions:

\[
e^{-} = \frac{1}{2} E_{000} \left[\exp(ik_{00}x) \exp(i\gamma z) - \exp(ik_{00}x) \exp(-i\gamma z) \right]
\]

\[\exp(i\gamma z) \exp \left(i \frac{\Delta' q^2}{32k_{00}} x \right) \]

\[= i E_{000} \exp(ik_{00}x) \sin qz \quad \text{(A-6)} \]

\[
e^{+} = \frac{1}{2} E_{000} \left[\exp(ik_{00}x) \exp(i\gamma z) + \exp(ik_{00}x) \exp(-i\gamma z) \right]
\]

\[\exp(i\gamma z) \exp \left(-i \frac{5\Delta' q^2}{32k_{00}} x \right) \]

\[= E_{000} \exp(ik_{00}x) \cos qz \quad \text{(A-7)} \]
If carried out to higher order, these solutions turn out to be

\[E^- = iE_{000} \exp(ik_\sigma x) se_1 \left(\frac{qz}{2}, -2\Delta \right), \quad (A-8) \]

\[k_0^{(a)} = \frac{1}{2} \left(k_0^+ + k_0^- \right) = \]

\[k_0 = \frac{1}{12} q^2 \Delta^2. \]

The \(E_{-1,-2} \) term represents the addition of a homogeneous solution which can be considered to arise from the boundary condition. Thus, using

\[k_0^{(a)} = \frac{1}{2} \left(k_0^+ + k_0^- \right) = \]

the second-order solution is given by

\[\exp(ik_0^{(a)} x) \left\{ \exp(2iz) + \Delta \left[\frac{1}{6} \exp(2iz) - \frac{1}{2} \right] \right\} \]

\[+ \Delta^2 \left[\frac{1}{96} \exp(3iz) + \frac{1}{16\delta} \exp(-iz) \right] \]

\[\exp(2iz) - \exp \left(\frac{q^2 \Delta}{k_0} \right) \right\} \]

\[\exp(3iz) - \exp(-iz) \right\} \]

As remarked earlier, the solution we want is

\[E^+ + E^- = E_{000} \left[ce_2 \left(\frac{qz}{2}, -2\Delta \right) \right. \]

\[\exp(ik_\sigma x) + i se_1 \left(\frac{qz}{2}, -2\Delta \right) \exp(ik_\sigma x) \right]. \]

\[(A-10) \]

It is of interest now to investigate the continuity properties of this solution: to consider the case \(\alpha = 1 + \delta \) as \(\delta \to 0 \). For this case, the reader can verify the following:

\[K_{00} = p_0^2 - q^2 \Delta \approx p_0^2 - q^2 - 2q^2 \delta. \]

\[K_{-2} = p_0^2 - (\alpha - 2)q^2 \approx p_0^2 - q^2 + 2q^2 \delta. \]

\[E_{000} = 1. \]

\[E_{011} = \frac{1}{6}. \]

\[E_{0-11} = -\frac{1}{2}. \]

\[E_{022} = \frac{1}{96}. \]

\[K_{02} = -\frac{q^2}{6}. \]

\[E_{-1-2} = \frac{1}{16\delta}. \]

\[E_{-2-2} = -\frac{1}{16\delta}. \]

This expression also represents our Mathieu function solution to second order, where \(\exp(ik_0^{(b)} x) \) has been factored out. The \(x \)-dependent coefficient arises from the series expansion of the exponentials:

\[\exp(ik_0^{(b)} x) ce_2 \left(\frac{qz}{2}, -2\Delta \right) + \]

\[i \exp(ik_0^{(b)} x) se_2 \left(\frac{qz}{2}, -2\Delta \right) = \]

\[\exp(ik_0^{(b)} x) \left(1 - \frac{iq^2 \Delta}{8k_0} \right) \]

\[\frac{1}{2} \left[\exp(2iz) + \exp(-iz) \right] + \]

\[\frac{1}{2} \left[\exp(2iz) - \exp(-iz) \right] \]
APPENDIX A

\[
\Delta \left[\frac{1}{12} \exp(2iqz) - \frac{1}{2} + \frac{1}{12} \exp(-2iqz) \right] + \\
\Delta' \left[\frac{1}{192} \exp(3iqz) + \frac{1}{192} \exp(-3iqz) \right] + \\
\exp(ikx) \left(1 + \frac{iq' \Delta' \xi}{8k_0} \right) \\
\left(\frac{1}{2} \left[\exp(iqz) - \exp(-iqz) \right] + \\
\Delta \left[\frac{1}{12} \exp(2iqz) - \frac{1}{12} \exp(-2iqz) \right] + \\
\Delta' \left[\frac{1}{192} \exp(3iqz) - \frac{1}{192} \exp(-3iqz) \right]. \right]
\]

The reader can easily see that this matches up with the limiting form of equation (A-11), and the continuity of the solution at Bragg angles is verified. Thus, the expansion procedure described in the main body of this paper yields solutions for the Bragg case in the limit \(\alpha = N/2 + \delta, \delta \to 0. \) The fact that the coefficients themselves are not continuous arises from the inherent nonuniqueness of expansion (2).
DISTRIBUTION (Cont'd)

