MAGNETIC FIELDS OF A HORIZONTAL ELECTRIC DIPOLE IN A SEMI-INFINITE MEDIUM

L. K. CHI
APPLIED SCIENCE DEPARTMENT
U. S. NAVAL ACADEMY

B. R. HOOD
DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

F. A. SKOVE
APPLIED SCIENCE DEPARTMENT
U. S. NAVAL ACADEMY

Approved for public release; distribution unlimited.
**Title:** Magnetic Fields of a Horizontal Electric Dipole in a Semi-Infinite Medium

**Authors:** L. K. Chi, B. R. Hood, F. A. Skove

**Performing Organization:** United States Naval Academy, Annapolis

**Controlling Office:** David W. Taylor Naval Ship R&D Center, Attn: Code 2704, Annapolis, MD 21402

**Report Date:** August 1980

**Number of Pages:** 68

**Distribution Statement:** Approved for Public Release; Distribution Unlimited.

**Abstract:** Various formulae for magnetic fields of horizontal electric dipoles in semi-infinite medium have been derived. In the interest of providing the ability to evaluate the magnetic field strength interactively at on-site locations, reduced expressions, which are valid in the quasi-static range, for the magnetic field were used in developing computer generated plots.

Existing expressions were used to plot the field strength for AC and point DC dipoles with the receiver either in the medium or above the medium. In order to...
Item 20 continued.

Plot the special case of a finite length DC dipole with the receiver above the medium, the reduced expressions had to be derived. These new expressions, in addition to agreeing with Kraichman's point dipole expressions which are valid at a distance, also are valid with the receiver directly above the source.
ACKNOWLEDGEMENT

The work presented here was developed under the sponsorship of the David W. Taylor Naval Ship Research and Development Center, Annapolis Laboratory.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>v</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>(A) FINITE LENGTH AC DIPOLE SUBSURFACE TO AIR PROPAGATION (MODIFIED IMAGE THEORY)</td>
<td>5</td>
</tr>
<tr>
<td>(B) POINT AC DIPOLE SUBSURFACE TO AIR PROPAGATION (MODIFIED IMAGE THEORY)</td>
<td>9</td>
</tr>
<tr>
<td>(C) POINT AC DIPOLE SUBSURFACE TO SUBSURFACE PROPAGATION (MODIFIED IMAGE THEORY)</td>
<td>13</td>
</tr>
<tr>
<td>(D) POINT AC DIPOLE SUBSURFACE TO AIR PROPAGATION IN THE RANGE $</td>
<td>yR</td>
</tr>
<tr>
<td>(E) POINT AC DIPOLE SUBSURFACE TO AIR PROPAGATION IN THE RANGE $</td>
<td>yp</td>
</tr>
<tr>
<td>(F) POINT AC DIPOLE SUBSURFACE TO SUBSURFACE PROPAGATION IN THE RANGE $</td>
<td>yp</td>
</tr>
<tr>
<td>(G) POINT DC DIPOLE SUBSURFACE TO AIR PROPAGATION</td>
<td>29</td>
</tr>
<tr>
<td>(H) FINITE LENGTH DC DIPOLE SUBSURFACE TO AIR PROPAGATION</td>
<td>32</td>
</tr>
<tr>
<td>(I) POINT DC DIPOLE SUBSURFACE TO SUBSURFACE PROPAGATION</td>
<td>36</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX - OPERATING INSTRUCTIONS AND PROGRAM LISTINGS</td>
<td>39</td>
</tr>
<tr>
<td>(A) ACF</td>
<td>A1</td>
</tr>
<tr>
<td>(B) ACP</td>
<td>A4</td>
</tr>
<tr>
<td>(C) ACPS</td>
<td>A7</td>
</tr>
<tr>
<td>(D) ACP1</td>
<td>A10</td>
</tr>
<tr>
<td>(E) ACP2</td>
<td>A12</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>(F) ACP2S ............... A14</td>
<td></td>
</tr>
<tr>
<td>(G) DCP ............... A16</td>
<td></td>
</tr>
<tr>
<td>(H) DCF ............... A18</td>
<td></td>
</tr>
<tr>
<td>(I) DCPS ............... A20</td>
<td></td>
</tr>
<tr>
<td>REFERENCES ............... 40</td>
<td></td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dipole Configuration in a Semi-infinite Medium</td>
</tr>
<tr>
<td>2.</td>
<td>Finite AC Dipole (Mod of H)</td>
</tr>
<tr>
<td>3.</td>
<td>Finite AC Dipole (Mod of HT and HR)</td>
</tr>
<tr>
<td>4.</td>
<td>Finite AC Dipole (Phase of HT)</td>
</tr>
<tr>
<td>5.</td>
<td>Point AC Dipole (Mod of H)</td>
</tr>
<tr>
<td>6.</td>
<td>Point AC Dipole (Mod of HT and HR)</td>
</tr>
<tr>
<td>7.</td>
<td>Point AC Dipole (Phase of HT)</td>
</tr>
<tr>
<td>8.</td>
<td>Point AC Dipole Subsurface (Mod of H)</td>
</tr>
<tr>
<td>9.</td>
<td>Point AC Dipole Subsurface (Mod of HT and HR)</td>
</tr>
<tr>
<td>10.</td>
<td>Point AC Dipole Subsurface (Phase of HT)</td>
</tr>
<tr>
<td>11.</td>
<td>Point AC Dipole Special Range #1 (Mod of H)</td>
</tr>
<tr>
<td>12.</td>
<td>Point AC Dipole Special Range #1 (Mod of HT and HR)</td>
</tr>
<tr>
<td>13.</td>
<td>Point AC Dipole Special Range #1 (Phase of HT)</td>
</tr>
<tr>
<td>14.</td>
<td>Point AC Dipole Special Range #2 (Mod of H)</td>
</tr>
<tr>
<td>15.</td>
<td>Point AC Dipole Special Range #2 (Mod of HT and HR)</td>
</tr>
<tr>
<td>16.</td>
<td>Point AC Dipole Special Range #2 (Phase of HT)</td>
</tr>
<tr>
<td>17.</td>
<td>Point AC Dipole Special Range #2 Subsurface (Mod of H)</td>
</tr>
<tr>
<td>18.</td>
<td>Point AC Dipole Special Range #2 Subsurface (Mod of HT and HR)</td>
</tr>
<tr>
<td>19.</td>
<td>Point AC Dipole Special Range #2 Subsurface (Phase of HT)</td>
</tr>
<tr>
<td>20.</td>
<td>Point DC Dipole (H)</td>
</tr>
<tr>
<td>21.</td>
<td>Point DC Dipole (H)</td>
</tr>
<tr>
<td>22.</td>
<td>Finite Length DC Dipole (H)</td>
</tr>
<tr>
<td>23.</td>
<td>Finite Length DC Dipole (H)</td>
</tr>
<tr>
<td>24.</td>
<td>Point DC Dipole Subsurface (H)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

d - \delta (1-i) = 2/i
h - depth of dipole source
H_x - magnetic field component in the x direction
H_y - magnetic field component in the y direction
H_z - magnetic field component in the z direction
H_T - total magnetic field in the direction of the earth's magnetic field
I - current
K_1 = [\omega^2 + (z-bh)^2]^{1/2}
K_2 = [\omega^2 + (1+z-bh)^2]^{1/2}
K_3 = [\omega^2 + b^2 (z+h)^2]^{1/2}
K_4 = [\omega^2 + (d-(z+h))^2]^{1/2}
K_{11} = [(x+L/2)^2 + y^2 + (d+z-bh)^2]^{1/2}
K_{12} = [(x-L/2)^2 + y^2 + (d+z-bh)^2]^{1/2}
K_{21} = [(x+L/2)^2 + y^2 + (z-bh)^2]^{1/2}
K_{22} = [(x-L/2)^2 + y^2 + (z-bh)^2]^{1/2}
L - dipole length
P - IL, dipole movement of a point dipole
R = (x^2+y^2+z^2)^{1/2}
R_1 = [\omega^2 + (z-h)^2]^{1/2}
R_2 = [\omega^2 + (z+h)^2]^{1/2}
\gamma = (i \omega \mu_0 \sigma)^{1/2} propagation constant for the lower half medium
\delta - skin depth of the lower half medium
\rho = (x^2+y^2)^{1/2}
\sigma - conductivity of the lower half medium
\mu_0 - permeability of the lower half medium
\omega - angular frequency
EXECUTIVE SUMMARY

THE MAGNETIC FIELDS OF A HORIZONTAL ELECTRIC DIPOLE IN A SEMI-INFINITE MEDIUM

OBJECTIVE

The objective of this report is to provide a means of predicting, interactively, the magnetic fields in a quasi-static range due to a submerged horizontal electric dipole.

APPROACH

Simple engineering expression were used, or developed, to predict the magnetic fields. These expressions were programmed in ANSI 77 Fortran to produce graphics displays on a Tektronix terminal.

RESULTS

The computer programs can be used to find the magnetic fields along certain chosen paths in the upper half or in the lower half medium. The corresponding magnetic curves for each path can then be plotted. The systems which predict the results for DC sources have been utilized extensively by the David W. Taylor Naval Ship Research and Development Center, Annapolis, Maryland.

