THE USE OF DISTRIBUTED ROUGHNESS FOR SCALING CAVITATION INCEPTION

M L BILLET, J W HOLL

NO0024-79-C-6043

UNCLASSIFIED ARL/PSU/TM-80-177
THE USE OF DISTRIBUTED ROUGHNESS FOR SCALING CAVITATION INCEPTION

M. L. BILLET and J. W. HOLL

Technical Memorandum
File No. 80-177
21 August 1980
Contract No. N00024-79-C-6043
Copy No. 7

The Pennsylvania State University
APPLIED RESEARCH LABORATORY
Post Office Box 30
State College, PA 16801

Approved for Public Release
Distribution Unlimited

NAVY DEPARTMENT
NAVAL SEA SYSTEMS COMMAND
ABSTRACT
Cavitation inception observations on a family of axisymmetric models were made in the 1.21 m water tunnel at the Applied Research Laboratory. Inception data were obtained on Schiebe headforms having diameters of 203.2 mm, 50.8 mm and 25.4 mm. The Schiebe headform has a \(C_{d,min} = -0.75 \) and does not experience a separated boundary layer. Initially, cavitation inception data were obtained with no added roughness on the models. Then a distributed roughness of silicon carbide was glued to the nose of the two smaller models and additional cavitation inception data were obtained.
20. tion inception data were obtained. Travelling-bubble cavitation was the type of cavitation observed near inception. Results show that it is possible to use a distributed roughness to increase the cavitation inception index to the indices found at higher Reynolds numbers. However the size and location of the roughness are very critical and the basic mechanisms which control this process need further investigation. This paper was presented at the 19th American Towing Tank Conference held in Ann Arbor, Michigan in July 1980.
Subject: The Use of Distributed Roughness for Scaling Cavitation Inception

References: See page 12.

Abstract: Cavitation inception observations on a family of axisymmetric models were made in the 1.21 m water tunnel at the Applied Research Laboratory. Inception data were obtained on Schiebe headforms having diameters of 203.2 mm, 50.8 mm and 25.4 mm. The Schiebe headform has a $C_{p_{min}} = -0.75$ and does not experience a separated boundary layer. Initially, cavitation inception data were obtained with no added roughness on the models. Then a distributed roughness of silicon carbide was glued to the nose of the two smaller models and additional cavitation inception data were obtained. Travelling-bubble cavitation was the type of cavitation observed near inception. Results show that it is possible to use a distributed roughness to increase the cavitation inception index to the indices found at higher Reynolds numbers. However the size and location of the roughness are very critical and the basic mechanisms which control this process need further investigation. This paper was presented at the 19th American Towing Tank Conference held in Ann Arbor, Michigan in July 1980.

Acknowledgments: This work was sponsored by the Naval Sea Systems Command, Code 63R-31.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>1</td>
</tr>
<tr>
<td>List of Figures</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>EXPERIMENTAL PROGRAM</td>
<td>5</td>
</tr>
<tr>
<td>EXPERIMENTAL RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>Cavitation Characteristic Without Added Roughness</td>
<td>6</td>
</tr>
<tr>
<td>Cavitation Data With Added Roughness on the 25.4 mm and 50.8 mm Models</td>
<td>8</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>9</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
<tr>
<td>Figures</td>
<td>14</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Photograph of Models</td>
</tr>
<tr>
<td>2</td>
<td>Cavitation Inception for Three Models</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of Inception and Desinence for the 203.2 mm and 50.8 mm Models</td>
</tr>
<tr>
<td>4</td>
<td>The Influence of Air Content on Inception for the 203.2 Model</td>
</tr>
<tr>
<td>5</td>
<td>Cavitation Inception Data for the 25.4 mm and 50.8 mm Models With and Without Added Roughness</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of Cavitation Inception Data for the 203.2 mm Model with the 50.8 mm Model with Added Roughness</td>
</tr>
</tbody>
</table>
INTRODUCTION

The practical problem of major concern in the field of cavitation is the prediction of cavitation inception for a prototype from model tests. The classical theory for scaling vaporous cavitation states that

\[\sigma_i = -C_{p_{\text{min}}} \]

(1)

and therefore

\[\sigma_{i-p} = \sigma_{i-m} \]

where \(\sigma_i \) and \(C_{p_{\text{min}}} \) are the incipient cavitation number and minimum pressure coefficient, respectively. The subscripts \(p \) and \(m \) denote prototype and model. It is assumed that when scaling from one flow state to another the form of the flow field and its boundaries remain geometrically and kinematically similar and bubble dynamic effects are neglected.

Much of the experimental evidence on scaling [see References 1 and 2 for examples] shows that the incipient cavitation number is not a constant for a particular type of cavitation. In addition there appears to be a different scaling relationship for each type of cavitation, i.e. tip vortex, surface, travelling-bubble, etc. Even at model scale, differences in cavitation inception for a model occur between facilities [3].

