LEVEL II

SPH-4 HELMET DAMAGE AND HEAD INJURY CORRELATION

By

Bruce A. Slobodnik

HUMAN TOLERANCE AND SURVIVABILITY DIVISION
Biomedical Tolerance

September 1980

U.S. ARMY AEROMEDICAL RESEARCH LABORATORY
FORT RUCKER, ALABAMA 36362
NOTICE

Qualified Requesters

Qualified requesters may obtain copies from the Defense Documentation Center (DDC), Cameron Station, Alexandria, Virginia. Orders will be expedited if placed through the librarian or other person designated to request documents from DDC.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

[Signatures]

Chairman, Scientific Review Committee

Released for Publication:

[Signatures]

Colonel, MC
Commanding
Title: SPH-4 Helmet Damage and Head Injury Correlation

Authors: Bruce A. Slobodnik

Performing Organization: Human Tolerance and Survivability Division, US Army Aeromedical Research Laboratory, Fort Rucker, Alabama 36362

Monitoring Agency: US Army Medical Research and Development Command, Fort Detrick, Frederick, Maryland 21701

Report Date: September 1980

Security Classification: Unclassified

Distribution Statement: Approved for public release, distribution unlimited.

Key Words: helmet damage, concussion, crash damage simulation, unconsciousness, head impact tolerance, helmet impact tests

Abstract: See reverse.
20. ABSTRACT:

Human tolerance to head impact was assessed by correlating the force levels required to duplicate damage seen in 12 SPH-4 aviator helmets retrieved from US Army helicopter crashes with resulting head injury. Head injury occurred at peak acceleration levels far below 400 G, which is the value currently used by the US Army as the pass-fail criterion in evaluating the impact attenuation performance of prospective aircrew helmets. Concussive head injuries occurred below Severity Index values of 1500 and below Head Injury Criterion values of 1000. These are considered concussive threshold values by the National Operating Committee on Standards for Athletic Equipment and by the Department of Transportation, respectively.
ACKNOWLEDGEMENTS

The author wishes to thank SP5 Thomas Simson and Mr. Ted Hundley for their invaluable assistance in instrumentation, data collection and analysis.

This report is a compilation of two reports previously published in Aviation, Space, and Environmental Medicine, Volume 50, and AGARD Conference Proceedings No. 253.

This work was accomplished by LT Slobodnik while assigned to USAARL as Naval Liaison Officer during the period April 1975 through June 1979. LT Slobodnik is presently assigned to Systems Engineering Test Directorate, Air Crew Systems Branch, Naval Air Test Center, Patuxent River, MD.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>4</td>
</tr>
<tr>
<td>Table</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>12</td>
</tr>
<tr>
<td>Discussion</td>
<td>12</td>
</tr>
<tr>
<td>Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impact Sites</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Helmet Drop Tower</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Suspension Strap Anchor Clip Bending</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Helmet Liner Damage</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Fiberglass Helmet Shell Fracture</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Graphs of Cases Synchronized in Time</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Peak Acceleration Values</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Severity Index Values</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Head Injury Criterion Values</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Peak Transmitted Force Values</td>
<td>16</td>
</tr>
</tbody>
</table>

TABLE

Summary of Impact Damage Duplication Data For 14 Helmets Retrieved From US Army Helicopter Accidents. 14
INTRODUCTION

The ANSI Z90.1-1971 (1971) method, called out in Military Specification MIL-H-43925 (DA 1975) and currently used by the US Army for evaluating the impact attenuation performance of prospective aircrew helmets, relies primarily on peak G as a pass-fail criterion. A candidate helmet is attached to an instrumented metal headform and dropped from a height yielding 95 joules of input energy onto a 4.8-cm radius steel hemisphere. Helmets which prevent the peak acceleration experienced by the headform in such impacts from exceeding 400 G meet the Army standard for impact performance and qualify for use by Army aircrewmen. However, based on the incidence of head injury in survivable Army aircraft accidents, it can be questioned whether or not the current Army standard adequately reflects human tolerance limits to head impact. This paper will attempt to answer that question.

