title: CONVENTIONAL ANCHOR TEST RESULTS AT SAN DIEGO AND INDIAN ISLAND

author: R. J. Taylor

date: July 1980

sponsor: Naval Facilities Engineering Command

program nos: YF59.556.091.01.205

CIVIL ENGINEERING LABORATORY
NAVAL CONSTRUCTION BATTALION CENTER
Port Hueneme, California 93043

Approved for public release; distribution unlimited.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
<table>
<thead>
<tr>
<th>report number</th>
<th>title</th>
<th>author</th>
<th>performing org name and address</th>
<th>controlling office name and address</th>
<th>monitoring agency name and address</th>
<th>abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN-1581</td>
<td>CONVENTIONAL ANCHOR TEST RESULTS AT SAN DIEGO AND INDIAN ISLAND</td>
<td>R. J. Taylor</td>
<td>CIVIL ENGINEERING LABORATORY Naval Construction Battalion Center Port Hueneme, California 93043</td>
<td>Naval Facilities Engineering Command Alexandria, Virginia 22332</td>
<td></td>
<td>The Navy has initiated a program to improve fleet mooring capability through tests of existing fleet moorings and a range of conventional anchors in use and projected for use. The results of site surveys and of instrumented anchor and mooring tests at San Diego Harbor, Calif., and at Indian Island, Wash., are presented. Emphasis in the tests was on defining the applicability limits of the Navy's primary fleet mooring anchor, the Stockless anchor, through tests of single and tandem anchors. The Navy can use the data immediately (continued)</td>
</tr>
</tbody>
</table>
20. Continued

for selection and sizing of anchors for sites typical of San Diego sand and Indian Island silt clay seafloors. Other anchors tested included the Navy STATO, BRUCE, Hook, and STEVIN anchors. Test data are presented primarily as plots of anchor penetration, holding capacity, and shank pitch and roll as functions of anchor drag distance. Tandem Stockless anchor arrangements were found that could be easily installed and that resulted in individual anchor efficiencies equal to or exceeding those determined through single-anchor tests. Several anchors were modified to achieve satisfactory performance in the test soils. Guidance for these changes is provided.
CONTENTS

INTRODUCTION ... 1
PROGRAM OBJECTIVES 1
BACKGROUND ... 2
 Stockless Anchor 2
 STATO Anchor ... 3
 High Efficiency Anchors 3
TEST PROGRAM ... 3
 Locations ... 3
 Site Survey .. 4
 Test Anchors ... 5
TEST PROCEDURES AND EQUIPMENT 7
 Measurement System 7
 Single Anchor Test 8
 Tandem Anchor Tests 10
RESULTS AND DISCUSSION 11
 Anchor Test Results - General 11
 Stockless Anchor (Single) 12
 Stockless Anchor (Tandem) 13
 STATO Anchor 14
 Stockless Anchor Moorings 16
SUMMARY AND CONCLUSION 16
ACKNOWLEDGMENTS 18
REFERENCES ... 18
APPENDIXES
 A - Additional San Diego Harbor Seafloor Properties 71
 B - Dimensions of All Tested Anchors 83
 C - Stockless and STATO Anchor Test Data 93
INTRODUCTION

A program has been initiated for improving the Navy's fleet mooring capability through tests of existing fleet moorings and a range of conventional anchors in use and projected for use. These tests by the Civil Engineering Laboratory (CEL) are being performed in seafloors typical of Navy fleet mooring sites in conjunction with Navy Public Works Centers (PWC) where possible. In addition to the gathering of data on mooring and anchor behavior, anchor installation and proofing procedures are being evaluated to determine those most effective within the capabilities of PWC personnel and equipment.

Ultimately, the test data generated can be used: (1) to simplify and refine anchor selection and sizing, (2) to enable stipulation of anchor/mooring installation and proofing procedures, (3) and to improve the Navy's confidence in its moorings.

This report presents the results of site surveys and of instrumented anchor and mooring tests in the harbor at San Diego, Calif., and at Indian Island, Wash. Test data on Navy Stockless and STATO anchors are presented for immediate use by the Navy for selection and sizing of these anchors for sites typical of San Diego sand and Indian Island silty clay seafloors.

Test data are presented primarily as plots of anchor penetration, holding capacity, shank pitch, and shank roll as functions of anchor drag distance. These data allow complete isolation of anchor behavior from mooring behavior and will ultimately enable the development of an empirical scheme to predict anchor behavior. This task is underway and is scheduled for completion during FY81.

PROGRAM OBJECTIVES

The following are the specific program objectives:

1. To determine the capacity of selected existing moorings by proof testing to establish mooring limit.
2. To determine more accurately the capacity of the Stockless anchor at typical mooring locations.
3. To determine a means for efficiently using Stockless anchors in tandem and thus expand the use of the Navy's current anchor inventory.
4. To evaluate the operational practicality of using the Stockless anchor with welded open flukes, since tests have indicated higher capacities for the anchor with this modification.
5. To determine the capacities of high efficiency anchors in seafloors typical of Navy sites.
6. To gather site and anchor performance data to enable the development of an empirical procedure to predict the behavior of typical Navy drag embedment anchors.

BACKGROUND

Stockless Anchor

Most of the Navy's existing fleet moorings use the stockless anchor. This anchor was never intended for use as a permanent mooring anchor; its primary purpose was as a ship's bow anchor for temporary mooring. The Stockless anchor was not designed for high efficiency (high holding capacity to weight ratio). It was designed to be easily stowed in a ship's hawse pipe and to be easily recovered after use; deep penetration was not desired. Efficiencies of this anchor type are reported (Ref 1, 2, and 3) as approximately 2 in mud and 4-1/2 in sand after setting. Since the largest Stockless anchor available to the fleet weighed 30,000 pounds, the maximum capacities would be 60,000 pounds in mud after proper setting in sediment deep enough to accommodate expected penetration (20 feet to fluke tips) and 135,000 pounds in sand.

Many of the sites at which the Navy has fleet moorings have a soft mud seafloor to the maximum expected anchor burial depth or soft mud seafloors overlying stiff clay, sand, or coral. This latter condition could cause very poor anchor performance because proper anchor embedment might be prevented by the harder substrata. Embedment into the more competent sediment substrata is unlikely if it is significantly stronger than the surface mud or simply if it is granular, thus requiring a reduced fluke angle for embedment at this interface. Stockless anchors are currently used in up to class AA moorings. In a mud seafloor a single 30,000-pound Stockless anchor is suitable for mooring class F and marginally suitable for mooring class E. This suitability is contingent upon proper setting and sufficient sediment in addition to the acceptability of a minimum safety factor for mooring class E. Because of equipment and procedural limitations, lack of funds, or lack of personnel training in anchor use, mooring anchors are typically not preset, and the existence of sufficient sediment for proper burial is often marginal or unknown.

The Stockless anchor is in great supply in Navy inventory and replacement funds for new, higher efficiency anchors will come slowly; thus, it is important to make use of the inventory. To do this, however, some operational complexities will necessarily be introduced. Tests (Ref 1) of the Stockless anchor in mud with flukes free-swinging and with flukes welded open show significant increases in efficiency for the latter condition, 4 versus 2, indicating that the anchor flukes did not open completely or at all for the free swinging (usual) condition. Towne (Ref 1) briefly experimented with Stockless anchors in parallel (side-by-side, attached to a single pulling point through a length of chain). Results showed that the anchors tended to come together, and that load equalization was of concern. Once the anchors come together, they will not re-embed, thus losing the safety advantage of this basic anchor type. Use of anchors in tandem (series) is an alternative to enable more effective use of the Stockless anchor. However, unless the anchors are properly rigged, the capacity of two anchors can be less
than that for a single anchor. Laboratory experiments (Ref 4) have been performed to determine an appropriate rigging technique for tandem anchors. The laboratory tests suggest rigging methods for tandem fixed and movable fluked anchors that appear feasible in practice. Both possibilities, welded open flukes and tandem anchors, would introduce additional installation complexity but could expand the use of the existing Stockless anchor inventory.

STATO Anchor

Limitations in the use of the Stockless anchor may still exist even if the approaches suggested previously can be successfully utilized. For some mooring classes other higher efficiency anchors may be required. One such anchor, the STATO anchor, was developed by the Navy to efficiently fulfill a variety of Navy anchoring needs. The STATO is recognized as the forerunner of a new breed of high efficiency anchors. During its development, it was tested exclusively in two types of sediment, San Francisco mud and Port Hueneme sand (Ref 3). Its design and rated capacities (20 to 1 in sand and 13 to 1 in mud at 50 feet of drag) were established for these two seafloors. The behavior of the STATO in other seafloors will be different; the differences for the Naval sites of interest could be slight, but without verification higher factors of safety would have to be employed at "unknown" sites.

High Efficiency Anchors

Many new high efficiency anchors have been developed and are available; however, performance data are limited to advertising claims. Advertised data suggest extremely high anchor efficiencies. If these data can be verified then these new anchors have the potential for significant cost savings to the Navy.

TEST PROGRAM

To resolve uncertainties in mooring capacity, anchor selection, sizing, configuration, and installation procedure, prototype testing at Navy sites with typical seafloor conditions is underway. In addition to the prototype tests, development of a predictive technique which depends on those engineering properties of the soil that govern soil reaction to loading by the embedded anchor and chain will be needed. Engineering properties are not a factor in presently used prediction schemes; capacity is always stated in terms of holding capacity to weight ratios and is usually based on a few tests in idealized soils (a sand or a clay). Relating capacity to engineering properties has the potential of enabling more accurate sizing of different or larger anchors or anchors used in seafloors in which they have not been tested.

Locations

After a lengthy pre-selection process which evaluated such things as available site boring logs, geologic charts, and site support, three sites were selected for detailed site surveys: San Diego Harbor, Calif.; Indian Island, Wash.; and Subic Bay, Phillipines. Indications were that
these sites would provide a cross section of seafloor types typical of Navy fleet mooring sites as well as very uniform soil deposits to avoid confusion in data analysis. The surveys verified the suitability of San Diego and Indian Island sites; the Subic Bay survey results were inconclusive. Fortunately, a survey of Apra Harbor, Guam was being performed by Chesapeake Division Naval Facilities Engineering Command. These data were provided to CEL, and they indicated that Guam would be a suitable third test site. Anchor tests at Guam have been completed and results will be published in a subsequent report.

The locations of the anchor tests and cores at San Diego and Indian Island are shown in Figures 1, 2, and 3. For reference, the typical orientation of the test barge (shown to scale) during tests of anchors and moorings at San Diego is shown. The lay of the mooring legs is also shown for San Diego moorings.

Site Survey

The site survey at each test location consisted of underway acoustic subbottom profiling using a 5-kHz sound source and a hydrophone array and recorder, and coring using a 10-foot piston corer and an Alpine vibracorer for cores typically to 20 feet. One 40-foot core was attempted at Indian Island; 28 feet of core were recovered. The acoustic survey was performed to rapidly assess vertical and areal uniformity to aid the site selection process. The profile did not prove effective at the shallow water (10 to 15 feet) fine sand site at San Diego or at Indian Island where gassy sediments caused confused records. Fortunately, the vibracorer provided a rapid and easy alternative means to assess soil properties at probable test locations.

Each core was cut into 5-foot sections and transported to CEL for determination of the engineering properties. Usable soil strength data were not obtained from the cores taken at San Diego and Indian Island due to significant sample disturbance. It is planned to return to both sites with an in situ test device with cone penetrometer and vane shear capability. Twelve vibracores were taken at San Diego and six were taken at Indian Island. Not all these cores were completely analyzed; this can be done at a later date if need arises. A few cores were thoroughly analyzed with spot checks made on other cores to determine similarities. For example, the cores at Indian Island were extremely similar; thus, only one was analyzed in detail from that location.

Briefly, the primary test site (location 1) at San Diego (Figure 1), is a very uniform fine sand both areally and vertically. Figures 4 and 5 illustrate this with grain size curves of cores taken several hundred feet apart. Indications are that the seafloor is very dense, based on frequent extraordinarily high chain resistance during testing. As mentioned, this will be determined at a later date to enable eventual development of a predictive scheme. Additional data for San Diego Harbor are provided in Appendix A. Figure 2 shows a second site (location 2) described as a dense clayey sand. It is a very dense fissured seafloor in which only six tests were performed to evaluate the behavior of two particular anchors in a very hard seafloor.

The Indian Island site shown in Figure 3 consists of a gassy, soft silty clay with shell fragments. Table I lists of soil properties for core 3 at Indian Island. The gas in the soil caused soil expansion upon
core recovery, disturbing the samples and making undisturbed shear strength data meaningless.* Typically, the Indian Island mud was almost evenly distributed between silt and clay sized particles. Figures 6 and 7 show the grain size distributions for core 3V. The curves are almost identical with depth to 10 feet; spot checks showed minimal areal variability. Indian Island soil is classified as an organic silty clay of high plasticity. The liquid limit and water content values are relatively high and approximately equal, varying little with depth to 28 feet. Values range from 110 to 160 for water content and 117 to 142 for the liquid limit. The liquidity index (ratio of the difference between natural water content and plastic limit and the plasticity index) for the mud varies between 0.88 and 1.65 which can indicate either a comparatively soft or firm but sensitive soil. For liquidity indices in the above range, soil sensitivities could vary from 5 to 25. Anchor and chain performance suggests that the soil is quite sensitive; in situ strength measurements will be made for verification.

Test Anchors

A variety of test anchors were gathered from the Navy and private industry and are listed below:

<table>
<thead>
<tr>
<th>Anchor</th>
<th>Nominal Weight, lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockless</td>
<td>5,000</td>
</tr>
<tr>
<td>Stockless</td>
<td>9,000</td>
</tr>
<tr>
<td>STATO</td>
<td>1,000</td>
</tr>
<tr>
<td>STATO</td>
<td>3,000</td>
</tr>
<tr>
<td>STATO</td>
<td>6,000</td>
</tr>
<tr>
<td>BRUCE (twin shank)</td>
<td>748 (340)</td>
</tr>
<tr>
<td>BRUCE</td>
<td>1,320 (600)</td>
</tr>
<tr>
<td>BRUCE</td>
<td>2,200 (1,000)</td>
</tr>
<tr>
<td>STEV MUD</td>
<td>1,100 (500)</td>
</tr>
<tr>
<td>STEV MUD</td>
<td>2,200 (1,000)</td>
</tr>
<tr>
<td>STEV DIG</td>
<td>2,200 (1,000)</td>
</tr>
<tr>
<td>STEV FIX (sand)</td>
<td>1,408 (640)</td>
</tr>
<tr>
<td>STEV FIX (mud)</td>
<td>2,068 (940)</td>
</tr>
<tr>
<td>Hook</td>
<td>1,232 (560)</td>
</tr>
</tbody>
</table>

*Immediately prior to printing this document, shear strength data for Indian Island mud became available. The seafloor is normally consolidated and shear strength measures almost linearly from zero at the surface to 1-1/2 psi at 21 feet. See Figure A-11 in Appendix A for the data.
These anchors are all shown on the deck of the Army National Guard barge (Figure 8) used at Indian Island. Dimensions of all anchors tested are provided in Appendix B.

The Stockless anchor is depicted in Figures 9, 10, and 11. It can be modified by the addition of stabilizers to slightly increase capacity and improve roll stability. The Stockless anchor typically has a 45-to 48-degree fluke angle which is appropriate for mud seafloors. In sand, the angle should be reduced to 32 to 35 degrees for maximum performance. The Stockless anchor was also tested with welded-open flukes to evaluate speculated performance improvement and operational difficulties and advantages. The welded-open Stockless anchor was also used in tests of anchors in tandem (also called piggy-back).

Three sizes of the STATO anchor were tested to evaluate individual anchor behavior as well as to provide data on size effects. The STATO is shown schematically in its sand (34 degree fluke angle) and mud (50 degree fluke angle) configurations (Figure 12). Figure 13 shows the 6K STATO ready for testing.

Two types of BRUCE anchors were made available to the Navy. Figure 14 depicts the standard cast BRUCE anchor, which is designed to be lowered or dropped to the seafloor without concern for its attitude upon contact. Upon dragging (setting), the anchor rotates to its fluke-down orientation. A new welded version of the BRUCE anchor (Figure 15) was provided for tests at Indian Island. It was not fabricated in time for San Diego sand tests. The welded BRUCE anchor looks like the cast anchor but employs a twin plate shank and a hollow fluke section to allow increased fluke area. In fact, the 340-kg welded anchor had about the same fluke area as the 1,000-kg cast anchor. BRUCE cable depressors (either singly or multiple) are designed to attach to the shank (see Figure 16) between the anchor and chain to "depress" the chain, cause increased anchor penetration, and produce higher anchor holding capacity. Nominally, a depressor adds 20% to total system weight.