There have been several recent results which explain more clearly why some of the departures occur. The importance of viscous effects, namely boundary layer transition and laminar separation, and free-stream nuclei have been pointed out by the extensive work of Arakeri and Acosta [4] and Gates [5]. These factors which cause departures from the classical theory are called "scale effects."

Because of these scale effects, some investigations have attempted to create "high Reynolds number simulations" at model scale in an attempt to eliminate the scale effects problem. A recent method used at NSMB [6]
is to coat the leading edges of model propellers with sand grain roughness.
The purpose of this method is to eliminate laminar separation which occurs
at model scale but not at prototype scale. Some results do give cavitation
patterns at model scale which approximate prototype patterns.

Another method is to seed the flow facility with cavitation nuclei
to eliminate the scale effects problem. There are several investigators
such as Albrecht and Bjorheden [7] and Kodama et al. [8] who use this
approach; however, the available results are not conclusive.

The objective of this paper is to present some of the results of
a preliminary investigation into the influence of sand grain roughness
on cavitation inception and "high Reynolds number simulations." Axisym-
metric models with a Schiebe headform \(C_{p_{\text{min}}} = -0.75 \) having diameters
of 203.2 mm, 50.8 mm, and 25.4 mm were tested with and without added rough-
ness. The contour of this headform is generated by a combination of a
disk shaped source distribution normal to a uniform flow [9]. Van der
Meulen [10] has investigated the flow around this headform and has verified
that the body does not experience laminar separation.

EXPERIMENTAL PROGRAM

The experiments were conducted in the 1.21 m water tunnel of the
Applied Research Laboratory located at The Pennsylvania State University.
Both incipient and desinent cavitation data were obtained for the three
Schiebe nosed models having diameters of 203.4 mm, 50.8 mm and 25.4 mm.
These data were obtained by the following method: 1. the tunnel pressure
was lowered until cavitation inception occurred, 2. the pressure was
again lowered until developed cavitation appeared, 3. the pressure was
increased until developed cavitation disappeared, and finally, 4. the
pressure was again increased until all cavitation disappeared. Thus, for most of the tests, this procedure yielded cavitation inception for travelling-bubble cavitation, cavitation inception for attached cavitation, cavitation desinence for attached cavitation and cavitation desinence for travelling-bubble cavitation. In addition to the cavitation data, many photographs of the cavitation were also obtained.

Initially, cavitation data were obtained with no added roughness on the models. Then, a distributed roughness of silicon carbide in a size range of 15 to 66 microns was glued to the nose of the models. The roughness was applied to the nose in circular areas of different radii around the stagnation point. A photograph of the roughness on the 50.8 mm diameter model is shown in Figure 1.

EXPERIMENTAL RESULTS
Cavitation Characteristic Without Added Roughness

Cavitation inception data for the three models are shown in Figure 2 as a function of Reynolds number. In this figure the data points are an average of four tests and the bars indicate the amount of scatter in the data.

Cavitation inception always occurred near the body surface and slightly downstream of the $C_{p_{\text{min}}}$ point. Travelling-bubble events occurred very randomly. Inception of the attached cavity was marked by the sudden appearance of a steady developed cavity.

Both inception and desinence data are shown in Figure 3 for the 203.2 mm and 50.8 mm models. A brief analysis of inception data shows that in most cases average desinence data are higher than the corresponding
inception data. However this difference is within the data scatter for most cases. Thus, there was not a significant hysteresis effect in these experiments.

Referring to Figure 2 it is seen that there is a significant scale effect for the bodies both for travelling-bubble cavitation and for attached cavitation. On the average, \(\sigma_i \) for travelling-bubble cavitation decreased slightly with increasing velocity for all bodies and increased with model diameter. The incipient cavitation number for attached cavitation increased with increasing velocity for all models. For an increase in diameter from 25.4 mm to 50.8 mm, \(\sigma_i \) for the attached cavitation was essentially constant for a given velocity. However, \(\sigma_i \) increased significantly when the diameter was increased from 50.8 mm to 203.2 mm. However, as reported in Billet and Holl [2] for travelling-bubble cavitation on NACA 0010 hydrofoils, the velocity scale effect was the same as that observed for travelling-bubble cavitation on the Schiebe headforms whereas there was no size effect.

As discussed in the introduction, free stream nuclei can be important in cavitation scaling. A crude method of reducing the number of free stream nuclei is to de-gas the water. This was done for one set of tests with the 203.2 mm model. Inception data are shown in Figure 4 for an air content of 7.1 ppm and 3.2 ppm*. Reducing the gas content from 7.1 ppm to 3.2 ppm caused a reduction in \(\sigma_i \) over the entire velocity range for both travelling-bubble cavitation and attached cavitation. However, the amount of reduction in \(\sigma_i \) for the travelling-bubble cavitation was considerably greater than that for the attached cavities.