CONCLUSIONS AND RECOMMENDATIONS

Computer simulations are viable tools to evaluate magnetic fields in an interactive environment. In order to fully analyze experimental data, it is recommended that the models be modified to include multi-layer effects.

CAUTION: This document was prepared as part of a larger effort. The contents should not be taken out of context of that larger effort.
ABSTRACT

Various formulae for magnetic fields of horizontal electric dipoles in a semi-infinite medium have been derived. In the interest of providing the ability to evaluate the magnetic field strength interactively at on-site field locations, reduced expressions, which are valid in the quasi-static range, for the magnetic field were used in developing computer generated plots.

Existing expressions were used to plot the field strength for AC and point DC dipoles with the receiver either in the medium or above the medium. In order to plot the special case of a finite length DC dipole with the receiver above the medium, the reduced expression had to be derived. These new expressions, in addition to agreeing with Kraichnan's point dipole expressions which are valid at a distance, also are valid with the receiver directly above the source.

ADMINISTRATIVE INFORMATION

This project was supported by the Annapolis Laboratory of the David W. Taylor Naval Ship Research and Development Center.

INTRODUCTION

Numerous papers have been published to give various approximate expressions for magnetic field strengths in various configurations. There is a growing need to evaluate the magnetic field strengths instantaneously and interactively so that curves for magnetic fields at different heights, different distances, different frequencies, and different orientations in relationship with the earth's magnetic field can be produced instantly. In this report, the author's develop a set of computer programs to evaluate the magnetic fields generated by a submerged horizontal electric dipole. Only the quasi-static range of expressions is considered throughout the report.
As shown in Figure 1, a horizontal electric dipole (HED) of finite length $L$, angular frequency $\omega$, is located at depth $h$ ($h < 0$) between $-L/2$ and $L/2$ parallel to the $x$-axis in the positive $x$-direction. The plane $z=0$ separates the upper region ($z > 0$) of air from the lower region of the conducting medium with conductivity $\sigma$ and permeability $\mu_0$. The observation point $(x,y,z)$ is either in the air or in the medium. For simplicity, Kraichman's approximate formulae (1) and Bannister and Dube's modified image theory results (2), instead of the more exact numerical results, are used. A collection of the reports written by Bannister and his co-worker can be found in reference 3. The expressions for a finite length DC dipole are derived from modified image theory results as a limiting case of an AC dipole. Rectangular coordinates are used throughout the report. The cylindrical coordinate expressions found in references 1 and 2, are changed to rectangular coordinates.

The computer programs are written in 77 Ansi Fortran. In each case for an AC dipole, the computer program gives the moduli of each of the three components, the moduli of the component in the direction of the earth's magnetic field, the real part of this projection, and the phase of the projection. In all of the AC cases the frequency is assumed to be 1 Hz, the dipole current is 50 amperes, and the direction of the earth's magnetic field is in the negative $y$ direction. In the case of a DC dipole, the computer program gives the three components, and the component in the direction of the earth's magnetic field. Curves of magnetic fields are produced by using the graphics package (4) developed for the Textronix 4051 at the U. S. Naval Academy. The measuring distances, heights, orientations, and dipole frequencies can be specified interactively at the execution time of the programs.
Fig. 1 Dipole configuration in a semi-infinite medium
The programs are designed so as to generate output which is stored in la files. These data files may then be used for analysis, or they may serve as input to the graphics package to plot the curves. This approach was taken so that the programs can be used even if plotting capability is not readily available. A complete listing of all the programs with instructions for their use can be found in Appendix A.

EQUATIONS

Nine different configurations of field strength evaluations will be discussed. The first six cases pertain to AC sources. Modified image theory results are used in the first three of these, while the second three describe the field in limited ranges. The remaining three cases refer to DC sources.
(A) Finite length AC dipole subsurface to air propagation (Modified Image Theory).

Bannister and Dube\(^{(2)}\) arrived at the following quasi-static formulae by employing finitely conducting earth-image theory techniques.

These specific expressions are in simple algebraic form, are valid for the quasi-static range, and can be found on page 10 of reference 2.

\[
\begin{align*}
H_x &= \frac{I_y}{4\pi} e^{yah} \left( \frac{1}{(x-\frac{L}{2})^2 + y^2} \left( \frac{d+z-bh}{K_{12}} - \frac{z-bh}{K_{22}} \right) \right) \\
H_y &= \frac{I_y}{4\pi} e^{yah} \left( \frac{d+z-bh}{y^2+(d+z-bh)^2} \left[ \frac{x+\frac{L}{2}}{K_{11}} - \frac{x-\frac{L}{2}}{K_{12}} \right] - \frac{z-bh}{y^2+(z-bh)^2} \left[ \frac{x+\frac{L}{2}}{K_{21}} - \frac{x-\frac{L}{2}}{K_{22}} \right] \right) \\
H_z &= -\frac{I_y}{4\pi} e^{yah} \left( \frac{1}{y^2+(d+z-bh)^2} \left[ \frac{x+\frac{L}{2}}{K_{11}} - \frac{x-\frac{L}{2}}{K_{12}} \right] - \frac{1}{y^2+(z-bh)^2} \left[ \frac{x+\frac{L}{2}}{K_{21}} - \frac{x-\frac{L}{2}}{K_{22}} \right] \right)
\end{align*}
\]

Bannister and Dube chose the following values for the constants a and b:

- a = 0 and b = 1 for \(R<<\delta\) and \(|h|<<\delta\),
- a = 0.30 and b = 0.96 for \(R/\delta\) less than approximately 1,
- a = 0.96 and b = 0.40 for \(R/\delta\) between approximately 1 and 10,
- a = 1.0 and b = 0 for \(R>|3h|\).

The name of the program used to predict the magnetic field strength for this case is ACF (finite length AC dipole subsurface to air). The output is shown in Figures 2, 3 and 4. The field is measured along the path, \(x = -39.5m, z = 914.4m,\) and \(0<y<5000m\). Figure 2 depicts the absolute values of the three components of the magnetic field. Figure 3 gives the modulus of the projection of the magnetic field in the direction of the earth's field and the real part of that projection. Figure 4 is a graph of the phase of the projection.
The expressions for the magnetic field subsurface to air propagation due to a point AC dipole are given, in cylindrical coordinates on page 6 of reference 2. As pointed out in reference 2, these expressions can be derived from the corresponding finite length DC expressions (1), (2), and (3), as the measurement distance becomes much greater than the source length L. In the interest of consistency, the expressions given in reference 2 have been transformed into rectangular coordinates.

\[
\begin{align*}
H_x &= \frac{P}{4\pi} e^{\gamma a h} \left( \frac{d+z-bh}{K^3} - \frac{z-bh}{K^3} + \frac{2}{\rho^2} \left( \frac{d+z-bh}{K^2} - \frac{z-bh}{K^1} \right) \right) \\
H_y &= \frac{P}{4\pi} e^{\gamma a h} \left( \frac{(d+z-bh)}{K^3} - \frac{z-bh}{K^3} \right) \frac{y^2}{\rho^4} + \frac{y^2-x^2}{\rho^4} \left( \frac{d+z-bh}{K^2} - \frac{z-bh}{K^1} \right) \\
H_z &= \frac{P}{4\pi} e^{\gamma a h} \left( \frac{1}{K^1} - \frac{1}{K^2} \right)
\end{align*}
\]

The constants a and b are again loosely defined as in Case A. The name of the program which produces the output for this case is ACP (point AC dipole subsurface to air). Sample outputs of ACP are shown in Figures 5, 6 and 7. All the constants, as well as the three output examples, are the same as the previous representation for a finite dipole.
Figure 1

Diagram showing a curve with axes labeled.

Point: AC Dipole (H=0.36, B=0.48)

Axes and units are labeled.

12
(C) Point AC dipole subsurface to subsurface propagation (Modified Image Theory).

The expressions for the magnetic field subsurface to subsurface propagation due to a point AC dipole are given, in cylindrical coordinates, on pages 13 and 14 of reference 2. In rectangular coordinates, they become:

\[
H_x = \frac{P_{xy}}{4\pi \rho^2} \left( \gamma R_2 \left( 1 + \gamma R_2 \right) e^{-\gamma R_2} + e^{\gamma a(z+h)} \left( \frac{2d-2b(z+h)}{K_4 \rho^2} + \frac{2b(z+h)}{\rho^2 K_3} + \frac{d-b(z+h)}{K_4} \right) \right)
\]

\[
H_y = \frac{P_{xy}}{4\pi} \left( -\frac{z-h}{R_1} \left( 1 + \gamma R_1 \right) e^{-\gamma R_1} - \frac{(z+h)x^2}{\rho^2 R_2^3} \left( 1 + \gamma R_2 \right) e^{-\gamma R_2} + e^{\gamma a(z+h)} \left( \frac{d-b(z+h)}{K_4 \rho^2} \right) y^2 - x^2 \right)
\]

\[
+ \frac{b(z+h)}{K_3 \rho^2} \left( y^2 - x^2 \right) + \frac{d-b(z+h)}{K_4 \rho^2} \right)
\]

\[
H_z = \frac{P_{zy}}{4\pi \rho} \left( \frac{e^{-\gamma R_1}}{R_1^3} \left( 1 + \gamma R_1 \right) - \frac{e^{-R_2}}{R_2^3} \left( 1 + \gamma R_2 \right) + e^{\gamma a(z+h)} \left( \frac{1}{K_3} - \frac{1}{K_4} \right) \right)
\]

The constants \(a\) and \(b\) are determined by:

- \(a = 0\) and \(b = 1\) for \(R_2/\delta << 1\),
- \(a = 0.4\) and \(b = 0.96\) for \(R_2/\delta\) less than approximately 1,
- \(a = 0.96\) and \(b = 0.4\) for \(R_2/\delta\) between approximately 1 and 10,
- \(a = 1\) and \(b = 0\) for \(\rho > 3|z + h|\).