Four other types of high efficiency anchor were provided for testing, the STEVDIG, STEVMUD, STEVFIX, and Hook. The STEVDIG (Figure 17) is typically used for competent seafloors. Note the "claws" at the tips of the anchor flukes; they were placed to aid in digging into the dense sand and overconsolidated clay-type seafloors of the North Sea. The STEVMUD (Figure 18) is a single-purpose anchor developed for anchoring in mud. The STEVFIX, however, was designed to be used in sand and mud seafloors. Figure 19 shows the STEVFIX without bolt-on plate and stabilizer extensions for mud application. Fluke angle is adjusted for sand (50 degrees) and mud (32 degrees) by the removal (burnout) or addition (welded) of a small insert in the anchor crown.

A movable fluke, pick-type anchor, called the Hook anchor (Figures 20 and 21), was also tested. This anchor is designed primarily for mud, but is usable in sand by restricting the fluke angle to 32 degrees. The Hook is shown with and without auxiliary flukes on the shank and was tested in both configurations.
TEST PROCEDURES AND EQUIPMENT

The basic test setup showing component layout and instrumentation locations is shown schematically in Figure 22. The layout for the tandem Stockless anchor tests is identical except that the instrument package is located on the outboard anchor. The inboard anchor is uninstrumented.

For this test effort, an instrumentation system was devised to isolate anchor behavior from test mooring behavior. It was felt that isolation of anchor behavior was critical to the eventual development of a scheme to predict anchor size effects on capacity and to understand and predict the behavior of conventional anchors as a function of seafloor engineering properties.

Measurement System

Data gathered for all single and tandem anchor tests included load at the test vessel, load at the anchor, anchor depth, anchor longitudinal rotation (shank pitch), transverse rotation (shank roll), mooring line angle at the test platform, and barge displacement. By knowing barge displacement and accounting for test mooring line catenary changes, anchor drag distance is readily calculated.

Spar Marker. Initially, barge position was to be recorded primarily by means of a portable range-range navigation system with a spar buoy reference system used as a backup. The spar marker system proved to be much simpler, more accurate, and more reliable than the navigation system; thus, it was used exclusively during the test effort. The deck of the YC test platform was marked off in 2-foot increments for 100 feet. At the beginning of each test (identified by test anchor movement) a spar buoy (Figure 23) was placed on the bottom at the corner of the barge. Barge motion was recorded in 2-foot increments directly on the oscillograph and digitape-papertape records. At San Diego, a 20- to 35-foot length of gasoline-filled plastic pipe (depended upon test site) was weighted at its base and used as the spar marker. At Indian Island, water depth approached 100 feet; thus, the spar marker was modified to be less sensitive to current. A 30-foot segment of tube was attached to a subsurface taut mooring comprised of a 1-1/2-ft diam float, 85 feet of 1/8-inch wire rope, and an anchor clump.

Instrumentation System. Figure 22 is to be referred to for the overall measurement system layout. The underwater portion of the system is shown in Figure 24 for San Diego and Indian Island. The instrument pack was further streamlined for Indian Island. The load cell is the slender object attached directly between the anchor shank and chain; it measures load at the anchor only. Included in the instrument pack shown strapped to the anchor shank is a pressure transducer to measure water depth from anchor to surface, two inclinometers to measure shank angle and shank/anchor rotation, all signal conditioning equipment, and amplifiers for the load cell. The load cell was connected to the package.
by an 8-foot electrical cable. A hose connected to the pressure transducer at the package was connected to a buoy (shown in Figure 24) to ensure that the bitter end remained out of the seafloor. The underwater system was connected to the surface barge by a 1,300-ft-long, six-conductor, underwater electrical cable.

The surface system consists of a deck load cell to measure load between pulling barge and test anchor, a cable inclinometer to measure cable angle at the barge, signal conditioning equipment, biasing and voltage calibrator unit, and recording equipment. Two methods were used to record the data: (1) an analog-to-digital recorder recorded data every 10 seconds and (2) an analog oscillograph was used to record continuously during test.

All transducers (load cells, inclinometers, and pressure transducers) were calibrated before each series of tests and rechecked afterward and found to be within specification of calibrations.

All load cells used for measurements on anchor tests were calibrated at the CEL on a Baldwin load machine with an accuracy of 0.303% of full scale.

Repeatability of the load cells was:

No. 1 underwater cell - 0.4%
No. 2 underwater cell - 0.4%
No. 1 deck load cell - 0.35%
No. 2 deck load cell - 0.35%

The underwater load cells were checked for temperature drift and found to change 0.019/° or 38 lb/deg; this is a positive temperature coefficient.

Pressure cells used for depth measurement were calibrated with a deadweight tester and have a built-in signal conditioner and amplifier. Repeatability of pressure transducers was:

No. 1 pressure transducer - 0.005%
No. 2 pressure transducer - 0.0045%

The pressure transducers were checked for temperature drift and found to change 0.139 ft/°; this is a negative temperature coefficient. This change occurred within 60 seconds; therefore, relative changes in depth were correct during testing. Actual recorded depth could be as much as 1-1/2 feet too high, considering the temperature difference between deck and water. Inclinometers were calibrated and found to have an accuracy of 0.2-degree resolution.

Single Anchor Test

The test procedure was the same at San Diego and Indian Island; however, equipment did differ somewhat. A YC barge about 120 feet long served as the anchor pulling and data recovery platform. Photographs of the actual deck layout are given by Figures 25 and 26. A 100-ton-capacity, hydraulic cable puller was provided by the Supervisor of Salvage for the test effort. The cable puller basically consists of a fixed and a movable 2-inch cable gripper controlled through a remote console. The
grippers are alternately actuated and deactuated to haul-in or pay-out the 2-inch hauling line. About 4 feet of movement occurs at each cycle at rates from 0 to 17 ft/min. Each anchor was pulled at about 2 ft/min primarily to agree with previous controlled anchor tests. The cable puller operates as a load-controlled, rather than a strain-controlled, system; it is felt that, even though loading is briefly interrupted during a puller reset cycle, the loading is realistic. The cable puller pulled the anchor and its fixed-length mooring line toward a restraint mooring comprised of one preset 9,000-pound STATO anchor, 2-1/2-inch chain, and a peg-top buoy.

The YC barge was not heavily loaded during mooring or anchor testing; load was transferred from the restraint mooring through the cable puller (which simply rests on the deck) to the test anchor and mooring by a heavy duty padeye fixed to the YC. The padeye-deck attachment had to withstand only the environmental forces on the barge. Barge orientation was maintained during testing because both test and restraint lines passed through open chocks welded at opposite ends of the barge.

A crane barge was used to install and recover all test anchors at each site. The orientation of test barge and crane barge for Indian Island tests is shown in Figure 27. The crane barge was attached to the test barge by a 5/8-inch wire from an 8-ton salvage winch. At San Diego, wind proved to be a formidable problem in controlling crane barge location. Two pusher boats and an LCM-8 were barely able to control crane barge position. During the latter phase of San Diego tests, a stern anchor was placed to help control position in addition to helping restretch the test mooring after completion of a test series. The Figure 27 setup was a further refinement of the test procedure. This setup allowed the crane barge to move back and forth between its stern anchor and the test barge with help from its pusher boats.

For each test location, an attempt was made to minimize the number of times the restraint and test moorings had to be readied and deployed. The barge was layed out as shown in Figure 28. The 400 feet of 2-inch hauling wire was attached to the preinstalled restraint mooring buoy, and the wire was stretched out. The test mooring wire was subsequently stretched out using the crane barge. Two to three shots of chain were then attached to the test line and stretched. This configuration was typical for the beginning of each test day. At this point the LCM-8 would pull the 5/8-inch wire to the test barge and then return to the barge crane with the floated electrical line which would then be connected to the test anchor attached to the test mooring chain.

At San Diego the test anchor was lifted and lowered directly to the seafloor through the crown wire. The tug was released and the anchor pulled. After at least 50 feet of anchor drag the anchor was lifted, hosed off and relowered for another test. Three to four tests could be performed sequentially in a single line before the 2-inch haul line had to be pulled back through the cable puller while the test mooring was restretched. The test mooring was then layed 50 to 75 feet counterclockwise for the next series.

At Indian Island, crane lift height was not sufficient to lower the anchor directly to the seafloor (about 100-foot depth); therefore, a large sheave was connected to the no. 1 hook. A 160-foot crownwire shackled to the deck at one end and attached to the anchor at the other was then placed in the sheave. With only a 50-foot crane lift, the
anchor was easily lowered to 100 feet through the two-part line. This approach was simple and should be useful to the PWC's where controlled anchor lowering in water depths between 80 and 180 feet is required.

Tandem Anchor Tests

Three tandem anchor arrangements with the Navy Stockless anchor were evaluated. The first method, referred to as the shank-to-shackle technique, and described by Figure 29, proved effective during a brief model study performed in Holland (Ref 4). In the shank-to-shackle method, both Stockless anchors were stabilized and had welded-open flukes because the model tests (Ref 4) showed superior performance with these modifications. A length of chain somewhat in excess of water depth was placed between outboard anchor shank and a padeye welded to the top of the inboard anchor's shank near its shackle connection. It was believed that this aft connection would allow the inboard anchor to function properly. During deployment, the chain would be lightly lashed over the crown of the inboard anchor to prevent fouling.

Figure 29 also shows the second tandem arrangement evaluated (crown-to-shackle technique). It was similar except the joining chain was connected to a padeye attached to the top of the Stockless anchor crown. Again, the flukes were welded open; otherwise they may have closed as soon as any load was applied to the crown by the outboard anchor chain. Figure 30 illustrates the third tandem test arrangement, the ground-ring-to-shackle technique. In this approach the inboard anchor is placed first and then the outboard anchor is lowered and the chain stretched. Welding the flukes open for all three tandem techniques also ensured that both anchors would penetrate immediately, thus insuring a taut mooring.

In addition to evaluating anchor system capacity, installation difficulties were also assessed. The best anchor system could be one that can be installed reliably with PWC assets even though it did not prove to be the highest capacity arrangement. Figure 31 describes the procedure used at Indian Island to install the shank-to-shackle and crown-to-shackle tandem anchor systems. This procedure is similar to that which could be used with fleet moorings, except the mooring would be laid off the bow of a Navy crane barge and chain length between anchors would depend on water depth.

Mooring tests were performed only at San Diego. During these tests, barge displacement, deck load, and line angle were measured. The direction of pull was established to ensure that load was being applied to a single mooring leg. Mooring leg layouts were defined by Reference 5. Load was applied to the test mooring until the rate of barge displacement increased and load dropped off. The test was then abruptly stopped to avoid excessive barge moor displacement and a requirement for leg repositioning.

Two test setups were used (see Figure 32). Pulling one mooring against another was a timesaver because it eliminated the need to install a restraint mooring; however, this could only be done if the mooring leg layouts were suitable. For a dual test setup, the spar marker reference buoy was placed midbarge. By monitoring the direction and displacement rate of the barge relative to the spar, it was possible to determine which of the test moorings yielded.
RESULTS AND DISCUSSION

Anchor Test Results - General

Fifty single and tandem anchor tests and three mooring proof tests were performed at San Diego; twenty-five single and tandem anchor tests were completed at Indian Island. These tests are summarized in Tables 2 through 4. Results of all Navy anchor (Stockless and STATO) tests are described and significant results provided. Each of these anchor tests is further described by a data plot and a data tabulation (see Appendix C). The results of all commercial anchor tests are the subject of a later report.

One data summary is described for guidance. Seven parameters are plotted as functions of true anchor drag distance in Figure 33. In the bottom block, horizontal force at the pulling barge, anchor tension, and chain weight on bottom are plotted versus drag distance. The difference between tension measurements is attributed solely to chain drag both on and in the seafloor. As shown by Figure 33, the contribution of the chain to total mooring load is substantial; this was typical for all the tests. At anchor tension equal to zero, the deck force reflects only chain drag. The 20,000 pounds of chain on bottom caused almost 30,000 pounds of drag resistance in the silt at Indian Island. At 58 feet of drag, roughly 10,000 pounds of chain (about 250 feet) in contact with the seafloor causes about 50,000 pounds of drag resistance. The 3,000-pound (nominal) STATO (actual weight 3,500 pounds) provided about 37,000 pounds of resistance at 58 feet of drag. A safe capacity of this anchor in Indian Island silt is 37,000 pounds. With information on the amount of chain in contact with the seafloor, capacities in excess of the basic anchor capacity could be assumed.

In the center block of Figure 33, anchor shank pitch angle and anchor shank roll angle are plotted versus drag distance. A positive pitch angle indicates shank tip down. As shown, the shank assumes a tip up (negative angle) orientation of about 10 degrees as the anchor approaches peak capacity. During drag, the anchor appeared relatively stable, remaining within 6 to 10 degrees of horizontal.

The top block of Figure 33 presents anchor crown and shank tip penetration as functions of drag distance. In the future, only one depth will be plotted for clarity. Penetration leveled out at about 15 feet to the crown, which translates to 19 feet to the tip of the fluke. It appears that the anchor is still penetrating but at a very shallow angle.

Table 5 is an example of the tabulated data for each anchor test. The table lists the data plotted in Figure 33 in addition to various other pieces of data that may be of use in the eventual analysis of these data. Item number 13 is anchor fluke tip depth; it is assumed that the flukes are completely open. For fixed fluke anchors this is valid but for movable fluke anchors the number must be used with care. In sand it is usually obvious when the fluke is open; there is a sudden increase in shank angle associated with a gradual increase in anchor tension. In mud it is not as obvious but is assumed to occur if anchor penetration is initiated and continues.
Tests of the many anchors in various configurations produced results which are greatly, but not totally, dependent on the testing media, San Diego fine sand and Indian Island mud (silty clay). Six tests were also run in overconsolidated silt at San Diego. Overall results would have been somewhat different (degree of difference unknown at this time) with different mooring line, type, or size. The differences would most likely occur with anchor and deck tension readings and anchor penetrations. Pitch and roll of the anchor would probably not be as sensitive to changes. In selecting chain size, an attempt was made to size it according to previous performance data or to advertised data. Often, the anchors would hold less than expected, thus chain size could have been less. Since the behavior of anchor and chain were isolated in these tests, it is felt that mooring line effects on anchor behavior will eventually be understood and quantified in a usable prediction scheme. Until then, care should be exercised when extrapolating these data to other sites, anchor sizes, and mooring lines.

Stockless Anchor (Single)

This anchor was tested in its normal use condition (unstabilized and with movable flukes free to open to 45 to 48 degrees relative to the centerline of the shank) at both San Diego and at Indian Island. These tests were run for confirmation of previous results (Ref 6) and to illustrate problems with using the Stockless anchor in this configuration for fleet moorings; results were similar. Behavior in sand was erratic for the 5K size (efficiencies of 3 to 5) while behavior in mud was consistent but poor. In comparison, the performance of the stabilized Stockless anchor with flukes welded in the open position at 35 degrees for sand and 48 degrees for mud was quite good. In sand, anchor behavior was consistent with an average anchor efficiency of 5 to 6 for the 9K anchor and 10 for the 5K anchor. Most significantly, these efficiencies were achieved with minimal drag distance which would result in very taut moorings. Tests were not run with a stabilized anchor with 35-degree movable flukes in sand, but previous data (Ref 7) show that the flukes will eventually dig in sands of low to medium density; the improvement due to the reduced fluke angle could be as much as a factor of two. In dense sand and stiff clay seafloors the probability of the Stockless anchor flukes digging in is very low. Welding open the anchor flukes should greatly increase the probability of suitable anchor behavior in these more competent seafloors. Care should be exercised in comparing the mentioned efficiencies with previously reported data because the above values are for the anchor alone. Previous researchers attempted to determine true anchor capacity by separating the chain effect determined through chain pull tests. As can be seen from the results in Appendix A, the chain effect often increases as the anchor is dragged, and the shank forces chain into the seafloor. This effect will be different for different seafloors. The chain effect is real and is part of the total anchor resistance, but, particularly in sand and until it is better understood, the anchor tension alone provides a conservative estimate of expected performance. In mud at Indian Island, each of the three configurations (i.e., standard, stabilized with movable flukes, and stabilized with fixed flukes) of the 9K Stockless anchor behaved sufficiently different to
clearly show the advantage of fixing the flukes in the open position in mud. Anchor penetrations at comparable drag distances were greater, anchor tensions were greater, and most importantly, mooring tensions were significantly greater. At 41 feet of drag, deck tensions for the above three configurations were 48,000, 50,000, and 67,000 pounds, respectively. Also, the first anchor appeared to have reached peak depth, the second increased slightly to 53,000 before peaking, and, based upon relative shank angles between two and three, option three would probably penetrate further. To put these differences into proper perspective, the effect of the chain laying on (not in) the seafloor is subtracted to show the "true" difference in capacities for Indian Island mud. The values then become 26,000, 30,000, and 50,000 pounds which translate, according to previous methods of figuring anchor efficiency, to 2.5, 2.6, and 4.4, respectively, for the nominal 9K anchor (true weights were used in determining efficiency). A possible reason for these differences is that the anchor flukes stabilized at a partially open position. Previously reported differences (Ref 1) for San Francisco Bay mud show the same relative differences - 2 versus 3.7 to 4. The lower overall values are explained by the reported lower chain drag in San Francisco Bay mud.