To date, efforts to define human tolerance to head impact have been confined, necessarily, to studies involving animals or human cadavers. However, in 1972 the Army's establishment of the Life Support Equipment Retrieval Program provided a unique opportunity to research directly human tolerance limits to head impact. Since 1972, helmets involved in Army aircraft accidents worldwide have been retrieved for laboratory analysis. If it is assumed that the damage seen in a retrieved helmet accurately reflects the force experienced by the wearer's head in the crash situation, then those force levels can be identified by duplicating that degree of damage on a similar helmet under controlled conditions. By comparing force levels to resulting head injury, human tolerance limits to head impact can be defined.

MATERIALS AND METHODS

A total of 12 SPH-4 helmets was selected for impact damage simulation from those flight helmets analyzed in the retrieval program to date. Two of the helmets had received two impacts each; however, neither of the helmet wearers received head injuries from the impacts, so each impact was considered independent of the other for a total of 14 impact cases.
These 12 simulation helmets were selected because the impact was not a glancing blow; thus, all head injury is assumed to have resulted primarily from translational acceleration. The centers of the impact locations on both the helmet and the head for the 14 cases selected for impact damage duplication is summarized in Figure 1. The impact locations shown on the helmet shell are precise; those on the head are approximate since some relative movement is possible between the helmet and head during the impact.

FIGURE 1. Of the 14 cases studied, 6 were frontal impacts, 4 were crown, 2 were side, and 2 were located at the back of the head. The center of each impact shown on the helmet is precise; those of the head are only approximate since some movement between helmet and head is possible during impact.

Spare helmet components were assembled to produce several duplicates for each of the 14 cases. Each duplicate helmet was prepared so that its shell thickness, liner thickness, and adjustment of suspension straps matched that of the retrieved helmet as closely as possible. To reproduce the damage of a given retrieved helmet, duplicates for that helmet were attached to a modified version of the humanoid headform specified by the National Operating Committee on Standards for Athletic Equipment (NOCSAE) for evaluating football helmets (Hudspeth, 1975). As shown in Figure 2, the head-neck connection of this headform was modified to increase its adjustability and permit mounting of the standard carriage...
assembly specified by the ANSI 790.1-1971 method. A tri-axial accelerometer (Endevco Model 2267C-750)* was positioned at the head form's center of mass. Its signal was amplified by a signal conditioner (Endevco Series 4470)* and fed to a three-channel vector analyzer. The vector resultant

![Humanoid Head Form](image)

FIGURE 2. Retrieved helmet damage was duplicated by attaching a test helmet to this instrumented humanoid head form and impacting it onto a surface of appropriate shape. Peak transmitted force was measured using the resultant of three force transducers located beneath the impact surface. Drop height was varied until the best damage duplication was achieved.

* Enveco Model 2767C-750, Becton Dickinson & Co., Rancho Viejo Rd, San Juan Capistrano, CA 92675.
of the three accelerometer signals was then transmitted to the hybrid computer, which computed the values of peak G, Severity Index (SI) as described by Gadd (1966), and Head Injury Criterion (HIC) as defined by Chou and Nyquist (1974). Total weight of the head form and carriage was 5 kg.

The helmeted head form was then dropped onto an impacting surface that had been selected to reproduce the type of damage seen on the retrieved helmet. Some helmets required a concave impact surface to duplicate the area of compression seen in the foam helmet liner. These concave impact surfaces were prepared by taking an impression of the helmet shell at the impact site using dental cement. These cement impressions were then used as impact surfaces. Three piezoelectric force transducers (Kistler type 9021)* were positioned beneath the impact surface as shown in Figure 2. The drop height was varied until the damage produced in the duplicate helmet matched that of the retrieved helmet.

Damage was assumed to have been duplicated when a) the amount of bending in the six suspension strap anchor clips was duplicated, as shown in Figure 3; b) the area and maximum deflection of the foam helmet liner was duplicated, as shown in Figure 4; and c) the degree of fracture.

FIGURE 3. The amount of bending in the six suspension strap anchor clips was duplicated for each of the 14 cases.

