AFWAL-TR-80-3007

LEVEL II

OPTIM III: A NASTRAN COMPATIBLE LARGE SCALE AUTOMATED MINIMUM WEIGHT DESIGN PROBLEM — USERS AND PROGRAMMERS MANUAL

B. J. DALE
J. PADLOG
R. D. THOM

BELL AEROSPACE TEXTRON, INC.
BUFFALO, NEW YORK 14240

FEBRUARY 1980

TECHNICAL REPORT AFWAL-TR-80-3007
Final Report for Period June 1977 — December 1979

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

80 10 8 077
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NARENDRA S. KHOT, Project Engineer
Design & Analysis Methods Group
Analysis & Optimization Branch

FREDERICK A. PICCHIONI, Lt Col, USAF
Ch, Analysis & Optimization Branch
Structures & Dynamics Division

FOR THE COMMANDER

RALPH L. KUSTER, JR., Col, "AF"
Chief, Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AEW/FIBR, W-PAFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/16 September 1980 — 200
OPTIM III: A NASTRAN COMPATIBLE LARGE SCALE AUTOMATED MINIMUM WEIGHT DESIGN PROBLEM USERS AND PROGRAMMERS MANUAL

B. J. Dale, J. Padlog and R. D. Thom

Bell Aerospace Textron, Inc.
Buffalo, New York 14240

Flight Dynamics Laboratory (FIBRA)
AF Wright Aeronautical Laboratories
Wright-Patterson Air Force Base, Ohio 45433

Approved for public release - distribution unlimited.

The weight optimization computer program OPTIM II was extended to a new version, OPTIM III, which is compatible with the input format of the NASTRAN finite element computer program. All features of the original program were retained including the use of optimality criteria to generate a highly efficient iterative optimization procedure with convergence characteristics independent of problem size.
Membrane finite elements were extended to include the capability of handling layered, orthotropic material, composite membrane plate constructions. Various failure criteria for composite materials were included as required for strength constraints in the optimization process involving the composite plates.

New NASTRAN compatible input data instructions are provided and their use demonstrated by a sample problem.

An extended programmer's manual, designed to facilitate implementation, modification, and illustration of the OPTIM III program is included.
FOREWORD

This report describes the work performed by Bell Aerospace Textron, a Division of Textron, Inc., Buffalo, New York. The work was sponsored by the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, under Contract F33615-77-C-3032.

The work was initiated under Project 2307, "Research in Flight Vehicle Dynamics," Task 2307 N502, "Basic Research in Structures and Dynamics." The work was administered by Dr. N. S. Khot, Project Engineer of the Structures and Dynamics Division (FIBR).

The contracted work was performed between June 1977 and October 1979.

The work was performed in the Advanced Mobility System Department, Bell Aerospace Textron. Mr. Richard D. Thom was the Technical Director of the study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>OPTIMIZATION OF STRUCTURES CONTAINING COMPOSITE PLATES</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A. General</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B. Analysis with Orthotropic Membrane Elements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>C. Criteria of Failure</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>NEW ORTHOTROPIC MEMBRANE ELEMENTS</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>A. General</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>B. Triangular Membrane Plate</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>C. Quadrilateral Membrane Plate</td>
<td>13</td>
</tr>
<tr>
<td>IV</td>
<td>PROGRAM INPUT DESCRIPTION</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>A. Input Overview</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>B. Definition of Input Cards</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>C. Input Formats</td>
<td>18</td>
</tr>
<tr>
<td>V</td>
<td>SAMPLE PROBLEM</td>
<td>59</td>
</tr>
<tr>
<td>VI</td>
<td>PROGRAMMER's MANUAL</td>
<td>70</td>
</tr>
<tr>
<td>VII</td>
<td>CONCLUSIONS</td>
<td>71</td>
</tr>
<tr>
<td>VIII</td>
<td>REFERENCES</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>APPENDIX: PROGRAMMER'S MANUAL FOR OPTIM III</td>
<td>73</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The weight optimization computer program OPTIM II, Reference 1, was altered to make its input format compatible with the widely used NASTRAN program. The resulting new program is called OPTIM III. Accomplishment of this objective required the modification and addition of many subroutines.

Included in the new program, OPTIM III, is the capability of analyzing and optimizing structures which contain composite membrane plates. The method of approach adopted for analysis of composite membrane plates involves the stacking of triangle and quadrilateral orthotropic membrane plate elements and is discussed in Section II. Also included in Section II is a summary of the three types of failure criteria for composite materials in a state of plane stress which are available in OPTIM III for use in connection with the optimization process.

The theoretical bases for the triangle and quadrilateral orthotropic membrane plates inserted into OPTIM III is given in Section III which also includes a summary of all the eight finite elements available.

All NASTRAN compatible input data cards are described in Section IV and their utilization is illustrated by a sample problem in Section V.

A programmer's manual which describes the computer program OPTIM III in detail is presented in the appendix. The information presented in the appendix is geared specifically to the programmer and includes the general program logic, external file structure and detailed descriptions of the subroutines.
II. OPTIMIZATION OF STRUCTURES CONTAINING COMPOSITE PLATES

A. General

The membrane triangle and quadrilateral plate element originally included in OPTIMII were extended to handle composite plate constructions. The type of composite structures accepted by the optimization program is limited to flat composite plates composed of orthotropic layers of material. Each layer of the plate composite is idealized as a separate finite membrane plate element which is discussed later in this section.

When modeling a composite plate consisting of many layers, the gridpoints of all the membrane elements or layers of the plate are selected to be the same. This restriction ensures that each of the layers of the composite plate is subjected to the same deformation state and is in conformance with small displacement plate theory in which it is assumed that straight normals to the plate median surface before deformation remain straight after deformation. To ensure that this condition is satisfied, the layers of the plate composite must be oriented symmetrically with respect to the median surface of the composite plate.

Various failure criteria for composite materials were investigated and of these three types of criteria were included in OPTIMIII. These three types of criteria which are required in the optimization process for the layers in the composite plate are discussed in this section. (Reference 6, 7, 8).
B. Analysis with Orthotropic Membrane Elements

Each layer in a composite membrane plate is assumed to be composed of fibers imbedded in a matrix material. The fibers are assumed to be oriented in such a way as to result in their characterization as an orthotropic material. A typical orthotropic layer of this type is illustrated in Figure 1. Coordinates X_m, Y_m shown in the figure are the material axis of orthotropy in which the X_m axis is oriented parallel to the fibers.

Two types of orthotropic membrane plate finite elements are available in the optimization program and they are,

1. Triangle membrane element
2. Quadrilateral membrane element

These two finite elements are displayed in Figure 2. The angle θ gives the orientation of the material axis with respect to the side connecting gridpoints 1 to 2. Note that for the triangle the material axis orientation angle θ is measured from side 1-2 to the material axis X_m whereas for the quadrilateral it is measured from the material axis X_m to the side 1-2.

The relationship between the elastic stresses and strains for an orthotropic material in plane stress referenced to the material axis of orthotropy shown in Figure 1 is given by:

$$
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}
\end{bmatrix}_m =
\begin{bmatrix}
G_{11} & G_{12} & G_{13} \\
G_{21} & G_{22} & G_{23} \\
G_{31} & G_{32} & G_{33}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_{xy}
\end{bmatrix}_m
$$
where

\[\Delta = 1 = \mu_{xy} \mu_{yx}, \quad \mu_{xy} = \frac{E_x}{E_y} \]

\[G_{11} = \frac{E_x}{\Delta}, \quad G_{12} = \frac{E_y \mu_{xy}}{\Delta} \quad G_{13} = 0.0 \]

\[G_{21} = G_{12}, \quad G_{22} = \frac{E_y}{\Delta} \quad G_{23} = 0.0 \]

\[G_{31} = G_{13}, \quad G_{32} = G_{23} \quad G_{33} = G_{xy} \]

These stress-strain relations were used in the development of the membrane plate elements and reduced down to isotropic material properties. This situation makes it possible to construct a composite membrane plate composed of fiber-reinforced orthotropic materials and isotropic metallic-type materials.

Figure 1. Typical fiber-reinforced layer in a composite membrane plate

The stresses are computed for both element types with respect to the material axis of orthotropy and are used in the failure criteria formulation discussed in the next section.
Figure 2. Orientation of membrane elements in fiber-reinforced composite layer
C. **Criteria of Failure**

Three types of criteria of failure have been inserted into the optimization program. They are

a. Modified Von Mises or energy of distortion criterion of failure

b. Maximum Stress Theory
c. Maximum Strain Theory

In all of these theories, the applied stresses σ_x', σ_y' and σ_{xy}' are referred to the material axes of orthotropy.

The modified distortion energy criterion of failure is given by

$$
\left(\frac{\sigma_x'}{F_x} \right)^2 + \left(\frac{\sigma_y'}{F_y} \right)^2 - \frac{\sigma_x' \sigma_y'}{F_x F_y} + \left(\frac{\sigma_{xy}'}{F_{xy}} \right)^2 = 1
$$

where F_x and F_y are tensile (compression) failure stresses and F_{xy} is the shear failure stress. These failure stresses are determined for simple load test conditions with respect to the axis of orthotropy.

The maximum stress theory postulates that failure will occur when any one of the three applied stresses is equal to its corresponding failure stress. Thus failure occurs when any one of the following conditions is satisfied

\begin{align*}
\sigma_x' &= F_x \\
\sigma_y' &= F_y \\
\sigma_{xy}' &= F_{xy}
\end{align*}
In the above two theories tension or compression failure stresses are selected in consistency with the sign of the applied stresses. Failure stresses \(F_x \), \(F_y \) and \(F_{xy} \) represent longitudinal, transverse, and shear modes of failure.

For the maximum strain theory it is assumed that failure is precipitated when any one of the applied strain components referred to the material axis attains its limiting failure strain. Thus for an orthotropic material the conditions of failure are

\[
\varepsilon_x = \varepsilon_x^f, \\
\varepsilon_y = \varepsilon_y^f, \\
\gamma_{xy} = \gamma_{xy}^f
\]

where \(\varepsilon_x^f, \varepsilon_y^f \) and \(\gamma_{xy}^f \) are the failure strains. Note that a negative applied strain implies a compression failure strain. The condition of failure in terms of stresses are

\[
\tilde{\varepsilon}_x E_{xx} = \sigma_{xx} + M_{xy} \sigma_{yy} \\
\tilde{\varepsilon}_y E_{yy} = \sigma_{yy} + M_{xy} \frac{E_{xx}}{E_{yy}} \sigma_{xx} \\
\tilde{\gamma}_{xy} G_{12} = \tau_{xy}
\]

Implementation of the above three failure criteria requires a knowledge of the following ten material failure properties: \(\pm F_x, \pm F_y, F_{xy}, \pm \varepsilon_x, \pm \varepsilon_y, \varepsilon_{xy} \).

NOTE: \(M = \frac{E}{\nu} \) \(\text{Moissons Ratio} \)
III. NEW ORTHOTROPIC PLATE ELEMENTS

A. General

As noted in Reference 1, the usefulness of an optimization program stems from the accuracy with which the real structure can be represented by the finite element model. In the OPTIM II program there are eight elements available for the analysis of a structure fabricated from isotropic materials. A major task of the present work was not only to put OPTIM II into a form compatible with NAStRAN but to extend its capability to include composite plate structures. In this latest version of OPTIM II there are eight elements as shown in Figure 3 with their program names and they are:

1. Axial Force Member
2. Pure Shear and Shear Web Elements
3. Triangular Plate in Plane Stress
4. Quadrilateral Plate in Plane Stress
5. Tubular Beam Element
6. Midpoint Axial Force Member
7. Midpoint Triangular Plate in Plane Stress
8. Midpoint Quadrilateral Plate in Plane Stress

The first three elements in the above list were in the pilot optimization program, OPTIM (Reference 2) and the remaining five added when OPTIM II was written. Explicit formulations for the element stiffness and other matrices are given in Reference 2 for the first five elements.
FIGURE 3. FINITE ELEMENT LIBRARY
in the above list. Formulations for the last three elements are given in Reference 1. The triangular and quadrilateral membrane plate elements, number 3 and 4, were extended to include orthotropic plate properties and the details of this extension are given in the next two sections.

B. Triangular Membrane Plate

The triangular plate in plane stress originally contained in the OPTIM II program was extended to include orthotropic material properties. The location of the material axis of orthotropy \((X_m, Y_m)\) is shown in Figure 3C and is referred to the local reference axes \((X, Y)\) of the triangle by the angle \(\alpha\). A description of the procedure used to compute the stiffness and stress matrices is given below. Theoretical background for the procedure is given in References 2, 3 and 5.

