SELECTION OF AN OPTICAL FIBER FOR THE RADIATION ENVIRONMENT OF -ETC(U)

JUL 80 T R OLDHAM, J C BLACKBURN, R M GILBERT

UNCLASSIFIED HDL-TM-80-22

END

3 31

DTIC

by Timothy J. Oldham
James C. Blackburn
Raine M. Gilibert

U.S. Army Electronics Research and Development Command
Harry Diamond Laboratories
Adelphi, MD 20783

This work was sponsored by the Defense Nuclear Agency under Subtask EB502, Work Unit 16, Nuclear Weapons Effects Program.

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Abstract

The pulsed radiation environment of the proposed Satellite X-Ray Test Facility (SXTF) consists of synchronized pulses of low-energy plasma radiation and bremsstrahlung produced by 150-keV electrons. In addition, there is also a low level, steady spray of 1-MeV electrons. In the experiments reported here, pulsed irradiation was performed by using the Harry Diamond Laboratories FX-45 in the bremsstrahlung mode, and the steady state irradiation was performed by using a 60Co source.

Selection of an Optical Fiber for the Radiation Environment of the Satellite X-Ray Test Facility

Authors:
- Timothy R. Oldham
- James C. Blackburn
- Raine M. Gilbert

Performing Organization:
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Report Date:
July 1980

Number of Pages:
20

Distribution Statement:
Approved for public release; distribution unlimited.

Keywords:
- Optical fiber
- X-ray
- Radiation
- Darkening
- Early response
SXTF fiber has to carry an analog signal during the radiation pulse with negligible distortion due to transient darkening or Cerenkov radiation. Several fibers were tested, and the IVPO fiber was found to be the best because it has very little transient darkening. Cerenkov radiation was effectively removed from all transmitted signals by using narrow optical bandpass filters.
CONTENTS

1. INTRODUCTION .. 5
2. TRANSIENT MEASUREMENTS IN SXTF RADIATION ENVIRONMENT 5
3. STEADY STATE MEASUREMENTS 10
4. CONCLUSIONS .. 12
SELECTED BIBLIOGRAPHY ... 13
DISTRIBUTION ... 15

FIGURES
1 Qualitative bremsstrahlung spectrum 6
2 Schematic of experimental apparatus 7
3 Darkening as function of radiation exposure during pulse .. 7
4 Fiber B darkening shot, exposure = 1615 R 8
5 Fiber B darkening shot, exposure = 48 R 8
6 Fiber B Cerenkov shot, exposure = 50 R 9
7 Fiber A darkening shot, exposure = 395 R 9
8 Fiber D darkening shot, exposure = 38 R 10
9 Results of 60Co irradiation of fiber B 11
10 Experimental data for permanent darkening from 60Co
 irradiation of fiber B .. 12
1. INTRODUCTION

In recent years, fiber optic waveguide has been recognized as an ideal means of communication in electromagnetic pulse (EMP) and system-generated electromagnetic pulse (SGEMP) environments. For this reason, a number of fiber optic signal transmission systems have been built. The most serious drawback to these systems is that nuclear radiation can severely degrade their performance. The effect of radiation on fiber optical cable has been studied by several investigators. All these studies have been concerned with recovery of the fiber after pulsed radiation or with the response of the fiber to continuous (for example, 60Co) radiation.

In the proposed Satellite X-Ray Test Facility (SXTF), the fiber must transmit an analog signal during the radiation pulse without significant degradation from either luminescence (primarily of Cerenkov origin) or transient darkening. In addition, the fiber might be exposed to a low level background radiation that could produce significant permanent darkening over an extended period. For this reason, we measured transient darkening during an x-ray pulse and also permanent darkening in a 60Co environment. The purpose of this work was to select an optical fiber to be used in the radiation environment of the SXTF.