* Kistler Instrumente AG, CH 8406, Winterthur, Switzerland.
FIGURE 4. Helmet liner damage was duplicated by matching the area and maximum compression produced in the test helmet liner with that of the retrieved helmet liner. Maximum compression was duplicated to within a few thousandths of an inch.

in the fiberglass helmet shell, as shown in Figure 5, matched that of the retrieved helmet. Acceleration vs. time and force vs. time traces were recorded for each impact and are shown in Figure 6. A description of head injuries associated with any of the 14 cases was obtained by reviewing the official accident report supplied by the US Army Safety Center. All head injuries were assigned a severity value using the Abbreviated Injury Scale (AIS) (1976).
FIGURE 5. The degree of fracture in the fiberglass helmet shell was duplicated for those cases in which shell fracture occurred.
FIGURE 6. Acceleration vs. time and force vs. time traces for the 14 cases synchronized in time. Time axis divisions equal 4 ms. The initial pulse seen on the force traces of cases 3, 9, 11, and 8 represents the helmet's initial contact and rebound off the impact surface. This double pulse occurs only in crown impacts where helmet weight causes some separation between helmet and headform permitting the helmet to rebound initially independently of the headform.
RESULTS

A description of head injuries, of conditions required to duplicate helmet impact damage, and of the data recorded for each of the 14 cases is shown in Table 1. Only three of the 14 cases required an impact surface more severe than that of a flat surface to duplicate the helmet damage. In all eight cases involving head injury, the foam helmet liner was not compressed to the maximum extent possible. Only in case No. 5 did head injury result from the impact surface penetrating the helmet shell. All three cases in which fracture occurred involved forcing the head down against the spinal column resulting in either basilar skull fracture or fracture of the first cervical vertebra.

The peak acceleration judged to have been experienced in the 14 cases comprising this study, based on the best damage duplication, is shown in Figure 7. Head injury occurred well below the 400-G criterion currently used by the US Army in evaluating the impact performance of prospective aircrew helmets.

SI and HIC values were calculated for each of the 14 cases and are shown in Figure 8 and 9 respectively. Concussive head injuries occurred at SI values below 1500, which is the value currently used as the concussive threshold by NOCSAE in evaluating the impact performance of football helmets. Concussive head injuries also occurred at HIC values below 1000, which is the value currently adopted by the Department of Transportation (DOT) in Federal Motor Vehicle Safety Standard No. 208 (1972) for occupant crash protection tests as the limit of human tolerance for impact to the unprotected head.

DISCUSSION

The low incidence of penetrating types of head injuries among Army helicopter crash victims appears to be due primarily to a) an absence of sharp, rigid cockpit surfaces, and b) the effectiveness of the SPH-4 aviator helmet as a load-spreading device.

On the other hand, the energy-absorbing capability of the helmet appears inadequate based upon the high incidence of concussive types of head injuries observed. This deficiency can have disastrous effects, as seen in cases 4 and 6 where basilar skull fracture occurred as a result of the helmet transmitting, rather than absorbing, the impact force. Recent in-house studies (unpublished) have shown that the energy-absorbing ability of the helmet can be more than doubled by simply increasing the thickness and decreasing the density of the foam helmet liner.
FIGURE 7. Peak acceleration values for the impact best duplicating helmet damage for each of the 14 cases. Solid bars represent cases in which head injury resulted from the impact. Head injury occurred at peak acceleration level well below 400 G.