As shown in Reference 2, the stiffness matrix referred to the local axis system is given by

\[[K] = \lambda [B^{-1}]^T [A^*] [B^{-1}] \]

(3.1)

where \([B]^{-1} = \frac{1}{X_2 Y_3 - X_3 Y_2} \) is given by

\[[B]^{-1} = \begin{bmatrix}
X_2 Y_3 - X_3 Y_2 & 0 & 0 & 0 & 0 & 0 \\
-y_{3-2} Y_3 & -y_2 & 0 & 0 & 0 & 0 \\
x_{3-2} X_3 & -x_3 & x_2 & 0 & 0 & 0 \\
0 & 0 & 0 & (X_2 Y_3 - X_3 Y_2) & 0 & 0 \\
0 & 0 & 0 & -y_{3-2} Y_3 & -y_2 & 0 \\
0 & 0 & 0 & x_{3-2} X_3 & -x_3 & x_2
\end{bmatrix} \]

(3.2)
The matrix \([A^*]\) is given by
\[
[A^*] = [T] [G_e] [T]^T
\]
(3.4)

where the transformation matrix \([T]\) is:
\[
[T] = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1.0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1.0 & 0 \end{bmatrix}
\]
(3.5)

For isotropic materials the material matrix \([G_e]\) in Equation (3.4) is given by
\[
[G_e] = \begin{bmatrix} \frac{E}{1-M^2} & \frac{ME}{1-M^2} & 0 \\ \frac{ME}{1-M^2} & \frac{E}{1-M^2} & 0 \\ 0 & 0 & G \end{bmatrix}
\]
(3.6)

and for orthotropic material:
\[
[G_e] = [U]^T [G_m] [U]
\]
(3.7)

where the rotation transformation matrix \([U]\) of strain components is given by
\[
[U] = \begin{bmatrix} \cos^2\theta & \sin^2\theta & \cos\theta \sin\theta \\ \sin^2\theta & \cos^2\theta & -\cos\theta \sin\theta \\ -2\cos\theta \sin\theta & 2\cos\theta \sin\theta & \cos^2\theta - \sin^2\theta \end{bmatrix}
\]
(3.8)
The elements of the material matrix $[G_m]$ are defined in terms of orthotropic material properties as follows:

$$
\begin{align*}
G_{11} &= \frac{E_x}{\Delta} & G_{12} &= \frac{E_y M_{xy}}{\Delta} & G_{13} &= 0.0 \\
G_{21} &= G_{12} & G_{22} &= \frac{E_y}{\Delta} & G_{23} &= 0.0 \\
G_{31} &= G_{13} & G_{32} &= G_{23} & G_{33} &= G_{xy}
\end{align*}
$$

(3.9)

$$
\Delta = 1 - M_{xy} M_{yx}, \quad \frac{M_{xy}}{M_{yx}} = \frac{E_x}{E_y}
$$

The membrane stresses, assumed constant in the element, are given with reference to the material axis of orthotropy by

$$
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}
\end{bmatrix} = [S] \{U_e\}
$$

(3.10)

where

$$
[S] = [D] [B^{-1}]
$$

(3.11)

$$
[D] = [T_1] [T] [G_e] [T]^T [B^{-1}]
$$

(3.12)

$$
[T_1] =
\begin{bmatrix}
0. & 1. & 0. & 0. & 0. & 0. \\
0. & 0. & 1. & 0. & 0. & 0. \\
0. & 0. & 0. & 0. & 0. & 1.
\end{bmatrix}
$$

(3.13)
C. Quadrilateral Membrane Plate

The quadrilateral membrane plate, Figure 3d, is a linear stress variation element originally developed by Turner\(^4\) for isotropic materials (\(\theta = 0\)) and used subsequently in many analysis and optimization programs. For this element, the design variable is the plate thickness and the stress variations are given by

\[
\sigma_x = a_1 + a_2 y \\
\sigma = a_3 + a_4 x \\
\gamma_{xy} = a_5
\]

This element was extended to include orthotropic material properties, and theoretical details of the extension are given in Reference 3. However, the element matrices developed in Reference 3 were referred to the material axis and to make them compatible with the OPTIM II program, material to local axis transformation had to be introduced.

The stiffness matrix for the quadrilateral membrane plate referred to the local element axis is given by

\[
[K] = t [T_2]^T [B^{-1}]^T [A^*] [B^{-1}] [T_2] \quad (3.14)
\]
where:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
X_2 Y_2 & -j \mu_X Y_2 & -j \mu_{XY} X_2 Y_2 & 0 & Y_2 & 1 & 0 \\
X_3 & X_3 Y_3 & -j \mu_X Y_3 & -j \mu_{XY} X_3 Y_3 & 0 & Y_3 & 1 & 0 \\
X_4 & X_4 Y_4 & -j \mu_X Y_4 & -j \mu_{XY} X_4 Y_4 & 0 & Y_4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{E_X}{E_Y} \\
-j \mu_{XY} Y_2 & -j \mu_{XY} X_2 Y_2 & \frac{E_X}{E_Y} Y_2 & \frac{E_X}{E_Y} X_2 Y_2 & \frac{E_X}{E_Y} X_2 & -X_2 & 0 & \frac{E_X}{E_Y} \\
-j \mu_{XY} Y_3 & -j \mu_{XY} X_3 Y_3 & \frac{E_X}{E_Y} Y_3 & \frac{E_X}{E_Y} X_3 Y_3 & \frac{E_X}{E_Y} X_3 & -Y_3 & 0 & \frac{E_X}{E_Y} \\
-j \mu_{XY} Y_4 & -j \mu_{XY} X_4 Y_4 & \frac{E_X}{E_Y} Y_4 & \frac{E_X}{E_Y} X_4 Y_4 & \frac{E_X}{E_Y} X_4 & -X_4 & 0 & \frac{E_X}{E_Y}
\end{bmatrix}
\]

\[[B] = \begin{pmatrix} \frac{E_X}{E_Y} \end{pmatrix} \]

\[(3.15) \]

\[
\begin{bmatrix}
A & I_Y & j \mu_{XY} A & j \mu_{XY} I_X & 0 & 0 & 0 & 0 \\
I_Y & I_Y & j \mu_{XY} I_Y & j \mu_{XY} I_{XY} & 0 & 0 & 0 & 0 \\
-j \mu_{XY} A & -j \mu_{XY} I_Y & \frac{E_X}{E_Y} A & \frac{E_X}{E_Y} I_X & 0 & 0 & 0 & 0 \\
-j \mu_{XY} I_X & -j \mu_{XY} I_{XY} & \frac{E_X}{E_Y} I_X & \frac{E_X}{E_Y} I_{XY} & j I_X^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{E_X}{E_Y} A & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{E_X}{E_Y} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{E_X}{E_Y} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[[A^*] = \begin{pmatrix} \frac{E_X}{E_Y} \end{pmatrix} \]

\[(3.16) \]
The matrix \([T_2]\) transforms the element displacements from the material axis of orthotropy to the local element axis and is given by

\[
[T_2] = \begin{bmatrix}
 u_1 & u_2 & u_3 & u_4 & v_1 & v_2 & v_3 & v_4 \\
 \cos\theta & 0 & 0 & 0 & -\sin\theta & 0 & 0 & 0 \\
 0 & \cos\theta & 0 & 0 & 0 & -\sin\theta & 0 & 0 \\
 0 & 0 & \cos\theta & 0 & 0 & 0 & 0 & 0 \\
 \sin\theta & 0 & 0 & \cos\theta & 0 & 0 & -\sin\theta & 0 \\
 0 & \sin\theta & 0 & 0 & \cos\theta & 0 & 0 & -\sin\theta \\
 0 & 0 & \sin\theta & 0 & 0 & \cos\theta & 0 & 0 \\
 0 & 0 & 0 & \sin\theta & 0 & 0 & \cos\theta & 0 \\
 0 & 0 & 0 & 0 & \sin\theta & 0 & 0 & \cos\theta
\end{bmatrix}
\] (3.17)

Membrane stresses in the quadrilateral membrane plate element are given by Equation 3.10 with the stress matrix defined as

\[
[S] = [D] [B^{-1}] [T_2]
\] (3.18)

where matrix \([B]\) is given by Equation 3.15, transformation matrix \([T_2]\) by Equation 3.17 and the \([D]\) matrix by the following:

\[
[D] = \begin{bmatrix}
 1 & 0 & 0 & 0 & Y_m & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & X_m & 0 & 0 & 0 & 0
\end{bmatrix}
\] (3.19)

where \(X_m, Y_m\) are referred to the material axis.
Stresses used in the failure criteria for the quadrilateral membrane plate are located at its centroid which has the coordinates

\[\bar{X}_m = \frac{X_{1m} + X_{2m} + X_{3m} + X_{4m}}{4} \]

(3.20)

\[\bar{Y}_m = \frac{Y_{1m} + Y_{2m} + Y_{3m} + Y_{4m}}{4} \]
IV. PROGRAM INPUT DESCRIPTION

A. Input Overview

This section describes the input data required to execute the NASTRAN compatible optimization program OPTIM III.

OPTIM III was developed such that most of the input data cards are in NASTRAN format. This input consists of a deck beginning with "BEGIN BULK" and ending with "ENDDATA". All data cards are optional except those defining controls, loads, grid, and boundary conditions. Elements must also be defined.

The NASTRAN input feature of submitting data in any order, either left or right adjusted, is preserved. The GRID cards, SPC cards, FORCE, MOMENT, and MAT1, MAT2 cards are similar to NASTRAN input. Figure 3 shows the OPTIM III element library and the appropriate C"TIM input code for each element. The following is a summary of OPTIM III Input Cards:

B. Definitions of Input Cards

BEGIN Bulk First Card of Input
*Buck Define elements which require buckling
*Buckl Define set of elements which require buckling
CONROD AXIAL FORCE MEMBER Property and Connection
CQUAM8 8 Node Midpoint Quadrilateral Connection
CQDMEM1 Quadrilateral Membrane Connection Card
CRDMID Midpoint AXIAL Force Member Connection
CRDID Axial Force Element Connection
CSHEAR Shear Panel Element Connection
CTRIM6 Triangular 6 node midpoint membrane element connection
CTRMEM Triangular membrane element connection
CTUBEAM Tubular beam element connection
CWEB Shear Web element connection
FORCE Static load at grid point
*GCON Generalized Constraint Components
*GCEQON Grid Point Constraint Equations
GRID Grid Point Coordinates
*ICON Individual Constraints
*LINKS Linked group element members
MAT1 Isotropic material properties
MAT2 Anisotropic material properties
MOMENT Static moment at a gridpoint
*OPDVR Selected element design variables
OPLOADS Loads for optimization
OPTIM Optim control parameters
PQUAM8 Property card for 8 node midpoint quadrilateral
PQDMEM1 Property card for quadrilateral membrane
PRDMID Property card for midpoint axial force membrane

*These cards are optional and need to be input only if necessary
<table>
<thead>
<tr>
<th>Card</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO</td>
<td>Property card for axial force member</td>
</tr>
<tr>
<td>PS,Clark</td>
<td>Property card for shear panel</td>
</tr>
<tr>
<td>PTRIM6</td>
<td>Property card for triangular 6 node midpoint</td>
</tr>
<tr>
<td>PTRMEM</td>
<td>Property card for triangular membrane</td>
</tr>
<tr>
<td>PTUBEAM</td>
<td>Property card for tubular beam</td>
</tr>
<tr>
<td>PWEB</td>
<td>Property card for shear web</td>
</tr>
<tr>
<td>SPC</td>
<td>Single point constraint</td>
</tr>
<tr>
<td>SPCI</td>
<td>Sets of single point constraints</td>
</tr>
<tr>
<td>SPCI THRU</td>
<td>Sets of single point constraints</td>
</tr>
<tr>
<td>TITLE</td>
<td>Title card information</td>
</tr>
<tr>
<td>ENDDATA</td>
<td>End of Data Deck</td>
</tr>
</tbody>
</table>

C. Input Format

In this section detail OPTIM III input card descriptions are presented in a manner similar to the NASTRAN User's Manual. That is, each data card is described individually in alphabetical order.
Input Data Card **BEGIN** Bulk

Description: First Card of Input

1 2 3 4 5 6 7 8 9 10
BEGIN Bulk

This card is identical to the format of the first card used in a NASTRAN bulk data deck.
Input Data Card **BUCK** Buckling Elements

Description: Defines elements which require buckling calculations

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCK</td>
<td>SID</td>
<td>EL₁</td>
<td>EL₂</td>
<td>EL₃</td>
<td>EL₄</td>
<td>EL₅</td>
<td>EL₆</td>
<td>EL₇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUCK</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field

- **SID** Identification number of the buckling set
- **EL₁, etc.** Element number
Input Data Card BUCK1 Buckling Elements

Description: Defines sets of element which require buckling calculations

Format and Example:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Identification of the buckling set</td>
</tr>
<tr>
<td>EL1</td>
<td>Element number</td>
</tr>
<tr>
<td>ELn</td>
<td>Element number</td>
</tr>
</tbody>
</table>

```
BUCK1   SID   EL1   "THRU"   ELn
BUCK1   1     1     THRU     17
```
Input Data Card **CØNRØD** AXIAL FORCE MEMBER Property and Connection

Description: Defines a rod element of the structural model without reference to a property card.