2. TRANSIENT MEASUREMENTS IN SXTF RADIATION ENVIRONMENT

The nominal radiation pulse to which the fiber would be exposed is 5×10^{-4} cal/cm2 bremsstrahlung from 150-keV electrons. We used the Biggs-Lighthill analytic approximation to calculate the dose in the fiber from this pulse. We assumed a triangular photon spectrum with a cutoff energy of 150 keV incident on a 2-mil (0.0508-mm) tantalum foil to approximate the self-absorption of the bremsstrahlung target. The spectrum transmitted through the tantalum foil was then normalized to 5×10^{-4} cal/cm2. In figure 1, the shaded area corresponds to the transmitted fluence. We calculated a dose of about 40 rad (Si) for this spectrum and fluence and 25 rad (SiO$_2$) in the glass fiber. For a thinner tantalum bremsstrahlung target, the dose would be somewhat higher, but it should not be more than about 50 rad (Si) for any realistic foil. For this reason, we selected 50 rad (Si) as the nominal threat level.

4. †See Selected Bibliography--Effect of Radiation on Fiber Optic Cable.
In the transient radiation experiments, we used the Harry Diamond Laboratories (HDL) FX-45 as a radiation source. This machine produces an electron beam with an average energy of about 2 MeV, which is incident on a 2-mil tantalum bremsstrahlung target. The exposure of the sample can be varied from a fraction of a roentgen to 1500 or 2000 R. In these experiments, the exposures of the fibers varied from about 25 to 2000 R, the maximum of the machine.

The experimental apparatus is depicted schematically in figure 2. The signal generator drove an infrared laser (wavelength = 860 nm) with a 100-MHz sine wave. The fiber carried the signal into the exposure area and then back to an avalanche detector. For pulses for which we measured darkening, we used an interference filter to eliminate Cerenkov radiation. For pulses for which we measured Cerenkov radiation, we removed the interference filter. For both measurements, we used enough neutral density filter (typically, two pieces of ND 1.0) to keep from overloading the detector.

We tested four kinds of fibers: A, IVPO, the external process; B, IVPO, phosphorous doped internal process; C, germanium doped borosilicate glass; and D, plastic clad silica (PCS). The darkening results are presented in figure 3. The attenuation plotted on the vertical axis is

*Stewart E. Graybill, Ion Physics, Burlington, MA (1980).

the ratio of the minimum sine wave amplitude (during the pulse) to the amplitude before the pulse. Since we were forced to use different lengths of each fiber, we have normalized the results to a standard length of 1 km. The exposure is plotted in roentgens. Clearly, fiber B has the least transient darkening, about 25 dB/km, at 50 R, which is the level of greatest interest.

Figure 2. Schematic of experimental apparatus.

Figure 3. Darkening as function of radiation exposure during pulse.

Figure 4 shows the oscilloscope trace for a darkening shot at an average exposure of about 1600 R for fiber B. In this shot, the attenuation is approximately 1180 dB/km, and there is substantial recovery of the fiber within 1 μs or so. The oscilloscope traces for the 50-R point are presented in figure 5. Since only about 5 m of this fiber was exposed to radiation, the attenuation is difficult to see with the unaided eye. In fact, one cannot easily tell from the oscilloscope trace when the radiation pulse arrived. The timing of the pulse can be seen more clearly from figure 6, which shows the results of a Čerenkov shot at the same exposure conditions as in figure 3. For the data in figure 6, the laser was turned off and the interference filter was removed, but the dose and the timing of the recording oscilloscope were the same as in figure 5. The Čerenkov pulse in figure 6(a) has the same shape as the radiation pulse, and they have essentially the same timing. The height of the Čerenkov pulse is only 10 mV as opposed to the 400-mV modulation of the laser output shown in the calibration trace in figure 6(b). If an interference filter were included (as it is on darkening shots), the Čerenkov radiation would be reduced so much that it could not be detected. In fact, there is no sign of a Čerenkov pulse in figure 5. Since Čerenkov radiation seems not to be a problem with fiber B (or with any other fiber, for that matter), we have generally ignored it to concentrate on transient darkening.
Figure 1. Fiber B darkening photo,
exposure: 40 μs.