*Air contents are expressed in moles of air per million moles of water (ppm).
Cavitation Data With Added Roughness on the 25.4 mm and 50.8 mm Models

Incipient and desinent cavitation data were obtained with a distributed roughness added to the nose of the models. Roughness was added to the 25.4 mm and 50.8 mm diameter models upstream of the $C_{p_{\text{min}}}$ position. Two sizes of roughness were used having mean diameters of 30 μm and 66 μm. In all cases, silicon carbide grit was glued to the nose to form a disk area of radius R of distributed roughness.

Many tests were conducted in which the normalized radius (R/R_m) of distributed roughness was varied from 0.5 to 0.7 where R_m denotes model radius. In some cases the cavitation was observed to be attached to the roughness which caused a large change in cavitation index and in other cases no change in cavitation index was observed.

There are many conclusions that can be made from the tests with added roughness. Some of these are very noteworthy and these data will be presented and discussed.

First of all an additional type of cavitation called fixed-patch cavitation was observed. This is simply a patch of cavitation attached to the surface near the $C_{p_{\text{min}}}$ point on the body. In most of the cases this patch is downstream of the $C_{p_{\text{min}}}$ point and does not appear to be attached to roughness elements. Holl and Carroll [11] have previously discussed fixed-patch cavitation which was observed on axisymmetric headforms.

The 60 μm grit at $R/R_m = 0.5$ had no influence on bubble or attached cavitation for either body when compared to the cavitation data without added roughness. Using 30 μm grit at $R/R_m = 0.7$ gave the most interesting results. These data are shown in Figure 5.
On the average, the incipient cavitation number for travelling-bubble cavitation for the 25.4 mm and 50.8 mm noses with added roughness was higher than similar data for both bodies without added roughness. Also, the fixed patch cavitation for both bodies occurred at higher values of σ_1 than did the attached cavitation for the bodies without added roughness.

DISCUSSION

The previous comments have been written with respect to the documentation of the experimental results. Let us discuss these results with emphasis on scaling.

Describing a possible scaling relationship with model size for the data shown in Figure 2 is difficult. Attached cavity cavitation varied significantly with model size but no correlation is obvious. However, σ_1 for travelling-bubble cavitation was always greater than that for attached cavities and on the average increased with increasing size.

Considerable effort has been made in the past to formulate a dimensionless parameter or parameters which would scale travelling-bubble cavitation. Schiebe [12] has developed a reasonable approach for scaling using a parameter which involves the number of cavitation events per unit time normalized by the free stream velocity, the model diameter squared and the number of nuclei per unit volume. As discussed by Gates and Tillot [13], this approach does give a decrease in inception index for decreasing model size for Schiebe bodies. This decrease is essentially caused by a reduction in capture area as the model size decreases.

Now, let us address the question: What can roughness do to this process to make the scaling independent of model size? Another question which parallels the above is: Can roughness make cavitation inception independent of model size?
A comparison between cavitation inception data for the 203.2 mm model and the roughened 50.8 mm model is shown in Figure 6. It is seen that the average of the travelling-bubble inception data is similar between the 203.2 mm model and the 50.8 mm model with added roughness. In this case the roughness was not observed to cavitate directly. Thus the roughness formulation developed by Hall [14] and summarized in Arndt et al. [15] cannot be directly applied.

A possible mechanism is found by referring to the previous discussion of scaling travelling-bubble cavitation. The roughness could generate micro-bubbles which would change the nuclei distribution for the model and thus offset the problem of reduced capture area at model scale. If this is possible, the location and size of the roughness is very critical. In addition, the micro-bubble generation for the roughness would be very sensitive to boundary layer conditions and hence would not be very useful over a large velocity range for the model. In addition, different roughnesses would be required for different scales.

SUMMARY AND CONCLUSIONS

The main objective of this paper is to present some experimental results of a preliminary investigation of the influence of sand grain roughness on cavitation scaling. To do this, a nonseparating test model was chosen which exhibits mostly travelling-bubble cavitation at inception. Three models having diameters of 25.4 mm, 50.8 mm, and 203.2 mm were tested. Roughness was added to the 50.8 mm "model" in an effort to obtain cavitation inception numbers typical of the 203.2 mm "prototype" without added roughness.
The results show that it is possible to use a distributed roughness to increase the cavitation inception index on the "model" to the level experienced by the "prototype" at higher Reynolds numbers. However, there are basic problems associated with this method:

1. We cannot necessarily duplicate the same type of cavitation from model to prototype. In these experiments, the travelling-bubble cavitation was essentially the same but the attached cavitation was in the form of a patch on the model and was a developed cavity on the prototype.