Format and Example:

```
1 2 3 4 5 6 7 8 9 10
CØNRØD EID G1 G2 MID A
CØNRØD 2 16 17 23 2.69
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>Unique element identification number (Integer > 0)</td>
</tr>
<tr>
<td>G1, G2</td>
<td>Grid point identification numbers of connection points (Integer > 0; G1 ≠ G2)</td>
</tr>
<tr>
<td>MID</td>
<td>Material identification number (Integer > 0)</td>
</tr>
<tr>
<td>A</td>
<td>Area of rod (Real)</td>
</tr>
</tbody>
</table>

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.

2. For structural problems, CØNRØD cards may only reference MAT1 material cards.
Input Data Card **CQUAM8** Midpoint Quadrilateral Element Connection

Description: Defines a midpoint quadrilateral membrane element (QUAM8) of the structure.

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQUAM8</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
<td>G5</td>
<td>G6</td>
<td>+abc</td>
<td></td>
</tr>
<tr>
<td>CQUAM8</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>20</td>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>+abc</td>
<td>G7</td>
<td>G8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ST</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>Element identification number (Integer >0)</td>
</tr>
<tr>
<td>PID</td>
<td>Identification number of a PQUAM8 property card</td>
</tr>
<tr>
<td>G1 through G8</td>
<td>Gridpoint identification numbers of connection points (Integer >0)</td>
</tr>
</tbody>
</table>

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Gridpoints G1 through G8 must be ordered as shown in the sketch of the element.
3. All interior angles must be less than 180 degrees.
Input Data Card CQDMEM1 Quadrilateral Element Connection

Description: Defines a quadrilateral membrane element (QDMEM1) of the structural model.

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQDMEM1</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
<td>TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQDMEM1</td>
<td>72</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>29.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field	Contents
EID | Element identification number (Integer > 0)
PID | Identification number of a PQDMEM1 property card (Integer > 0)
G1,G2, G3,G4 | Grid point identification numbers of connection points (Integer > 0); G1 ≠ G2 ≠ G3 ≠ G4
TH | Material property orientation angle in degrees (Real). The sketch below gives the sign convention for TH.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Gridpoints G1 through G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180 degrees.
Input Data Card **CRDMID** Midpoint Axial Force Element Connection

Description: Defines a midpoint axial force element RDMID of the structural model.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRDMID</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRDMID</td>
<td>72</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field
Contents

- **EID**: Element identification number (Integer > 0)
- **PID**: Identification number of a PRDMID property card (Integer > 0)
- **G1, G2, G3**: Gridpoint identification numbers of connection points (Integer > 0); G1 ≠ G2 ≠ G3

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Gridpoints G1 through G3 must be ordered as shown.
Input Data Card **CRØD** Axial Force Element Connection

Description: Defines a tension-compression element (RØD) of the structural model

Format and Example:

1 2 3 4 5 6 7 8 9 10
CRØD EID PID G1 G2 EID PID G1 G2
CRØD 12 13 21 23 3 12 24 5

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>Element identification number (Integer > 0)</td>
</tr>
<tr>
<td>PID</td>
<td>Identification number of a PRØD property card</td>
</tr>
<tr>
<td>G1, G2</td>
<td>Grid point identification numbers of connection points (Integer > 0; G1 ≠ G2)</td>
</tr>
</tbody>
</table>

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.

2. See CØNRØD for alternative method of rod definition.

3. One or two RØD elements may be defined on a single card.
Description: Defines a shear panel element (SHEAR) of the structural model.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSHEAR</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSHEAR</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field	Contents
EID | Element identification number (Integer > 0)
PID | Identification number of a PSHEAR property card
G1, G2, G3, G4 | Grid point identification numbers of connection points (Integer > 0; G1 ≠ G2 ≠ G3 ≠ G4)

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be ordered consecutively around the perimeter of the element.
Input Data Card **CTRIM6** Midpoint Triangular Membrane Plate Element Connection

Description: Defines a triangular membrane element (TRIM6) of the structural model.

Format and Example:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>Element identification number (Integer > 0)</td>
</tr>
<tr>
<td>PID</td>
<td>Identification number of PIRIM6 property card.</td>
</tr>
<tr>
<td>G1, G2, G3, G4, G5, G6</td>
<td>Gridpoint identification numbers of connection points (Integers > 0); G1 ≠ G2 ≠ G3 ≠ G4 ≠ G5 ≠ G6.</td>
</tr>
</tbody>
</table>

![Diagram of a triangular membrane element with vertices G1, G2, G3, G4, G5, and G6.](image)

Remarks:

1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.
3. The gridpoints must be ordered consecutively around the perimeter in a counter clockwise direction and starting at a vertex.
4. The continuation card must be present.
5. Gridpoints G2, G4 and G6 are assumed to lie at the midpoints of the sides.
Input Data Card CTRMEM Triangular Element Connection

Description: Defines a triangular membrane element (TRMEM) of the structural model.

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRMEM</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>TH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRMEM</td>
<td>16</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Contents

EID Element identification number (Integer > 0)

PID Identification number of a PTRMEM property card

G1,G2,G3 Gridpoint identification numbers of connection points (Integer > 0; G1 ≠ G2 ≠ G3)

TH Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
Input Data Card CTUBEAM Tubular Beam Element Connection

Description: Defines a tension-compression-torsion element (TUBE) of the structural model.

Format and Example:

```
1  2  3  4  5  6
CTUBEAM  EID  PID  G1  G2  G3
CTUBEAM  12  13  21  23  3
```

Field Contents
EID Element identification number (Integer > 0)
PID Identification number of a PTUBEAM property card (Default is EID) (Integer > 0)
G1, G2, G3 Gridpoint identification numbers of connection points (Integer > 0; G1 ≠ G2 ≠ G3)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
 2. See Figure 3e.
Input Data Card CWEB Shear Web Element Connection

Description: Defines a 2 node symmetric Web element (Web) of the structural model

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWEB</td>
<td>EID</td>
<td>PID</td>
<td>G1</td>
<td>G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWEB</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field

EID Element identification number
PID Identification of PWEB property card
G1, G2 Gridpoint identification numbers

Remarks: 1. See Figure 3b.
Input Data Card FORCE Static Load

Description: Defines a static load at a grid point by specifying a vector.

Format and Example:

```
  1  2  ?  4  5  6  7  8  9  10
FØRCE  SID  G  F  N1  N2  N3
FØRCE  2   5  2.9  0.0  1.0  0.0
```

Field

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>N1, N2, N3</td>
</tr>
</tbody>
</table>

Remarks:

1. The static load applied to gridpoint G is given by

 \[
 \vec{f} = F \vec{N}
 \]

 where \(\vec{N} \) is the vector defined in fields 6, 7 and 8.

2. Load set is selected on the OPLOADS card.
Input Data Card

GCON Generalized Constraint Components

Description: Defines the translation and rotation components of each gridpoint which are active degrees of freedom in a generalized constraint equation defined by GPCEQN cards.

Format and Example:

```
GCON  SID  GP  +U+V+W  +ΩX+ΩY+ΩZ
GCON 14   1   +X△-X  △+X △
```

Field

- **SID:** Equation identification
- **GP:** Gridpoint number
- **+,-** Algebraic sign of component coefficient
- **x** The x mark indicates that the component exists.
- **△** A triangle indicates that the component does not exist.

Remarks: The SID numbers on these cards appear in the GPCEQN cards which set up the constraint equation. See remarks under GPCEQN for further explanation.
Input Data Card GPCEQN Generalized Constraint Equation

Description: Defines the upper and lower limits of a generalized constraint equation. The existence of each GPCEQN card is necessary for each constraint equation.

Format and Example:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Equation identification</td>
</tr>
<tr>
<td>GCS</td>
<td>Set identification of GCON cards which define the components in the equation.</td>
</tr>
<tr>
<td>UL</td>
<td>Upper limit of constraint equation</td>
</tr>
<tr>
<td>LL</td>
<td>Lower limit of constraint equation</td>
</tr>
</tbody>
</table>

The input cards would be as follows:

1. Suppose the user wants to define the following generalized constraint equations:

 \[1.0 \leq -U_1 + V_2 + \theta_{x1} \leq 4.0\]

 \[1.0 \leq W_2 - \theta_{x4} \leq 6.0\]

 The input cards would be as follows:

<table>
<thead>
<tr>
<th>GPCEQN</th>
<th>SID</th>
<th>GCS</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>4.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>6.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

GCON	14	1	-X	+X
GCON	14	2	+X	
GCON	12	2	+X	
GCON	12	4	-X	

2. A generalized constraint consists of the algebraic combination of the selected degrees of freedom of all participating gridpoints and is maintained within the upper and lower limits defined for the particular group.
Input Data Card GRID Grid Point

Description: Defines the location of a geometric gridpoint of the structural model and its permanent single-point constraints.

Format and Example:

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{GRID} & \text{ID} & X1 & X2 & X3 & \text{PS} \\
\text{GRID} & 2 & 1.0 & 2.0 & 3.0 & 316 \\
\end{array}
\]

Field Contents

ID Gridpoint identification number (0<Integer<999999)
X1,X2,X3 Location of the grid point.
PS Permanent single-point constraints associated with grid-point (any of the digits 1-6 with no imbedded blanks) (Integer≥0 or blank)

Remarks: 1. The coordinate system defined on all GRID cards is called the Global Coordinate System. All degrees-of-freedom, constraints, and solution vectors are expressed in the Global Coordinate System.
Input Data Card ICON Individual Constraints

Description: Defines the constraint limits (both lower and upper) and gridpoint components which require individual constraints.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICON Components Lower Upper G1 G2 G3 G4 G5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICON 146 1.0 3.0 1 2 3 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field

Components 1-6 signifies component numbers

Lower Lower limit

Upper Upper limit

G1, G2, G3, etc. Gridpoint numbers. Up to 5 gridpoint numbers may appear on one ICON card.

Remarks:

1. Each ICON card contains up to 5 gridpoints. When more than 5 are desired, list them on separate ICON cards.

2. For example, let there be the following individual constraints: U1, U2, W1, W2 greater than 1.0 and less than 4.0. V1, V2, V3 greater than 1.0 and less than 8.0.

 The required ICON cards would be:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICON 13 1.0 4.0 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICON 2 1.0 8.0 1 2 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Rotational limits are indicated only when the beam (tube) element is used.
Input Data Card LINKS

Description: Defines element numbers which are in a "linked" group either for purposes of specifying area ratios or for buckling definitions.

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINKS BELEM NG BUCK N1 N2 N3</td>
<td></td>
</tr>
<tr>
<td>LINKS 5 3 YES 1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

Field Contents

BELEM Base element number entered in integer format
NG Number of elements in the group. The total number of elements including the base element is entered.
BUCK Buckling control. When "yes" is in this field, then the grouping defined is to be considered for buckling and no linking between design variables exist.
N1, N2, N3 Node points defining rectangular area.

Remarks:
1. This data is optimal.
2. The base element is the lowest numbered element in the group and it must also be the element with the smallest minimum allowable element design variable. All elements within a group are directly related to the base element through the area ratios specified on the element property cards. In other words the minimum allowable area is entered for the base element. For other members in the group the ratio (≥ 1) of member area to base element area is entered instead of an allowable. This ratio is maintained during the solution.
3. The example above indicates that elements 5, 6 and 7 belong to a linked group in which element 5 is the base element.
4. The buckling option has been included in order that a User might specify a simply supported area that is comprised of more than one element.
Remarks: (continued)

The three node point numbers are entered as fixed point numbers in order to define the rectangular simply supported region. The sketch illustrates the three points and their relationship to the contained groups of elements.

Simply supported perimeter

Typical quadrilateral element
Input Data Card **MOMENT** Static Moment

Description: Defines a static moment at a grid point by specifying a vector.

Format and Example:

```
  1   2   2   4   5   6   7   8   9  10
MOMENT  SID  G    M   N1   N2   N3
MOMENT  2   5   2.9  0.0  1.0  0.0
```

Field **Contents**

SID Load set identification number (Integer > 0)
G Gridpoint identification number (Integer > 0)
M Scale factor (Real)
N1, N2, N3 Components of Vector

Remarks:

1. The static moment applied to gridpoint G is given by

\[
\mathbf{m} = M\cdot(N1, N2, N3)
\]

2. Load set is selected on the OPLOADS card.
Input Data Card MAT1 Material Property Definition

Description: Defines the material properties for linear, temperature-independent, isotropic materials.

Format and Example:

```
1 2 3 4 5 6 7 8 9 10
MAT1 MID E G NU RHØ +abc
MAT1 17 3. +7 1.9+7 4.28 ABC
+abc SL SU
+BC 20.+4 15.+4
```

Field Contents

- **MID**: Material identification number (Integer > 0)
- **E**: Young's modulus (Real ≥ 0.0 or blank)
- **G**: Shear modulus (Real ≥ 0.0 or blank)
- **NU**: Poisson's ratio (-1.0 < Real ≤ 0.5 or blank)
- **RHØ**: Mass density (Real)
- **SL, SU**: Lower stress limit, upper stress limit

Remarks:

1. One of E or G must be positive (i.e., either E > 0.0 or G > 0.0 or both E and G may be > 0.0).
2. If any one of E, G or NU is blank, it will be computed to satisfy the identity E = 2(1+NU)G; otherwise, values supplied by the user will be used.
3. The material identification number must be unique for all MAT1 and MAT2 cards.
Input Data Card MAT2 Material Property Definition

Description: Defines the material properties for linear, anisotropic materials.

Format and Example: (consists of 2 cards)

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID</td>
<td>Material identification number (Integer > 0)</td>
</tr>
<tr>
<td>Gij</td>
<td>The material property matrix (Real)</td>
</tr>
<tr>
<td>RHO</td>
<td>Mass density (Real)</td>
</tr>
<tr>
<td>SL, SU</td>
<td>Lower stress limit, upper stress limit</td>
</tr>
</tbody>
</table>

Remarks: 1. The material identification numbers must be unique for all MAT1, MAT2 cards.

2. The convention for the Gij in fields 3 through 8 is represented by the matrix relationship.

\[
\begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{pmatrix} =
\begin{bmatrix}
G_{11} & G_{12} & G_{13} \\
G_{12} & G_{22} & G_{23} \\
G_{13} & G_{23} & G_{33}
\end{bmatrix}
\begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{pmatrix}
\]

3. Only TRMEM and CQDMEM elements may use MAT2 cards.
Input Data Card **OPDVIR**

Description: Defines design variables for selected elements. These design variables are used as starting guesses in an optimization run or else as specified values in a status run.

Format and Example:

```
OPDVIR  E1  DVAR1  E2  DVAR2  E3  DVAR3  E4  DVAR4
       1   .1  3   .6  4   .50  7   .23
```

Field

- **E1,E2...etc.** Element numbers for which design variables are input.
- **DVAR1, DVAR2, etc.** Design variable starting guesses for elements 1, 2, etc.

Remarks:

1. Up to 4 elements may be defined on one OPDVIR card. More elements may be defined by successive OPDVIR cards.

2. The use of these values is dependent on the calculation control on the OPTIM input card - field #9, OPT.

 a. If OPT = GOPT the program will optimize using the design variable minimums input in this section as a starting guess.

 b. If OPT = GSTA, the program will perform a statics solution using the design variables input in this section.
Input Data Card OPLOADS

Description: Defines the character of the loads for optimization, i.e., symmetric, nonsymmetric, antisymmetric.

Format and Example:

<table>
<thead>
<tr>
<th>OPLOADS</th>
<th>LOAD</th>
<th>NSYM</th>
<th>SYA</th>
<th>Fᵢ</th>
<th>Mᵢ</th>
<th>F₂</th>
<th>M₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPLOADS</td>
<td>1</td>
<td>ANTI</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Contents
LOAD LOAD number identification (any number)
NSYM Number of nodes on symmetric plane
SYA SYMM - Symmetric loads
 ANTI - Antisymmetric loads
 NON - Nonsymmetric loads
Fᵢ SID number of FORCE cards
Mᵢ SID number of MOMENT cards
F₂ required only SID number of FORCE cards
M₂ for nonsymmetric SID number of MOMENT cards

Remarks: 1. If Fᵢ is present, i force cards are required.
 If Mᵢ is present, i moment cards are required.
 2. Each external load requires an OPLOADS entry.
Remarks: (contd)

3. Number of Nodes on the Symmetry Plane. When a geometrically symmetric half structure is subject to antisymmetric and/or nonsymmetric loading, this capability is provided wherein boundary conditions are internally defined and results are output for the entire structure. The nodes on the symmetry plane must be numbered from 1 to \(N \) and it is \(N \) that is entered here. The BOUND section must specify these nodes as free.
Input Data Card **OPTIM**

Description: Defines various control parameters for the OPTIM program.

Format and Example:

1 2 3 4 5 6 7 8 9 10
OPTIM PRI PRS PRE BU MAX CONVD CONVW OPT
OPTIM NO YES YES NONE 10 .01 100.0 OPT

Field	**Contents**
PRI | NO/YES Print displacements every iteration
PRS | NO/YES Print stresses every iteration
PRE | NO/YES Print element design variables every iteration
BU | NONE/ALL/SEL Buckling Analysis SEL=SID of BUCK
MAX | Maximum number iterations
CONVD | Convergence criteria for design number
CONVW | Convergence criteria for weight perturbations
OPT | OPT Optimize using design variable on property card
 | GOPT Optimize using OPDVIR starting guess
 | GSTA Statics run using OPDVIR
 | STA Statics run using property card

Remarks:

1. **CONVD** - Convergence Criteria (Design Variable). If two successive iterations of element design variables i.e., thickness or area, meet the criteria \[\left| \frac{A_n - A_{n+1}}{A_n} \right| \leq C_1 \] then the iteration is stopped. \(C_1 \) is entered here.

2. **CONVW** - Convergence Criteria (Weight Perturbation). If two successive perturbations of the structural weight meet this criteria, then the iteration is stopped. \[\frac{W_n - W_{n+1}}{W_n} > C_2 \] \(C_2 \) is entered here.

45
Input Data Card PQUAM8 MIDPOINT QUADRILATERAL MEMBRANE PROPERTY

Description: Used to define the properties of a midpoint quadrilateral membrane element. Referenced by the COUAM8 card. No bending properties are included.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQUAM8</td>
<td>PID</td>
<td>MID</td>
<td>T</td>
<td>PID</td>
<td>MID</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PQUAM8</td>
<td>17</td>
<td>23</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Contents

PID: Property identification number (Integer > 0)
MID: Material identification number (Integer > 0)
T: Membrane thickness (Real > 0.0)

Remarks: 1. All PQUAM8 cards must have unique property identification numbers.
2. One or two quadrilateral membrane properties may be defined on a single card.
Input Data Card PQDMEM1 Quadrilateral Membrane Property

Description: Used to define the properties of quadrilateral membrane. Referenced by the CQDMEM1 card. No bending properties are included.

Format and Example:

```
1 2 3 4 5 6 7 8 9 10
PQDMEM1 PID MID T PID MID T
PQDMEM1 235 2 0.5
```

Field Contents
PID Property identification number (Integer > 0)
MID Material identification number (Integer > 0)
T Minimum thickness of membrane (Real > 0.0)

Remarks: 1. All PQDMEM1 cards must have unique property identification numbers.
 2. One or two quadrilateral membrane properties may be defined on a single card.
Input Data Card PRDMID

Description: Used to define the properties of a midpoint axial force member. Referenced by the CRDMID card.

Format and Example:

```
1 2 3 4 5 6 7 8 9 10
PRDMID PID MID A PID MID A
PRDMID 24 2 .49 25 3 .60
```

Field

- **PID**: Property identification number (integer > 0)
- **MID**: Material identification number (integer > 0)
- **A**: Cross sectional area (minimum)

Remarks:

1. All PRDMID must have unique property identification numbers.
2. One or two midpoint axial force member properties may be defined on a single card.
Inout Data Card PROD Rod Property

Description: Defines the properties of a rod which is referenced by the CRØD card

Format and Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD PID MID A</td>
<td>PROD 17 23 42.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field	Contents
PID | Property identification number (Integer > 0)
MID | Material identification number (Integer > 0)
A | Area of rod (Real)

Remarks:
1. PROD cards must all have unique property identification numbers.
2. For structural problems, PROD cards may only reference MAT1 material cards.
Input Data Card **PSHEAR** Shear Panel Property

Description: Defines the elastic properties of a shear panel. Referenced by the CSHEAR card.

Format and Example:

```
   1   2   3   4   5       6   7   8   9   10
  PSHEAR PID  MID   T     PID  MID   T  
  PSHEAR  13   2  4.9     14   6  4.9
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Property identification number (Integer > 0)</td>
</tr>
<tr>
<td>MID</td>
<td>Material identification number (Integer > 0)</td>
</tr>
<tr>
<td>T</td>
<td>Minimum thickness of shear panel (Real ≠ 0.0)</td>
</tr>
</tbody>
</table>

Remarks:

1. All PSHEAR cards must have unique identification numbers.
2. PSHEAR cards may only reference MAT1 material cards.
3. One or two shear panel properties may be defined on a single card.
Input Data Card PTRIM6 Linear Strain Midpoint Triangular Membrane Property

Description: Defines the properties of a midpoint triangular membrane element. Referenced by the CTRIM6 card. No bending properties are included.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRIM6</td>
<td>PID</td>
<td>MID</td>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRIM6</td>
<td>666</td>
<td>999</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field

PID Property identification number (Integer > 0)
MID Material identification number (Integer > 0)
T1 Membrane thickness of the element (Real)

Remarks: 1. All PTRIM6 cards must have unique property identification numbers.
2. PTRIM6 cards may only reference MAT1.
Input Data Card PTRMEM Triangular Membrane Property

Description: Used to define the properties of a triangular membrane element. Referenced by the CTRMEM card. No bending properties are included.

Format and Example:

1 2 3 4 5 6 7 8 9 10
PTRMEM PID MID T PID MID T
PTRMEM 17 23 4.25

Field Contents
PID Property identification number (Integer > 0)
MID Material identification number (Integer > 0)
T Membrane thickness (Real > 0.0)

Remarks:
1. All PTRMEM cards must have unique property identification numbers.
2. One or two triangular membrane properties may be defined on a single card.
Input Data Card **PTUBEAM** Tubular Beam Property

Description: Defines the properties of tubular beam element. Referenced by the CTUBE card.

Format and Example:

```
1  2  3  4  5   6   7   8   9   10
PTUBEAM  PID  MID  TT  RAD
PTUBEAM   2   6   6.29 0.25
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Property identification number (Integer > 0)</td>
</tr>
<tr>
<td>MID</td>
<td>Material identification number (Integer > 0)</td>
</tr>
<tr>
<td>TT</td>
<td>Minimum tube thickness</td>
</tr>
<tr>
<td>RAD</td>
<td>Radius of tube element</td>
</tr>
</tbody>
</table>

Remarks:

1. PTUBE cards must all have unique property identification numbers.
2. PTUBE cards may only reference MAT1 material cards.
Input Data Card PWEB WEB Property

Description: Used to define the properties of 2 node WEB. Referred by the CWEB.

Format and Example:

1 2 3 4 5 6 7 8 9 10
PWEB PID MID T PID MID T
PWEB 235 2 0.5

Field Contents
PID Property identification number (Integer > 0)
MID Material identification number (Integer > 0)
T Thickness of the shear web (Real > 0.0)

Remarks: 1. All PWEB cards must have unique property identification numbers.

2. One or two WEB properties may be defined on a single card.
Input Data Card
SPC
Single-Point Constraint

Description: Defines sets of single-point constraints

Format and Example:

```
1  2  3  4  5  6  7  8  9  10
SPC  SID  G  C  G  C  
SPC  2  32  436  5  1
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Identification number of single-point constraint set (Integer>0)</td>
</tr>
<tr>
<td>G</td>
<td>Grid point identification number (Integer>0)</td>
</tr>
<tr>
<td>C</td>
<td>Component number (Any unique combination of the digits 1-6 (with no imbedded blanks) when point identification numbers are gridpoints).</td>
</tr>
</tbody>
</table>

Remarks:

1. Single-point constraint sets must be present in the input.
2. From one to twelve single-point constraints may be defined on a single card.
3. SPC degrees of freedom may be redundantly specified as permanent constraints on the GRID card.
4. The SID number should be the same on all SPC cards.
Input Data Card

SPCI Single-Point Constraint

Description: Defines sets of single-point constraints.

Format and Example:

```
1  2  3  4  5  6  7  8  9  10
SPCI  SID  C  G1  G2  G3  G4  G5  G6
SPCI  3  2  1  3  10  9  6  5
```

Alternate Form

```
SPCI  SID  C  GID1 "THRU"  GID2
SPCI  3  1  3  12456  6  THRU  32
```

Field

Contents

SID Identification number of single-point constraint set (Integer > 0)

C Component number (Any unique combination of the digits 1-6 (with no imbedded blanks) when point identification numbers are gridpoints.

G1,GID2 Grid point identification numbers (Integer > 0)

Remarks:

1. Single-point constraint sets must be present in the input.

2. SPC degrees of freedom may be redundantly specified as permanent constraints on the GRID card.

3. All gridpoints referenced by GID1 thru GID2 must exist.

4. No NASTRAN "continuation" cards are allowed.
Input Data Card TITLE Title Card

Description: Information to be printed at the beginning of the computer listing.

Format and Example:

```
  1  2  3  4  5  6  7  8  9  10
TITLE
Plate Membrane Prob. No. 2
```
Input Data Card **ENDDATA**

Description: Defines the end of the Data Deck

Format and Example:

```
  1   2   3   4   5   6   7   8   9   10
ENDDATA
ENDDATA
```

Remarks:

1. This card required even if no physical data cards exist in the deck.
2. **ENDDATA** must begin in columns 1 or 2.
3. Failure to include this card will result in an operating system termination caused by input end of file error.
V. SAMPLE PROBLEM

This sample demonstration problem, taken from Reference 1 is presented primarily to illustrate the new NASTRAN compatible data input procedure and format included in OPTIM III.