(a) VERTICAL
100 mV/DIV
HORIZONTAL
20 ns/DIV

(b) VERTICAL
200 mV/DIV
HORIZONTAL
100 ns/DIV
2000 ns/DIV
Figure 6. Fiber B Cerenkov shot, exposure = 50 R.

The results of exposing fiber A to 395 R are shown in figure 7. Only about 3 m of fiber was exposed to radiation. Even though the dose is lower than for figure 4, there is obviously more darkening and slower recovery than for fiber B.

Figure 7. Fiber A darkening shot, exposure = 395 R.
Figure 8 presents the results of a darkening shot on fiber D. This figure shows the effects of strong radiation darkening. Even though the exposure was less than 40 R, the attenuation was nearly 700 dB/km. We exposed this fiber only once because its performance was inferior to that of the other fibers and well below that required.

![Figure 8. Fiber D darkening shot, exposure = 38 R.](image)

Figure 8. Fiber D darkening shot, exposure = 38 R.

3. STEADY STATE MEASUREMENTS

The SXTF fiber must withstand not only transient radiation, but also the flux from a number of electron guns spraying the satellites with 1-MeV electrons with a flux of 1 nA/cm² for extended periods. For this reason, we performed a series of permanent darkening measurements on fiber B.

These measurements were performed by using HDL's ⁶⁰Co facility as the radiation source. There are actually two ⁶⁰Co sources available; the small source provided an exposure rate of 52 R/s, and the large source supplied 779 R/s. We exposed a 20-m length of fiber in each source and recorded the attenuation as a function of time (which is to say, exposure). The results are presented in figure 9; the horizontal axis is exposure in roentgens and the vertical axis is in decibels per meter. The signal was attenuated enough that the points above 15,000 R or so cannot be read accurately. In other words, the fiber was completely darkened after about 6 min in the small source or 25 s in the large source. After the samples were removed from the radiation sources, we observed slight recovery for the first hour, but no measurable recovery thereafter. The degree of recovery is obvious from the
four traces in figure 10: (a) the signal before irradiation, (b) the signal immediately after irradiation, (c) after 1 hr of recovery, and (d) after approximately 18 hr of recovery. All the traces in figure 10 are for the sample exposed in the small source. The conclusion from this experiment is that the fibers darken completely after 15,000 to 20,000 R (13 to 17 krad [SiO₂]), and they stay darkened after the radiation is turned off.

![Figure 9. Results of ⁶⁰Co irradiation of fiber B.](image)

We used the computer code ZEBRA-1 to calculate the dose rate in the fiber for a flux of 1 nA/cm² of 1-MeV electrons. The answer was approximately 170 rad (SiO₂)/s for bare fiber. That is, the electron spray would produce complete darkening in less than 100 s. The exposure time would be much longer than 100 s, so the fiber would somehow have to be protected from the electron spray, probably by some kind of shielding.

4. CONCLUSIONS

The conclusions for all the pulsed radiation measurements are that Cerenkov radiation will never be a problem and that fiber B is resistant enough against transient darkening to be used in the SXTF. The lengths of fiber exposed in the SXTF would be at most a few tens of meters, and the exposure would be at most 50 R. For these conditions, the attenuation will be much less than 1 dB during the pulse. Since fiber B is good enough at room temperature for the SXTF application, we stopped looking for a better fiber. During the bremsstrahlung pulse, Cerenkov radiation is not a problem at all for any fiber, and transient darkening is not a problem for fiber B as long as it is protected from the electron spray. It is for this reason that fiber B was selected, although it will have to be protected from the steady state electron spray.
SELECTED BIBLIOGRAPHY