2. There does not appear to be a rational way to select the "proper" roughness since the cavitation occurs downstream from the roughness which suggests that the techniques of Arndt, Hull, Bohn, and Bechtel [15] are not applicable.

3. We can match σ_1 of the model and prototype by employing a trial and error process of adding roughness but to do this we must know σ_1 of the prototype.

The mechanism by which the roughness indirectly increases the cavitation index for inception is not fully understood; however, it is suspected that the roughness produces micro-bubbles. The mechanism by which fixed patch cavitation is produced downstream of the roughness is also not understood; however, the roughness must change the structure of the boundary layer. This is only a preliminary investigation into the use of roughness. There are many questions which must be answered before roughness induced cavitation is understood.
REFERENCES

Figure 2. Cavitation Inception for Three Models
Figure 3. Comparison of Inception and Desinence for the 203.2 mm and 50.8 mm Models
Figure 4. The Influence of Air Content on Inception for the 203.2 Model
Figure 5. Cavitation Inception Data for the 25.4 mm and 50.8 mm Models with and without Added Roughness
Figure 6. Comparison of Cavitation Inception Data for the 203.2 mm Model with the 50.8 mm Model with Added Roughness

SCHIEBE MODELS SCALING WITH ROUGHNESS

TRAVELLING BUBBLE

FIXED PATCH

ATTACHED CAVITY

OPEN SYMBOLS: 203.2 mm MODEL
SOLID SYMBOLS: 50.8 mm MODEL WITH ROUGHNESS:
30 µm, R/R_m = 0.7

α = 7.1 ppm

REYNOLDS NUMBER, \(\frac{V^2D}{\nu} \)

INCIPIENT CAVITATION NUMBER, \(q_i \)

Commander
Naval Sea Systems Command
Department of the Navy
Washington, DC 20362
Attn: Library
Code NSEA 09G32
(Copy Nos. 1 and 2)

Naval Sea Systems Command
Attn: A. R. Paladino
Code NSEA 05H1
(Copy No. 3)

Naval Sea Systems Command
Attn: T. E. Peirce
Code NSEA 63R3
(Copy No. 4)

Commanding Officer
Naval Underwater Systems Center
Newport, RI 02840
Attn: Library
Code 54
(Copy No. 5)

Commanding Officer
Naval Ocean Systems Center
San Diego, CA 92152
Attn: Library
(Copy No. 6)

Defense Technical Information Center
5010 Duke Street
Cameron Station
Alexandria, VA 22314
(Copy Nos. 7 through 18)

Commander
Naval Surface Weapons Center
White Oak
Silver Springs, MD 20910
Attn: Library
(Copy No. 19)

Commander
David W. Taylor Naval Ship R&D Center
Department of the Navy
Bethesda, MD 20084
Attn: Library
Code 522
(Copy No. 20)

David W. Taylor Naval Ship R&D Center
Attn: T. E. Brockett
Code 1544
(Copy No. 21)

David W. Taylor Naval Ship R&D Center
Attn: W. B. Morgan
Code 15
(Copy No. 22)

David W. Taylor Naval Ship R&D Center
Attn: J. H. McCarthy
Code 154
(Copy No. 23)

Applied Research Laboratory
The Pennsylvania State University
Post Office Box 30
State College, PA 16801
Attn: GTWT Files
(Copy No. 24)

Applied Research Laboratory
Attn: M. L. Billet
(Copy No. 25)

Applied Research Laboratory
Attn: J. W. Holl
(Copy Nos. 26 through 31)

Applied Research Laboratory
Attn: B. R. Parkin
(Copy No. 32)

Applied Research Laboratory
Attn: R. E. Henderson
(Copy No. 33)

Applied Research Laboratory
Attn: D. R. Stinebring
(Copy No. 34)

Applied Research Laboratory
Attn: R. S. Moyer
(Copy No. 35)

Applied Research Laboratory
Attn: C. B. Yungkurth
(Copy No. 36)

Applied Research Laboratory
Attn: D. E. Thompson
(Copy No. 37)

Applied Research Laboratory
Attn: A. L. Treaster
(Copy No. 38)

Applied Research Laboratory
Attn: G. C. Lauchle
(Copy No. 39)

Applied Research Laboratory
Attn: E. G. Taschuk
(Copy No. 40)

California Institute of Technology
Division of Engineering for
Applied Sciences
Pasadena, CA 91109
Attn: A. J. Acosta
(Copy No. 41)

Netherlands Ship Model Basin
Haagsteeg 2
P.O. Box 28
67 AA Wageningen
The Netherlands
Attn: J. van der Meulen
(Copy No. 42)

Netherlands Ship Model Basin
Attn: G. Kuiper
(Copy No. 43)

Netherlands Ship Model Basin
Attn: J. van der Kooij
(Copy No. 44)