The name of the program is ACPS (point AC dipole subsurface to subsurface).

The sample outputs for this case are shown in Figures 8, 9, and 10. Since this example is for the case where both the dipole and the sensor are subsurface, the value of \(z\) is now \(z = -5m\). The path \(y\) is once again chosen as \(0 < y < 5000m\).
(D) Point AC dipole subsurface to air propagation in the range $|\gamma R| >> 1$ and $R >> |h|$.

The next three sets of equations (D), (E), and (F) are valid only in restricted ranges.

The expressions for the magnetic field subsurface to air propagation in the range $|\gamma R| >> 1$ and $R >> |h|$ are given, in cylindrical coordinates on page 3-22 of reference 1. In rectangular coordinates, they become:

\[
H_x = \frac{3p_{xy}}{2\pi R} \frac{e^{\gamma h}}{R^3 p^2} \left(1 - \frac{z^2}{R^2}\right)
\]

\[
H_y = \frac{p}{2\pi R} \frac{e^{\gamma h}}{R^3 p^2} \left(2y^2 - x^2 - \frac{3z^2 y^2}{R^2}\right)
\]

\[
H_z = \frac{3p_{xy}}{2\pi R^2} \frac{e^{\gamma h}}{R^5} \left(1 + \gamma z - \frac{5z^2}{R^2}\right)
\]

The name of the program for case (D) in ACP1 (Point AC Dipole Subsurface to Air). Figures 11, 12, and 13 are representative outputs of this program.
POINT AC DIPOLLECTION SPECIAL RANGE #1

$Y, HX - SOLID, HY - DASH, HZ - DOT, \theta = 914.4, x = -39.5$

Figure 11
Figure 12

POINT AC DIPole SPECIAl RANGE #1

Y, HT-SOLID, HR-DOT
(E) Point AC dipole subsurface to air propagation in the range $|\gamma \rho| >> 1$, $\rho >> |h|$, $\rho >> |z|$. The expressions for the magnetic field subsurface to air propagation in the range $|\gamma \rho| >> 1$, $\rho >> |h|$ and $\rho >> |z|$ are given, in cylindrical coordinates, on page 3-24 of reference 1. The expressions are valid only in the vicinity of the z axis. In rectangular coordinates, they become:

\[
H_x = \frac{3Pxy}{2\pi \rho^5} e^{\gamma h} \tag{13}
\]

\[
H_y = \frac{Pe^{\gamma h}}{2\pi \rho^5} (2y^2 - x^2) \tag{14}
\]

\[
H_z = \frac{3Py}{2\pi \rho^5} e^{\gamma h}(1+yz) \tag{15}
\]

The program for these equations is named ACP2 (Point AC Dipole Subsurface to Air). Figures 14, 15, and 16 are included as examples. The graphs are plotted along the path $x = 152.4 \text{m}$, $z = 152.4 \text{m}$, and $0 < y < 5000 \text{m}$. 

21
(F) Point AC dipole subsurface to subsurface propagation in the range $|\gamma p|>>1$, $\rho |h|$, and $\rho |z|$. The range of this case is identical to that of case (E). The difference lies in the fact that the observation point is in the lower half medium as opposed to the upper half.

The expressions for the magnetic field subsurface to subsurface propagation in the range $|\gamma p|>>1$, $\rho |h|$, and $\rho |z|$ are given, in cylindrical coordinates, on page 3-24 of reference 1. In rectangular coordinates, they become:

$$H_x = \frac{3\rho v e^{\gamma(z+h)}}{2\pi \gamma \rho^2}$$  \hspace{1cm} (16)

$$H_y = \frac{pe^{\gamma(z+h)}}{2\pi \gamma \rho^2} (2y^2-x^2)$$  \hspace{1cm} (17)

$$H_z = \frac{3\rho v}{2\pi \gamma \rho} e^{\gamma(h+z)}$$  \hspace{1cm} (18)

The program for this set of equations has been named ACP2S (Point AC Dipole Subsurface to Subsurface). The sample outputs are shown in Figures 17, 18, and 19. The path of measurement is $x = 152.4m$, $z = -5m$, and $0 < y < 500m$. 
POINT AC DIPOLE SPECIAL RANGE #2 SUBSURFACE

Y, HX-SOLID, HY-DASH, HZ-DOT, Z=-5, X=152.4
(G) Point DC dipole subsurface to air propagation.

The remaining three programs apply to DC sources only. These programs have been used extensively by the David W. Taylor Naval Ship Research and Development Center, Annapolis, Laboratory.

The expressions for the magnetic field subsurface to air propagation due to a point DC dipole are given, in cylindrical coordinates, on page 3-4 of reference 1. In rectangular coordinates, they become:

\[
H_x = \frac{p_{xy}}{4\pi \rho^2} \left[ \frac{z-h}{R_1^3} + \frac{2}{\rho^2} \left( \frac{z-h}{R_1} - 1 \right) \right] 
\]

(19)

\[
H_y = -\frac{p_{xy}}{4\pi \rho^2} \left[ \frac{(z-h)y^2}{R_1^3} - \frac{x^2-y^2}{\rho^2} \left( \frac{z-h}{R_1} - 1 \right) \right] 
\]

(20)

\[
H_z = \frac{p_y}{4\pi R_1^3} 
\]

(21)

The program for this set of equations is called DCP (Point DC Dipole Subsurface to Air Propagation). The sample graphs for this case are labeled Figures 20 and 21. The path for Figure 20 is \(x = 304.8\,\text{m}, z = 914.4\,\text{m},\) and \(-2500\leq y \leq 2500\). Since the equation has a singularity at the origin, \(x\) was chosen to be 0.01m. The variables \(z\) and \(y\) are the same for both figures.
(H) Finite length DC dipole subsurface to air propagation.

The magnetic field expressions (1), (2), and (3) for a finite length AC dipole can be used to derive the corresponding DC expressions. As $d \to \infty$, $e^{\gamma h} \to 1$, and $b = 1$, we have:

\[
\frac{d+z-bh}{K_{12}} \to 1, \quad \frac{d+z-bh}{K_{11}} \to 1,
\]

\[
\frac{1}{K_{11}} \to 0, \quad \frac{1}{K_{12}} \to 0.
\]

and equations (1), (2), and (3) reduce to:

\[
H_x = \frac{Iy}{4\pi} \left[ \frac{1}{(x-L)^2+y^2} \left( 1 - \frac{z-h}{K_{22}} \right) - \frac{1}{(x+L)^2+y^2} \left( 1 - \frac{z-h}{K_{22}} \right) \right]
\]

\[
H_y = \frac{Iy}{4\pi} \left[ \frac{x-L}{y^2+(z-h)^2} \left( \frac{x-L}{K_{21}} - \frac{x+L}{K_{21}} \right) - \frac{x+L}{y^2+(x+L)^2} \left( 1 - \frac{z-h}{K_{21}} \right) \right]
\]

\[
H_z = \frac{Iy}{4\pi} \frac{1}{y^2+(z-h)^2} \left( \frac{x+L}{K_{21}} - \frac{x-L}{K_{21}} \right)
\]

Equations (22), (23), and (24) give the magnetic field components for a finite length DC dipole. When the finite length $L$ is much less than the measurement distance, we have:

\[
\frac{1}{K_{21}} \to \frac{1}{R_1} \left( 1 - \frac{xL}{2R_1^2} \right), \quad \frac{1}{K_{22}} \to \frac{1}{R_1} \left( 1 - \frac{xL}{2R_1^2} \right), \quad \frac{1}{K_{12}} \to \frac{1}{R_1} \left( 1 - \frac{xL}{2R_1^2} \right),
\]

\[
\frac{1}{(x-L)^2+y^2} \to \frac{1}{\rho^2} \left( 1 + \frac{xL}{\rho^2} \right), \quad \frac{1}{(x+L)^2+y^2} \to \frac{1}{\rho^2} \left( 1 - \frac{xL}{\rho^2} \right)
\]

and $\rho \to \rho_0$. 

32
Consequently, equations (22), (23), and (24) reduce, respectively, to the point dipole equations (19), (20), and (21).