FIGURE 8. Severity Index values for the impact best duplicating helmet damage for each of the 14 cases. Solid bars represent cases in which head injury resulted from the impact. Concussion occurred below the SI value of 1500 used by NOCSAE as the concussive threshold. See Table 1 for a description of head injuries.
<table>
<thead>
<tr>
<th>Impact Case Location</th>
<th>Shape of Impact Surface (m)</th>
<th>Peak Drop Ht. (G)</th>
<th>Peak Acceleration (G)</th>
<th>Average Acceleration (ms)</th>
<th>Pulse Duration</th>
<th>Peak Force Before Impact (N)</th>
<th>Maximum Liner Compression After Impact (cm)</th>
<th>Total Liner Area Compressed (cm²)</th>
<th>Impact Compressed Energy (J)</th>
<th>Head Injury Description</th>
<th>AIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 front</td>
<td>flat</td>
<td>0.38</td>
<td>38</td>
<td>7.2</td>
<td>70</td>
<td>63</td>
<td>3140</td>
<td>none</td>
<td>none</td>
<td>24</td>
<td>none</td>
</tr>
<tr>
<td>13 front</td>
<td>concave</td>
<td>0.46</td>
<td>38</td>
<td>8.4</td>
<td>123</td>
<td>111</td>
<td>3200</td>
<td>0.983</td>
<td>38</td>
<td>17.0</td>
<td>29</td>
</tr>
<tr>
<td>10 front</td>
<td>flat</td>
<td>0.53</td>
<td>55</td>
<td>7.0</td>
<td>239</td>
<td>214</td>
<td>4820</td>
<td>1.054</td>
<td>13</td>
<td>20.6</td>
<td>34</td>
</tr>
<tr>
<td>12 front</td>
<td>flat</td>
<td>0.76</td>
<td>40</td>
<td>13.0</td>
<td>285</td>
<td>228</td>
<td>6180</td>
<td>1.021</td>
<td>39</td>
<td>14.6</td>
<td>48</td>
</tr>
<tr>
<td>6 front</td>
<td>flat</td>
<td>1.52</td>
<td>139</td>
<td>4.5</td>
<td>2458</td>
<td>2252</td>
<td>17200</td>
<td>1.029</td>
<td>43</td>
<td>21.3</td>
<td>97</td>
</tr>
<tr>
<td>14 front</td>
<td>concave</td>
<td>1.91</td>
<td>136</td>
<td>6.5</td>
<td>3477</td>
<td>2872</td>
<td>14860</td>
<td>0.983</td>
<td>52</td>
<td>45.6</td>
<td>121</td>
</tr>
<tr>
<td>3 crown</td>
<td>flat</td>
<td>0.15</td>
<td>14</td>
<td>16.8</td>
<td>20</td>
<td>17</td>
<td>1000</td>
<td>none</td>
<td>none</td>
<td>10</td>
<td>none</td>
</tr>
<tr>
<td>9 crown</td>
<td>flat</td>
<td>0.46</td>
<td>38</td>
<td>17.4</td>
<td>123</td>
<td>37</td>
<td>3520</td>
<td>-</td>
<td>none</td>
<td>29</td>
<td>none</td>
</tr>
<tr>
<td>11 crown</td>
<td>flat</td>
<td>0.46</td>
<td>34</td>
<td>10.6</td>
<td>125</td>
<td>94</td>
<td>4200</td>
<td>-</td>
<td>none</td>
<td>29</td>
<td>none</td>
</tr>
<tr>
<td>8 crown</td>
<td>rod</td>
<td>2.29</td>
<td>90</td>
<td>9.8</td>
<td>1862</td>
<td>1428</td>
<td>12169</td>
<td>1.118</td>
<td>34</td>
<td>30.5</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>1.27 cm radius</td>
<td></td>
</tr>
<tr>
<td>5 back</td>
<td>bolt</td>
<td>1.52</td>
<td>54</td>
<td>11.3</td>
<td>629</td>
<td>553</td>
<td>6800</td>
<td>1.029</td>
<td>78</td>
<td>14.7</td>
<td>97</td>
</tr>
<tr>
<td>7 back</td>
<td>flat</td>
<td>1.22</td>
<td>81</td>
<td>8.3</td>
<td>1571</td>
<td>1379</td>
<td>11660</td>
<td>0.909</td>
<td>63</td>
<td>26.8</td>
<td>77</td>
</tr>
<tr>
<td>1 side</td>
<td>hemisphere</td>
<td>1.68</td>
<td>67</td>
<td>10.9</td>
<td>1019</td>
<td>901</td>
<td>10060</td>
<td>1.080</td>
<td>51</td>
<td>25.0</td>
<td>107</td>
</tr>
<tr>
<td>4 side</td>
<td>concave</td>
<td>3.28</td>
<td>138</td>
<td>8.1</td>
<td>4849</td>
<td>4432</td>
<td>13360</td>
<td>0.991</td>
<td>14</td>
<td>13.2</td>
<td>208</td>
</tr>
</tbody>
</table>