Stockless Anchor (Tandem)

In sand, three methods of rigging tandem anchors were tested (see previous section for descriptions). In terms of performance each was satisfactory; there appears to be a slight performance advantage for the shank-to-shackle rigging arrangement. The outboard anchor carried the instrument pack and outboard anchor performance paralleled that of the single anchor. The performance of the inboard anchor is inferred from the difference between deck tension and anchor tension. Based on the differences, the inboard anchor was functioning at least equally to the outboard anchor. Of the three techniques, the shank-to-shackle and crown-to-shackle techniques were equal in terms of installation ease. The ground-ring-to-shackle approach was also effective but somewhat more difficult to install in shallow water at San Diego. In deeper water at Indian Island, installation would have been significantly more difficult, thus it was not tried there. Model tests (Ref 4) in sand of both shank and crown-to-shackle techniques showed superior performance for the shank-to-shackle technique; attachment to the crown caused rotation of the inboard anchor. Prototype tests in sand and mud with the Stockless anchor with welded-open flukes, showed no indication of inboard anchor instability, inferred by overall mooring capacity. Attachment of chain to the crown rather than the shank does simplify installation in deeper water and does not seem to degrade overall performance.

The techniques found suitable for the Stockless anchor in fine sand and soft silty clay will probably be applicable to the vast range of intermediate soil types.

Use of these rigging techniques with higher efficiency anchors has not been proven at prototype size. Higher efficiency anchors need to penetrate deeply in mud and their light weight in relation to their capacity makes them more sensitive to external forces caused by tandem chain attachments. Tandem anchor chain attachment to the inboard anchor
shackle or chain would seem to limit rotational influences on the inboard anchor and, as long as deployment technique is not compromised, may be the safest alternative for higher efficiency anchors at this time.

STATO Anchor

Three sizes of STATO anchor (1K, 3K, and 6K) were tested in sand at San Diego and mud at Indian Island. The 3K STATO was also test-pulled in a dense clayey sand seafloor at San Diego.

Initially, three sizes were to be tested to get some idea of scale effects and to provide a good basis for comparison with other high efficiency anchors. However, initial results in sand were unexpectedly poor, and sufficient scale data were not obtained. Slight modifications to the STATO were required to bring performance back to its expected level. The chronological test sequence which leads to what appears to be necessary changes to expand STATO utility to a broader range of soil types and strengths is described in the following paragraph.

The 1K STATO was first tested in sand and at 5 to 6 feet of drag the anchor rotated out after a peak load of only about 6,000 pounds, far less than expected. This rapid instability would normally indicate that the anchor was improperly stabilized. Stabilizer width agreed with that listed by the drawings (16 inches); however, it did not agree with that projected from a plot of anchor width versus anchor weight for all other STATO anchors. The 1K STATO had not been fabricated previously, thus this problem had gone undetected. "Normal" stabilizer length should have been about 26 inches. While new 1K anchor stabilizers were being fabricated, the 3K STATO with normal stabilizers was tested. It also proved unstable after achieving an anchor load of about 30,000 pounds. The effect of the mooring chain on anchor stability was insignificant because in the two tests performed, the anchor rotated in opposite directions. The 1K STATO with normal 26-inch stabilizers was tested, and it reached about 10,000 pounds before becoming unstable. Its behavior paralleled that of the 3K STATO with its normal stabilizers. Extended stabilizers were fabricated for the 3K STATO with the intent of shortening them sequentially to determine their minimum allowable length. With 18-inch stabilizer extensions (Figure 34) (143-inch total anchor width), the anchor was pulled again. It built up load initially to about 40,000 pounds and then rotated out. Through 140 feet of drag it did not improve and continued to try to embed as evidenced by the fluctuating shank angle. Anchor fluke angle was checked to verify that it was 35 degrees as intended; it was 37 degrees. A 2-degree reduction in fluke angle was not considered adequate to improve performance. Therefore, it was reduced from about 37 to 35-1/2 degrees (by the addition of a 1/2-inch plate between shank and wedge insert, Figure 35), and the anchor was retested. A 30 to 32-degree fluke angle is currently used by the majority of anchor manufacturers for competent seafloors. The anchor built up load gradually until reaching 65,000 pounds. The load appeared to stabilize. On later examination of the data it was noticed that the anchor was beginning to rotate. To determine whether both the fluke angle reduction and stabilizer extensions were necessary, the normal stabilizers were replaced on the anchor and the anchor re-tested. The anchor rotated at about 12 feet of drag. Apparently, both modifications
were necessary. Since it appeared that the 18-inch extension was a good first guess based upon the slight tendency for rotation, smaller extensions were not tried.

The 6K STATO was then tested using its normal stabilizers. Specified fluke angle was 35 degrees yet measured angle was 32 degrees. This tolerance error was fortunately in the right direction for the San Diego sand. Three tests were performed, and the anchor held 105,000 pounds, 72,000 pounds, and about 60,000 pounds. Anchor rotation was again a problem. When fitted with normal stabilizers, all three sizes of STATO anchor behaved in a similar fashion. It appears that the lengths of stabilizers determined as adequate in Port Hueneme beach sand are not adequate for the denser, more uniform, finer grained sand of San Diego Harbor. As of this writing, accurate soil density measurements in San Diego sand were not available; they will be taken shortly. Based on the behavior of all anchors tested and the large chain resistances recorded, it appears that San Diego sand is of high relative density; the need for STATO fluke angle reduction further substantiates this.

Results of tests in mud at Indian Island were in reasonable agreement with previous results reported for San Francisco Bay mud (Ref 3). Recorded efficiencies, for anchor alone, of the 1K and 3K STATO anchors at 50 feet of drag were 14 and 11, respectively; while total efficiencies, including the effect of buried chain were 20 and 17 respectively.

Anchor tension for the 6K STATO was not recorded, however; total efficiency near 50 feet of drag was 14. The 1K and 3K anchors appeared to be nearing their peak load while the 6K anchor load was still increasing; however, the 6K anchor was steadily rotating. At 41 feet of drag the measured maximum rotation of about 45 degrees was recorded and the test stopped to avoid electrical cable failure. Longer stabilizers would probably have limited rotation. The extended stabilizers on the 3K anchor did not seem to noticeably inhibit anchor penetration or degrade performance; stability was apparently helped.

The three tests of the 3K STATO with extended stabilizers in a dense clayey sand were in a designated anchorage area in San Diego Harbor. These data were probably the most interesting. In each test the anchor dug in and increased to peak load rapidly and then pulled out. When recovered, soil was packed between the shank and flukes which would prevent further embedment.

Based on tests performed to date on the STATO it is possible to make some general recommendations for modifications to expand utility of the STATO to a broader range of soil characteristics. For specific applications, perhaps these changes should be made only if performance is less than expected or if data indicate a very competent seafloor. For general utility, the following changes are recommended prior to further usage.

1. For use in sand, measure the fluke angle with the wedge insert in place; if greater than 32 degrees, insert a plate spacer or fabricate a new wedge to achieve the needed fluke angle.

2. For sand and mud, extend the stabilizers according to the recommendations of Figure 36. Existing and projected curves of anchor width versus anchor weight are provided. Obviously, extrapolation on the basis of a single data point can be considered highly questionable.
but high efficiency anchors are typically scaled as a direct function of anchor weight. Anchor dimensions are normally scaled according to (anchor weight)$^{1/3}$; however, as can be seen from Figure 36, STATO scaling differs. A line proportional to $wt^{1/3}$, straight line on a log-log plot, is drawn through the single data point available (3K STATO with 18-inch stabilizer extensions). The reason for this deviation from normal geometric scaling was structural limitations due to required use of mild steel (Ref 8). Using geometric scaling with the single data point, the 200-pound anchor seems suitably stabilized and the 15,000-pound STATO seems reasonably close. However, until additional data are available, the upper curve which parallels the actual data and amounts to about a 35% increase in anchor width should be used to provide a conservative estimate of required anchor width from which stabilizer length can be determined.

3. Use of mud palm extensions in sand does not seem to degrade performance. Reference 3 supports this contention; therefore, unless the STATO will be used exclusively for competent seafloors, the mud palm extensions should be included as a standard part of the anchor.

Stockless Anchor Moorings

All moorings tested at San Diego were class B riser-type moorings with a design load of 125,000 pounds. The principal soil type at each mooring location was fine sand. Standard, unstabilized, 20,000-pound Stockless anchors with 45- to 48-degree fluke angles were typical of all the tested moorings. Each anchor was jetted in until flukes were fully open in the down position. Based upon the data gathered at San Diego, it was determined that the anchors in their standard condition probably would not have embedded during normal dragging. Each mooring was pulled in only one direction, and care was taken not to displace the mooring; thus, load was increased to the onset of slippage and loading was stopped immediately. Moorings 17, 18, and 51 held 118,000, 115,000, and 99,000 pounds maximum, respectively. At these loads - in fact at far less than these loads - all chain was off the seafloor. These loads reflect true anchor capacity for the above described conditions. Continued dragging of the anchors, as could occur during storm activity, would probably have caused them to come out of the seafloor, with low probability of re-embedment. A fleet mooring anchor should continue to sustain near peak load with drag to minimize catastrophic damage. The reduction in fluke angle to 35 degrees and the addition of stabilizers will produce this type of desired behavior. If anchors are to be jetted into sand or stiff clay seafloors then these modifications should be made. Also, by welding the flukes open, the principal advantage of jetting (achievement of a taut mooring) can be realized without the need for diving support.

SUMMARY AND CONCLUSION

This report provides the results of anchor and mooring tests in fine sand and dense clayey sand at San Diego and in mud at Indian Island. Tests at a third site with a clay seafloor are planned for early 1980.
Anchors typical of fleet moorings, Stockless and STATO, as well as a variety of new high efficiency anchors potentially useful with fleet moorings, were tested under controlled conditions to: (1) provide immediate use data for the Navy and (2) provide the basis for the eventual development of a scheme to predict the behavior of anchors as a function of seafloor engineering properties. A great deal of data was gathered, and the implications of these data are not fully understood at this time. Care should be exercised in using these data to specify the performance of larger sizes of the tested anchors in similar or different soils than those of the test sites. The tests clearly provided surprises in anchor behavior and illustrated the great dependence of anchor behavior on soil characteristics. An effort is underway toward a more complete understanding of the data and toward the development of an anchor behavior predictive scheme. Results will be reported at a later date. In the meantime, some tentative conclusions can be drawn and guidance given concerning the use of the various anchors tested.

1. In sand, the stabilized Stockless anchor with welded-open flukes to 35 degrees was often 2 to 4 times more efficient than the standard Stockless anchor. It also held its load more uniformly with drag and developed its peak capacity within a few feet of drag.

2. Tandem anchor arrangements using Stockless anchors with welded-open flukes were found that could be reasonably installed with Navy Public Works assets and that appeared to develop individual anchor efficiencies at least equal to those achieved when pulled singly in sand and mud.

3. In mud, the efficiency of the stabilized Stockless anchor with welded-open flukes (fully opened) was approximately twice that of the stabilized or unstabilized Stockless anchor with freely moving flukes.

4. The standard STATO anchor performed poorly in San Diego sand; however, an increase of about 35% in anchor width (stabilizer extension) and a reduction in fluke angle to about 32 degrees for the 3,000-pound STATO corrected penetration and stability problems and increased anchor efficiency from less than 10 to greater than 20.

5. In mud, STATO performance was in relative agreement with previously reported data; however, some rotational instability was noticed, particularly in the 6K STATO, suggesting the need for an increase in stabilizer length.

6. Previous STATO tests were concentrated in Port Hueneme sand and San Francisco Bay mud. The STATO was designed on the basis of tests in these seafloors. The recent tests were performed in seafloors which expanded performance data to a more dense sand and to a softer mud; these tests suggest anchor modifications. To expand the utility of the STATO to a broader range of soil conditions, stabilizers should be extended. When used in sand only, the standard fluke angle should be 32 degrees rather than 35 degrees.
ACKNOWLEDGMENTS

Messrs. G. Duffy, M. Derr and L. Tucker of CEL were responsible for the design and development of the instrumentation system. Mr. Hank Lingg assisted in the development of the testing procedures and in the onsite testing phase of the effort along with Mr. P. Babineau and Mr. H. Link. Mr. Ron Greene of the Naval Sea System Command also provided valuable onsite assistance during the test phase.

The efforts of Dr. H. Ottsen of Western Instruments in the preparation of the data plots and digital outputs is acknowledged.

The very capable assistance of the Navy Public Works Center, San Diego, and the U.S. Army Washington State National Guard’s 144th Transportation Battalion, who provided personnel and floating support during tests at San Diego and Indian Island, respectively, is also acknowledged. The cooperation of Mr. Rob Van Der Haak of Vrijhof Ankers and Mr. Peter Bruce of BRUCER Anchors was greatly appreciated.

REFERENCES

Table 1. Soil Property Data for Vibracore 3 - Indian Island

1. Original vane shear strength data and density data not presented. Soil gases caused significant sample disturbance.
2. Shells and shell fragments were found throughout the cores.
3. Core color was dark olive gray.
4. Soil classification is silty clay.