The name of the program for this set of equations is DCF (Finite Length DC Dipole Subsurface to Air).

Figure 22 shows the magnetic fields due to a DC dipole of length 50m, located at a depth of 76.2m, for the path $z = 914.4m$, $x = 304.8m$, and $-2500m \leq y \leq 2500m$. The earth's magnetic field direction in the xy-plane forms an angle of $1.5\pi$ radians relative to the x axis. Figure 23 gives the corresponding curve for a point DC dipole. Figure 22 and Figure 23 show that along this path, the finite length dipole results are in very good agreement with corresponding point dipole results. The point dipole equations (19), (20), and (21) have a singularity at the origin. Therefore, they are not valid near the z axis. Figures (21) and (23) point out the discrepancy encountered when the observation path is near the z axis. Both figures are measured at the same height, $z = 914.4m$, and $y$ is bounded by, $-2500 \leq y \leq 2500$. Even though the values for $x$ are very close to each other, 0.00m and 0.01m, the magnetic field strengths appear to be vastly different near the z axis.

The finite dipole equations (22), (23), and (24) predict magnetic fields close to that predicted by the point dipole equations when the observation points are away from the origin. In addition, they do not have a singularity at the origin.
FINITE LENGTH DC DIPOLE, $\beta = 1.5$

Y, HX-SOLID, HY-DASH, HZ-CHAIN, HT-DOTTED, $Y = 944.4, X = 388.4$

Figure 22
(1) Point DC dipole subsurface to subsurface propagation.

The expressions for the magnetic field subsurface to subsurface propagation due to a point DC dipole are given, in cylindrical coordinates, on page 3-4 of reference 1. In rectangular coordinates, they become:

\[
H_x = \frac{p x y}{4 \pi \rho^2} \left( x^2 + \frac{(z+h)^2}{2} \right) + \frac{z+h}{\rho^2} \left( \frac{(z+h)^2}{2} + 1 \right)!
\]  

\[\text{(25)}\]

\[
H_y = -\frac{p}{4 \pi} \frac{(z-h)^2}{R_1^3} + \frac{x^2(z+h)}{\rho^2 R_2^3} + \frac{(z+h)^2}{4 \rho^4} \left( \frac{z+h}{R_2^3} + 1 \right)
\]

\[\text{(26)}\]

\[
H_z = \frac{p y}{4 \pi R_1^3}
\]

\[\text{(27)}\]

The name of the program is DCPS (Point DC Dipole Subsurface to Subsurface). The appropriate graph is given in Figure 24. The path of measurement is \( z = -5\text{m}, x = -39.5\text{m}, \) and \( 0 \leq y \leq 5000\text{m}. \)
POINT DC DIPOLE SUBSURFACE, BETA=1.5

H vs. GAMMA/AMPERE


Figure 24
DISCUSSION

The computer programs can be used to find the magnetic fields along certain chosen paths in the upper half or in the lower half medium. The corresponding magnetic curves for each path can then be plotted. The systems which predict the results for DC sources have been utilized extensively by the David W. Taylor Naval Ship Research and Development Center, Annapolis, Maryland.
APPENDIX I

Operating Instructions and Program Listings

OPERATING INSTRUCTIONS

The programs are intended to be run in an interactive mode. Data which is required for each individual program is requested by the program at run time. Depending on the particular program which is being run, the user will be required to furnish the values of some combination of the following parameters:

(a) The height of the measurement path, that is, the value of \( z \).

(b) The values for the constants \( a \) and \( b \), required when using Modified Image Theory.

(c) The range of the \( y \) value of the measurement path and the increment along that path.

(d) The angle of the earth's magnetic field direction. The angle is assumed to be in \( K \pi \) radians, but the user need only provide the value for \( K \).

The output of the programs is stored in data files. Each AC program writes into three files; one for \( H_x \), \( H_y \) and \( H_z \); one for \( H_t \) and \( H_r \); and the third is used to store the phase. Each DC program requires only one output file. \( H_x \), \( H_y \), \( H_z \) and \( H_t \) are all stored in this file. These files may now provide input to TEKGRAF2, a graphics plotting package developed at the United States Naval Academy. Reference 3 provides operating instructions for this package.
REFERENCES


DISTRIBUTION LIST

Academic Dean (2)
USNA Yard Mail Stop 1c

Applied Science Department (1)
USNA Yard Mail Stop 9f

Defense Technical Information Center (10)
Defense Supply Agency
Cameron Station
Alexandria, Virginia 22314

Director of Research -(2)
USNA Yard Mail Stop 1c

Director, Division of Mathematics and Science (1)
USNA Yard Mail Stop 9a

Naval Academy Library (4)
USNA Yard Mail Stop 10a

Superintendent (2)
U. S. Naval Postgraduate School
Monterey, California 93940

Mr. B. Hood (5)
Code 2704
Mr. S. Brown (1)
Code 2704
Mr. F. Baker (1)
Code 2714
Mr. W. Andahezy (1)
Code 2704
Mr. P. Field (1)
Code 2704
David Taylor Naval Ship Research and Development Center
Annapolis Laboratory
Annapolis, Maryland 21402
(USNA Yard Mail Stop 25)
* MODIFIED IMAGE THEORY FOR FINITE LENGTH AC SUB TO AIR

* NUSC REPORT 5647

COMPLEX FUNCTION HX(FREQ,X,Y,Z)
COMPLEX ZDB,ZDBY,K11,K12
COMPLEX COEFF,GAMMA
REAL K21,K22
REAL LENGTH
COMMON DEPTH,LENGTH,CURRENT,ACON,BCON,PI
GAMMA = CSQRT(CMPLX(0.0,FREQ*(PI**2)*32.E-7))
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON*DEPTH
XLPY = XLP**2 + Y**2
XLMY = XLM**2 + Y**2
ZDBY = ZDB**2 + Y**2
ZBY = ZB**2 + Y**2
K11 = CSQRT(XLP**2 + ZDBY)
K12 = CSQRT(XLM**2 + ZDBY)
K21 = SQRT(XLP**2 + ZBY)
K22 = SQRT(XLM**2 + ZBY)
COEFF = Y*CURRENT * CEXP(GAMMA*ACON*DEPTH)

1 HX = 100.*COEFF*((ZDB/K12 - ZB/K22)/XLMY - (ZDB/K11 - ZB/K21)/XLPY)
RETURN
END

COMPLEX FUNCTION HY(FREQ,X,Y,Z)
COMPLEX ZDB,ZDBY,K11,K12
COMPLEX HY1,HY3,HY4,GAMMA,YCOEFF
REAL K21,K22
REAL LENGTH
COMMON DEPTH,LENGTH,CURRENT,ACON,BCON,PI
GAMMA = CSQRT(CMPLX(0.0,FREQ*(PI**2)*32.E-7))
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON*DEPTH
XLPY = XLP**2 + Y**2
XLMY = XLM**2 + Y**2
ZDBY = ZDB**2 + Y**2
ZBY = ZB**2 + Y**2
K11 = CSQRT(XLP**2 + ZDBY)
K12 = CSQRT(XLM**2 + ZDBY)
K21 = SQRT(XLP**2 + ZBY)
K22 = SQRT(XLM**2 + ZBY)
YCOEFF = CURRENT * CEXP(GAMMA*ACON*DEPTH)

2 HY1 = (XLP/K11 - XLM/K12)*ZDB/ZDBY
HY2 = (XLP/K21 - XLM/K22)*ZB/ZBY
HY3 = (ZDB/K11 - ZB/K21)*XLP/XLPY
HY4 = (ZDB/K12 - ZB/K22)*XLM/XLMY
HY = 100.*YCOEFF*(HY1-HY2+HY3-HY4)
RETURN
END
ACF (Page 2)

COMPLEX FUNCTION HZ(FREQ,X,Y,Z)
COMPLEX ZDB,ZDBY,K11,K12
COMPLEX GAMMA,COEFF
REAL K21,K22
REAL LENGTH
COMMON DEPTH,LENGTH,CURRENT,ACON,BCON,PI
GAMMA = CSQRT(CMPLX(0.0,FREQ*(PI**2)*32.E-7))
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON*DEPTH
ZDBY = ZDB**2 + Y**2
ZBY = ZB**2 + Y**2
K11 = CSQRT(XLP**2 + ZDBY)
K12 = CSQRT(XLM**2 + ZDBY)
K21 = CSQRT(XLP**2 + ZBY)
K22 = CSQRT(XLM**2 + ZBY)
COEFF = Y*CURRENT * CEXP(GAMMA*ACON*DEPTH)
3
HZ = 100.*COEFF*((XLP/K11 - XLM/K12)/ZDBY - (XLP/K21 - XLM/K22)/ZBY)
4 RETURN
END

COMPLEX FUNCTION HT(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(FREQ,X,Y,Z)*CBETA/1.76 - 0.823*HZ(FREQ,X,Y,Z)
HT = HT + HY(FREQ,X,Y,Z)*SBETA/1.76
RETURN
END

FUNCTION HP(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ,HT
HP = ATAN(AIMAG(HT(FREQ,X,Y,Z,BETA))/REAL(HT(FREQ,X,Y,Z,BETA)))/PI
RETURN
END