TABLE 1
SUMMARY OF IMPACT DAMAGE DUPLICATION DATA FOR 14 HELMETS RETRIEVED FROM US ARMY HELICOPTER ACCIDENTS

Maximum Liner Compression After Impact (cm)
Total Liner Area Compressed (cm²)
Impact Compressed Energy (J)
Head Injury Description
AIS
The pass-fail criterion currently used by the Army to evaluate the impact performance of prospective aircrew helmets does not appear related to human tolerance limits to head impact. In seven of the eight cases in which head injury did occur, a helmet permitting the peak acceleration experienced by these individual heads would have passed the current Army impact performance standard set at 400 G as shown in Figure 7. It would appear that the pass-fail criterion currently used by the Army selects helmets which, for the most part, prevent death in crash situations but certainly do not prevent concussive head injury. Considering the potentially hostile post-crash environment—such as fire, drowning, and capture—the injury level permitted by the current pass-fail criterion is unacceptable. To be effective in selecting aircrew helmets to prevent concussive head injuries in survivable helicopter crashes, the pass-fail criterion should be set at no higher than 150 G, as can be seen in Figure 7. Even though Snively and Chichester (1961) reported that man can withstand helmeted head impacts exceeding 450 G, he was referring to surviving the initial impact only, not a helicopter post-crash environment. Based on case No. 4, where a fatal head injury resulted from a peak acceleration of 415 G, it can be questioned whether or not even an initial impact of 450 G could be survived with any degree of certainty.
Swearingen (1971) duplicated the impact conditions involving the crash of a military helicopter. He reported that the pilot involved received a frontal head impact and experienced a peak acceleration of 435 G without sustaining any head injury. Even though differences exist between individuals in their tolerance to head impact, it seems highly unlikely that very many individuals exist who could withstand head acceleration of this magnitude without experiencing at least concussion. As shown in Figure 7, the peak acceleration associated with all eight cases involving head injury in this study fell below 435 G. In particular, cases 6 and 14 were frontal impacts in which very severe head injuries resulted (AIS value 5) from peak accelerations of 322 G and 355 G, respectively.

The values of peak transmitted force were recorded for each of the 14 cases in an attempt to validate the value of 5000 lb (22.3 kN) currently specified in British Standard 2495 (1960) as the limit of survivability for helmeted head impacts. As shown in Figure 10, the one case of fatal head injury occurred at a peak transmitted force of 2982 lb (13.3 kN). In addition, severe head injury occurred (AIS value 5)
in cases 6, 14, and 1 at peak transmitted force values of 3839 lb (17.1 kN), 3317 lb (14.8 kN), and 2246 lb (10 kN) respectively. It would appear that a peak transmitted force value of 5000 lb exceeds the limit of survivability.

To what extent the SI value of 1500 or the HIC value of 1000 should be lowered to increase its effectiveness as a predictor of concussion is difficult to establish on the basis of only 14 cases. Continuing this research effort on helmets as they become available should help to define these concussive threshold values.

CONCLUSIONS

To be effective in selecting aircrew helmets to prevent concussive head injuries in survivable helicopter crashes, the current pass-fail criterion of 400 G should be reduced to 150 G. While the SPH-4 aviator helmet adequately protects against penetrating types of head injury, its energy absorbing qualities do not adequately protect against concussive head injuries. The severity of impact surfaces encountered by US Army aircrewmen in survivable helicopter crash situations seldom exceed that of a flat surface. An SI value of 1500 and an HIC value of 1000, currently used as concussive threshold values by NOCSAE and DOT, respectively, exceed the level at which concussion occurs.
REFERENCES

INITIAL DISTRIBUTION

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Aeromechanics Laboratory
US Army Research & Technology Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035 (1)

Under Secretary of Defense for Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301

Sixth United States Army
ATTN: SMA
Presidio of San Francisco, California 94129 (1)

Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

Director
Army Audiology & Speech Center
Walter Reed Army Medical Center
Forest Glen Section, Bldg 156
Washington, DC 20012 (1)

Commander
US Army Medical Research and Development Command
ATTN: SGRD-SI (Mrs. Madigan)
Fort Detrick
Frederick, MD 21701

Director
Harry Diamond Laboratories
Scientific & Technical Information Offices
2800 Powder Mill Road
Adelphi, MD 20783 (1)