The structure selected is a symmetric wing box as shown in Figure 4. One half of the symmetric wing box is idealized and consists of 7 grid points and 16 finite elements of the following types:

- 4 axial force members
- 8 shear web elements
- 2 quadrilateral membrane elements
- 1 triangular membrane element

Gridpoints 1 and 2 are completely constrained in the x and y coordinate directions. Two load conditions are considered and they are:

1. 5,000 Lb. force at gridpoint 7 in the Z coordinate direction.
2. 10,000 Lb. force at gridpoint 7 in the x coordinate direction.

A summary of the NASTRAN compatible input data (BULK DATA) is given in Figure 5. Results of the computations performed are given in Figure 6.
Figure 4 Wing Box
Title: SIXTEEN ELEMENT WING RIX FOR REPORT FORM INPUT AND DYNAMIC STORAGE

<table>
<thead>
<tr>
<th>GRID</th>
<th>1</th>
<th>0.0</th>
<th>0.0</th>
<th>10.000</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID</td>
<td>2</td>
<td>100.00</td>
<td>0.0</td>
<td>8.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRID</td>
<td>3</td>
<td>0.0</td>
<td>70.000</td>
<td>10.200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRID</td>
<td>4</td>
<td>100.00</td>
<td>70.000</td>
<td>8.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRID</td>
<td>5</td>
<td>0.0</td>
<td>140.000</td>
<td>10.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRID</td>
<td>6</td>
<td>100.000</td>
<td>140.000</td>
<td>8.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICCH</td>
<td>2</td>
<td>-2.0000</td>
<td>2.0000</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SPCC</td>
<td>1</td>
<td>123</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OPTIM</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>ACNE</td>
<td>2</td>
<td>0.01000</td>
</tr>
<tr>
<td>OPLADS</td>
<td>1</td>
<td>0</td>
<td>SYMM</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OPLEADS</td>
<td>2</td>
<td>0</td>
<td>SYMM</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FORCE</td>
<td>10</td>
<td>7</td>
<td>0.500E 04</td>
<td>0</td>
<td>0</td>
<td>100E 01</td>
</tr>
<tr>
<td>FORCE</td>
<td>20</td>
<td>7</td>
<td>0.100E 05</td>
<td>100E 01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CONROD</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>28</td>
<td>0.100</td>
<td>0</td>
</tr>
<tr>
<td>CONROD</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>28</td>
<td>0.100</td>
<td>0</td>
</tr>
<tr>
<td>CONROD</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>28</td>
<td>0.100</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>6</td>
<td>50</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>7</td>
<td>50</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>8</td>
<td>50</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>9</td>
<td>50</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>10</td>
<td>50</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>11</td>
<td>50</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>12</td>
<td>50</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>13</td>
<td>50</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>14</td>
<td>43</td>
<td>5</td>
<td>6</td>
<td>7.0</td>
<td>0</td>
</tr>
<tr>
<td>CWEB</td>
<td>15</td>
<td>33</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>CWEB</td>
<td>16</td>
<td>33</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PATI</td>
<td>20</td>
<td>1.0E7</td>
<td>-200</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+CD</td>
<td>-1.0E6</td>
<td>1.0E6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PWEB</td>
<td>50</td>
<td>28</td>
<td>0.2200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PTRMEM</td>
<td>43</td>
<td>28</td>
<td>0.2200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PQRMEM</td>
<td>33</td>
<td>28</td>
<td>0.2200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5 Input Data, Sample Problem
<table>
<thead>
<tr>
<th>CARD COUNT OF INPUT DATA</th>
<th>CARD TYPE</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN Err</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BUCK</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CCNMOD</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CTUEEAM</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CGCMEM1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BUCK1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CQUAMB</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CRCMIC</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CSFPEAR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CTRIM6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CTRMEM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GCCN</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CWEB</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EFORCE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GMIC</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ICGN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LIRKS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MAT1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HCMEMT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ORLOADCS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GPCECN</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GPCECN</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CRSIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PGCMEM1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PROMID</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PBCC</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PSEFAR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PTRMEM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PTUEEAM</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SPC</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SPC1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SRC1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PWEB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PTRIM6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PQUAM1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ENCCATA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PTUEEAM</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MAT2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6 Output, Sample Problem

62
BEGIN BU
TITLE SIXTEEN ELEMENT WING BOX FOR REBOFF FORM INPUT AND DYNAMIC STORAGE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID 1</td>
<td>0.0</td>
<td>0.0</td>
<td>10.000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>GRID 2</td>
<td>0.0</td>
<td>100.000</td>
<td>0.0</td>
<td>8.000</td>
<td>0.0</td>
</tr>
<tr>
<td>GRID 3</td>
<td>0.0</td>
<td>70.000</td>
<td>0.0</td>
<td>10.000</td>
<td>0.0</td>
</tr>
<tr>
<td>GRID 4</td>
<td>0.0</td>
<td>100.000</td>
<td>0.0</td>
<td>70.000</td>
<td>8.000</td>
</tr>
<tr>
<td>GRID 5</td>
<td>0.0</td>
<td>140.000</td>
<td>0.0</td>
<td>10.000</td>
<td>0.0</td>
</tr>
<tr>
<td>GRID 6</td>
<td>0.0</td>
<td>140.000</td>
<td>0.0</td>
<td>70.000</td>
<td>8.000</td>
</tr>
<tr>
<td>GRID 7</td>
<td>0.0</td>
<td>100.000</td>
<td>0.0</td>
<td>190.000</td>
<td>8.000</td>
</tr>
<tr>
<td>ICEN 2</td>
<td>-2.0000</td>
<td>2.0000</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SRC1 1</td>
<td>123.1</td>
<td>THRU</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OPTIM NO</td>
<td>NO</td>
<td>YES</td>
<td>NCME</td>
<td>2.0</td>
<td>0.01000</td>
</tr>
<tr>
<td>CLOADS 1</td>
<td>0.0</td>
<td>6MM</td>
<td>10.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CLOADS 2</td>
<td>0.0</td>
<td>6MM</td>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FORCE 10</td>
<td>7.0</td>
<td>0.0500E 04.0</td>
<td>0.0</td>
<td>0.0100E 01.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FORCE 20</td>
<td>7.0</td>
<td>0.0100E 05.0</td>
<td>0.0</td>
<td>0.0100E 01.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CJSROD 1</td>
<td>1.0</td>
<td>3.0</td>
<td>28.0</td>
<td>0.100</td>
<td>0.0</td>
</tr>
<tr>
<td>CJSROD 2</td>
<td>3.0</td>
<td>5.0</td>
<td>28.0</td>
<td>0.100</td>
<td>0.0</td>
</tr>
<tr>
<td>CJSROD 3</td>
<td>2.0</td>
<td>4.0</td>
<td>28.0</td>
<td>0.100</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CWEB 6</td>
<td>0.0</td>
<td>50.0</td>
<td>3.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 7</td>
<td>0.0</td>
<td>50.0</td>
<td>5.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 8</td>
<td>0.0</td>
<td>50.0</td>
<td>5.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 9</td>
<td>0.0</td>
<td>50.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 10</td>
<td>0.0</td>
<td>50.0</td>
<td>4.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 11</td>
<td>0.0</td>
<td>50.0</td>
<td>6.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CWEB 12</td>
<td>0.0</td>
<td>50.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CTRMEN 13</td>
<td>0.0</td>
<td>50.0</td>
<td>3.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CTRMEN 14</td>
<td>0.0</td>
<td>43.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CTRMEN 15</td>
<td>0.0</td>
<td>33.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NAT1 20</td>
<td>0.01E 07</td>
<td>0.30</td>
<td>.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAT1 28</td>
<td>1.0E 04</td>
</tr>
<tr>
<td>PWEB 50</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0200</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PTWMEN 43</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0200</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PCONMEN 33</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0200</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ENDECATA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
INPLT PROCESSOR DIAGNOSTICS

MESSAGE TEST

SECTION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COORD</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>ELEM</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>OEXT</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>BOUN</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>OLOAD</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>ICON</td>
<td>NO ERRORS DETECTED.</td>
</tr>
<tr>
<td>END</td>
<td>NO ERRORS DETECTED.</td>
</tr>
</tbody>
</table>

THE COORDINATES OF THE NODE POINTS

<table>
<thead>
<tr>
<th>PT</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>70.0000</td>
<td>10.0000</td>
</tr>
<tr>
<td>4</td>
<td>100.0000</td>
<td>70.0000</td>
<td>8.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>140.0000</td>
<td>10.0000</td>
</tr>
<tr>
<td>6</td>
<td>100.0000</td>
<td>140.0000</td>
<td>8.0000</td>
</tr>
<tr>
<td>7</td>
<td>100.0000</td>
<td>190.0000</td>
<td>8.0000</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
<table>
<thead>
<tr>
<th>EL TYPES</th>
<th>NODE</th>
<th>SIGU</th>
<th>SIGL</th>
<th>E</th>
<th>MU</th>
<th>PHO</th>
<th>MIN SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>1000.0</td>
<td>-1000.0</td>
<td>10000000.0</td>
<td>0.300</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
THE FOLLOWING NODES ARE RESTRAINED

IN THE X-DIRECTION

1 2

IN THE Y-DIRECTION

1 2

IN THE Z-DIRECTION

1 2

*** WARNING *** SYMMETRIC LOAD CONDITION 1
DEGREE OF FREEDOM 1 IS CONSTRAINED
THE C.O. LOAD IS SUPPRESSED

*** WARNING *** SYMMETRIC LOAD CONDITION 1
DEGREE OF FREEDOM 2 IS CONSTRAINED
THE C.O. LOAD IS SUPPRESSED

*** WARNING *** SYMMETRIC LOAD CONDITION 2
DEGREE OF FREEDOM 1 IS CONSTRAINED
THE C.O. LOAD IS SUPPRESSED

*** WARNING *** SYMMETRIC LOAD CONDITION 2
DEGREE OF FREEDOM 2 IS CONSTRAINED
THE C.O. LOAD IS SUPPRESSED

INCIV. DISPL. CONSTRAIN RED. DIR. NOS, SYM THEN ANTISYM

UPPER AND LOWER DISPL. CONSTRAINT LIMITS
0.200E 01
0.200E 01

THE APPLIED LOAD MATRIX

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
Iteration 1

<table>
<thead>
<tr>
<th></th>
<th>0.4897</th>
<th>0.4897</th>
<th>0.4897</th>
<th>0.4897</th>
<th>0.4897</th>
<th>0.9790</th>
<th>0.9790</th>
<th>0.9790</th>
<th>0.9790</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0810</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
<td>0.0513</td>
</tr>
</tbody>
</table>

The structure weight is 233.8619

Iteration 2

<table>
<thead>
<tr>
<th></th>
<th>0.3950</th>
<th>0.4286</th>
<th>0.4286</th>
<th>0.4286</th>
<th>0.4286</th>
<th>0.2508</th>
<th>0.0520</th>
<th>0.0574</th>
<th>0.0216</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
<td>0.0304</td>
</tr>
</tbody>
</table>

The structure weight is 174.7180

Displacements by Load Condition

Symmetric - Load Condition A. 1

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COMPONENT</th>
<th>Y-COMPONENT</th>
<th>Z-COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-0.31387311E-01</td>
<td>-0.14506877E-01</td>
<td>0.30002379E 00</td>
</tr>
<tr>
<td>4</td>
<td>-0.12678031E-02</td>
<td>-0.15420891E-01</td>
<td>0.41533725E 00</td>
</tr>
<tr>
<td>5</td>
<td>-0.24633022E-01</td>
<td>-0.15586824E-01</td>
<td>0.85549703E 00</td>
</tr>
<tr>
<td>6</td>
<td>-0.21545753E-01</td>
<td>-0.11655594E 00</td>
<td>0.13673470E 01</td>
</tr>
<tr>
<td>7</td>
<td>-0.10476580E 00</td>
<td>-0.16921954E 00</td>
<td>0.23638496E 01</td>
</tr>
</tbody>
</table>

Symmetric - Load Condition A. 2

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COMPONENT</th>
<th>Y-COMPONENT</th>
<th>Z-COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-0.31255910E-01</td>
<td>-0.14579813E-01</td>
<td>0.40478740E-01</td>
</tr>
<tr>
<td>4</td>
<td>-0.25133383E-02</td>
<td>-0.11201232E-02</td>
<td>0.20189489E-01</td>
</tr>
<tr>
<td>5</td>
<td>-0.29176676E-02</td>
<td>-0.11218784E-01</td>
<td>0.11246336E 00</td>
</tr>
<tr>
<td>6</td>
<td>-0.15464199E-01</td>
<td>-0.15022815E-01</td>
<td>0.10255249E 00</td>
</tr>
<tr>
<td>7</td>
<td>-0.48450085E-01</td>
<td>-0.41048584E-01</td>
<td>0.20941879E 00</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
THE STRESS MATRIX