FUNCTION HR(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HR = REAL(HX(FREQ,X,Y,Z))*CBETA/1.76 - 0.823*REAL(HZ(FREQ,X,Y,Z))
HR = HR + REAL(HY(FREQ,X,Y,Z))*SBETA/1.76
RETURN
END

COMMON DEPTH,LENGTH,CURRENT,ACON,BCON,PI
COMPLEX HX,HY,HZ,HT
REAL LENGTH
DEPTH = 75.2
LENGTH = 50.
CURRENT = 1.00
PI = 3.14159
X = -39.5
OPEN (1,*ACFBD*,ACCESS=*ASCII*)
OPEN (2,*ACFPFD*,ACCESS=*ASCII*)

07/21/80 13:52:54
ACF

OPEN (3,"ACFTFD",ACCESS="ASCII")
FREQ = 1
PRINT, 'WHAT IS THE HEIGHT IN METERS'
INPUT, Z
PRINT, 'WHAT IS THE LIMIT FOR Y AND ITS INCREMENT'
INPUT, LIMIT, INC
PRINT, 'WHAT ARE THE VALUES FOR A? AND FOR B'
INPUT, ACON, BCON
PRINT, 'WHAT IS THE ANGLE FOR EARTH MAGNETIC FIELD'
INPUT, ANGLE
BETA = ANGLE*PI
DO 10 Y = 0.01, LIMIT, INC
AHX = CABS(HX(FREQ, X, Y, Z))
10 WRITE (1,100) Y, AHX
WRITE (1,200)
DO 20 Y = 0.01, LIMIT, INC
AHY = CABS(HY(FREQ, X, Y, Z))
20 WRITE (1,100) Y, AHY
WRITE (1,200)
DO 30 Y = 0.01, LIMIT, INC
AHZ = CABS(HZ(FREQ, X, Y, Z))
30 WRITE (1,100) Y, AHZ
WRITE (1,200)
DO 40 Y = 0.01, LIMIT, INC
AHT = CABS(HT(FREQ, X, Y, Z, BETA))
40 WRITE (3,100) Y, AHT
WRITE (3,200)
DO 50 Y = 0.01, LIMIT, INC
50 WRITE (3,100) Y, HR(FREQ, X, Y, Z, BETA)
WRITE (3,200)
DO 60 Y = 0.01, LIMIT, INC
60 WRITE (2,100) Y, HP(FREQ, X, Y, Z, BETA)
WRITE (2,200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PF10.3,1H,,1PE10.3)
200 FORMAT (11H1,E37,,1,E37)
END
* MODIFIED IMAGE THEORY FOR INFINITESIMAL AC HEAT
* SUBSURFACE TO AIR PROPAGATION
* BANNISTER REPORT 5647

COMPLEX FUNCTION HX(FREQ,X,Y,Z)
COMPLEX ZDB,K2,HX1,HX2,GAMMA
COMPLEX COEFF
REAL K1,PI
COMMON DEPTH,ACON,BCON,P,PI
GAMMA = CSQRT(COMPLEX(0.0,FREQ*(PI**2)*32.E-7))
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON**DEPTH
COEFF = P * CEXP(GAMMA**ACON*DEPTH)/(4*PI)
RHO = SQRT(X**2 + Y**2)
K1 = SQRT(RHO**2 + ZB**2)
K2 = CORD(RHO**2 + ZDB**2)

1 HX1 = ZDB/(K2**3) - ZB/(K1**3)
HX2 = (ZDB/K2 - ZB/K1)**2/(RHO**2)
HX = 400.*PI*COEFF**Y*(HX1 + HX2)/(RHO**2)
RETURN
END

COMPLEX FUNCTION HY(FREQ,X,Y,Z)
COMPLEX ZDB,HY1,HY2,Gamma
COMPLEX HY1,HY2,HX1,HX2,GAMMA
COMPLEX COEFF
REAL K1,PI
COMMON DEPTH,ACON,BCON,P,PI
GAMMA = CSQRT(COMPLEX(0.0,FREQ*(PI**2)*32.E-7))
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON**DEPTH
RHO = SQRT(X**2 + Y**2)
K1 = SQRT(RHO**2 + ZB**2)
K2 = SQRT(RHO**2 + ZDB**2)
COEFF = P * CEXP(GAMMA**ACON**DEPTH)/(4*PI)

2 HY1 = (ZDB/(K2**2))**2/(RHO**4)
HY2 = (ZDB/K2 - ZB/K1)**2/(RHO**4)
HY = 400.*PI*COEFF*(HY1 + HY2)
END

COMPLEX FUNCTION HZ(FREQ,X,Y,Z)
COMPLEX ZDB,K2,GAMMA
REAL K1,PI
COMMON DEPTH,ACON,BCON,P,PI
GAMMA = CSQRT(COMPLEX(0.0,FREQ*(PI**2)*32.E-7))
ZB = Z - BCON*DEPTH
ZDB = Z + 2/GAMMA - BCON**DEPTH
RHO = SQRT(X**2 + Y**2)
K1 = SQRT(RHO**2 + ZB**2)
K2 = CORD(RHO**2 + ZDB**2)
COEFF = P * CEXP(GAMMA**ACON**DEPTH)/(4*PI)

3 HZ = 400.*PI*Y**COEFF*(1/(K1**3) - 1/(K2**3))
RETURN
END
COMPLEX HX, HY, HZ

SBETA = SIN(BETA)

CBETA = COS(BETA)

HT = HX(FREQ, X, Y, Z) * CBETA/1.76 + HY(FREQ, X, Y, Z) * SBETA/1.76

HT = HT - 0.823 * HZ(FREQ, X, Y, Z)

RETURN

END

FUNCTION HP(FREQ, X, Y, Z, BETA)

COMPLEX HX, HY, HZ, HT

HP = A - AN(AIMAG(HT(FREQ, X, Y, Z, BETA))/REAL(HT(FREQ, X, Y, Z, BETA)))

RETURN

END

FUNCTION HR(FREQ, X, Y, Z, BETA)

COMPLEX HX, HY, HZ

SBETA = SIN(BETA)

CBETA = COS(BETA)

HR = REAL(HX(FREQ, X, Y, Z)) * CBETA/1.76

HR = HR + REAL(HY(FREQ, X, Y, Z)) * SBETA/1.76

HR = HR - 0.823 * REAL(HZ(FREQ, X, Y, Z))

RETURN

END

COMMON DEPTH, ACON, BCON, P, PI

COMPLEX HX, HY, HZ, HT

X = -39.5

DEPTH = -76.2

PI = 3.14159

P = 50.0

OPEN (1, "ACPFD", ACCESS = "ASCII")

OPEN (2, "ACPPFD", ACCESS = "ASCII")

OPEN (3, "ACPTFD", ACCESS = "ASCII")

FREQ = 1.0

PRINT, "WHAT IS THE HEIGHT IN METERS"

INPUT, Z

LIMIT = 5000

INC = 100

PRINT, "WHAT ARE THE VALUES FOR A? AND FOR B"

INPUT, A00H, B00N

PRINT, "WHAT IS THE ANGLE OF THE EARTH MAGNETIC FIELD"

INPUT, ANGLE

BETA = ANGLE * PI

DO 10 Y = 0.01, LIMIT, INC

AHX = CABS(HX(FREQ, X, Y, Z))

10 WRITE (1, 100) Y, AHX

WRITE (1, 200)

DO 20 Y = 0.01, LIMIT, INC

AHY = CABS(HY(FREQ, X, Y, Z))

20 WRITE (1, 100) Y, AHY

WRITE (1, 200)

DO 30 Y = 0.01, LIMIT, INC

AHZ = CABS(HZ(FREQ, X, Y, Z))

30 WRITE (1, 100) Y, AHZ

WRITE (1, 200)

07/21/80 13:56:59
ACP (Page 3)

DO 40 Y = 0.01*LIMIT, INC
AHT = CABS(FREQ*X*Y*Z*BETA)
40 WRITE (3,100) Y, AHT
WRITE (3,200)
DO 50 Y = 0.01*LIMIT, INC
50 WRITE (2,100) Y, HR(FREQ*X*Y*Z*BETA)
WRITE (2,200)
DO 60 Y = 0.01*LIMIT, INC
60 WRITE (3,100) Y, HR(FREQ*X*Y*Z*BETA)
WRITE (3,200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PE10.3,1HE,1PE10.3)
200 FORMAT (1HE,3E3,1.3E3)
END
* MODIFIED IMAGE THEORY FOR POINT AC SUB TO SUB