<table>
<thead>
<tr>
<th>Increment (in.)</th>
<th>Water Content, %</th>
<th>Remolded Vane Shear Strength, psi</th>
<th>Liquid Limit, %</th>
<th>Plastic Limit, %</th>
<th>Plasticity Index</th>
<th>Specific Gravity</th>
<th>Liquidity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>148.30</td>
<td>0.241</td>
<td>142.13</td>
<td>64.40</td>
<td>77.7</td>
<td>2.543</td>
<td>1.09</td>
</tr>
<tr>
<td>24-27</td>
<td>146.74</td>
<td>0.198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td>150.49</td>
<td>0.313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-51</td>
<td>152.67</td>
<td>0.217</td>
<td>124.64</td>
<td>65.45</td>
<td>59.2</td>
<td>2.521</td>
<td>1.47</td>
</tr>
<tr>
<td>60-63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-75</td>
<td>143.97</td>
<td>0.313</td>
<td>138.64</td>
<td>71.59</td>
<td>67.1</td>
<td>2.511</td>
<td>1.08</td>
</tr>
<tr>
<td>84-87</td>
<td>153.16</td>
<td>0.318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-99</td>
<td>161.23</td>
<td>0.74</td>
<td>125.84</td>
<td>70.34</td>
<td>55.5</td>
<td>2.515</td>
<td>1.65</td>
</tr>
<tr>
<td>108-111</td>
<td>158.05</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116-119</td>
<td>155.16</td>
<td>0.184</td>
<td>140.25</td>
<td>70.40</td>
<td>69.9</td>
<td>2.498</td>
<td>1.2</td>
</tr>
<tr>
<td>18 ft</td>
<td>134.02</td>
<td></td>
<td>117.00</td>
<td>65.86</td>
<td>51.1</td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>28 ft</td>
<td>110.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of Test Data for San Diego Harbor Anchor Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Series</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/Moveable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Stockless</td>
<td>3/29/79 (88)</td>
<td>5,000</td>
<td>5,350</td>
<td>48</td>
<td>M</td>
<td>Without stabilizers</td>
<td>12</td>
<td>Anchor performance was erratic; efficiency varied from 3 to 5.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Stockless</td>
<td>3/29/79 (88)</td>
<td>5,000</td>
<td>5,350</td>
<td>48</td>
<td>M</td>
<td>Without stabilizers</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Stockless</td>
<td>3/29/79 (88)</td>
<td>5,000</td>
<td>5,350</td>
<td>48</td>
<td>M</td>
<td>Without stabilizers</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Stockless</td>
<td>3/30/79 (89)</td>
<td>5,000</td>
<td>5,950</td>
<td>35</td>
<td>F</td>
<td>With stabilizers</td>
<td>16</td>
<td>Chain connector parted; peak load not recorded.</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Stockless</td>
<td>3/30/79 (89)</td>
<td>5,000</td>
<td>5,950</td>
<td>35</td>
<td>F</td>
<td>With stabilizers</td>
<td>12</td>
<td>Anchor performance was very uniform; load built up rapidly and remained stable during pull.</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Stockless</td>
<td>4/2/79 (92)</td>
<td>5,000</td>
<td>5,950</td>
<td>35</td>
<td>F</td>
<td>With stabilizers</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>STATO</td>
<td>4/2/79 (92)</td>
<td>1,000</td>
<td>1,070</td>
<td>35</td>
<td>M</td>
<td>With 16 in. stabilizers</td>
<td>16</td>
<td>Anchor flipped over at about 12 ft of drag at an efficiency of 6.</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Hook</td>
<td>4/3/79 (93)</td>
<td>(560)</td>
<td>(1,230)</td>
<td>32</td>
<td>M</td>
<td>With auxiliary flukes</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Hook</td>
<td>4/3/79 (93)</td>
<td>(560)</td>
<td>(1,230)</td>
<td>32</td>
<td>M</td>
<td>With auxiliary flukes</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Hook</td>
<td>4/3/79 (93)</td>
<td>(560)</td>
<td>(1,230)</td>
<td>32</td>
<td>M</td>
<td>With auxiliary flukes</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Series</th>
<th>Author</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/Removable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>BRUCE</td>
<td>4/1/79 (93)</td>
<td>(600)</td>
<td>1,200</td>
<td>-</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>BRUCE</td>
<td>4/3/79 (93)</td>
<td>(600)</td>
<td>1,320</td>
<td>-</td>
<td>F</td>
<td></td>
<td></td>
<td>15-1/2</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>BRUCE</td>
<td>4/4/79 (94)</td>
<td>(600)</td>
<td>1,320</td>
<td>-</td>
<td>F</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>BRUCE</td>
<td>4/4/79 (94)</td>
<td>(600)</td>
<td>1,320</td>
<td>-</td>
<td>F</td>
<td>With 1 cable depressor (120 kg) after load cell</td>
<td>14-1/2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>BRUCE</td>
<td>4/4/79 (94)</td>
<td>(600)</td>
<td>1,320</td>
<td>-</td>
<td>F</td>
<td></td>
<td></td>
<td>14-1/2</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>BRUCE</td>
<td>4/4/79 (94)</td>
<td>(600)</td>
<td>1,320</td>
<td>-</td>
<td>F</td>
<td>With 2 cable depressors (240 kg) after load cell</td>
<td>14-1/2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>STEVIG</td>
<td>4/4/79 (94)</td>
<td>(1,000)</td>
<td>2,550</td>
<td>32</td>
<td>M</td>
<td></td>
<td></td>
<td>15-1/2</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>STEVIG</td>
<td>4/4/79 (94)</td>
<td>(1,000)</td>
<td>2,550</td>
<td>32</td>
<td>M</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>STEVIG</td>
<td>4/5/79 (95)</td>
<td>(1,000)</td>
<td>2,550</td>
<td>32</td>
<td>M</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Location 1 - San Diego Harbor - Uniform Fine Sand (continued)

continued
Table 2. Continued

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Series</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>STEVFIX 4/5/79 (91)</td>
<td>(640) 1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>------</td>
<td>14-1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>STEVFIX 4/5/79 (91)</td>
<td>(640) 1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>------</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>STEVFIX 4/5/79 (91)</td>
<td>(640) 1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>------</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>STATO 4/5/79 (95)</td>
<td>3,000 3,000</td>
<td>37</td>
<td>M</td>
<td>With original stabilizers</td>
<td>14-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>STATO 4/5/79 (95)</td>
<td>3,000 3,000</td>
<td>37</td>
<td>M</td>
<td>With original stabilizers</td>
<td>14-1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>Stockless 4/5/79 (95)</td>
<td>9,000 11,370</td>
<td>35</td>
<td>F</td>
<td>With stabilizers</td>
<td>14-3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>Stockless 4/5/79 (95)</td>
<td>9,000 11,370</td>
<td>35</td>
<td>F</td>
<td>With stabilizers</td>
<td>15-3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>BRUCE 4/6/79 (96)</td>
<td>(1,000) 2,200 (1,000)</td>
<td>-</td>
<td>F</td>
<td>------</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>BRUCE 4/6/79 (96)</td>
<td>(1,000) 2,200 (1,000)</td>
<td>-</td>
<td>F</td>
<td>------</td>
<td>13-1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location 1 - San Diego Harbor - Uniform Fine Sand (continued)

Anchor tipped over after reaching an efficiency of about 10; appeared that stabilizers are too short.

Anchor held stably at an efficiency of about 5.
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Series</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifications</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>BRUCE</td>
<td>4/6/79 (96)</td>
<td>1,000</td>
<td>2,200</td>
<td>-</td>
<td>F</td>
<td>With 2 cable depressors (200 kg) after load cell</td>
<td>13-1/2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>BRUCE</td>
<td>4/6/79 (96)</td>
<td>1,000</td>
<td>2,200</td>
<td>-</td>
<td>F</td>
<td>With 2 cable depressors at (200 kg) shank</td>
<td>13-1/2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>STATO</td>
<td>4/9/79 (99)</td>
<td>1,000</td>
<td>1,070</td>
<td>35</td>
<td>M</td>
<td>With 26 in. stabilizers</td>
<td>14-1/2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>STATO</td>
<td>4/10/79 (100)</td>
<td>3,000</td>
<td>3,000</td>
<td>37</td>
<td>M</td>
<td>With 18 in. stabilizer extensions</td>
<td>15</td>
<td>Anchor flipped over at an efficiency of about 10; stabilizers are too short.</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>STATO</td>
<td>4/10/79 (100)</td>
<td>3,000</td>
<td>3,000</td>
<td>31-1/2</td>
<td>M</td>
<td>With 18 in. stabilizer extensions</td>
<td>15</td>
<td>Anchor performance was erratic; initiated embedment then rotated and came out.</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>STATO</td>
<td>4/11/79 (101)</td>
<td>6,000</td>
<td>6,000</td>
<td>32</td>
<td>M</td>
<td>Original stabilizers</td>
<td>15-1/4</td>
<td>Anchor built up load uniformly, was stable, developed an efficiency of 21.</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>STATO</td>
<td>4/11/79 (101)</td>
<td>6,000</td>
<td>6,000</td>
<td>32</td>
<td>M</td>
<td>Original stabilizers</td>
<td>15</td>
<td>Anchor efficiency varied between 9 and 16; anchor unstable and flipped at above efficiencies; longer stabilizers appear needed.</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>STATO</td>
<td>4/11/79 (101)</td>
<td>6,000</td>
<td>6,000</td>
<td>32</td>
<td>M</td>
<td>Original stabilizers</td>
<td>16-1/2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Continued
Table 2. Continued

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Stockless 4/11/79 (101)</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>35 F</td>
<td>Tandem - shank to shackle rigging; total weight of 11,900 lb</td>
<td>13</td>
<td>Arrangement easy to install; both anchors apparently functioned to peak capacity.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>Stockless 4/11/79 (101)</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>35 F</td>
<td>Tandem - crown to shackle rigging; total weight is 11,900 lb</td>
<td>13</td>
<td>Performance somewhat less than shank-to-shackle technique but somewhat easier to install.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>Stockless 4/12/79 (102)</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>35 F</td>
<td>Tandem - ground ring to shackle rigging; total weight is 11,900 lb</td>
<td>13</td>
<td>Performance comparable to crown to shackle technique but installation more difficult.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>Stockless 4/12/79 (102)</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>35 F</td>
<td>Tandem - crown to shackle rigging; total weight is 11,900 lb</td>
<td>13</td>
<td>Performance somewhat less than shank-to-shackle technique but somewhat easier to install.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>Stockless 4/12/79 (102)</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>35 F</td>
<td>Tandem - ground ring to shackle rigging; total weight is 11,900 lb</td>
<td>13</td>
<td>Performance comparable to crown to shackle technique but installation more difficult.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Hook 4/12/79 (102)</td>
<td>(560)</td>
<td>1,230 (560)</td>
<td>32 M</td>
<td>Without auxiliary flukes</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Hook 4/12/79 (102)</td>
<td>(560)</td>
<td>1,230 (560)</td>
<td>32 M</td>
<td>Without auxiliary flukes</td>
<td>11-1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location 2 - San Diego Harbor - Anchorage Area (1-3 ft Mud Over Dense Clayey Sand)

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>STATO 4/16/79 (106)</td>
<td>3,000</td>
<td>3,000</td>
<td>31-1/2 M</td>
<td>With 18-in. stabilizer extensions</td>
<td>41</td>
<td>Anchor embedded quickly and reliably to a peak anchor efficiency of 15 to 18, but pulled out with continued drag; ultimately, the dense clayey sand clogged the flukes and prohibited re-embedding.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>STATO 4/16/79 (106)</td>
<td>3,000</td>
<td>3,000</td>
<td>31-1/2 M</td>
<td>With 18-in. stabilizer extensions</td>
<td>41</td>
<td>Anchor embedded quickly and reliably to a peak anchor efficiency of 15 to 18, but pulled out with continued drag; ultimately, the dense clayey sand clogged the flukes and prohibited re-embedding.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>STATO 4/16/79 (106)</td>
<td>3,000</td>
<td>3,000</td>
<td>31-1/2 M</td>
<td>With 18-in. stabilizer extensions</td>
<td>30</td>
<td>Anchor embedded quickly and reliably to a peak anchor efficiency of 15 to 18, but pulled out with continued drag; ultimately, the dense clayey sand clogged the flukes and prohibited re-embedding.</td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Series</th>
<th>Anchor</th>
<th>Calendar Date (Julian)</th>
<th>Nominal Weight, lb (kg)</th>
<th>Actual Weight, lb (kg)</th>
<th>Fluke Angle, deg</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth, ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>STEVFIX</td>
<td>4/16/79 (106)</td>
<td>(640)</td>
<td>1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>---</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>STEVFIX</td>
<td>4/16/79 (106)</td>
<td>(640)</td>
<td>1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>---</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>STEVFIX</td>
<td>4/16/79 (106)</td>
<td>(640)</td>
<td>1,408 (640)</td>
<td>32</td>
<td>M</td>
<td>---</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Location 2 - San Diego Harbor - Anchorage Area (1-3 ft Mud Over Dense Clayey Sand)
Table 3. Summary of Test Data for San Diego Harbor Mooring Tests

<table>
<thead>
<tr>
<th>Date</th>
<th>Mooring Number</th>
<th>Mooring Class</th>
<th>Anchor</th>
<th>Anchor Weight, lb</th>
<th>Mooring Chain Size/Length Buoy to Anchor</th>
<th>Water Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/26/79</td>
<td>17</td>
<td>B</td>
<td>Stockless without stabilizers</td>
<td>20,000</td>
<td>22 ft - 2-3/4 in. riser; 225 ft - 2-1/2 in. leg</td>
<td>36</td>
<td>Anchors jetted-in with flukes down on all San Diego moorings; -SE pull on mooring, max load was 118,000 lb.</td>
</tr>
<tr>
<td>3/26/79</td>
<td>18</td>
<td>B</td>
<td>Stockless without stabilizers</td>
<td>20,000</td>
<td>23 ft - 2-3/4 in. riser; 225 ft - 2-1/2 in. leg</td>
<td>37</td>
<td>-SW pull on mooring; max load 115,000 lb.</td>
</tr>
<tr>
<td>3/27/79</td>
<td>50 & 51</td>
<td>B</td>
<td>Stockless without stabilizers</td>
<td>20,000</td>
<td>16 ft - 2-3/4 in. riser; 225 ft - 2-1/2 in. leg</td>
<td>28</td>
<td>-E-W pull on moorings, max load 99,000 lb; buoy 51 displaced at above load.</td>
</tr>
<tr>
<td>Test No.</td>
<td>Date</td>
<td>Anchor</td>
<td>Nominal Weight lb (kg)</td>
<td>Actual Weight lb (kg)</td>
<td>Fluke Angle (deg)</td>
<td>Fixed/ Movable Fluke</td>
<td>Anchor Specifics</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>6/19/79</td>
<td>STATO</td>
<td>1,000</td>
<td>1,070</td>
<td>50</td>
<td>M</td>
<td>26 in. long stabilizers</td>
</tr>
<tr>
<td>2</td>
<td>6/20/79</td>
<td>Hook</td>
<td>(560)</td>
<td>1,230</td>
<td>50</td>
<td>M</td>
<td>Without auxiliary flukes</td>
</tr>
<tr>
<td>3</td>
<td>6/20/79</td>
<td>Hook</td>
<td>(560)</td>
<td>1,230</td>
<td>50</td>
<td>M</td>
<td>Without auxiliary flukes</td>
</tr>
<tr>
<td>4</td>
<td>6/20/79</td>
<td>BRUCE</td>
<td>(1,000)</td>
<td>2,200</td>
<td>-</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6/20/79</td>
<td>BRUCE</td>
<td>(1,000)</td>
<td>2,200</td>
<td>-</td>
<td>F</td>
<td>With 1 cable depresser (200 kg) after load cell</td>
</tr>
<tr>
<td>7</td>
<td>6/21/79</td>
<td>Stockless</td>
<td>9,000</td>
<td>11,370</td>
<td>48</td>
<td>F</td>
<td>With stabilizers</td>
</tr>
<tr>
<td>8</td>
<td>6/21/79</td>
<td>Stockless</td>
<td>9,000</td>
<td>11,370</td>
<td>48</td>
<td>M</td>
<td>With stabilizers</td>
</tr>
<tr>
<td>9</td>
<td>6/21/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950</td>
<td>48</td>
<td>F</td>
<td>With stabilizers</td>
</tr>
<tr>
<td>10</td>
<td>6/21/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950</td>
<td>48</td>
<td>F</td>
<td>With stabilizers</td>
</tr>
<tr>
<td>Test No.</td>
<td>Date</td>
<td>Anchor</td>
<td>Nominal Weight (lb) (kg)</td>
<td>Actual Weight (lb) (kg)</td>
<td>Fluke Angle (deg)</td>
<td>Fixed/Moveable Fluke</td>
<td>Water Depth (ft)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>11</td>
<td>6/22/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>48</td>
<td>F</td>
<td>98</td>
</tr>
<tr>
<td>12</td>
<td>6/23/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>48</td>
<td>F</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>6/24/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>48</td>
<td>M</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>6/23/79</td>
<td>Stockless</td>
<td>5,000</td>
<td>5,950 (ea)</td>
<td>48</td>
<td>M</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>6/23/79</td>
<td>BRUCE</td>
<td>(340)</td>
<td>750 (340)</td>
<td>-</td>
<td>F</td>
<td>88</td>
</tr>
<tr>
<td>16</td>
<td>6/23/79</td>
<td>STEVFIX</td>
<td>(640)</td>
<td>1,408 (640)</td>
<td>50</td>
<td>M</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>6/24/79</td>
<td>STEVFIX</td>
<td>(640)</td>
<td>1,408 (640)</td>
<td>50</td>
<td>F</td>
<td>84</td>
</tr>
<tr>
<td>18</td>
<td>6/24/79</td>
<td>STEVFIX</td>
<td>(940)</td>
<td>2,068 (940)</td>
<td>50</td>
<td>F</td>
<td>83</td>
</tr>
<tr>
<td>19</td>
<td>6/24/79</td>
<td>STEVMUD</td>
<td>(1,000)</td>
<td>2,200 (1,000)</td>
<td>50</td>
<td>M</td>
<td>82</td>
</tr>
<tr>
<td>20</td>
<td>6/25/79</td>
<td>Stockless</td>
<td>9,000</td>
<td>10,500 (900)</td>
<td>50</td>
<td>M</td>
<td>89</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Anchor</th>
<th>Nominal Weight lb (kg)</th>
<th>Actual Weight lb (kg)</th>
<th>Fluke Angle (deg)</th>
<th>Fixed/ Movable Fluke</th>
<th>Anchor Specifics</th>
<th>Water Depth (ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>6/25/79</td>
<td>BRUCE</td>
<td>(600)</td>
<td>1,320 (600)</td>
<td>-</td>
<td>F</td>
<td></td>
<td>83</td>
<td>Extended stabilizers did not appear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to degrade performance; anchor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>penetrated and held well.</td>
</tr>
<tr>
<td>23</td>
<td>6/25/79</td>
<td>STATO</td>
<td>3,000</td>
<td>3,000</td>
<td>50</td>
<td>M</td>
<td>With 18-in. stabilizer extensions</td>
<td>82</td>
<td>Extended stabilizers did not appear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to degrade performance; anchor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>penetrated and held well.</td>
</tr>
<tr>
<td>24</td>
<td>6/25/79</td>
<td>STEVROD</td>
<td>(500)</td>
<td>1,100 (500)</td>
<td>50</td>
<td>M</td>
<td></td>
<td>83</td>
<td>Anchor penetrated and held well; extended</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stabilizers might improve performance.</td>
</tr>
<tr>
<td>25</td>
<td>6/25/79</td>
<td>STATO</td>
<td>6,000</td>
<td>6,600</td>
<td>50</td>
<td>M</td>
<td>With original stabilizers</td>
<td>89</td>
<td>Anchor penetrated and held well but</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rotated; extended stabilizers might improve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>performance.</td>
</tr>
</tbody>
</table>
Table 5. Typical Data Output for Anchor Test Pull

<table>
<thead>
<tr>
<th>STA NO.</th>
<th>ANCHOR TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>

TEST DATE

TEST NO.