Fiber Optic Signal Transmission Systems

Effect of Radiation on Fiber Optic Cable
SAN ATTW. HARDWICK
ATTN W. HARDWICK
ATTN CHICAGO, IL,
ATTN SANTA P.O.
ATTN ITI
ATTN P.O.
ITi
ATTN P.O.
Il-TECH
ATTN SUNNYVALE, CA 94086
ATTN
ATTN ORG
ATTN ORG
ATTN ORG
P.O. BOX 81087
ATTN B. KINCAIID
LOCKHEED MISSILES
LEXINGTON,
ATTN 2 FORBES
RADIATION CENTER ATTN K. CHOW MARINA DEL
HONEYWELL INC ATTN
BLOOMINGTON, MN 55420 3251 HANOVER STREET ATTN R. POLL
ATTN CORP. TECHNOLOGY CENTER
HONEYWELL INC ATTN
MOUNTAIN VIEW, CA 94042
ATTN P.O. BOX
LOCKHEED MISSILE
SAN DIEGO, CA 92138 ATTN L-14,
ATTN W. HARDWICK P.O. BOX
P.O. BOX 81087 UNIVERSITY OF CALIFORNIA 2700 MERCED STREET
NEWTON
ATTN L. ISAACSON
GEOCENTERS
SAN DIEGO, CA 92138
DEL MAR, CA 92014
HUNTSVILLE, AL 35802
ATTN
GENERAL DYNAMICS CORP JAYCOR
SANTA BARBARA, CA 93102
ALEXANDRIA, VA 22304 ATTN B. METCALF
ATTN P.O. DRAWER
816 CENTER FOR ADVANCED STUDIES
GENERAL ELECTRIC CO-TEMPORARY ATTNG. WILHELMI
NILES, IL 60646
GENERAL ELECTRIC CO-TEMPORARY CENTER FOR ADVANCED STUDIES 8700 STATE STREET P.O. DRAWER QQ
ATTN J. SHOUTENS SANTA BARBARA, CA 93102
GENERAL DYNAMICS CORP
P.O. BOX 50286
ATTN K. WILSON
SAN DIEGO, CA 92138
GEACENTERS INC
781 ELLIOT STREET
ATTN L. ISAACSON
ATTN J. MIRIAM
NEWTON UPPER FALLS, MA 01864
1ST CORP
P.O. BOX 81087
ATTN W. HARDWICK
SAN DIEGO, CA 92138
LOCKHEED MISSILE & SPACE CENTER
P.O. BOX 777
ATTN J. HEISEY
MOUNT VIEW, CA 94042
HONEYWELL INC
CORPORATE TECHNOLOGY CENTER 10701 LYNDLE AVENUE
ATTN J. READY
BLOOMINGTON, MN 55420
HONEYWELL INC
RADIATION CENTER 2 FORBES ROAD
ATTN J. ABLE
LEXINGTON, MA 02173
LOCKHEED MISSILES AND SPACE CO, INC
P.O. BOX 504
ATTN ORG 6101
H. REYNOLDS
ATTN ORG 6101 J. PETERSON
ATTN ORG 6202, W. KOLCZ
ATTN ORG 6202 C. VLIEK
ATTN ORG 6505, S. TAIMUTY
SAN INOVALE, CA 94086
H-TECH LABS, INC
P.O. BOX 1890
ATTN B. HARTKRAUHM
SANTA MONICA, CA 90406
ITI RESEARCH INSTITUTE 10 W. 15TH STREET
ATTN A. TULIS
CHICAGO, IL 60616
IMC CORP
P.O. BOX 11067
ATTN A. KALRA
ATTN W. HABER
SAN DIEGO, CA 92138
GALILEO ELECTRO-OPTICS CORP
GALILEO PARK
ATTN R. JAEGER
ATTN L. OWEN STURBRIDGE, MA 01568
JAYCOR
205 E. MARTIN STREET
SUITE 500
ATTN H. LINNEHOU
ALEXANDRIA, VA 22304