* NUSC REPORT 5647

COMPLEX FUNCTION HX(FREQ, X, Y, Z)
COMPLEX HX1, HX2
COMPLEX EXP2, EXPZ, GAMMA, DZB, KFOUR
REAL KTHREE

COMMON DEPTH, ACON, BCON, P, PI
GAMMA = CSGRT(COMPLEX(0.0, FREQ*(PI**2)*32, E-7))
ZHP = Z + DEPTH
DZB = 2/GAMMA - BCON*ZHP
PHI = SQRT(X**2 + Y**2)
RTWO = SQRT(RHO**2 + ZHP**2)
EXP2 = CEXP(-GAMMA*RTWO)
EXPZ = CEXP(GAMMA*AON*ZHP)
KTHREE = SQRT(RHO**2 + (BCON*ZHP)**2)
KFOUR = CSGRT(RHO**2 + DZB**2)
HX1 = ZHP*(1 + GAMMA*RTWO)*EXP2/(RTWO**3)
HX2 = 2*DZB/(KFOUR*(RHO**2)) + 2*BCON*ZHP/(KTHREE*(RHO**2))
HX = HX2 + DZB/(KFOUR**3)

RETURN

END

COMPLEX FUNCTION HY(FREQ, X, Y, Z)
COMPLEX HY1, HY2, HY3, EXP1
COMPLEX EXP2, EXPZ, GAMMA, DZB, KFOUR
REAL KTHREE

COMMON DEPTH, ACON, BCON, P, PI
GAMMA = CSGRT(COMPLEX(0.0, FREQ*(PI**2)*32, E-7))
ZHM = Z - DEPTH
ZHP = Z + DEPTH
DZB = 2/GAMMA - BCON*ZHP
PHI = SQRT(X**2 + Y**2)
RONE = SQRT(RHO**2 + ZHM**2)
RTWO = SQRT(RHO**2 + ZHP**2)
EXP1 = CEXP(-GAMMA*RONE)
EXP2 = CEXP(-GAMMA*RTWO)
EXPZ = CEXP(GAMMA*AON*ZHP)
KTHREE = SQRT(RHO**2 + (BCON*ZHP)**2)
KFOUR = CSGRT(RHO**2 + DZB**2)
HY1 = -ZHM*(1 + GAMMA*RONE)*EXP1/(RONE**3)
HY2 = -ZHP*(X**2)*(1 + GAMMA*RTWO)*EXP2/(RHO**2)*RTWO**3
HY3 = DZB*(Y**2 - X**2)/(KFOUR*(RHO**4))
HY3 = HY3 + BCON*ZHP*(Y**2 - X**2)/(KTHREE*(RHO**4))
HY3 = EXPZ*HY3 + (Y**2)*DZB/(KFOUR**3*(RHO**2))
HY = 100.0*EXP1(HY1 + HY2 + HY3)

RETURN

END

COMPLEX FUNCTION HZ(FREQ, X, Y, Z)
COMPLEX HZ1, HZ2, HZ3, EXP1
GAMMA = CSQRT(COMPLEX(0.0, FREQ*(PI**2)*32.E-7))
ZHM = Z - DEPTH
ZHP = Z + DEPTH
DZB = 2/GAMMA - BCON*ZHP
RHO = SORT(X**2 + Y**2)
RONE = SORT(RHO**2 + X**2)
RTWO = SORT(RHO**2 + ZHP**2)
EXP1 = CEXP(-GAMMA*RONE)
EXP2 = CEXP(-GAMMA*RTWO)
EXPZ = CEXP(GAMMA*ACON*ZHP)
KTHREE = SORT(RHO**2 + (BCON*ZHP)**2)
KFOUR = SORT(RHO**2 + DZB**2)
H1 = EXP1*(1 + GAMMA*RONE)/(RONE**3)
H2 = EXP2*(1 + GAMMA*RTWO)/(RTWO**3)
H3 = EXPZ*(1/(KTHREE**3) - 1/(KFOUR**3))
H4 = 100.*P**2*(H1 - H2 + H3)/RHO
RETURN
END
COMPLEX FUNCTION HT(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(FREQ, X, Y, Z)*CBETA/1.76 - 0.823*HZ(FREQ, X, Y, Z)
HT = HT + HY(FREQ, X, Y, Z)*SBETA/1.76
RETURN
END
FUNCTION HP(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ, HT
HP = ATAN(AMAG(HT(FREQ, X, Y, Z, BETA))/REAL(HT(FREQ, X, Y, Z, BETA))
RETURN
END
FUNCTION HR(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HR = REAL(HX(FREQ, X, Y, Z))*CBETA/1.76 - 0.823*REAL(HZ(FREQ, X, Y, Z))
HR = HR + REAL(HY(FREQ, X, Y, Z))*SBETA/1.76
RETURN
END
COMMON DEPTH, ACON, BCON, PI
COMPLEX HX, HY, HZ, HT
X = 76.2
DEPTH = -76.2
PI = 3.14159
P = 50.0
OPEN (1, *ACPSFB*, ACCESS = "ASCII")
OPEN (2, *ACPSFD*, ACCESS = "ASCII")
OPEN (3, *ACPSFD*, ACCESS = "ASCII")
FREQ = 1
PRINT, "WHAT IS THE HEIGHT IN METERS"
INPUT, Z
PRINT, "WHAT IS THE UPPER LIMIT FOR Y AND ITS INCREMENT"
INPUT, LIMIT, INC
PRINT, "WHAT ARE THE VALUES FOR A? AND FOR B"
INPUT, ACON, BCON
PRINT, "WHAT IS THE ANGLE OF THE EARTH MAGNETIC FIELD"
INPUT, ANGLE
BETA = ANGLE*PI
DO 10 Y = 0.01, LIMIT, INC
AHX = CABS(HX(FREQ, X, Y, Z))
10 WRITE (1, 100) Y, AHX
WRITE (1, 200)
DO 20 Y = 0.01, LIMIT, INC
AHY = CABS(HY(FREQ, X, Y, Z))
20 WRITE (1, 100) Y, AHY
WRITE (1, 200)
DO 30 Y = 0.01, LIMIT, INC
AHZ = CABS(HZ(FREQ, X, Y, Z))
30 WRITE (1, 100) Y, AHZ
WRITE (1, 200)
DO 40 Y = 0.01, LIMIT, INC
AHT = CABS(HT(FREQ, X, Y, Z, BETA))
40 WRITE (3, 100) Y, AHT
WRITE (3, 200)
DO 50 Y = 0.01, LIMIT, INC
50 WRITE (3, 100) Y, HR(FREQ, X, Y, Z, BETA)
WRITE (3, 200)
DO 60 Y = 0.01, LIMIT, INC
60 WRITE (2, 100) Y, HP(FREQ, X, Y, Z, BETA)
WRITE (2, 200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PE10.3, 1H, 1PE10.3)
200 FORMAT (11H1.E37, 1.E37)
END
AC DIPOLc IN OBS1--NEAR RANGE, SUB TO AIR

* TABLE 3.13, KRAICHMAN

COMPLEX FUNCTION HX(FREQ,X,Y,Z)
COMMON DEFEH,PI,F

COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
R = SQRT(RHO**2 + Z**2)
GAMMA = CSQR(0.0,FREQ*(PI**2)*32.E-7)
HX = P/(2*PI*GAMMA)
HX = HX*EXP(GAMMA*DEPTII/(R**3))
HX = 400.01*HX*3*(1.0 - (Z**2)/(R**2))*((X*Y)/(RHO**2))
RETURN

END

COMPLEX FUNCTION HY(FREQ,X,Y,Z)
COMMON DEPETH,PI,F

COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
R = SQRT(RHO**2 + Z**2)
GAMMA = CSQR(0.0,FREQ*(PI**2)*32.E-7)
HY = P/(2*PI*GAMMA)
HY = 400.01*HY*3*EXP(GAMMA*DEPTII)/(R**2)
HY = HY *(2*(Y**2)-(X**2)-(3*(Z**2)*(Y**2)/(R**2)))/(RHO**2)
RETURN

END

COMPLEX FUNCTION HZ(FREQ,X,Y,Z)
COMMON DEPTII,PI,F

COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
R = SQRT(RHO**2 + Z**2)
GAMMA = CSQR(0.0,FREQ*(PI**2)*32.E-7)
HZ = 3.27*2*(PI*GAMMA*GAMMA)
HZ = HZ*EXP(GAMMA*DEPTII)/(R**5)
HZ = 400.01*HZ*3*(1.0+GAMMA*Z-5*(Z**2)/(R**2))
RETURN

END

COMPLEX FUNCTION HT(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(FREQ,X,Y,Z)*CBETA: -0.823*HZ(FREQ,X,Y,Z)
HT = HT + HY(FREQ,X,Y,Z)*SBETA/1.76
RETURN

END

FUNCTION HP(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ,HT
HP = ATAN(REAL(HT(FREQ,X,Y,Z,BETA)))/REAL(HT(FREQ,X,Y,Z,BETA))
RETURN

END

FUNCTION HR(FREQ,X,Y,Z,BETA)
COMPLEX HX,HY,HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)