SYMMETRIC - LOAD CONDITION NO. 1

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.73543</td>
<td>-0.62418</td>
<td>0.65678</td>
<td>0.46745</td>
<td>0.84546</td>
<td>0.14567</td>
<td>0.55066</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.62418</td>
<td>-0.73543</td>
<td>0.21589</td>
<td>0.58956</td>
<td>0.11708</td>
<td>0.85246</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.65678</td>
<td>0.21589</td>
<td>-0.88399</td>
<td>0.11708</td>
<td>0.85246</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.46745</td>
<td>0.58956</td>
<td>0.11708</td>
<td>-0.88399</td>
<td>0.11708</td>
<td>0.85246</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.84546</td>
<td>0.11708</td>
<td>0.85246</td>
<td>0.11708</td>
<td>-0.88399</td>
<td>0.11708</td>
<td>0.85246</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
</tr>
<tr>
<td>6</td>
<td>0.14567</td>
<td>0.85246</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.55066</td>
<td>0.17063</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.66736</td>
<td>0.66736</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.23555</td>
<td>0.23555</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.25534</td>
<td>0.25534</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.27667</td>
<td>0.27667</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.35417</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.65656</td>
<td>0.38216</td>
<td>0.66745</td>
<td></td>
</tr>
</tbody>
</table>

SYMMETRIC - LOAD CONDITION NO. 2

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.29731</td>
<td>0.15736</td>
<td>0.45714</td>
<td>0.12600</td>
<td>0.46343</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.15736</td>
<td>0.29731</td>
<td>0.45714</td>
<td>0.12600</td>
<td>0.46343</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.45714</td>
<td>0.45714</td>
<td>0.12600</td>
<td>0.46343</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.12600</td>
<td>0.12600</td>
<td>0.46343</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.46343</td>
<td>0.46343</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.92718</td>
<td>0.92718</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.74137</td>
<td>0.74137</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.50714</td>
<td>0.50714</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.14214</td>
<td>0.14214</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.25670</td>
<td>0.25670</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.10821</td>
<td>0.10821</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.17027</td>
<td>0.17027</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.28600</td>
<td>0.28600</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.26893</td>
<td>0.26893</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.12523</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.12523</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
TIE STRUCTURE

WEIGHT IS 174.7180

REACTIONS BY LOAD CONDITION

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COMPONENT</th>
<th>Y-COMPONENT</th>
<th>Z-COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13256477E-05</td>
<td>0.82437484E-05</td>
<td>-0.15400227E-04</td>
</tr>
<tr>
<td>2</td>
<td>0.26294507E-06</td>
<td>0.13213333E-05</td>
<td>-0.34000156E-04</td>
</tr>
<tr>
<td>3</td>
<td>0.50781250E-01</td>
<td>0.425675GE-01</td>
<td>-0.14801025E-01</td>
</tr>
<tr>
<td>4</td>
<td>0.11718750E-01</td>
<td>0.56781250E-01</td>
<td>-0.61035156E-02</td>
</tr>
<tr>
<td>5</td>
<td>-0.23437500E-01</td>
<td>0.56781250E-01</td>
<td>0.23076172E-01</td>
</tr>
<tr>
<td>6</td>
<td>-0.31250000E-01</td>
<td>0.31640625E-00</td>
<td>-0.99868774E-01</td>
</tr>
<tr>
<td>7</td>
<td>0.53791612E-01</td>
<td>0.51953125E-00</td>
<td>0.12917835E-00</td>
</tr>
</tbody>
</table>

SYMTRIC LOAD CONDITION NO. 2

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COMPONENT</th>
<th>Y-COMPONENT</th>
<th>Z-COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2030934E-04</td>
<td>0.25862354E-04</td>
<td>-0.35286646E-03</td>
</tr>
<tr>
<td>2</td>
<td>-0.30502546E-04</td>
<td>0.22337564E-03</td>
<td>0.35287183E-03</td>
</tr>
<tr>
<td>3</td>
<td>-0.78125000E-02</td>
<td>0.52189055E-02</td>
<td>-0.53405762E-03</td>
</tr>
<tr>
<td>4</td>
<td>-0.44336671E-02</td>
<td>0.35062500E-02</td>
<td>0.27675320E-03</td>
</tr>
<tr>
<td>5</td>
<td>-0.82011719E-01</td>
<td>-0.81250000E-01</td>
<td>0.58841705E-03</td>
</tr>
<tr>
<td>6</td>
<td>-0.31250000E-01</td>
<td>0.53025000E-02</td>
<td>0.71716309E-03</td>
</tr>
<tr>
<td>7</td>
<td>-0.42927314E-01</td>
<td>-0.36987305E-01</td>
<td>-0.61068083E-02</td>
</tr>
</tbody>
</table>

Figure 6 (Continued)
VI. PROGRAMMER'S MANUAL

The programmer's manual for the OPTIM III Program is designed to facilitate its implementation, operation, modification, and extension. This manual is presented in the appendix.
VII. CONCLUSIONS

This report documents the revision and extension of the weight optimization program OPTIM II to a new program OPTIM III. The new program utilizes a NASTRAN input type format (BULK DATA DARDS) and is applicable to the analyses and optimization of complex large scale structures which contain composite membrane plate types of elements.
VIII REFERENCES

APPENDIX

PROGRAMMER'S MANUAL FOR OPTIM III

Beverly J. Dale
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>173</td>
</tr>
<tr>
<td>6</td>
<td>174</td>
</tr>
</tbody>
</table>

1. Introduction
2. General Program Logic
3. External File Structure
4. Subroutine Write Ups
5. Problem Size Limitation
6. Storage Allocations for Stress and Displacement Matrices
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control and Data Interpretation Phase</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Initialization Phase</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>Calculation Phase</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Stress Matrix Storage Allocation</td>
<td>175</td>
</tr>
<tr>
<td>5</td>
<td>Displacement and Load Matrix Storage Allocation</td>
<td>176</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

The large scale automated minimum weight design program OPTIM II has been altered to make its input format compatible with the HASTRAN program. The resulting new program is called OPTIM III and the programming aspects are described in this Appendix.

The information presented here is geared to the Programmer. It is sufficient to fully describe the program logic and the required peripheral storage. All element generated data is stored externally to reduce core storage. A separate section is devoted to the development of these files so that I/O time may be optimized through efficient buffer description. Individual subroutine write-ups are presented along with the complete Fortran source listing.

A short description of each routine is included to aid in getting an overall familiarity with the program components. The manner of allocating storage for the stress and displacement matrices is described in diagram form.
SECTION 2
GENERAL PROGRAM LOGIC

The general organization of the "OPTIM" program is illustrated in Figures 1, 2 and 3.

The program consists of 3 principal phases:
1. Control and Data Interpretation Phase
2. Initialization Phase
3. Calculation Phase

1. Control and Data Interpretation Phase (Figure 1)

The principal purpose of this phase is to read the NASTRAN form input and prepare the information for the next two phases. Five subroutines, MAIN, SORT, ZZ, OPTIM2 and OPIMPT perform this function. The "MAIN" routine controls the program flow. The "SORT" and "ZZ" routines sort and count the data cards and then form the dynamic storage constants. Each NASTRAN label card is processed and stopped in core by "ZZ". An input file data tape based on OPTIM related input is then written. This data file is then used by "OPINPT" which writes on unit NTAPE all the data needed for initialization.

2. Initialization Phase (Figure 2)

This phase produces a variety of information for the Final Calculation Phase. Upon being activated by the "MAIN" routine, the "NEWS" routine determines the dynamic storage allocation for the Initialization Phase. The "AONE" routine is then activated and performs the following tasks:

A load matrix is generated in reduced form and written on tape NSS1.

Stiffness and stress matrices are defined by the called element routines (ELEM1 to ELEM8) and are written on tapes NSS1 and NSS2, respectively. The element routines write the number of stresses in the element and the weight of the element with a unit design variable on the tape NSS3.

A final tape, NSS4, is written with information on linked groups, stress and constraint limits and various other key control data.

3. Calculation Phase (Figure 3)

The Calculation Phase is begun by the "SIZE" routine. Upon being called by the "MAIN" routine, "SIZE" determines the dynamic storage allocation for the Incore Calculation Phase.
For the case where there is enough storage available for an incore solution then the routine "ATWO" controls the calculations. If enough storage is not available then control is passed to the "SIZE1" routine which attempts to allocate storage for an out-of-core solution. If the storage for out-of-core is adequate then the routine "ATW01" controls the calculation. A brief description of both in-core logic and out-of-core logic follows:

In Core Logic

The routine "ATWO" controls the following functions:

A. Tapes NSS3 and NSS4 are read. These tapes are read once and the information is used to initiate the program.

B. For each iteration tapes NSS1 and NSS2 are read. The stiffness matrices are assembled in-core and then displacements are computed by the banded in-core equation solver "BANCHO". All the element stresses are computed in core and are used with the displacements by the "SCALE" routine. Scaling of the structure is done within the stress and displacement constraint limits. If buckling is specified then during the scaling process the "BUCKTB" and "IGEN2" routines are called by the "SCALE" routine. The "MODIFY" routine then adjusts element design variables by a recursive relationship using element displacements and stiffness matrices.

C. The print out of displacements, element stresses and element design variables is done by the "ATWO" routine. "ATWO" also calculates and prints the reactions after the last iteration.

Out-of-Core Logic

The routine "ATW01" controls the following functions:

A. Tapes NSS3 and NSS4 are read and used to initialize the program. Later during execution, tape NSS3 will contain the stress matrix, one column/record. The NSS4 tape will contain the assembled stiffness matrix.

B. For each iteration tapes NSS1 and NSS2 are read. The stiffness matrices are assembled out-of-core on tape NSS4 by the "BASS" routine. Tapes NSS3 and NSS5 are used as scratch data sets for this step. The assembled stiffness matrix (which is also banded) is triangularized by routine "TCONTX" and placed on tape NSS5. Routine "EEQSX" performs the final equation solving using tape NSS5 as input. The stress matrix is computed and stored on NSS3 one column/record. The stresses and the in-core displacements are used by the "SCALE1" routine to scale the structure within stress and displacement constraint limits. If buckling is specified, the "SCALE1" routine calls
the "BUCKTB" and "IGEN2" to perform this function. As with the in-core solution, the "MODIFY" routine adjusts element design variables by a recursive relationship using element displacements and element stiffness matrices on tape NSS1.

C. The print cut of displacements, element stresses and element design variables is done by the "ATWO1" routine. "ATWO1 also calculates and prints the reactions after the last iteration.
Figure 1 (Control and Data Interpretation Phase)
FIGURE 2(INITIALIZATION PHASE)
SECTION 3

EXTERNAL DATA SET STRUCTURE

This program uses seven data sets during execution. The delivery version of the OPTIM program comes with the following variable names and real unit designations. These unit numbers may be redefined in the "MAIN" routine.

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>Unit Id</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTAPE/NSS5</td>
<td>8</td>
<td>Output from "MAIN" and "OPINPT" routines and input to "AONE" routine.</td>
</tr>
<tr>
<td></td>
<td>(BINARY)</td>
<td>For out-of-core solution (Calculation Phase) this data set is called NSS5. It is next used as a scratch data set then it is used to store the triangularized stiffness matrix.</td>
</tr>
<tr>
<td>NSS1</td>
<td>1</td>
<td>Contains load matrix and element stiffness matrices with assembly information</td>
</tr>
<tr>
<td></td>
<td>(BINARY)</td>
<td></td>
</tr>
<tr>
<td>NSS2</td>
<td>2</td>
<td>Contains element stress matrices.</td>
</tr>
<tr>
<td></td>
<td>(BINARY)</td>
<td></td>
</tr>
<tr>
<td>NSS3</td>
<td>3</td>
<td>ITOT (no. of elements) pairs of information from element matrix generation routines used to initialize the calculation phase.</td>
</tr>
<tr>
<td></td>
<td>(BINARY)</td>
<td>For out-of-core solution (Calculation Phase) this data set is next used as a scratch data set during stiffness matrix assembly. Finally it is used to store the stress matrix.</td>
</tr>
<tr>
<td>NSS4</td>
<td>4</td>
<td>Contains initialization information for ATWO routine or ATWO1 Routine.</td>
</tr>
<tr>
<td></td>
<td>(BINARY)</td>
<td>For out-of-core solution (Calculation Phase) this data set is next used to store the banded assembled stiffness matrix.</td>
</tr>
<tr>
<td>UNIT NAME</td>
<td>UNIT ID</td>
<td>USAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>L4</td>
<td>9 (FORMATTED)</td>
<td>Output from "SORT" and input to "ZZ". Contains identification record and NASTRAN input card image.</td>
</tr>
<tr>
<td>L7</td>
<td>7 (FORMATTED)</td>
<td>Output from "ZZ" and input to "OPTIM2". Contains card images in OPTIM MAGIC format.</td>
</tr>
</tbody>
</table>

NPIT/J5/L5 5 Standard card input (80 column card)

NOTE: Since units 5 and 6 are standard input and output, they will not be considered in this discussion.
NTAPE CONTENTS

OPDIVIR Section Input

For the Out-of-Core Calculation Phase. This data set is called NSS5. The triangularized stiffness matrix is stored on NSS5.