TEST AREA

START-STOP TIMES

SEAFOOD TYPE

ANCHOR WEIGHT

FLUTE ANGLE-TYPE

MAKRO, ANCHOR TYPE

MAIN-MAKRO ANCHOR SEPARATION

NUMERATION NO.-DRAFT-TOTAL WT.

LORING LINE DESCRIPTION

NOTE - INITIAL SHANK DEPTH SEEN TO REFLECT MEASURED WATERDEPTH

1. NOSE DISTANCE

2. DECK TENSION

3. SHANK ANGLE

4. PACKAGE DEPTH

5. ROTATION ANGLE

6. CHAIN LENGTH ON ROLLER

7. ANCHOR TENSION

8. WIRE ANGLE

9. ANCHOR CROWN DEPTH

10. DRAFT

11. SEAFOOD DEPTH

12. ANCHOR CHAIN TIP DEPTH

<table>
<thead>
<tr>
<th>FEET</th>
<th>K.O.S</th>
<th>K.O.S</th>
<th>FEET</th>
<th>DEG.</th>
<th>DEG.</th>
<th>DEG.</th>
<th>WIRE</th>
<th>FEET</th>
<th>FILLS</th>
<th>FEET</th>
<th>FEET</th>
<th>FEET</th>
<th>FEET</th>
<th>FEET</th>
<th>FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>14.0</td>
<td>4.5</td>
<td>5.3</td>
<td>7.3</td>
<td>72.5</td>
<td>13.0</td>
<td>12.2</td>
<td>14.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>2.5</td>
<td>38.5</td>
<td>12.5</td>
<td>11.5</td>
<td>-4.3</td>
<td>3.5</td>
<td>5.5</td>
<td>70.5</td>
<td>12.5</td>
<td>12.0</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>4.0</td>
<td>45.0</td>
<td>10.5</td>
<td>10.0</td>
<td>-4.3</td>
<td>3.5</td>
<td>5.5</td>
<td>70.0</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>6.0</td>
<td>40.5</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>65.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>7.5</td>
<td>37.5</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>62.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>9.0</td>
<td>32.5</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>60.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>11.5</td>
<td>28.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>58.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>14.0</td>
<td>24.5</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>56.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>16.5</td>
<td>21.5</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>54.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>19.0</td>
<td>19.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>52.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>21.5</td>
<td>17.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>50.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>24.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>48.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>27.5</td>
<td>13.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>46.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>30.0</td>
<td>11.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>44.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>33.0</td>
<td>9.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>42.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>36.0</td>
<td>7.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>40.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>39.0</td>
<td>5.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>38.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>42.0</td>
<td>3.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>36.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>45.0</td>
<td>1.0</td>
<td>15.0</td>
<td>15.0</td>
<td>-2.5</td>
<td>3.5</td>
<td>5.5</td>
<td>34.5</td>
<td>12.0</td>
<td>11.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

DISTANCE RANGE TRAVELLED 32.0

DISTANCE ANCHOR TRAVELLED 31.4

Note: Anchor depth at end of drag measured - centerline of shank at anchor crown (±15) inches.
Figure 1. Test and core locations at San Diego Harbor - location 1.
Figure 2. Test and core locations at San Diego Harbor - location 2.
Figure 3. Test and core locations - Indian Island.
Figure 4. Grain size distribution curves for Vibracore 5 - San Diego Harbor.
Figure 6. Grain size distribution curves for Vibracore 3 (12 to 51-inch penetration) - Indian Island.
Figure 7. Grain size distribution curves for Vibracore 3 (72 to 119-inch penetration) - Indian Island.
Figure 8. Barge crane with all test anchors.
a. Navy Standard Stockless Anchor

b. Navy Stockless Anchor with Stabilizers

Figure 9. Navy Stockless anchor.
Figure 10. Navy standard Stockless anchor.
Figure 11. Navy Stockless anchor with stabilizers and welded-open flukes.
Figure 12. Navy STATO anchor.
Figure 13. Navy 6,000-pound STATO anchor.
Figure 14. Cast BRUCE anchor.
Figure 15. Welded BRUCF anchor.
Figure 16. Cast BRUCE anchor with single cable depressor.
Figure 18. STEVMUD anchor.
Figure 19. STEVFIX anchor without mud extensions.
Figure 21. Hook anchor with auxiliary flukes.
Figure 23. Spar marker reference buoy.
Figure 24. Underwater portion of test measurement system.
Figure 25. Test deck layout showing cable pulling system and prerigged test wire.
Figure 28. Barge layout for anchor test.
Figure 29. Tandem anchor test setup for shank-to-shackle and crown-to-shackle techniques.
Figure 30. Tandem anchor test setup “ground ring to shackle” technique.
a. Plan view of crane barge.

Figure 31. Tandem anchor deployment method used at Indian Island at 90-foot water depth.
2 LIFT TANDEM CHAIN USING
2-PART SYNTHETIC THRU CHAIN AND PLACE
CHAIN OVER THE SIDE STILL STRAINED BY
PELICAN HOOKS 2 AND 3

3 PICK UP INBOARD ANCHOR USING
SHEAVE OVER CROWN LINE A;
ONCE STRAIN IS TAKEN, TRIP
PELICAN HOOK 1 THEN 2

b. Beginning anchor deployment.

Figure 31. Continued.
4 While pulling back on BD restraint mooring, lower inboard anchor to seafloor and release crown buoy.

c. Lowering inboard anchor to seafloor and releasing crown buoy.

Figure 31. Continued.
5. Pick up on other anchor using sheave over crown wire then release pelican hook 3.

4. BC pull in on data cable then BD release data cable from corner restraint.

7. Lower anchor to seabed while pulling back on BD restraint mooring; then release crown buoy.

d. Completing anchor deployment.

Figure 31. Continued.
a. Single mooring test pull.

b. Dual mooring test pull.

Figure 32. Mooring test arrangements.
Figure 33. Typical data plot for anchor test pull.
Figure 34. STATO anchor with extended stabilizers attached (standard stabilizer on deck).
Figure 35. STATO anchor with plate addition between shank and wedge insert to reduce fluke angle to about 32 degrees.
Figure 36. Recommendations for STATO anchor stabilizer lengths.
Appendix A

ADDITIONAL SAN DIEGO HARBOR SEAFLOOR PROPERTIES

Twelve vibracores were taken at San Diego. Of these, only eight cores were analyzed. Principally, San Diego Harbor consists of medium to fine sand with up to 2 to 3 feet of overlying mud in the dredged areas near the moorings (refer to Figures 1 and 2). The shallow area located primarily south of the dredge channel shown in Figure 2 is a uniform fine sand with no detectable surface mud layer. Grain size curves for cores SDV5 and SDV6 (Figures 6 and 7 in the main text) show the extremely uniform nature of the area.

Grain size curves for the remaining six cores are presented as Figures A-1 through A-6. Cores 1, 2, 3, 8, and 9 were taken near prospective moorings and typically show medium to fine sand at expected anchor fluke embedment depths. Cores 10, 11, and 12 were taken to locate an expected soft mud site; however, one was not located. Core 12 was a very uniform, fine-grained sand to 20 feet; it was not analyzed in detail. Cores 10 and 11 showed a very competent strata at 3 to 4 feet below the mud surface. This layer is practically impenetrable to standard ship anchors, yet it is classified as the anchorage area for commercial vessels. The 45- to 47-inch increment of core 10 (Figure A-6) represents the dense clayey sand.

Also provided in this section are plots of accumulative time versus vibracorer penetration depth for several apparently distinct areas (Figures A-7 through A-10). These curves are probably meaningless much below 5 to 7 feet, but they do offer insight into the variability, relative stiffnesses, and sensitivities of certain areas. In particular, Figure A-8 should be noted for cores 5, 6, and 7 at the fine sand test site. The curves are practically superimposed, lending further credence to the uniformity of the fine sand test site.

Figure A-11 provides recent vane shear data for Indian Island mud gathered with a bottom-sitting platform. Shear strength increases almost linearly from zero at the surface to 1-1/2 psi at 21 feet. Remolded shear strength readings were taken at only two depths. These data show a relatively insensitive soil where the ratio of undisturbed to disturbed strength was 1.6 at 7 feet and 2.1 at 10 feet.
Figure A-1. Grain size distribution curves for Vibracore 1 - San Diego Harbor.
Figure A.2. Grain size distribution curves for Vibeacore 2, San Diego Harbor.
Figure A-4. Grain size distribution curves for Vibracore 8 - San Diego Harbor.
Figure A-6. Grain size distribution curves for Vibracore 10 - San Diego Harbor.
Figure A-7. Vibracorer penetration depth versus time for cores 1-4 - San Diego Harbor.
Figure A-8. Vibracorer penetration depth versus time for cores 5-7 - San Diego Harbor.
Figure A-9. Vibracorer penetration depth versus time for cores 8-9 - San Diego Harbor.
Figure A-10. Vibracorer penetration depth versus time for cores 10-12 - San Diego Harbor.
Figure A-11. Vane shear strength profile for Indian Island mud.
Appendix B

DIMENSIONS OF ALL TESTED ANCHORS

General dimensions of all the anchors tested are provided. Also included is a tabularized listing of the location of the instrument package on the shank relative to the shackle end of the shank.

Table B-1. Location of Instrument Package on Anchor Shank

<table>
<thead>
<tr>
<th>Anchor Name</th>
<th>Nominal Size</th>
<th>San Diego</th>
<th>Indian Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATO</td>
<td>1,000 lb</td>
<td>18</td>
<td>19-1/4</td>
</tr>
<tr>
<td></td>
<td>3,000 lb</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>6,000 lb</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>Stockless</td>
<td>5,000 lb</td>
<td>45</td>
<td>42-1/2</td>
</tr>
<tr>
<td></td>
<td>9,000 lb</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>STEVFIX</td>
<td>640 kg</td>
<td>16</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>940 kg</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>STEVMUD</td>
<td>500 kg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1,000 kg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>STEVDIG</td>
<td>1,000 kg</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>BRUCE</td>
<td>340 kg</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>600 kg</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1,000 kg</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Hook</td>
<td>560 kg</td>
<td>29</td>
<td>43</td>
</tr>
<tr>
<td>Nominal Weight (lb)</td>
<td>Anchor Dimensions (in.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>500</td>
<td>29-3/4</td>
<td>26-7/8</td>
<td>37-1/4</td>
</tr>
<tr>
<td>1,500</td>
<td>43</td>
<td>38-3/4</td>
<td>53-5/8</td>
</tr>
<tr>
<td>3,000</td>
<td>54-1/8</td>
<td>48-3/4</td>
<td>67-1/2</td>
</tr>
<tr>
<td>5,000</td>
<td>64-1/8</td>
<td>67-3/4</td>
<td>80-1/8</td>
</tr>
<tr>
<td>6,000</td>
<td>67-7/8</td>
<td>62-3/16</td>
<td>85-1/16</td>
</tr>
<tr>
<td>7,000</td>
<td>71-1/16</td>
<td>65-7/8</td>
<td>89-9/16</td>
</tr>
<tr>
<td>9,000</td>
<td>76-1/16</td>
<td>70-3/8</td>
<td>97-1/2</td>
</tr>
<tr>
<td>10,000</td>
<td>80-1/2</td>
<td>74-3/16</td>
<td>100-7/8</td>
</tr>
<tr>
<td>13,000</td>
<td>87-7/8</td>
<td>79-1/8</td>
<td>109-3/4</td>
</tr>
<tr>
<td>20,000</td>
<td>101-7/8</td>
<td>91-3/4</td>
<td>127-1/4</td>
</tr>
<tr>
<td>26,000</td>
<td>109-3/4</td>
<td>98-7/8</td>
<td>137-1/16</td>
</tr>
<tr>
<td>30,000</td>
<td>116-5/8</td>
<td>107-1/4</td>
<td>145-5/8</td>
</tr>
<tr>
<td>40,000</td>
<td>127-3/4</td>
<td>117-13/16</td>
<td>160-1/16</td>
</tr>
</tbody>
</table>

Figure B-1. Dimensions of standard Stockless anchor.
Figure B-2. Dimensions of Navy STATO anchor.

<table>
<thead>
<tr>
<th>Nominal Weight</th>
<th>Dimensions of Anchors (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>200</td>
<td>23</td>
</tr>
<tr>
<td>1,000</td>
<td>28</td>
</tr>
<tr>
<td>3,000</td>
<td>69</td>
</tr>
<tr>
<td>6,000</td>
<td>55</td>
</tr>
<tr>
<td>9,000</td>
<td>62</td>
</tr>
<tr>
<td>12,000</td>
<td>69</td>
</tr>
<tr>
<td>15,000</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Weight</th>
<th>Thickness of Plates (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>1/4</td>
</tr>
<tr>
<td>6,000</td>
<td>1-1/2</td>
</tr>
<tr>
<td>9,000</td>
<td>1-3/4</td>
</tr>
<tr>
<td>12,000</td>
<td>2</td>
</tr>
<tr>
<td>15,000</td>
<td>2-1/4</td>
</tr>
</tbody>
</table>
Figure B-3. Dimensions of BRUCE anchor.
Figure B-4. Dimensions of BRUCE cable depressors.
Figure B-8. Dimensions of STEVDIG® anchor.
Appendix C

STOCKLESS AND STATO ANCHOR TEST DATA

All test results for the Stockless and STATO anchors are included in this section. Anchor and deck tension, chain weight on bottom, anchor shank tip and crown penetrations, anchor shank longitudinal rotation (pitch), and anchor transverse rotation (roll) are plotted as functions of true anchor drag distance. Presented opposite each data plot is a digital listing of all plotted data plus additional descriptive data that may be useful during the eventual analysis of the data. When data were unavailable either through instrumentation difficulties or because the instrument pack was not used due to time constraints (this occurred at Indian Island), straight lines with a zero ordinate were plotted. There were several instances at San Diego where partial shorts at the load cell electrical connector occurred during testing. The anchor load cell was particularly sensitive to these shorts since its output, exclusively, was amplified at the anchor and transmitted to the vessel. When this occurred, all data but anchor load cell were recorded. At the fine sand site in San Diego Harbor, problems often occurred with the pressure transducer; these did not occur at the deeper dense clayey sand site at San Diego and at Indian Island. Apparently, partial kinking of the pressure transducer hose was sufficient to restrict water flow into the hose. For those tests where depth readings were obviously in error, columns 4, 11, 12, and 13 on the data summaries are absent. Also, anchor shank penetrations are not listed or plotted for the Stockless anchor even when package depth (column 4) is listed. An error was detected in the specification of package location on the shank. The correct location is listed in Table B-1. Shank penetrations can be calculated directly using the correct location in conjunction with anchor dimensions listed in Appendix B and anchor shank angles listed in Appendix C. Listed on most Appendix C tables is an embedment depth of the centerline of the anchor shank at the crown end of the anchor. This depth was recorded by crown wire measurement at the end of the test. This value reflects only the condition of the anchor at the end of drag and not necessarily peak anchor embedment.
SAN DIEGO HARBOR 1500FT. SOUTHEAST OF BUOY 49

et No. - 1
et Series No. - 4

stockless, 5000lb. no stabilizers 48 deg. mov. flukes
fines sand bottom. depth 11-12 ft. mllw