JAYCOR
1401 CANYON DEL MAR
ATTN L. SCOTT
DEL MAR, CA 92014
KAMAN SCIENCES CORP
P.O. BOX 7463
ATTN D. SANCHEZ
ATTN J. SHELTON
COLORADO SPRINGS, CO 80933
LAWRENCE LIVEMORE LABORATORY UNIVERSITY OF CALIFORNIA
P.O. BOX 504
ATTN L-24, W. DICKINSON
ATTN L-283, H. CORTEZ
ATTN L-38, H. REYNOLDS
LIVERMORE, CA 94550
LITTON SYSTEMS, INC 3500 CANOGA AVENUE
ATTN J. SETZLER
WOODLAND HILLS, CA 91364
LOCKHEED MISSILES AND SPACE CO, INC
1251 HANOVER STREET
ATTN J. BRONK
ATTN D. KOBLER
ATTN K. CROW
ATTN R. RANKIN
ATTN R. SMITH
ATTN L. CHASE
ATTN D. FISHER
ATTN S. SALISBURY
ATTN B. KIRKLAND
PALO ALTO, CA 94304
LOS ALAMOS SCIENTIFIC LABORATORY
P.O. BOX 1663
ATTN P. BURAK
ATTN P. SWERL
ATTN C. WING
ATTN M. LANDRY
ATTN D. MECH
ATTN D. STILL
LOS ALAMOS, NM 87545
LUNELACE BIOMEDICAL & ENVIRONMENTAL RESEARCH INSTITUTE INC
P.O. BOX 5800
ATTN M. FLETCHER ALBUQUERQUE, NM 87115
MERRITT TAGES, INC
P.O. BOX 120
ATTN J. MERRITT REHALLMS, CA 92273
MISSION RESEARCH CORP., SAN DIEGO
P.O. BOX 120
ATTN V. VAN LINT
ATTN B. PASSIENHEIM
LA JOLLA, CA 92038
ITT ELECTRO-OPTICAL PRODUCTS DIVISION
7635 PLANTATION ROAD
ATTN M. MARLAD
ATTN L. HUTCHINSON
ATTN A. ASAM
ATTN W. WILHELMI
BOWMAN, VA 22439
MITRE CORP
P.O. BOX 208
ATTN B. METCALF
BEDFORD, MA 01730
MICHAEL RESEARCH CORP
7910 S. MEMORIAL PARKWAY
HUNTSVILLE, AL 35802
NORTHROP CORP
NORTHROP RESEARCH & TECHNOLOGY CENTER 3 RESEARCH PARK
ATTN J. SHERIDAN
VERDE PUNI, CA 90274
PHYSICS INTERNATIONAL CO
2700 MERCED STREET
ATTN F. RAUER
ATTN C. GLASSON
SAN LEANDRO, CA 94577
LOCKHEED MISSILES AND SPACE CO, INC
WMC BOX 12915
ATTN R. POLSKY
LOS ANGELES, CA 90009
BAD ASSOCIATES
P.O. BOX 9692
ATTN C. MACDONALD
ATTN R. POLL
ATTN W. GRAHAM
ATTN C. ROGERS
MARINA DEL REY, CA 90291
ROCKWELL INTERNATIONAL CORP
P.O. BOX 3105
ATTN G. MEISSNER
ATTN D. STILL
ANAHEIM, CA 92803
SANDIA LABORATORIES
P.O. BOX 5800
ATTN R. BARKS
ATTN J. POPELIN
ATTN L. HOLMAN
ATTN L. LANDRY
ATTN K. MCKELLER
ATTN E. KEMPSTE
ALBUQUERQUE, NM 87115
SANDIA LABORATIORIES INC.
P.O. BOX 5800
LA JOLLA, CA 92038
SCIENCE APPLICATIONS, INC
P.O. BOX 19057
LA VEGAS, NV 89117
SCIENCE APPLICATIONS, INC
15117 TAZANIA 89117
ATTN P. MILLER
SAN INOVALE, CA 94086

10