NTCDS 20A4
RECORDS
Title Cards
One Record ((Grid (I,J), J=1, 3), I=1, N2)
One Record Per Element NEL, NID, IBUCK, (NODES(J), J=1, 8), (EM(J)J=1, 7)
ITOT Records
One Record Linked Group IBGP, (ILINK(LL),LL=1,IBGP)
Bucking Info
ONE RECORD Linking (ILINK(LL),LL=1, NSG)
Info
One Record (NBOUND(I), I=1,NAM) NREACT Array number of each component bounded
Boundary Condition Info
NNZL Records IR,IC,C1,C2
Load Components
IF NDL.NE.0 One Record (NBDF(I), I=1, NDL)
Individual Constraint Info (ICON)
IF NAA.NE.0 Records KNL, (NBDF(JK),JK=1,KNL)
Generalized Constraint Info (GCON)
If NAA+NDL.NE.0 One Record (DISPU(I),DISPL(I),I=1,NDLL)
If FIRST.EQ.1 or 2 One Record (DVJR(J),J=1,ITOT)
NSS1 Contents

1st Record

\((\Delta I, I=1, J) \)

\{ Load Matrix \}

3 Records Per Element

\(J, K \)

\((X(L), L=1, J) \)

\{ Stiffness Matrix \}

\((M(L), L=1, K), (M2(L), L=1, K), NNO, (NODES(L), L=1, NNC) \)

Symmetric Antisymmetric

Nodes used in Element Definition

Assembly info vectors

86
NSS2 CONTENTS

3 Records Per Element

\[J, K, JK \]

\[((\text{STR}(KK, JJ), KK=1, K), JJ=1, J) \]

\[(M(L), L=1, J), (M2(L), L=1, J) \]

Element Stress Matrices
NSS3 Contents

2 Records Per Element

<table>
<thead>
<tr>
<th>LIST(I)</th>
<th>Number of Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PAR(L), L=KK, KK2)</td>
<td>Weight Info and X_2X_3 info for element u</td>
</tr>
</tbody>
</table>

Purpose: Initialization of ATWO routine

For Out-Of-Core Calculation Phase

The stress matrix is stored on this data set. There is one record for each column of the stress matrix.
NSS4 Contents

<table>
<thead>
<tr>
<th>NRDF, NLOAD, ITOT, NALD, NDL, NSG, NAA</th>
<th>Stress and Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SIGL(I), SIGU(I), ALL(I), I=1, ITOT), IBS, (IBK(I), I=1, IBS)</td>
<td>Limits Buckling Controls</td>
</tr>
<tr>
<td>(N7(I), I=1, NSG)</td>
<td>Linked Group Information</td>
</tr>
<tr>
<td>NRDF</td>
<td>No. of Reduced Deg. of Freedom</td>
</tr>
<tr>
<td>(NBDF(I), I=1,K), (NBDF2(I), I=1,K)</td>
<td>Individual Constraint Info</td>
</tr>
<tr>
<td>NEAA, (NE(I), I=1, NEAA), NEA2, (NE2(I), I=1, NEA2)</td>
<td>Generalized Constraint Info</td>
</tr>
<tr>
<td>(DISPU(I), DISPL(I), I=1, NDL)</td>
<td>Limits for Constraints</td>
</tr>
<tr>
<td>C1, C2, ITERN</td>
<td></td>
</tr>
<tr>
<td>(AREA(I), I=1, ITOT)</td>
<td>For Out-Of-Core Calculation Phase</td>
</tr>
<tr>
<td>LOAD1, LOAD2, NSYM, NASYM, NONSYM, NRDF, (LNOD(I), I=1, NRDF), NRDF2, (LNOD2(I), I=1, NRDF2)</td>
<td></td>
</tr>
<tr>
<td>NREF, NDOF, KKTRL, NBOU, (NPI(I), I=1, NBOU), NBOUN2, (NP2(I), I=1, NBOUN2)</td>
<td></td>
</tr>
</tbody>
</table>

The banded and assembled stiffness matrix is stored in this data set.
These records can be in any order on the file. It represents data in "pairs" of records. Each pair represents one specific type of data items determined by the value "NKIND" and "NCOUNT" which are written on the first record of the pair. R

Record one of the pair: NKIND, NCOUNT

Record two is determined by NKIND as shown in the following table:

<table>
<thead>
<tr>
<th>NKIND</th>
<th>Second Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BULK</td>
</tr>
<tr>
<td>2</td>
<td>TITLE</td>
</tr>
<tr>
<td>3</td>
<td>BUCK</td>
</tr>
<tr>
<td>4</td>
<td>CONROD</td>
</tr>
<tr>
<td>5</td>
<td>CQDMEM</td>
</tr>
<tr>
<td>6</td>
<td>CQDMEM1</td>
</tr>
<tr>
<td>7</td>
<td>CQDMEM2</td>
</tr>
<tr>
<td>8</td>
<td>CQDMID</td>
</tr>
<tr>
<td>9</td>
<td>CQUAD1</td>
</tr>
<tr>
<td>10</td>
<td>CQUAD2</td>
</tr>
<tr>
<td>11</td>
<td>CRDMID</td>
</tr>
<tr>
<td>12</td>
<td>CROD</td>
</tr>
<tr>
<td>13</td>
<td>CSHEAR</td>
</tr>
<tr>
<td>14</td>
<td>CTRIA1</td>
</tr>
<tr>
<td>15</td>
<td>CTRIA2</td>
</tr>
<tr>
<td>16</td>
<td>CTRMEM</td>
</tr>
<tr>
<td>17</td>
<td>CTRMDI</td>
</tr>
<tr>
<td>18</td>
<td>CTUBE</td>
</tr>
<tr>
<td>19</td>
<td>END*</td>
</tr>
<tr>
<td>20</td>
<td>ENDDATA</td>
</tr>
<tr>
<td>21</td>
<td>FORCE</td>
</tr>
<tr>
<td>22</td>
<td>GCON</td>
</tr>
<tr>
<td>23</td>
<td>GRID</td>
</tr>
<tr>
<td>24</td>
<td>ICON</td>
</tr>
<tr>
<td></td>
<td>LINKS</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>25</td>
<td>LINKS</td>
</tr>
<tr>
<td>26</td>
<td>MOMENT</td>
</tr>
<tr>
<td>27</td>
<td>MAT1</td>
</tr>
<tr>
<td>28</td>
<td>OPLoad</td>
</tr>
<tr>
<td>30</td>
<td>OPRVIR</td>
</tr>
<tr>
<td>31</td>
<td>OPTIM</td>
</tr>
<tr>
<td>32</td>
<td>PQDMEM</td>
</tr>
<tr>
<td>33</td>
<td>PQDMEM1</td>
</tr>
<tr>
<td>34</td>
<td>PQDMEM2</td>
</tr>
<tr>
<td>35</td>
<td>PQDMID</td>
</tr>
<tr>
<td>36</td>
<td>PQQUAD1</td>
</tr>
<tr>
<td>37</td>
<td>PQQUAD2</td>
</tr>
<tr>
<td>38</td>
<td>PRDMID</td>
</tr>
<tr>
<td>39</td>
<td>PROD</td>
</tr>
<tr>
<td>40</td>
<td>PSHEAR</td>
</tr>
<tr>
<td>41</td>
<td>PTRIA1</td>
</tr>
<tr>
<td>42</td>
<td>PTRIA2</td>
</tr>
<tr>
<td>43</td>
<td>PTRMEM</td>
</tr>
<tr>
<td>44</td>
<td>PTRMID</td>
</tr>
<tr>
<td>45</td>
<td>PTUBE</td>
</tr>
<tr>
<td>46</td>
<td>SPC</td>
</tr>
<tr>
<td>47</td>
<td>SPC1</td>
</tr>
<tr>
<td>48</td>
<td>SPC1THRU</td>
</tr>
<tr>
<td>49</td>
<td>CWEB</td>
</tr>
<tr>
<td>50</td>
<td>FWEB</td>
</tr>
<tr>
<td>51</td>
<td>BEGINBULK</td>
</tr>
<tr>
<td>52</td>
<td>CTRIM6</td>
</tr>
<tr>
<td>53</td>
<td>CTRSHL</td>
</tr>
<tr>
<td>54</td>
<td>CQUAM8</td>
</tr>
<tr>
<td>55</td>
<td>CQUSHL</td>
</tr>
<tr>
<td>56</td>
<td>PTRIM6</td>
</tr>
<tr>
<td>57</td>
<td>PTRSHL</td>
</tr>
<tr>
<td>58</td>
<td>PQUAM8</td>
</tr>
<tr>
<td>59</td>
<td>PQUSHL</td>
</tr>
</tbody>
</table>
L7 Contents (80 character card images)

<table>
<thead>
<tr>
<th>Record #1</th>
<th>REPORT (2A4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>" " #2</td>
<td>TITLE (2A4)</td>
</tr>
<tr>
<td>" " #3</td>
<td>NTIT (6X, 113)</td>
</tr>
<tr>
<td>" " #4</td>
<td>(IEDINC(I), I=1, 20)</td>
</tr>
<tr>
<td>" " #5</td>
<td>SYSTEM, (BLANK, I=1, 18)</td>
</tr>
<tr>
<td>" " #6</td>
<td>NGR1, NGR2, NS4S, ILOAD, NECARD, MNN</td>
</tr>
<tr>
<td>" " #7</td>
<td>OPTIM (OPT(I), I=1, 16)</td>
</tr>
<tr>
<td>" " #8</td>
<td>COORD, (BLANK, I=1, 18)</td>
</tr>
</tbody>
</table>

NGRI records
- M, C1, C2, C3

NEL records
- ELEM, (BLANK, I=1, 18)
- I, NOPT(I), X, NNODES(I), (NODENO(I,J), J=1, 8)
- OEXTERN, (BLANK, I=1, 18)

NECARD records
- I, BUCK(I), A, B, C, D, E, F, G, H, P, Q, R,
- J, ANGLE(I)
- LINK, (BLANK, I=1, 19)
- LLINK
- BOUND, (BLANK, I=1, 18)
- (BLANK, I=1, 20)
- MODAL (I, I=1, NSIS)
- I, (LBOUND (I, J), J=1, NSYS)

NOCARD records
- OLOADS, (BLANK, I=1, 18)
- LCOND, IL
- MODAL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- IGR, C1, C2, C3, C4

NLOADS TIMES
- ICON, (BLANK, I=1, 19)
- EYEC (J, I), J=1, 13

92
NGROUP TIMES
\{ NGROUP records \{ GGROUP, I
GROUP(5, I), GROUP(6, I)
\}
NGC1 record \{ GCOND (?, J), (GCOND(K, J) K=3, 14)
. OPDVIR, (BLANK, I=1, 18)
\}

NLL TIMES \{ OPD, (BLANK, I=1, 18)
OPDV
\}
last record FEND = "END"
Section 4

Subroutine Write-Ups

The OPTIM program contains 37 subprograms, each with a unique sequence number. Columns 73, 74, 75 and 76 contain the \"DECK\" name and columns 77 through 80 contain the card sequence number for that subprogram. The first is always \---0000 with successive increments of 10.

Included with each description is a statement declaring the size of the subprogram. This number is intended as a guide only, as it reflects the storage requirement on an IBM/360/65, FORTRAN G level 19 compiler.

In this manual the subroutine writeups are presented in alphabetical order.
Brief Routine Descriptions