LEGEND
○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND
* = Transverse Rotation
▼ = Longitudinal Rotation

LEGEND
○ = Chain Weight on Bottom
× = Anchor Force
▼ = Deck Force
1500FT. SOUTHEAST OF BUOY 49

5000lb. no stabilizers 48 deg. mov. flukes
ottom. depth 11-12 ft. mllw
Test Series No. 2

Test Set No. 7

<table>
<thead>
<tr>
<th>Test Date</th>
<th>Test No.</th>
<th>Text</th>
<th>Test Area</th>
<th>Start Time</th>
<th>Stop Time</th>
<th>Anchor Type</th>
<th>Anchor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/12/1976</td>
<td>12</td>
<td>SB</td>
<td>SAN DIEGO BAY area</td>
<td>10:00 A.M.</td>
<td>10:30 A.M.</td>
<td>STEELLESS</td>
<td>4500 lb.</td>
</tr>
</tbody>
</table>

Test Results

Test No.	Test Area	Start Time	Stop Time	Anchor Type	Anchor Weight	Fluke Angle	Silt Angle	Chain Length	Water Depth	Chain Weight	Water Weight	Total Weight	Anchor Tip Depth	Anchor Chain	Fluke Tension	Silt Tension	
1.0	SB	10:00 A.M.	10:30 A.M.	STEELLESS	4500 lb.	35°	20°	200'	10'	200'	10'	320'	20'	200'	200'	10'	20°

Diagram

- **Distance Range Traveled**: 200 feet
- **Distance Anchor Travelled**: 100'
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

No. - 2
Series No. - 4

stockless, 5000 lb. no stabilizers 46 deg. mov. flukes
fine sand bottom, depth 11-12 ft. mllw

LEGEND
○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND
× = Transverse Rotation
▼ = Longitudinal Rotation

LEGEND
○ = Chain Weight on Bottom
× = Anchor Force
▼ = Deck Force
0 FT. SOUTHEAST OF BUOY 49

b. no stabilizers 48 deg. mov. flukes
a. depth 11-12 ft. mllw
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

No. - 3 Stockless, 5000 lb. no stabilizers 48 deg. mov. flukes
Series No. - 4 Fine sand bottom, depth 11-12 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
J FT. SOUTHEAST OF BUOY 49

b. no stabilizers 48 deg. mov. flukes
n. depth 11-12 ft. mllw
Day # - 89
Test No. - 1
Test Series No. - 1

STRESS - ANCHOR TEST

<table>
<thead>
<tr>
<th>FEET</th>
<th>KIPS</th>
<th>KIPS</th>
<th>FEET</th>
<th>KIPS</th>
<th>KIPS</th>
<th>FEET</th>
<th>KIPS</th>
<th>KIPS</th>
<th>KIPS</th>
<th>FEET</th>
<th>KIPS</th>
<th>KIPS</th>
<th>KIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>29.4</td>
<td>29.4</td>
<td>12.5</td>
<td>29.4</td>
<td>29.4</td>
<td>17.0</td>
<td>29.4</td>
<td>29.4</td>
<td>23.0</td>
<td>29.4</td>
<td>29.4</td>
<td>29.4</td>
<td>29.4</td>
</tr>
<tr>
<td>18.0</td>
<td>44.8</td>
<td>44.8</td>
<td>17.0</td>
<td>44.8</td>
<td>44.8</td>
<td>23.0</td>
<td>44.8</td>
<td>44.8</td>
<td>29.4</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
</tr>
<tr>
<td>12.0</td>
<td>54.0</td>
<td>54.0</td>
<td>17.0</td>
<td>54.0</td>
<td>54.0</td>
<td>23.0</td>
<td>54.0</td>
<td>54.0</td>
<td>29.4</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
</tr>
</tbody>
</table>

DISTANCE RANGE TRAVELED: 12.0
DISTANCE ANCHOR TRAVELED: 94.2

Note: All pull line and chain is off bottom at 8.0 FEET.

Note: Initial chain depth shown to reflect maximum water depth.
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY

Test No. - 1
Test Series No. - 5

stockless, 5000lb. stabilizers-600lb. /pr. 35 deg.

fine sand bottom, depth 11-12 ft. mlw

--- LEGEND ---

- Crown Penetration
- Shank Tip Penetration

--- LEGEND ---

- Transverse Rotation
- Longitudinal Rotation

--- LEGEND ---

- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

1. stabilizers-600lb./pr. 35 deg. fx. fluke
2. depth 11-12 ft. +llw

Anchor Drag Distance

25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0
25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0
25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

- 2

- 5

stockless, 5000lb. stabilizers, 600lb. /pr. 35 deg. flx, fluk
fine sand bottom, depth 11-12 ft. mllw

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
▼ - Longitudinal Rotation

LEGEND
○ - Chain Weight on Bottom
× - Anchor Force
▼ - Deck Force

Anchor Drag Distance
500 FT. SOUTHEAST OF BUOY 49

100 lb. stabilizers-600 lb. /pr. 35 deg. fluke

Tom. depth 11-12 ft. MLLW
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

Series No. = 5
fine sand bottom, depth 11-12 ft. mllw

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
▼ - Longitudinal Rotation

LEGEND
○ - Chain Weight on Bottom
× - Anchor Force
▼ - Deck Force
FT. SOUTHEAST OF BUOY 49

stabilizers-600lb./pr. 35 deg. fx. fluke

depth 11-12 ft., mllw

Anchor Drag Distance

105
Test Data

<table>
<thead>
<tr>
<th>Test Date</th>
<th>Anchor Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Test Details
- **Test Section**: Main Line Anchor Separation
- **Test Type**: Main Line Anchor Separation
- **Anchor Type**: Main Line Anchor Separation
- **Anchor Weight**: 100 lbs

Chart Details
- **Day**: 92
- **Test No.**: 1
- **Test Series No.**: 61.0

Note
- Initial anchor depth used to achieve anchor weight.

Measurements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEET</td>
<td>KIPS</td>
<td>FEET</td>
<td>DEG</td>
<td>DEC</td>
<td>FEET</td>
<td>DEG</td>
<td>DEC</td>
<td>FEET</td>
<td>DEG</td>
<td>DEC</td>
<td>FEET</td>
<td>DEG</td>
<td>DEC</td>
</tr>
<tr>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>5.0</td>
<td>10.0</td>
<td>-5.0</td>
<td>10.0</td>
<td>-5.0</td>
<td>10.0</td>
<td>-5.0</td>
<td>10.0</td>
<td>-5.0</td>
<td>10.0</td>
<td>-5.0</td>
<td>10.0</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

Distance Anchors Traveled: 11.6 ft
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY

Test No. - 1
Test Series No. - 6

stato 1000lb. 16 in. stabilizers 35 deg. mov
fine sand bottom. depth 11-12 ft. mllw

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
▼ - Longitudinal Rotation

LEGEND
○ - Chain Weight on Bottom
× - Anchor Force
▼ - Deck Force
100 FT. SOUTHEAST OF BUOY 49

00 lb. 16 in. stabilizers 35 deg. mov. flukes

Tow. depth 11-12 ft. mllw
TEST MAIF:

TEST NO.:

TEST DATE:

TEST AREA:

START/END TIMES:

SEAFLOOR TYPE:

ANCHOR TYPE:

FINSK ANCHOR TYPE:

RIG:

RIG:

RIG:

PRELIMINARY ANCHOR SEPARATION:

PRELIMINARY ANCHOR SEPARATION:

Anchor to Left Pin:

Width Centerline:

Width Centerline:

DISTANCE RANGE TRAVELLED:

DISTANCE ANCHOR TRAVELLED:

NOTE: Initial chain force showed to be less than water depth.
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

Set No. = 1
Set Series No. = 13

stockless, 9000lb. stabilizers-670lb/pr. 35 deg. fx. ft.
fine sand bottom, depth 11-12 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
= Transverse Rotation
= Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

- stabilizers - 670 lb/pr.
- 35 deg. flukes
- depth 11-12 ft. mllw

Anchor Drag Distance

109
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY

Test No. - 2
Test Series No. - 13

stockless, 9000 lb. stabilizers, 670 lb/pr. 35 deg.
fine sand bottom, depth 11-12 ft. mllw

Legend:
- Crown Penetration
- Shank Tip Penetration

Legend:
- Transverse Rotation
- Longitudinal Rotation

Legend:
- Chain Weight on Bottom
- Anchor Force
- Deck Force
0 FT. SOUTHEAST OF BUOY 49

Lb. stabilizers-670 lb/pr. 35 deg. fx. flukes

M. depth 11-12 ft. mllw
<table>
<thead>
<tr>
<th>Day # - 95</th>
<th>SAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No. -</td>
<td>1</td>
</tr>
<tr>
<td>Test Series No. -</td>
<td>14</td>
</tr>
</tbody>
</table>

Test Details
- **Location**: San Diego harbor 1400 ft, Southwest of Navy Rd.
- **Date**: 12/20/83
- **Water Depth**: 31 ft.
- **Water Temperature**: 74°F
- **Wind Speed**: 20 mph, NW.
- **Wind Direction**: 360°
- **Wind Force**: 5.0 Kჰ
- **Current**: 2 knots, NNE.
- **Current Force**: 17.0 Kჰ

Anchor Details
- **Anchor Type**: Static Anchor
- **Anchor Length**: 30.0 ft.
- **Anchor Weight**: 30.0 ft.
- **Anchor Separation**: 6.0 ft.
- **Anchoring Line Description**: Static Anchor to barge, strategic chain to draft bin. With shack.

Initial Chain Length
- **Anchor to Barge Distance**: 300 ft.
- **Initial Barge Travelled**: 0 ft.
- **Initial Anchor Will**: 0 ft.

Test Results

<table>
<thead>
<tr>
<th>Measurement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Test No.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Test Series</td>
<td></td>
</tr>
</tbody>
</table>

Note
- Initial chain depth refers to offset measured water depth.

Diagrams
- **Chart A**: Course, Speed, and Depth
- **Chart B**: Distance Traveled
- **Chart C**: Anchor Travelled

DISTANCE RANGE TRAVELLED: 40.0 ft.
DISTANCE ANCHOR TRAVELLED: 39.0 ft.

Note: Positive chain value indicates chain tip offset from rosen.
Day # = 95
Test No. = 1
Test Series No. = 14

SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 4!

sta 3000lb. 37 deg. mov. flukes
fine sand bottom. depth 11-12 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force
1500 FT. SOUTHEAST OF BUOY 49

3000 lb. 37 deg. mov. flukes

Bottom depth 11-12 ft. mldw
Day # - 95
Test No. - 2
Test Series No. - 14

Distance Range Travelled: 146.6
Distance Anchor Davit: 144.4

Note: SF

SAN

Test No. 95
Test Series 2

Wind and Wave Data

- Wind Speed: 15 kts
- Wind Direction: 120°
- Wave Height: 2 ft
- Wave Period: 12 sec

Position of Anchor

- Latitude: 32°38'45"
- Longitude: 117°15'0" W

Weather Conditions

- Temperature: 68°F
- Humidity: 45%
- Wind Speed: 15 kts
- Wind Direction: 120°

Anchor Details

- Type: Anchor Type
- Material: Steel
- Size: 14" x 14"
- Weight: 2 tons

Note: Initial chain length varied to adjust weather resistance.

Distance Range Travelled: 146.6
Distance Anchor Davit: 144.4

Note: SF

Graphs showing:
- Distance Range Travelled vs. Degrees
- Anchor Davit vs. Distance
- Wind Speed vs. Degrees
- Wave Height vs. Degrees

Legend:
- Cr - Anchor
- Sh - Wind
- Tr - Wave
- Lo - Temperature
- Ch - Humidity
- An - Wind Speed
500 FT. SOUTHEAST OF BUOY 49

400 lb. 37 deg. mov. flukes

Tow depth 11-12 ft. mllw

Anchor Drag Distance
Day # - 99
Test No. - 2
Test Series No. - 6

<table>
<thead>
<tr>
<th>Feet</th>
<th>Degrees</th>
<th>KIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: Initial anchor depth shown to reflect weather parameters.

Voyage Data

- **Test Date**: 1979-07-24
- **Test No.**: 2
- **Test Series No.**: 6
- **Location**: SAN DIEGO HARBOR (480 FT, SOUTH OF RAY AB)
- **Mast Height**: 17' 3" (SA)
- **Chain Weight on Bottom**: 12' 10 FT (SA)
- **Water Depth**: 15.0 - 15.0
- **Beam**: 10.0
- **Anchor Type**: ANCHOR TEST
- **Anchor Weight**: 98 LBS.
- **Fluke Anchor Type**: HYD. ANCHOR TYPE
- **Hydraulic Anchor Weight**: 98 LBS.
- **Weather Information**: Conditions at anchor test site.
- **Anchor in Left Side, Winch Line in Right Side, Wire Rope at Anchor."**

Distance Ranges Traveled

- **Distance Range Traveled**: 30.0
- **Distance Anchor Traveled**: 29.9

Note: Distance range shown to reflect weather conditions during anchor test.
Test No. - 2
Test Series No. - 6

LEGEND

- Crown Penetration
- Shank Tip Penetration

LEGEND

- Transverse Rotation
- Longitudinal Rotation

LEGEND

- Chain Weight on Bottom
- Anchor Force
- Deck Force
T. SOUTHEAST OF BUOY 49

26 in. stabilizers 35 deg. mov. flukes

Depth 11-12 ft. @ mllw
Day # - 100 SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49
Test No. - 3
Test Series No. - 14
Festo, 3000lb. 18 in. stabilizer ext. 37 deg. mov.
fine sand bottom, depth 11-12 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
00 FT. SOUTHEAST OF BUOY 49

10 lb. 18 in. stabilizer ext. 37 deg. mov. flukes

Om. depth 11-12 ft. mllw
500 FT. SOUTHEAST OF BUOY 49

000 lb. 18 in. stabilizer ext. 37 deg. mov. flukes

Tow depth 11-12 ft. mllw

Anchor Drag Distance
STATO ANCHOR TEST

TEST DATE
4/16/80

TEST No.
14

TEST AREA
SAN DIEGO HARBOR 1500 FT. SOUTHWEST OF BAY 45

START-STOP TIMES
4/15/80 - 4/16/80

ANTHCRT TYPE
STATO

ANCHOR WEIGHT
-25.0-

FLUSH ANGLE TYPE
-25.0-

ADJ. ANCHOR TYPE
-25.0-

NOTE - INITIAL CHAIN DEPTH PERIOD TO REFLECT ABNORMAL WEATHER

1. CHAIN LENGTH AT BOW 9. CHAIN LENGTH AT STERN 17. ANCHOR FLUSH TIP DEPTH
2. CHAIN WEIGHT ON BOOM 10. CHAIN WEIGHT ON STERN 18. ANCHOR FLUSH WEIGHT
3. ANCHOR DEPTH 11. WIRE ROPE ANGLE 19. ANCHOR FLUSH DEPTH 18. WIRE ROPE WEIGHT
4. PACKAGE DEPTH 12. WIRE ROPE DEPTH 20. ANCHOR FLUSH DEPTH 19. TOTAL ROPE DEPTH
5. DECK ROPE WEIGHT 13. WIRE ROPE DEPTH 21. ANCHOR FLUSH DEPTH 20. TOTAL ROPE DEPTH
6. DECK ROPE DEPTH 14. WIRE ROPE DEPTH 22. ANCHOR FLUSH DEPTH 21. TOTAL ROPE DEPTH
7. DECK ROPE DEPTH 15. WIRE ROPE DEPTH 23. ANCHOR FLUSH DEPTH 22. TOTAL ROPE DEPTH
8. DECK ROPE DEPTH 16. WIRE ROPE DEPTH 24. ANCHOR FLUSH DEPTH 23. TOTAL ROPE DEPTH
9. DECK ROPE DEPTH

DISTANCE ANCHOR TRAVELLED 42.0
DISTANCE ANCHOR TRAVELLER 4.4

Note: Anchor depth is the depth of anchor chain at anchor chain 10. inches.