DIRECTOR
US ARMY BALLISTICS RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR, DIRECTOR, R. EICHELBERGER
ATTN DRXBP-TB, FRANK J. ALLEN
ATTN DREDAR-TSB-S (STINFO)

DIRECTOR
ELECTRONIC WARFARE LABORATORY
FT MONMOUTH, NJ 07703
ATTN TECHNICAL LIBRARY
ATTN J. CHARLTON
ATTN DR. HIESLMAIR
ATTN J. STROZYK
ATTN DR. E. J. TEBO

DIRECTOR
NIGHT VISION & ELECTRO-OPTICS LABORATORY
FT BELVOIR, VA 22060
ATTN TECHNICAL LIBRARY
ATTN R. BUSER

COMMANDER
ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NM 88002
ATTN TECHNICAL LIBRARY

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEER CENTER
1860 WIEHLE AVE
RESTON, VA 22090
ATTN PETER A. VENA

COMMANDER
US ARMY MISSILE RESEARCH & DEVELOPMENT COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DREDMI-TB, REDSTONE SCI INFO CENTER
ATTN DRCPM-HEL, DR. W. B. JENNINGS
ATTN DR. J. P. HALLOMES
ATTN T. HONEYCUTT

COMMANDER
EDGWOOOD ARSENAL
EDGWOOOD ARSENAL, MD 21010
ATTN SAREA-TS-L, TECH LIBRARY

COMMANDER
US ARMY ARMAMENT RES & DEV COMMAND
DOVER, NJ 07801
ATTN DREDAR-TSS, STINFO DIV

COMMANDER
US ARMY TEST & EVALUATION COMMAND
ABERDEEN PROVING GROUND, MD 21005
ATTN TECH LIBRARY

COMMANDER
US ARMY ABERDEEN PROVING GROUND
ABERDEEN PROVING GROUND, MD 21005
ATTN STEAP-TL, TECH LIBRARY, BLDG 305

COMMANDER
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DRSEL-WL-MS, ROBERT NELSON

COMMANDER
GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61201
ATTN SWERR-PL, TECH LIBRARY

COMMANDER
USA CHEMICAL CENTER & SCHOOL
FORT MCCLELLAN, AL 36201

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
ATTN TECH LIBRARY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN WX-40, TECHNICAL LIBRARY

DIRECTOR
NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20390
ATTN CODE 2620, TECH LIBRARY BR
ATTN CODE 5554, DR. LEON ESTEROWITZ

COMMANDER
NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555
ATTN CODE 753, LIBRARY DIV

COMMANDER
AF ELECTRONICS SYSTEMS DIV
L. G. HANSCOM AFB, MA 01730
ATTN TECH LIBRARY
DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234
ATTN LIBRARY
ATTN DR. W. BROWNER
ATTN H. S. PARKER

NASA GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
ATTN CODE 252, DOC SECT, LIBRARY

NATIONAL OCEANIC & ATMOSPHERIC ADM
ENVIRONMENTAL RESEARCH LABORATORIES
BOULDER, CO 80302
ATTN LIBRARY, R-51, TECH REPORTS

UNIVERSITY OF MICHIGAN
COLLEGE OF ENGINEERING NORTH CAMPUS
DEPARTMENT OF NUCLEAR ENGINEERING
ANN ARBOR, MI 48104
ATTN DR. CHIHIRO KIKUCHI

DIRECTOR
ADVISORY GROUP ON ELECTRON DEVICES
201 VARICK STREET
NEW YORK, NY 10013
ATTN SECTRY, WORKING GROUP D

CRYSTAL PHYSICS LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MA 02139
ATTN DR. A. LINZ
ATTN DR. H. P. JENSSSEN

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT

HARRY DIAMOND LABORATORIES
ATTN 00100, COMMANDER/TECH DIR/TSO
ATTN CHIEF, DIV 10000
ATTN CHIEF, DIV 20000
ATTN CHIEF, DIV 30000
ATTN CHIEF, DIV 40000
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, (3 COPIES) 81100
ATTN HDL LIBRARY, (WOODBRIDGE) 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 13000
ATTN BERG, N. J., 13200
ATTN LEAVITT, R., 13200
ATTN LEE, J. N., 13200
ATTN MORRISON, C., 13200
ATTN RIESSLER, W. A., 13200
ATTN SATTLER, J., 13200
ATTN SIMONIS, G., 13200
ATTN TORIN, M. S., 13200
ATTN WEBER, B., 13200
ATTN WORCHESKY, T. L., 13200
ATTN WORTMAN, D., 13200
ATTN LANHAM, C., 00210
ATTN KARAYANIS, N., 13200 (10 COPIES)
ATTN SPONN, D., 21300
ATTN WASILIK, J., 22800
ATTN MCLEAN, F., 22800
ATTN WIMENITZ, F., 20240
ATTN SCHARF, W. D., 13200 (10 COPIES)
DATE
ILMED
-8