Redstone Scientific Information Center
ATTN: DRDMI-TBD
US Army Missile R&D Command
Redstone Arsenal, AL 35809

US Army Ordnance Center & School Library, Bldg 3071
ATTN: ATSL-DOSL
Aberdeen Proving Ground, MD 21005 (1)

US Army Yuma Proving Ground Technical Library
Yuma, AZ 85364

US Army Environmental Hygiene Agency Library, Bldg E2100
Aberdeen Proving Ground, MD 21010 (1)

US Army Aviation Engineering Flight Activity
ATTN: DAVTE-M (Technical Library)
Edwards AFB, CA 93523

US Army Combat Developments Experimentation Command
Technical Library
HQ, USACDEC
Box 22
Fort Ord, CA 93941 (1)

US Army Environmental Hygiene Agency Library, Bldg E2100
Aberdeen Proving Ground, MD 21010 (1)
US Army Materiel Systems
Analysis Agency
ATTN: Reports Distribution
Aberdeen Proving Ground, MD 21005

Director
Biomedical Laboratory
Aberdeen Proving Ground, MD 21010

HQ, First United States Army
ATTN: AFKA-MD (Surgeon's Ofc)
Fort George G. Meade, MD 20755

Director
Ballistic Research Laboratory
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD 21005

US Army Research & Development
Technical Support Activity
Fort Monmouth, NJ 07703

CDR/DIR
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELSC-D
Fort Monmouth, NJ 07703

US Army Avionics R&D Activity
ATTN: DAVAA-0
Fort Monmouth, NJ 07703

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico 88002

Chief
Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL

US Army Research & Technology Labs Propulsion Laboratory MS 77-5
ATTN: Surrogate
Cleveland, OH 44135

US Army Field Artillery School Library
(1)
Snow Hall, Room 16
Fort Sill, OK 73503

US Army Dugway Proving Ground
Technical Library
(2)
Bldg 5330
Dugway, UT 84022

US Army Materiel Development & Readiness Command
ATTN: DRCSC
5001 Eisenhower Avenue
Alexandria, VA 22333

US Army Foreign Science & Technology Center
ATTN: DRXST-IS1
220 7th St., NE
Charlottesville, VA 22901

Commander
US Army Training & Doctrine Command
ATTN: ATCD
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651
Human Engineering Division
Air Force Aerospace Medical Research Laboratory
ATTN: Technical Librarian
Wright-Patterson AFB, OH 45433 (1)

US Navy
Naval Weapons Center
Technical Library Division
Code 2333
China Lake, CA 93555 (1)

US Navy
Naval Aerospace Medical Institute Library
Bldg 1953, Code 012
Pensacola, FL 32508 (1)

US Navy
Naval Submarine Medical Research Lab
Medical Library, Naval Submarine Base
Box 900
Groton, CT 06340 (1)

Director
Naval Biosciences Laboratory
Naval Supply Center, Bldg 844
Oakland, CA 94625 (1)

Naval Air Systems Command
Technical Library AIR 9500
Rm 278 Jefferson Plaza II
Department of the Navy
Washington, DC 20351 (1)

US Navy
Naval Research Laboratory Library
Code 1433
Washington, DC 20375 (1)

Department of Defence
R.A.N. Research Laboratory
P.O. Box 706
Darlinghurst, N.S.W. 2010
Australia (1)

US Navy
Naval Air Development Center
Technical Information Division
Technical Support Department
Warminster, PA 18974 (1)

Human Factors Engineering Division
Aircraft & Crew Systems Technology Directorate
Naval Air Development Center
Warminster, PA 18974 (1)

US Navy
Naval Research Laboratory Library
Shock & Vibration Information Center
Code 8404
Washington, DC 20375 (1)

Director of Biological & Medical Sciences Division
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217 (1)

Commanding Officer
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014 (1)

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 29407
Michoud Station
New Orleans, LA 70129 (1)

FAA Civil Aeromedical Institute
ATTN: Library
Box 25082
Oklahoma City, OK 73125 (1)

DCIEM/SoAM
MAJ J. Soutendam (Ret.)
1133 Shepard Avenue West
P.O. Box 2000
Downsview, Ontario M3M 3B9 (1)