Note: Positive chain shall indicate chain tip down position.
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

No. - 4
Series No. - 14

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
* - Transverse Rotation
v - Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
x - Anchor Force
d - Deck Force

No. - 14

sta 3000 lb. 18 in. stabilizer ext. 31.5 deg. mov. flukes
fine sand bottom. depth 11-12 ft. mllw

Anchor Drag Distance
1500 FT. SOUTHEAST OF BUOY 49

3000lb. 18 in. stabilizer ext. 31.5 deg. mov. flukes
bottom. depth 11-12 ft. mllv

Anchor Drag Distance 123
<table>
<thead>
<tr>
<th>Test No.</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>10</td>
</tr>
<tr>
<td>Test Area</td>
<td>SAN OISIN HARBOR (250 FT. SOUTHWEST OF NO1-4)</td>
</tr>
<tr>
<td>Position</td>
<td>1430 - 1745</td>
</tr>
<tr>
<td>Anchor Chain</td>
<td>DEPTH 15-17 FT, MLW</td>
</tr>
<tr>
<td>Anchor Size</td>
<td>SANE</td>
</tr>
<tr>
<td>No. of Flights</td>
<td>3-5</td>
</tr>
<tr>
<td>Average Wind Speed</td>
<td>20.0</td>
</tr>
<tr>
<td>Average Wind Direction</td>
<td>10.0</td>
</tr>
<tr>
<td>Current</td>
<td>10.0</td>
</tr>
<tr>
<td>Water Depth</td>
<td>20.0</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>10.0</td>
</tr>
<tr>
<td>Weather Description</td>
<td>ANCHOR TEST</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Test Series No.</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>100</td>
</tr>
<tr>
<td>Test Area</td>
<td>SAN OISIN HARBOR (250 FT. SOUTHWEST OF NO1-4)</td>
</tr>
<tr>
<td>Position</td>
<td>1430 - 1745</td>
</tr>
<tr>
<td>Anchor Chain</td>
<td>DEPTH 15-17 FT, MLW</td>
</tr>
<tr>
<td>Anchor Size</td>
<td>SANE</td>
</tr>
<tr>
<td>No. of Flights</td>
<td>3-5</td>
</tr>
<tr>
<td>Average Wind Speed</td>
<td>20.0</td>
</tr>
<tr>
<td>Average Wind Direction</td>
<td>10.0</td>
</tr>
<tr>
<td>Current</td>
<td>10.0</td>
</tr>
<tr>
<td>Water Depth</td>
<td>20.0</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>10.0</td>
</tr>
<tr>
<td>Weather Description</td>
<td>ANCHOR TEST</td>
</tr>
</tbody>
</table>

Note:
- Initial anchor depth refers to the depth of the anchor before retrieval.

<table>
<thead>
<tr>
<th>Test Series No.</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>100</td>
</tr>
<tr>
<td>Test Area</td>
<td>SAN OISIN HARBOR (250 FT. SOUTHWEST OF NO1-4)</td>
</tr>
<tr>
<td>Position</td>
<td>1430 - 1745</td>
</tr>
<tr>
<td>Anchor Chain</td>
<td>DEPTH 15-17 FT, MLW</td>
</tr>
<tr>
<td>Anchor Size</td>
<td>SANE</td>
</tr>
<tr>
<td>No. of Flights</td>
<td>3-5</td>
</tr>
<tr>
<td>Average Wind Speed</td>
<td>20.0</td>
</tr>
<tr>
<td>Average Wind Direction</td>
<td>10.0</td>
</tr>
<tr>
<td>Current</td>
<td>10.0</td>
</tr>
<tr>
<td>Water Depth</td>
<td>20.0</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>10.0</td>
</tr>
<tr>
<td>Weather Description</td>
<td>ANCHOR TEST</td>
</tr>
</tbody>
</table>

Note:
- Initial anchor depth refers to the depth of the anchor before retrieval.

Graphs:
- **Left Graph:**
 - **X-axis:** Degrees
 - **Y-axis:** KIPS
 - **Legend:**
 - O - Cre
 - △ - She
 - X - Tr
 - ▼ - Lo

- **Right Graph:**
 - **X-axis:** Feet
 - **Y-axis:** Feet

Graph Details:
- **Graph 1:**
 - Title: Day # - 100
 - Test No.: 14
 - Test Series No.: 14
 - Notes:
 - Initial anchor depth refers to the depth of the anchor before retrieval.

- **Graph 2:**
 - Title: Day # - 100
 - Test No.: 14
 - Test Series No.: 14
 - Notes:
 - Initial anchor depth refers to the depth of the anchor before retrieval.
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY

Set No. - 5
Set Series No. - 14

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
* = Transverse Rotation
v = Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
x = Anchor Force
v = Deck Force

state, 3000lb. normal stabilizers 31.5deg., move
fine sand bottom, depth 11-12 ft. mllw

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

. normal stabilizers 31.5deg.mov. flukes

depth 11-12 ft. mllw

Anchor Drag Distance
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

STATE, 6000 lb. normal stabilizers 32 deg. mov. flukes
FINE SAND BOTTOM, depth 11-12 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
x - Transverse Rotation
v - Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
x - Anchor Force
v - Dock Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

- normal stabilizers 32 deg. mov. flukes
- depth 11-12 ft. mllw
<table>
<thead>
<tr>
<th>FEET</th>
<th>ANCHOR</th>
<th>TEST</th>
<th>NO.</th>
<th>DISTANCE TRAVELLED</th>
<th>ANCHOR CHAIN TIP DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>249.5</td>
<td>0.6</td>
<td>1.2</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>2.8</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>3.9</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>5.8</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>11.2</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>13.6</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>15.4</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>17.0</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>21.2</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>21.7</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>27.5</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>29.8</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>30.0</td>
<td>249.5</td>
<td>1.2</td>
<td>3.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note: Anchor depth and chain length measured from depth to bottom of chain to anchor chain tip. Distance anchor travelled measured from distance anchor travelled.
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 4

Set No. - 2
Set Series No. - 19
Station 6000lb. normal stabilizers 32 deg. move.
Fine sand bottom, depth 11-12 ft. msl.

LEGEND
○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND
× = Transverse Rotation
● = Longitudinal Rotation

LEGEND
○ = Chain Weight on Bottom
× = Anchor Force
● = Deck Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

normal stabilizers 32 deg. mov. flukes

depth 11 - 12 ft. mtw.

Anchor Drag Distance
Day # - 101
Test No. - 3
Test Series No. -

-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

-10.0
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

-50.0
-40.0
-30.0
-20.0
-10.0
0.0
10.0
20.0
30.0
40.0
50.0

0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

5.3.6.7.8...
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY

Day # - 101
Est No. - 3
Est Series No. - 19

-6000 lb. normal stabilizers 32 deg. m
fine sand bottom, depth 11-12 ft. mllw

LEGEND
Crown Penetration
Shank Tip Penetration

LEGEND
Transverse Rotation
Longitudinal Rotation

LEGEND
Chain Height on Bottom
Anchor Force
Deck Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49

- normal stabilizers 32 deg. mov. flukes
- depth 11-12 ft. mllw

Anchor Drag Distance
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

stockless 5000 lb. anchor, standard rode 35 deg. flg. flk
fine sand bottom

LEGEND
-

- Crown Penetration
-

- Shank Tip Penetration

- Transverse Rotation

- Longitudinal Rotation

- Chain Weight on Bottom

- Anchor Force

- Deck Force

Anchor Drag Distance
Test Series No.

Test No. 2

Date: 101

Chart No.:

Test Area:

Start Time:

End Time:

Test No.:

Anchor Type:

Fluke Type:

Weight:

Scope:

Depression:

Anchor Line Description:

1. Scope Distance

<table>
<thead>
<tr>
<th>Ft</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Distance Range: 50.0

Distance Anchor Travelled: 72.1

Note: Anchor depth at end of day measured - chainline of anchor at anchor crown - 72 inches.

Note: Positive Anchor Angle Indicates Anchor Tip Below Crown.
Day # = 101
Test No. = 2
Test Series No. = 20

SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF

stockless, 5000lb. landem, shank to shackle 35
fine sand bottom, depth 11-12 ft. mllw

LEGEND

○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND

× = Transverse Rotation
▼ = Longitudinal Rotation

LEGEND

○ = Chain Weight on Bottom
× = Anchor Force
▼ = Deck Force

Anchor Drag Distance
FT. SOUTHEAST OF BUOY 49
Tandem shank to shackle 35 deg. f/x. flukes
Depth 11-12 ft. mils

Anchor Drag Distance
Day # = 102
Test No. = 1
Test Series No. = 21

START DISTANCE

6.7

OFF-SET DISTANCE
11.3

100.0

ANCHOR POSTION

"%T607.ENT"

TIE-RIGHT

TEIS T WO

,9.2

7.0

7

ELOOP

ACmnP

OcK TENSION

56.0

SPRING LENGTH

"W-00"

1.

P1.0

31.5

1.

OS11*P0.j

1.

IF

TOAOE.

LET)

007,

3.n

IT.

In.

Q.

STOC-IFY

9.

A8. 4

9109

7

I.

I.

Koh0

STOC-IFY9

STOC-IFY

STOC-IFY9

STOC-IFY

STOC-IFY

STOC-IFY9

STOC-IFY

STOC-IFY

STOC-IFY9

STOC-IFY

STOC-IFY

STOC-IFY

STOC-IFY9

STOC-IFY
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

No. - 1
Series No. - 21
stockless, 5000lb. tandem crown to shackle 35 deg. fx. fluke
fine sand bottom, depth 11-12 ft. mllw

LEGEND
○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND
× = Transverse Rotation
▼ = Longitudinal Rotation

LEGEND
○ = Chain Weight on Bottom
× = Anchor Force
▼ = Deck Force
00 FT. SOUTHEAST OF BUOY 49

5lb. tandem crovntoshackle 35 deg. fx. flukes
m. depth 11-12 ft. mllw

Anchor Drag Distance

137
SAN DIEGO HARBOR 1500 FT. SOUTHEAST OF BUOY 49

Listing No.: 21

Stockless .5000 lb. sand anchor shackle 35 deg. ex. fluke

One sand bottom, depth 11 12 ft. mL

LEGEND

c = Crown Penetration
d = Shank Tip Penetration

LEGEND

= Transverse Rotation
= Longitudinal Rotation

LEGEND

= Chain weight on bottom
= Anchor Force
= Deck Force

Anchor Drag Distance
Ft. Southeast of Buoy 49
Lash a bow shackles 35 deg. fx. flukes
Depth is 12 ft. TLC

Anchor Drag Distance: 139
SAN Test No.

Test Series No.

Test Date

Test No.

Test Area

Start Time

Bearings

Anchor Type

Anchor Weight

Force Angle Test

Anchor Weight

Anchor Test

<table>
<thead>
<tr>
<th>Test Date</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No.</td>
<td>1</td>
</tr>
<tr>
<td>Test Area</td>
<td>SAN Diego Harbor at Bay BL1.3</td>
</tr>
<tr>
<td>Start Time</td>
<td>1127-1130</td>
</tr>
<tr>
<td>Bearings</td>
<td>1-3 FL, N 45° E, 2-3 FL, S 45° W, 3-3 FL, W 45° S, 4-3 FL, E 45° N</td>
</tr>
<tr>
<td>Anchor Type</td>
<td>Steel, 300 Lb.</td>
</tr>
<tr>
<td>Anchor Weight</td>
<td>1140 Lb.</td>
</tr>
<tr>
<td>Force Angle Test</td>
<td>0.00 kips</td>
</tr>
</tbody>
</table>

Anchor Test

<table>
<thead>
<tr>
<th>Distance Traveled</th>
<th>48.0</th>
</tr>
</thead>
</table>

Notes

- **Anchor Type**

Anchor Test

<table>
<thead>
<tr>
<th>Force</th>
<th>0.00 kips</th>
</tr>
</thead>
</table>

Graphs

- **Graph 1:**
 - `o` = Cr
 - `△` = Shi

- **Graph 2:**
 - `X` = Tr
 - `v` = Lo

- **Graph 3:**
 - `o` = CI
 - `X` = AI
 - `v` = DI
SAN DIEGO HARBOR AT BUOY 21

Stato, 3000 lb. 18 in. stabilizer ext. 31.5 deg. mov. fluk.
1-3 ft. mud over dense sand depth 35-38 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force
BUOY 21
Lb. 18 in. stabilizer ext. 31.5 deg. mov. flukes
for dense sand depth 35-38 ft. mllw

Anchor Drag Distance
106

Test No.
2

Test Series No.
2

Day # - 106
Test No. - 2
Test Series No. - 2

STATO
ANCNOB
TEST -25.0
-20.3
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0
100.0

Distance

Distance travelled

Distance anchor travelled
20.0
18.4

Note - positive values indicate anchor tip below ground.
SAN DIEGO HARBOR AT BUOY 21

No. 2
Series No. 24

Stated, 3000 lb. 18 in. stabilizer ext. 31.5 deg. mov.
1-3 ft. mud over dense sand depth 35-38 ft. nllw

LEGEND
○ Crown Penetration
△ Shank Tip Penetration

LEGEND
× Transverse Rotation
▼ Longitudinal Rotation

LEGEND
○ Chain Weight on Bottom
▼ Anchor Force
▼ Deck Force

Anchor Drag Distance
JOY 21

18 in. stabilizer ext. 31.5 deg. mov. flukes
Dense sand depth 35-38 ft. mllw
<table>
<thead>
<tr>
<th>Test No.</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Series No.</td>
<td>24</td>
</tr>
<tr>
<td>Day #</td>
<td>106</td>
</tr>
</tbody>
</table>

Test Details

- **Test Description:**
 - **Date:** June 21
 - **Time:** 1:30 PM
 - **Location:** Lakeview Pier, 1.5 ft.
 - **Mudprisms:** 2.5 ft.

Performance Details

- **Test No.:** 3
- **Series No.:** 24

Anchor Details

- **Test No.:** 3
- **Series No.:** 24

Measurement Details

- **Distance Traveled:** 13.4 ft.
- **Anchor Traveled:** 13.2 ft.
SAN DIEGO HARBOR AT BUOY 21

- 3

Series No. - 24

- 3 ft. mud over dense sand depth 35-38 ft. mllw

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
JOY 21

18 in. stabilizer ext. 31.5 deg. mov. flukes

dense sand depth 35-38 ft. mllw

Anchor Drag Distance
INDIAN ISLAND WASHINGTON

No. - 1
Series No. - 0

STATE, 1000lb. 16 in. stabilizers 50 deg. mov.
silt

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
☆ - Transverse Rotation
▼ - Longitudinal Rotation

LEGEND
◆ - Chain Weight on Bottom
☆ - Anchor Force
△ - Pre-Force
6 in. stabilizers 50 deg. mov. flukes

Anchor Drag Distance
Stockless Anchor Test

Test No.: 7
Test Series No.: 0
Location: S. L. SHORE
Anchor Type: Stockless Woodley
Fluke Angle: 40°
Anchor Weight: 0 lb
Anchor Type: Stockless Woodley
Fluke Angle: 40°
Anchor Weight: 0 lb
Start-End Times: 10/29 - 11/2
Depth of Anchor Separation: 27 ft
Distance Range Traveled: 44.0 ft
Note: Positive Shank Angle indicates Shank Tip Below Crown

<table>
<thead>
<tr>
<th>Distance Range Traveled</th>
<th>Feet</th>
<th>Degrees</th>
<th>Kips</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>29.0</td>
<td>29.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>63.0</td>
<td>63.0</td>
<td>63.0</td>
<td>63.0</td>
</tr>
<tr>
<td>126.0</td>
<td>126.0</td>
<td>126.0</td>
<td>126.0</td>
</tr>
</tbody>
</table>
w. stabs, 48 deg fx flukes
INDIAN ISLAND WASHINGTON

stockless, 9000lb. stabilizers, 48 deg. mov. flukes
silt

Series No. - 0

LEGEND
° - Crown Penetration
Δ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
▽ - Longitudinal Rotation

LEGEND
° - Chain Weight on Bottom
× - Anchor Force
▽ - Deck Force

Anchor Drag Distance
GTON

48 deg. mov. flukes

Anchor Drag Distance
Day # - 172
Test No. - 9
Test Series No. - 0

INDIAN ISLAND WASHINGTON
stockless, 5000lb. stabilizers, 48 deg. fx. flukes
silt

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
Δ - Longitudinal Rotation

LEGEND
○ - Chain Weight on Bottom
× - Anchor Force
△ - Deck Force

Anchor Drag Distance
OLb. stabilizers, 40 deg. fx. flukes
Day 4 = 172
Test No. = 10
Test Series No. = 6

LEGEND

- Crown Penetration
- Shank P.T Penetration

LEGEND

- Transverse Rotation
- Longitudinal Rotation

LEGEND

- Chain Weight on Bottom
- Anchor Force
- Deck Force

anchored 5000 lb. stabilized 40 deg ex. stuck
Day # - 173
Test No. - 11
Test Series No. -