HR = REAL(HX(FREQ,X,Y,Z))*CBETA/1.76 - 0.823*REAL(HZ(FREQ,X,Y,Z))
HR = HR + REAL(HY(FREQ,X,Y,Z))*SBETA/1.76
RETURN
END
COMPLEX HX, HY, HZ, HT
COMMON DEPTH, PI, P
DEPTH = -7.2
X = -39.5
PI = 3.14159
P = 50.0
OPEN (1,'AC1FD',ACCESS='*ASCII')
OPEN (2,'AC1FD',ACCESS='*ASCII')
OPEN (3,'AC1FD',ACCESS='*ASCII')
FREQ=1.0
PRINT,'WHAT IS THE HEIGHT'
PRINT, 'WHAT IS THE LIMIT FOR Y AND ITS INCREMENT'
PRINT, 'WHAT IS THE ANGLE OF EARTH MAGNETIC FIELD'
INPUT, ANGLE
BETA = ANGLE * PI
DO 10 Y = 0.01, LIMIT, INC
AHX = CABS(HX(FREQ,X,Y,Z))
10 WRITE(1,100) Y, AHX
WRITE (1,200)
DO 20 Y = 0.01, LIMIT, INC
AHY = CABS(HY(FREQ,X,Y,Z))
20 WRITE (1,100) Y, AHY
WRITE (1,200)
DO 30 Y = 0.01, LIMIT, INC
AHZ = CABS(HZ(FREQ,X,Y,Z))
30 WRITE (1,100) Y, AHZ
WRITE (1,200)
DO 40 Y = 0.01, LIMIT, INC
AHT = CABS(HT(FREQ,X,Y,Z,BETA))
40 WRITE (3,100) Y, AHT
WRITE (3,200)
DO 50 Y = 0.01, LIMIT, INC
WRITE (3,100) Y, HR(FREQ,X,Y,Z,BETA)
WRITE (3,200)
DO 60 Y = 0.01, LIMIT, INC
WRITE (2,100) Y, HP(FREQ,X,Y,Z,BETA)
WRITE (2,200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PE10.3,1H*,1PE10.3)
200 FORMAT (11H1.E37,1.E37)
END
* AC DIPOLE IN QUASI-NEAR RANGE

* TABLE 3.15, KRAICHE

COMPLEX FUNCTION HX(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
GAMMA = CSQR1(CMPLX(0.0, FREQ*(PI**2)*32.0E-7))
HX = (3*PI)/(2*PI*GAMMA)
HX = HX*CEXP(GAMMA*DEPTH)/(RHO**3)
HX = 400.0*PI*HX*X/(RHO**2)
RETURN
END

COMPLEX FUNCTION HY(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
GAMMA = CSQR1(CMPLX(0.0, FREQ*(PI**2)*32.0E-7))
HY = PI*HY*CEXP(GAMMA*DEPTH)/(RHO**3)
HY = HY * ((2*(Y**2))/(RHO**2) - (X**2))/(RHO**2)
RETURN
END

COMPLEX FUNCTION HZ(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA
RHO = SQRT(X**2 + Y**2)
GAMMA = CSQR1(CMPLX(0.0, FREQ*(PI**2)*32.0E-7))
HZ = 3.0*PI/(2*PI*GAMMA*GAMMA)
HZ = HZ*Y*CEXP(GAMMA*DEPTH)/(RHO**3)
HZ = 400.0*PI*HZ*(1.0 + GAMMA**2)
RETURN
END

COMPLEX FUNCTION HT(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(FREQ, X, Y, Z)*CBETA/1.76 + 0.823*HZ(FREQ, X, Y, Z)
HT = HT + HY(FREQ, X, Y, Z)*SBETA/1.8
RETURN
END

FUNCTION HP(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ, HT
HP = ATAN(AIMAG(HT(FREQ, X, Y, Z, BETA)))/REAL(HT(FREQ, X, Y, Z, BETA))
RETURN
END

FUNCTION HR(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HR = REAL(HX(FREQ, X, Y, Z))*CBETA/1.76 + 0.823*REAL(HZ(FREQ, X, Y, Z))
HR = HR + REAL(HY(FREQ, X, Y, Z))*SBETA/1.8
RETURN
END
COMPLEX HX, HY, HZ, HT
COMMON DEPTH, PI, P
DEPTH = -76.2
X = 152.4
PI = 3.14159
P = 50.0
OPEN (1, "ACP2FD", ACCESS = "ASCII")
OPEN (2, "ACP2PFD", ACCESS = "ASCII")
OPEN (3, "ACP2TFD", ACCESS = "ASCII")
FREQ = 1.
PRINT "WHAT IS THE HEIGHT"
INPUT, Z
PRINT "WHAT IS THE LIMIT FOR Y AND ITS INCREMENT"
INPUT, LIMIT, INC
PRINT "WHAT IS THE ANGLE OF THE EARTH MAGNETIC FIELD"
INPUT, ANGLE
BETA = ANGLE*PI
DO 10 Y = 0.01, LIMIT, INC
AHX = CABS(HX(FREQ, X, Y, Z))
10 WRITE (1, 100) Y, AHX
WRITE (1, 200)
DO 20 Y = 0.01, LIMIT, INC
AHY = CABS(HY(FREQ, X, Y, Z))
20 WRITE (1, 100) Y, AHY
WRITE (1, 200)
DO 30 Y = 0.01, LIMIT, INC
AHZ = CABS(HZ(FREQ, X, Y, Z))
30 WRITE (1, 100) Y, AHZ
WRITE (1, 200)
DO 40 Y = 0.01, LIMIT, INC
AHT = CABS(HT(FREQ, X, Y, Z, BETA))
40 WRITE (3, 100) Y, AHT
WRITE (3, 200)
DO 50 Y = 0.01, LIMIT, INC
WRITE (3, 100) Y, HR(FREQ, X, Y, Z, BETA)
50 WRITE (3, 200)
DO 60 Y = 0.01, LIMIT, INC
WRITE (3, 200)
WRITE (3, 100) Y, HP(FREQ, X, Y, Z, BETA)
WRITE (3, 200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PE10.3, 1H, 1PE10.3)
200 FORMAT (11H1.E37, 1.E37)
* POINT AC SUB TO SUB
* TABLE 3.16

COMPLEX FUNCTION HX(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA1
RZERO = SQRT(X**2 + Y**2)
GAMMA1 = CSORT(CMPLX(0.0, FREQ*(PI**2)*32, E-7))
HX = P/(2*PI*GAMMA1)
HX = HX*CEXP(GAMMA1*(DEPTH + Z))/(RZERO**3)
HX = 400.*PI*HX*3*(X*Y)/(RZERO**2)
RETURN
END

COMPLEX FUNCTION HY(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA1
RZERO = SQRT(X**2 + Y**2)
GAMMA1 = CSORT(CMPLX(0.0, FREQ*(PI**2)*32, E-7))
HY = P/(2*PI*GAMMA1)
HY = 400.*PI*HY*CEXP(GAMMA1*(DEPTH + Z))/(RZERO**3)
HY = HY * (2*(Y**2) - (X**2))/(RZERO**2)
RETURN
END

COMPLEX FUNCTION HZ(FREQ, X, Y, Z)
COMMON DEPTH, PI, P
COMPLEX GAMMA1
RZERO = SQRT(X**2 + Y**2)
GAMMA1 = CSORT(CMPLX(0.0, FREQ*(PI**2)*32, E-7))
HZ = 3.*P/(2*PI*GAMMA1*GAMMA1)
HZ = HZ*Y*CEXP(GAMMA1*(DEPTH + Z))/(RZERO**5)
HZ = 400.*PI*HZ/
RETURN
END

COMPLEX FUNCTION HT(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(FREQ, X, Y, Z)*SBETA/1.76 - 0.823*HZ(FREQ, X, Y, Z)
HT = HT + HY(FREQ, X, Y, Z)*SBETA/1.76
RETURN
END

FUNCTION HP(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ, HT
HP = ATAN(AIMAG(HT(FREQ, X, Y, Z, BETA))/REAL(HT(FREQ, X, Y, Z, BETA)))
RETURN
END

FUNCTION HS(FREQ, X, Y, Z, BETA)
COMPLEX HX, HY, HZ
SBETA = SIN(BETA)
CBETA = COS(BETA)
HR = REAL(HX(FREQ, X, Y, Z))*CBETA/1.76 - 0.823*REAL(HZ(FREQ, X, Y, Z))
HR = HR + REAL(HY(FREQ, X, Y, Z))*SBETA/1.76
RETURN
END
COMPLEX HX, HY, HZ, HT
DEPTH = -76.2
COMMON DEPTH, PI, P
X = 152.4
PI = 3.14159
P = 50.0
OPEN (1,'ACP2SFD', ACCESS='ASCII')
OPEN (2,'ACP2SPFD', ACCESS='ASCII')
OPEN (3,'ACP2STFD', ACCESS='ASCII')
FREQ = 1.
PRINT,'WHAT IS THE HEIGHT'
INPUT, Z
PRINT,'WHAT IS THE UPPER LIMIT FOR Y AND ITS INCREMENT'
INPUT, LIMIT, INC
PRINT,'WHAT IS THE ANGLE FOR EARTH MAGNETIC FIELD'
INPUT, ANGLE
BETA = ANGLE*PI
DO 10 Y = 0.01, LIMIT, INC
AHX = CABS(HX(FREQ, X, Y, Z))
10 WRITE (1,100) Y, AHX
WRITE (1,200)
DO 20 Y = 0.01, LIMIT, INC
AHY = CABS(HY(FREQ, X, Y, Z))
20 WRITE (1,100) Y, AHY
WRITE (1,200)
DO 30 Y = 0.01, LIMIT, INC
AHZ = CABS(HZ(FREQ, X, Y, Z))
30 WRITE (1,100) Y, AHZ
WRITE (1,200)
DO 40 Y = 0.01, LIMIT, INC
AHT = CABS(HT(FREQ, X, Y, Z, BETA))
40 WRITE (3,100) Y, AHT
WRITE (3,200)
DO 50 Y = 0.01, LIMIT, INC
WRITE (3,100) Y, HR(FREQ, X, Y, Z, BETA)
WRITE (3,200)
DO 60 Y = 0.01, LIMIT, INC
WRITE (3,100) Y, HP(FREQ, X, Y, Z, BETA)
WRITE (2,200)
CLOSE (1)
CLOSE (2)
CLOSE (3)
100 FORMAT (1PE10.3,1H,1PE10.3)
200 FORMAT (11H1.E37,1.E37)
END
* INFINITESIMAL DEPTH