Distance Anchor Traveled: 62.0

Distance Anchor Traveled: 56.0

Note: Positive Shackle Angle Indicates Shackle Tip Below Crown
Indian Island Washington

- No. 11

Stockless, 5000 lb. tand shank-shackle, stabs, 48 deg fx fl

Legend:
- Crown Penetration
- Shank Tip Penetration

Legend:
- Transverse Rotation
- Longitudinal Rotation

Legend:
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
b. tand shank-shackle, stabs, 48 deg fx flukes
INDIAN ISLAND WASHINGTON

stockless .5000lb. land crown-shackle, stabs, 48 deg fx flukes
No. = 0
silt

LEGEND
○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND
× - Transverse Rotation
▼ - Longitudinal Rotation

LEGEND
○ - Chain Weight on Bottom
× - Anchor Force
▼ - Deck Force

Anchor Drag Distance
TON

lb. land crown-shackle, stabs, 48 deg fx flukes

Anchor Drag Distance

161
Steeless Anchor Test

TEST DATE: 12/3/74
TEST NO.: 13
TEST AREA: INDIAN ISLAND WASHINGTON
SEABED TYPE: Silt
ANCHOR TYPE: STEELLESS BOOMLESS WITH STABILIZER MODERN FLOPS, 45 DEG.
FLAME ANGLE: 10°
FLAME ORIENTED: NO
MOORING LINE DESCRIPTION:
1. DRAD DISTANCE
2. DECK TENSION
3. SHANK ANGLE
4. CHAIN LENGTH ON BOTTOM
5. ANCHOR FLAME TIP DEPTH
6. DECK MONITOR FORCE
PACKAGE DEPTH:
RIGHT ANCHOR SWING DEPTH:

Distance Range Traveled

- **DISTANCE RANGE TRAVELLED:** 30.0
- **DISTANCE ANCHOR TRAVELLED:** 30.5

NOTE: POSITIVE SHANK ANGLE INDICATES SHANK TIP BELOW CROWN

TEST SERIES NO. 0

DAY # 74

TEST SERIES NO. 13
TEST SERIES NO. 0

INDIAN ISLAND WASHINGTON

Test No. - 13

- **Test Series No. - 0**

Day # - 74

Test No. - 13

- **Test Series No. - 0**

Day # - 74

Test No. - 13

- **Test Series No. - 0**

Day # - 74

Test No. - 13

- **Test Series No. - 0**

Day # - 74

Test No. - 13

- **Test Series No. - 0**

Day # - 74

Test No. - 13

- **Test Series No. - 0**
Day # = 74
INDIAN ISLAND WASHINGTON
Test No. = 13
Test Series No. = 0
stockless 5000lbs. with stabs, movable flukes 48
silt

LEGEND
- Crown Penetration
- Shank Tip Penetration

LEGEND
- Transverse Rotation
- Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
- Anchor Force
- Deck Force

Anchor Drag Distance
4GTON
Lbs. with stabs, movable flukes 48 deg.

Anchor Drag Distance
Stockless Anchor Test

Test Number: 14
Test Series Number: 0

Stockless Anchor Test

Test Date: 174
Test Run: 0

Anchor Type

- Stockless No Balls, with Stabs, Holdable Flumes 45 Deg.

Anchor Weight

- 950 lbs.
- 48.00 deg. – 0
- C-Moy #1-FIX

Anchor Height

- 30.00 lbs.

Anchor Separation (in.

- 0.0 - 6.0

Depth (in.

- 127 ft. / 2 in. chain + 200 ft. 1 5/8 in. chain + 400 ft. 1 3/4 in. chain

Tension (in.

- 34.6

Additional Information

- **Purpose:** 1. Drag Distance
 2. Deck Tension
 3. Anchor Tension
 4. Package Depth
 5. Deck Height

Measurements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>Kips</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

Distance range travelled: 47.0
Distance anchor travelled: 40.7

Note: Positive Shank Angle Indicates Shank Tip Below Crown

Chart:

- **Day:** 174
- **Test:** 14
- **Test Series:** 0

- **Scales:**
 - Feet
 - Degrees
 - Kips

- **Markers:**
 - C = Crown
 - S = Shank
 - T = Tip
 - A = Anchor
 - D = Depth
 - L = Length
 - TR = Tension
 - AN = Anchor
 - DE = Depth

- **Graph:**

 - Test No. 14
 - Test Series No. 0
INDIAN ISLAND WASHINGTON

stockless 5000lbs. with stabs, movable flukes 48 deg.
silt

LEGEND
- Crown Penetration
△ Shank Tip Penetration

LEGEND
× - Transverse Rotation
▽ - Longitudinal Rotation

LEGEND
- Chain Weight on Bottom
★ - Anchor Force
♀ - Deck Force

Anchor Drag Distance
Movable flukes 48 deg.
INDIAN ISLAND WASHINGTON

stockless, 9000lbs., no stabs. 48 deg. movable flukes

silt

LEGEND

○ - Crown Penetration
△ - Shank Tip Penetration

LEGEND

★ - Transverse Rotation
▼ - Longitudinal Rotation
no stabs. 48 deg. movable flukes
Day No. - 176 IND
Test No. - 23
Test Series No. - 0

-25.0 o = Cr
-20.0
-15.0 a = Sh
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

Feet

50.0 x = Tr

30.0 v = Lo

Degrees

100.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

KIPS

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

o = Ch
x = An
v = De

DISTANCE BARGE TRAVERELED
DISTANCE BARGE TRAVELLED

NOTE - POLELINE SHARK
ANGLE INDICATES
SHARK TIP BROWN

<table>
<thead>
<tr>
<th>DATE</th>
<th>ANCHOR TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

TEST NO.

TEST AREA
INDIAN ISLAND WASHINGTON

SEALING TYPE

ANCHOR TYPE

RUN, 3000 G. C.

FLUKE ANGLE-TYPE

 anchors height

0.00 FT.

PRE-A-ANCHOR SEPARATION

0.0 - 2.0 - 0.0 LB.

FOOTING LINE DESCRIPTION

<table>
<thead>
<tr>
<th>FEET</th>
<th>KIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

DISTANCE BARGE TRAVERELED

DISTANCE BARGE TRAVELLED

POLELINE SHARK
ANGLE INDICATES
SHARK TIP BROWN

1. DRAG DISTANCE
2. DECK TENSION
3. ANCHOR TENSION
4. PACKAGE DEPTH
5. WIRE ROPE ANGLE
6. ANCHOR CROWN DEPTH
7. WATER DEPTH
8. CHAIN WEIGHT ON BOTTOM
9. CHAIN LENGTH ON BOTTOM
10. ANCHOR FLUKE TIP DEPTH
11. TOTAL BOTTOM WEIGHT
12. ANCHOR SHANK TIP DEPTH
13. TEST NO.
14. DATE

DISTANCE TRAVERELED
DISTANCE TRAVELLED

POLELINE SHARK
ANGLE INDICATES
SHARK TIP BROWN

1. DRAG DISTANCE
2. DECK TENSION
3. ANCHOR TENSION
4. PACKAGE DEPTH
5. WIRE ROPE ANGLE
6. ANCHOR CROWN DEPTH
7. WATER DEPTH
8. CHAIN WEIGHT ON BOTTOM
9. CHAIN LENGTH ON BOTTOM
10. ANCHOR FLUKE TIP DEPTH
11. TOTAL BOTTOM WEIGHT
12. ANCHOR SHANK TIP DEPTH
13. TEST NO.
14. DATE

DISTANCE TRAVERELED
DISTANCE TRAVELLED
INDIAN ISLAND WASHINGTON

- 0
 - 3000lbs. with 18 inch stabilizer extensions

silt

LEGEND
- 0 - Crown Penetration
- A - Shank Tip Penetration

LEGEND
- X - Transverse Rotation
- V - Longitudinal Rotation

LEGEND
- 0 - Chain Weight on Bottom
- X - Anchor Force
- V - Deck Force

Anchor Drag Distance
200 lbs. with 18 inch stabilizer extensions
INDIAN ISLAND WASHINGTON

25 Lbs. 6600lbs. normal stabilizers 50 deg. mov. flukes
No. - 0
silt

LEGEND
○ = Crown Penetration
△ = Shank Tip Penetration

LEGEND
× = Transverse Rotation
▼ = Longitudinal Rotation

LEGEND
○ = Chain Weight on Bottom
× = Anchor Force
▼ = Deck Force

Anchor Drag Distance
normal stabilizers 50 deg. mov. flukes

Anchor Drag Distance
DISTRIBUTION LIST

AFB AF Tech Office (Mgt & Ops), Tyndall, FL; AUL/LSE 63-465, Maxwell AL; CESCH, Wright-Patterson; Stinfo Library, Offutt NE

ARCTICSUBLAB Code 54, San Diego, CA

ARMY ARRADCOM, Dover, NJ; BMDSC-RE (H. McClellan) Huntsville AL; DAEN-MP&D Washington DC

ARMY COASTAL ENGR RSCH CEN Fort Belvoir VA; R. Jachowski, Fort Belvoir VA

ARMY COASTAL ENGR (LIBRARY) Philadelphia, PA

ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE; Seattle Dist. Library, Seattle WA

ARMY CRREL A. Kovacs, Hanover NH

ARMY DARCOM AMCPM-CS (J. Carr), Alexandria VA

ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS

ARMY ENGR DSCR. Library, Portland OR

ARMY ENVIRON. HYGIENE AGCY Water Qual Div (Dones), Aberdeen Proving Ground, MD

ARMY MAT SYS ANALYSIS ACT Code DRXSY-M (M Ogorkalek) Aberdeen Proving Grund MD

ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Waterdown MA

ARMY MOBIL EQUIP R&D COM Code DRXFB-MR Fort Belvoir VA; F Stora Fort Belvoir VA; Fuel Hnding Equip Br., Ft Belvoir, VA; Mr. Cevasco, Fort Belvoir MD

ARMY MTMC Trans Engr Agency (D F Eichhorn) Newport News VA

ARMY TRANSPORTATION SCHOOL MAJ T Sweeney, Code ATSP CD-TE Fort Eustis VA; V Quinby Code ATSP-CPO-MS Fort Eustis VA

BUREAU OF RECLAMATION Code 1512 (C. Selslader) Denver CO

CENTER FOR NAVAL ANALYSES Document Center (Dakre), Arlington, VA

CINCPAC Fac Engrng Div (J44) Makalapa, HI

CNO Code 03462, Washington DC; Code 043 Washington DC

CNO Code 03462, Washington DC; Code OP 323, Washington DC; Code OP 405, Washington DC; Code OP 414, Washington DC; Code OP 97 Washington DC; Code OP 987 Washington DC; Code OPNAV 09B24 (H); Code OPNAV 22, Wash DC; Code OPNAV 23, Wash DC; OPNAV 09B24 (J. Boosman), Pentagon

COMCBPAC Operations Off, Makalapa HI

COMDEVGRUNE San Diego, CA

COMGCOM OCEANIA PWO, Kadena, Okinawa

COMNAVBEACHPHIBREPTAGRUS ONE San Diego CA

COMNAV MARIANAS Code N4, Guam

COMOEANSYSPAC SCE, Pearl Harbor HI

COMSUBDEVGURONE Operations Offr, San Diego, CA

NAVSURFLANT Norfolk, VA

NAVSURFPAC San Diego, CA

COMOPTEVFOR CMDR, Norfolk, VA; Code 701A, San Diego, CA

DEFENSE INTELLIGENCE AGENCY Dir. Washington DC

DMAIC Code LAL Washington DC

DLSIE Army Logistics Mgt Center, Fort Lee, VA

DNA STTL, Washington DC

DOE Dr. Cohen

DTNSRDC Anna Lab (Code 1175) Annapolis MD; Anna Lab (Code 1568) Annapolis MD

DTNSRDC Code 1706, Bethesda MD; Code 172 (M. Krenzle), Bethesda MD

DTNSRDC Code 2755 (Blooomquist), Annapolis, MD; Code 284 (A. Rufolo), Annapolis MD

FMFLANT CEC Offr, Norfolk VA

FMFPAC CG Pearl Harbor

GSA Fed. Sup. Serv. (FMBP), Washington DC

HCU ONE CO, Bishops Point, HI

MARINE CORPS BASE First Service Support Group Camp Pendleton CA; PWO Camp Lejeune NC; PWO, Camp S. D. Butler, Kawasaki Japan

173
UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA (SCHOOL OF ENGR & APPLIED SCIENCE, ROLL)
UNIVERSITY OF RHODE ISLAND KINGSTON, RI (PAZIS); Narragansett RI (Pell Marine Sci. Lib.)
UNIVERSITY OF SO. CALIFORNIA Univ So. Calif
UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Arkansas TX
UNIVERSITY OF TEXAS AT AUSTIN Austin TX (R. Olson)
UNIVERSITY OF WASHINGTON Seattle WA (M. Sherif); Dept of Civil Engr (Dr. Mattock), Seattle WA;
SEATTLE, WA (APPLIED PHYSICS LAB); SEATTLE, WA (MERCHANT); SEATTLE, WA (OCEAN ENG RSC LAB, GRAY);
SEATTLE, WA (PACIFIC MARINE ENVIRON. LAB., HALPERN); Seattle WA (E. Linger); Seattle, WA Transportation, Construction & Geom. Div
VIRGINIA INST. OF MARINE SCI. Gloucester Point VA (Library)
ALFRED A. YEE & ASSOC. Honolulu HI
AMETEK Offshore Res. & Engr Div
AMSCO Dr. R. McCoy, Erie, PA
ARCAIR CO. D. Young, Lancaster OH
ARVID GRANT OLYMPIA, WA
ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)
BATTTELLE-COLUMBUS LABS (D. Hackman) Columbus, OH
BCETEL CORP. SAN FRANCISCO, CA (PEHLPS)
BELGIUM HAECON, N.V., Gent
BETHELHEM STEEL CO. Dunuke, Bethlehem, PA
BOUW KAMP INC Berkeley
BRAND INDUS SERV INC. J. Buehler, Hacienda Heights CA
BRITISH EMBASSY Sci. & Tech. Dept. (J. McAuley), Washington DC
BROWN & CALDWELL E M Saunders Walnut Creek, CA
BROWN & ROOT Houston TX (D. Ward)
CANADA Can-Dive Services (English) North Vancouver; Library, Calgary, Alberta; Lockheed Petro. Serv.
CHEVRON OIL FIELD RESEARCH CO LA HABRA, CA (BROOKS)
COLUMBIA GULF TRANSMISSION CO. HOUSTON, TX (ENG. LIB.)
CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON)
CONTINENTAL OIL CO O Maxson, Ponca City, OK
DILLINGHAM PRECAST F. McHale, Honolulu HI
EVALUATION ASSOC. INC KING OF PRUSSIA, PA (FEDELE)
EXXON PRODUCTION RESEARCH CO Houston, TX (Chao)
FRANCE Dr. Duterrre, Boulogne; L. Plichtin, Paris; P. Jensen, Boulogne; Roger LaCroix, Paris
GEOTECHNICAL ENGINEERS INC. Winchester, MA (Paulding)
GULL INC. Shady Side MD (Ches. Inst. Div., W. Paul)
GRUMLAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr)
HALEY & ALDRICH, INC. Cambridge MA (Aldrich, J.)
ITALY M. Caironi, Milan; Sergio Tattoni Milano
LAMONT-DOHERTY GEOLOGICAL OBSERV. Palisades NY (McCoy); Palisades NY (Selwyn)
LIN OFFSHORE ENGRG P. Chow, San Francisco CA
LOCKHEED MISSILES & SPACE CO. INC. L. Trimble. Sunnyvale CA; Sunnyvale CA (K.L. Krug)
LOCKHEED OCEAN LABORATORY San Diego CA (F. Simpson)
MARATHON OIL CO Houston TX
MARINE CONCRETE STRUCTURES INC. MEFAIRIE. LA (INGRAHAM)
MC CLELAND ENGINEERS INC Houston TX (B. McClelland)
MEXICO R. Cardenas
MOBIL PIPE LINE CO. DALLAS, TX MGR OF ENGR (NOACK)
MOFFATT & NICHOL ENGINEERS (R. Palmer) Long Beach, CA
NEWPORT NEWS SHIPBUILD & DRYDOCK CO. Newport News VA (Tech. Lib.)
NORWAY A. Torum, Trondheim; DET NORSKE VERITAS (Library), Oslo; DET NORSKE VERITAS (Roren) Oslo; I. Foss. Oslo; J. Creed, Ski; Norwegian Tech Univ (Brandtzaeg), Trondheim

177