FUNCTION HX(X*Y*Z)
END

FUNCTION HY(X*Y*Z)
END

FUNCTION HZ(X*Y*Z)
END

COMMON DL...P
P = -152.4
P1 = 3.14159
OPEN (1,*FORM*ACCESS=*ASCII*)
ENDFILE
PRINT * WHAT IS THE MERIDIAN INPUT: 7
PRINT * WHAT IS THE LIMIT FOR Y AND ITS INCREMENT INPUT LIMIT INC
PRINT * WHAT IS THE ANGLE OF THE EARTH MAGNETIC FIELD INPUT AN
BETA = AN*PI
H0 = LIMIT INC
10 WRITE (1,100) Y, HX(X*Y*Z)
WRITE (1,100)
DO 20 Y = -LIMIT INC
20 WRITE (1,100) Y, HY(X*Y*Z)

07/23/00
```
WRITE (1,400)
DO 30 Y = -LIMIT, LIMIT, INC
30 WRITE (1,100) Y, HZ(X, Y, Z)
WRITE (1,400)
DO 40 Y = -LIMIT, LIMIT, INC
40 WRITE (1,100) Y, HT(X, Y, Z, BETA)
WRITE (1,400)
CLOSE (1)
100 FORMAT (1PE10.3, 1H, 1PE10.3)
400 FORMAT (11H1.E37, 1.E37)
END
```
DCF

* MODIFIED IMAGE FOR FINITE LENGTH PC HEN

FUNCTION HX(X,Y,Z)
COMMON BCON,DEPTH,CURRENT,LENGTH
REAL LENGTH
REAL K21,K22
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
XLPY = XLP**2 + Y**2
XLMY = XLM**2 + Y**2
ZBY = ZBY**2 + Y**2
K21 = SQRT(XLP**2 + ZBY)
K22 = SQRT(XLM**2 + ZBY)
1 HX1 = (1 - ZB/K22)/XLMY
HX2 = (1 - ZB/K22)/XLMY
HX = 100*Y*CURRENT*(HX1 - HX2)
RETURN
END

FUNCTION HY(X,Y,Z)
COMMON BCON,DEPTH,CURRENT,LENGTH
REAL K21,K22
REAL LENGTH
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
XLPY = XLP**2 + Y**2
XLMY = XLM**2 + Y**2
ZBY = ZBY**2 + Y**2
K21 = SQRT(XLP**2 + ZBY)
K22 = SQRT(XLM**2 + ZBY)
2 HY1 = (XLP/K21 - XLM/K22)*ZB/ZBY
HY2 = XLP*(1 - ZB/K22)/XLMY
HY3 = XLM*(1 - ZB/K22)/XLMY
HY = 100.*CURRENT*(-HY1 + HY2 - HY3)
RETURN
END

FUNCTION HZ(X,Y,Z)
COMMON BCON,DEPTH,CURRENT,LENGTH
REAL K21,K22
REAL LENGTH
XLP = X + LENGTH/2
XLM = X - LENGTH/2
ZB = Z - BCON*DEPTH
ZBY = ZBY**2 + Y**2
K21 = SQRT(XLP**2 + ZBY)
K22 = SQRT(XLM**2 + ZBY)
3 HZ = 100*Y*CURRENT*(XLP/K21 - XLM/K22)/ZBY
RETURN
END

FUNCTION HT(X,Y,Z,BETA)
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(X,Y,Z)*CBETA/1.76 + HY(X,Y,Z)*SBETA/1.76 - 0.823*HZ(X,Y,Z)
RETURN
END

REAL LENGTH
COMMON BCON, DEPTH, CURRENT, LENGTH
DEPTH = 76.2
CURRENT = 1.00
BCON = 1.00
LENGTH = 50.0
X = 304.8
PI = 3.14159
OPEN (1,'DCFIELD',ACCESS='ASCII')
ENDFILE 1
PRINT, 'WHAT IS THE HEIGHT IN METERS'
INPUT, Z
PRINT, 'WHAT IS THE LIMIT FOR Y AND ITS INCREMENT'
INPUT, LIMIT, INC
PRINT, 'WHAT IS THE ANGLE FOR EARTH MAGNETIC FIELD'
INPUT, A
BETA = A*PI
DO 10 Y = -LIMIT, LIMIT, INC
   WRITE (1,100) HX(X,Y,Z)
   WRITE (1,200)
   DO 20 Y = -LIMIT, LIMIT, INC
      WRITE (1,100) HY(X,Y,Z)
      WRITE (1,200)
      DO 30 Y = -LIMIT, LIMIT, INC
         WRITE (1,100) HZ(X,Y,Z)
         WRITE (1,200)
         DO 40 Y = -LIMIT, LIMIT, INC
            WRITE (1,100) HT(X,Y,Z,BETA)
            WRITE (1,200)
            CLOSE (1)
100 FORMAT (1PE10.3,1H,1PE10.3)
200 FORMAT (11H1,E37,1,E37)
END
* INFINITESIMAL DC HED FROM SUBSURFACE TO SUBSURFACE
* FORMULAE (3.18) - (3.20)

FUNCTION HX(X,Y,Z)
COMMON DEPTH*,P
ZHP = Z + DEPTH
RHO = SQRT(X**2 + Y**2)
RTWO = SQRT(RHO**2 + ZHP**2)
HX = (P*X*Y)/(RHO**2)
HX = 100.0*HX*(ZHP/(RTWO**3) + 2*(ZHP/RTWO + 1)/(RHO**2))
RETURN
END

FUNCTION HY(X,Y,Z)
COMMON DEPTH*,P
ZH = Z - DEPTH
ZHP = Z + DEPTH
RHO = SQRT(X**2 + Y**2)
RONE = SQRT(RHO**2 + ZH**2)
RTWO = SQRT(RHO**2 + ZHP**2)
HY1 = ZH/(RONE**3) + ZHP*(X**2)/(RHO**2)*(RTWO**3)
HY2 = (ZHP/RTWO + 1)*((X**2 - Y**2)/(RHO**2))
HY = -100.0*HY1+HY2
RETURN
END

FUNCTION HZ(X,Y,Z)
COMMON DEPTH*,P
ZH = Z - DEPTH
RHO = SQRT(X**2 + Y**2)
RONE = SQRT(RHO**2 + ZH**2)
HZ = 100.0*Y/(RONE*(RONE**2))
RETURN
END

FUNCTION HT(X,Y,Z,BETA)
SBETA = SIN(BETA)
CBETA = COS(BETA)
HT = HX(X,Y,Z)*CBETA/1.76 + HY(X,Y,Z)*SBETA/1.76 - 0.823*HZ(X,Y,Z)
RETURN
END

COMMON DEPTH*,P
DEPTH=-76.2
X=1
P = 50.0
PI = 3.14159
OPEN (1,*DCSUBFD*,ACCESS=*ASCII*)
ENDFILE 1
PRINT, "WHAT IS THE HEIGHT"
INPUT, Z
PRINT, "WHAT IS THE LIMIT FOR Y AND ITS INCENT"
INPUT, LIMIT, INC
PRINT, "WHAT IS THE ANGLE OF THE EARTH MAGNETIC FIELD"
INPUT, ANGLE
BETA = ANGLE*PI
DO 10 Y= -LIMIT,LIMIT, INC

07/21/80 14:10:02
10 WRITE (1,100) Y, HX(X,Y,Z)
   WRITE (1,400)
   DO 20 Y = LIMIT, LIMIT, INC
20 WRITE (1,100) Y, HY(X,Y,Z)
   WRITE (1,400)
   DO 30 Y = LIMIT, LIMIT, INC
30 WRITE (1,100) Y, HZ(X,Y,Z)
   WRITE (1,400)
   DO 40 Y = LIMIT, LIMIT, INC
40 WRITE (1,100) Y, HT(X,Y,Z,BETA)
   WRITE (1,400)
   CLOSE (1)
100 FORMAT (1PE10.3,1H, 1PE10.3)
400 FORMAT (11H1.E37,1.E37)
END