<table>
<thead>
<tr>
<th>Routine Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUST</td>
<td>Adjust each NASTRAN form field so that it is either left or right adjusted.</td>
</tr>
<tr>
<td>AONE</td>
<td>Control initialization</td>
</tr>
<tr>
<td>ATWO</td>
<td>Control calculation and print out (in-core solution)</td>
</tr>
<tr>
<td>ATWO1</td>
<td>Control calculation and print out (out-of-core solution)</td>
</tr>
<tr>
<td>BANCHO</td>
<td>Banded in-core equation solver</td>
</tr>
<tr>
<td>BASS</td>
<td>Assemble banded stiffness matrix (out-of-core solution)</td>
</tr>
<tr>
<td>BCB</td>
<td>Matrix triple product</td>
</tr>
<tr>
<td>BEQSX</td>
<td>Equation solver (out-of-core solution)</td>
</tr>
<tr>
<td>BEMAT</td>
<td>Generates A matrix for triangular plate, also area</td>
</tr>
<tr>
<td>EUCKTB</td>
<td>Interfaces with SCALE and IGEN2. Determines minimum plate thickness for stability.</td>
</tr>
<tr>
<td>CMAT3</td>
<td>Generates C3 matrix for triangular plate</td>
</tr>
<tr>
<td>CUBIC</td>
<td>Solve for principle beam stresses</td>
</tr>
<tr>
<td>EGMAT</td>
<td>Generates EG matrix for triangular plate</td>
</tr>
<tr>
<td>EMAT</td>
<td>Generate elasticity matrix for either orthotropic or isotropic properties, membrane triangle</td>
</tr>
<tr>
<td>ELEM1</td>
<td>Axial</td>
</tr>
<tr>
<td>ELEM2</td>
<td>Shear web</td>
</tr>
<tr>
<td>ELEM3</td>
<td>Triangle</td>
</tr>
<tr>
<td>ELEM4</td>
<td>Quad</td>
</tr>
<tr>
<td>ELEM5</td>
<td>Beam (tube)</td>
</tr>
<tr>
<td>ELEM6</td>
<td>Mid-point axial</td>
</tr>
<tr>
<td>ELEM7</td>
<td>Mid-point triangle</td>
</tr>
<tr>
<td>ELEM8</td>
<td>Mid-point quad</td>
</tr>
<tr>
<td>Routine Name</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>ESCONT</td>
<td>Solve matrix equation (A^* A) Transpose (X = F), for (X) (out-of-core solution)</td>
</tr>
<tr>
<td>FOMO</td>
<td>Process Force Cards</td>
</tr>
<tr>
<td>GMPRD</td>
<td>Matrix product</td>
</tr>
<tr>
<td>GTPRD</td>
<td>Matrix product with transpose of first matrix</td>
</tr>
<tr>
<td>IGEN2</td>
<td>Solves Eigenvalue for buckling coefficient of plate</td>
</tr>
<tr>
<td>INSPC</td>
<td>Stores data obtained from input card into working storage</td>
</tr>
<tr>
<td>INSRTI</td>
<td>Stores element properties and material numbers into working storage</td>
</tr>
<tr>
<td>KCALC</td>
<td>Solve for (X) where (A^* X F) and (A) is banded lower triangular matrix (out-of-core solution)</td>
</tr>
<tr>
<td>KMAT</td>
<td>Generates stiffness matrix for triangular membrane</td>
</tr>
<tr>
<td>MAIN</td>
<td>Control program flow</td>
</tr>
<tr>
<td>MFGR</td>
<td>Matrix Ranking</td>
</tr>
<tr>
<td>MINV</td>
<td>Matrix Inverse</td>
</tr>
<tr>
<td>MODIFY</td>
<td>Next element design parameter guess after scaling</td>
</tr>
<tr>
<td>NEWS</td>
<td>Allocate storage for initialization</td>
</tr>
<tr>
<td>OPTIM2</td>
<td>Interprets input and initializes data.</td>
</tr>
<tr>
<td>OPINPT</td>
<td>Interpret report from input and place results on NTAPE</td>
</tr>
<tr>
<td>PS3D</td>
<td>Define cubic equation from beam stress components</td>
</tr>
<tr>
<td>PS3R</td>
<td>Normalize stresses</td>
</tr>
<tr>
<td>READI</td>
<td>Reads and modifies input data</td>
</tr>
<tr>
<td>SCALE</td>
<td>Scale structure using stress, displacement and buckling constraints (in-core solution)</td>
</tr>
<tr>
<td>SCALE1</td>
<td>Scale structure using stress, displacement and buckling constraints (out-of-core solution)</td>
</tr>
<tr>
<td>SIZE</td>
<td>Allocate storage for calculation phase (in-core solution)</td>
</tr>
<tr>
<td>Routine Name</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>SIZEI</td>
<td>Allocate storage for calculation phase (out-of-core solution)</td>
</tr>
<tr>
<td>SMAT</td>
<td>Generate stress element matrix for membrane triangular plate with orthotropic properties</td>
</tr>
<tr>
<td>SORT</td>
<td>Sort and count data based on LABEL information</td>
</tr>
<tr>
<td>SPCSUB</td>
<td>Process SPC (single point constraint) cards</td>
</tr>
<tr>
<td>TCONTX</td>
<td>Control tape flow to triangularize stiffness matrix (out-of-core solution)</td>
</tr>
<tr>
<td>TMAT</td>
<td>Generate transformation matrix for triangular plate orthotropic angle</td>
</tr>
<tr>
<td>TTRI</td>
<td>Triangularize rows of a banded matrix A (out-of-core solution)</td>
</tr>
<tr>
<td>WRITEL</td>
<td>Tests character of element connection card and writes element information on to file</td>
</tr>
<tr>
<td>XCALK</td>
<td>Solve for x where $A \times x = x_k$ and A is an upper triangular matrix</td>
</tr>
<tr>
<td>XTRAK</td>
<td>Interpret degree of freedom informations</td>
</tr>
<tr>
<td>XTRAK2</td>
<td>Interpret degree of freedom informations for generalized constraint information</td>
</tr>
<tr>
<td>ZZ</td>
<td>Generates OPTIM data which is input by NASTRAN form input cards</td>
</tr>
</tbody>
</table>
1. Subroutine Name ADJUST
2. Purpose Adjust each NASTRAN form field so that it is either left or right adjusted.
3. Procedures Each character of the word is tested to see if it is blank. When a non-blank is met, it is shifted to the end of the word.
4. Input Arguments WORD - Input word to be either right or left adjusted
 Icode Icode = 8 specifies that the word should be right adjusted
 Icode = 1 specifies that the word should be left adjusted
5. Output Arguments Word right adjusted, word is stored back into WORD
6. Error Returns None
7. Calling Sequence CALL ADJUST (Word, ICODE)
8. Subroutine User NEWS
1. Subroutine Name: AONE

2. Purpose: Assemble all initialization information for the calculation phase of the program.

3. Equations and Procedures:
 a) Print out title cards.
 b) Retrieve (15) coordinate+element data. If requested print this data out.
 c) Recalculate boundary conditions if symmetry plane nodes are specified.
 d) Create load matrix from input loads.
 e) Define virtual loads for individual constraints and generalized constraints.
 f) Call element routines.
 g) Four tapes of data are written with information for the calculation program (ATWO).

4. Input Arguments:
 I5 (Unit 8) tape
 NPOT (Unit 6) printer
 NSS1-NSS4 (Units 1-4) tapes
 N2 No. of nodes
 NAA No. of generalized constraints
 NDL No. of Individual Constraints
 NSG No. of Linked Groups
 NNZL No. of input loads
 KLN2 No. of symmetry plane nodes
 NSYM No. of symmetric load conditions
 NASYM No. of antisymmetric load conditions
 NONSYM No. of non-symmetric load conditions
 ITERN Max. no. of iterations
 NTCDs No. of title cards

5. Output Arguments:
 C1INP Convergence limits
 C2INP
 NRDF No. of reduced DOF (symmetric load condition)
 NEAA No. of generalized displacement constraints
 NBGU Total no. of constrained DOF (symmetric load condition)
 IRST Calculation control

6. Error Returns: IER

7. Calling Sequence:
 CALL AONE(X,Y,Z,N5,N6,N7,E,AMU,N8,N17,ALL,RHO,SIGU, SIGL,R,N11,N13,N15,NOAL,NOAL2,KL,KNOD,LNOD2, DISPU,DISPL,NDF,NDP2,NSE,DELTA,N5,NPOT,NSS1,NSS2, NSS3,NSS4,IBUKL,IELT,IBK,N1,N2,NAA,NDL,NSG,NNZL,
NLD, KLN2, NSYM, NASYM, NONSYM, ITERN, NTCDS, IRESI, ITOT, IELI, NREAChT, C1INC, C2INC, NRDF, NRDF2, NEAA, NEA2, NDL1, NDL2, NB0U, NBOUND2, IRST, KNCAL, IER)

8. Input Tapes: NTAPE (unit 8)

9. Output Tapes:

- NSS1 (unit 1)
- NSS2 (unit 2)
- NSS3 (unit 3)
- NSS4 (unit 4)

10. Scratch Tapes: None

11. Storage Required: (20160 bytes) 5040 words

12. Subroutine User: NEWS

13. Subroutine Required:
 - ELEM1
 - ELEM2
 - ELEM3
 - ELEM4
 - ELEM5
 - ELEM6
 - ELEM7
 - ELEM8

14. Remarks: None
1. Subroutine Name: ATWO

2. Purpose: Control execution of the in-core calculation phase of the program.

3. Equations and Procedures:
 a. Read in all data from NSS4 tape.
 b. Generate information vectors for BANCHO (in-core equation solver).
 c. Read in data from NSS3. Element information consisting of number of stresses and weight factor.
 d. Assemble stiffness matrices and solve for stresses and displacements in two passes. The first pass computes symmetric load conditions and the second pass computes anti-symmetric load conditions.
 e. If this is a statics problem go to g) otherwise continue.
 f. Call SCALE routine to scale stresses, displacements and design variables.
 g. Print design parameters, displacements and stresses if requested for every iteration or if this is last iteration. If statics run go to j).
 h. Check convergence.
 i. Call MODIFY routine and return to d).
 j. If last iteration compute and print reactions by load and node.

4. Input Arguments:
 - LLK: Total number of stresses
 - NPCT: (Unit 6) printer
 - NSS1-NSS4: (Units 1-4) tapes
 - NGV: Calculation control
 - NTERN: Maximum number of iterations
 - IP1: Print control for displacements
 - IP2: Print control for stresses
 - IPRINT: Print control for element design variables
 - IBUKL: Buckling control from OPTIM section of input

5. Output Arguments: None

6. Error Returns: IER

7. Calling Sequence:
 CALL ATWO(LLK, SIGL, SIGU, ALL, LST, AREA, ARES, BICS, PAR, DELTA, STRESS, ME, ME2, DISPU, DISPL, NDFP, NDSP, LMOD, LA, LR, AUX,
 NZ, LA2, LMOD2, ST, NP1, NP2, ADFR, N5, NC, AREAD, LLK, NPOT, NSS1, NSS2, NSS3, NSS4, IP1, IP2, NGV, NTERN, IPRINT, IBUKL, IBK, IER)
3. Input Tapes:

NSS1 (Unit 1)
NSS2 (Unit 2)
NSS3 (Unit 3)
NSS4 (Unit 4)

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

(14032 Bytes) 3508 words

12. Subroutine User: Size

13. Subroutine Required:

BANCHO
SCALE
MODIFY

14. Remarks: None
1. Subroutine Name: ATWO1

2. Purpose: Control execution of the out-of-core calculation phase of the program.

3. Equations and Procedures:

The difference between the ATWO and ATWO1 routines is that the stress matrix is stored on tape and the assembled stiffness matrix is also on tape for the ATWO1 routine.

a) Read in all data from NSS4 tape.
b) Read data from NSS3 tape.
c) Assemble stiffness matrices and solve for displacements and stresses in two passes. The first pass solves for symmetric load conditions and the second pass solves for anti-symmetric load conditions. Call routines BASS, BEQSX AND TCONTX to assemble and solve for displacements.
d) Go to f) for statics problem.
e) Call SCALE1 routine to scale stresses, displacements and design variables.
f) Print design variables, displacements and stresses if requested for every iteration or if this is the last iteration. If statics run go to i).
g) Check convergence.
h) Call MODIFY routine and return to c).
i) If last iteration compute and print reactions by load and node.

4. Input Arguments:

LLK Total number of stresses
NPOT Printer
NSS1-NSS5 Tape Units
NGV Calculation control
NTERN Maximum number of iterations
IPL,IP2, IPRINT } Print controls for displacement stress+
IBUKL Buckling control from OPTIM section of input

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

.ATWO1 (N7, SIGL, SIGU, ALL, LIST, AREA, AQUEA, BIGS, PAR, DELTA, STRESS, NE, ME2, DISPU, DISPL, NBDF, NBDF2, LA, NZ, INOD2, ST, NPL, NP2, ADEA, N5, N6, AREAD, LLK, NPOT, NSS1, NSS2, NSS3, NSS4, NSS5, IPL, IP2, NGV, NTERN, IPRINT, IBUKL, IBK, NITOTAL, IER).
8. Input Tapes:
 NSS1
 NSS2
 NSS3
 NSS4
 NSS5

9. Output Tapes: None

10. Scratch Tapes: NSS

11. Storage Required:
 (14978 bytes) 3745 words

12. Subroutine User: SIZE1

13. Subroutine Required:
 PASS
 SCALE1
 MODIFY
 BEQSX
 TCONTEXT
1. Subroutine Name: BANCHO

2. Purpose:
 In core banded matrix equation solver.

3. Equations and Procedures:
 When given an $N \times N$ positive definite matrix $[A]$ a
general Cholesky triangularization is effected.

4. Input Arguments:
 - A: Matrix of coefficients
 - R: Independent variable (vectors)
 - N: Number of equations
 - M: Number of dependent variables for solution
 - IR: Row numbers
 - IC: Column number of first non-zero term in A (for
each row).
 - IA: Diagonal locations in A
 - AUX: Dummy array (N long)

5. Output Arguments:
 - R: Solution vectors
 - A: Is destroyed

6. Error Returns:
 Writes matrix can not be inverted, ROW, I4, STOP

7. Calling Sequence:
 CALL BANCHO (A,R,N,M,IR,IC,IA,AUX)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:
 4358 bytes 1089 words

12. Subroutine User: ATWO

13. Subroutine Required: None

105
1. Subroutine Name: BASS

2. Purpose:

Assembly of banded symmetric matrix from symmetric element arrays.

3. Equations and Procedures:

a) The total assembled matrix is initially set = zero.

b) A "core full" section of the assembled matrix is handled at one time. Each element matrix is read into STA from tape I4. Each LISTEL is read from tape I4. This LISTEL is an element matrix array which contains the row numbers of the assembled matrix into which the element matrix must be added.

c) Each fixed point number in LISTEL is examined. If it is = 0 no addition into the system matrix is made. If it is greater than the maximum row number considered in the current computation pass, the particular element information is put on Tape I3 for later use in a subsequent computation pass.

d) If more than one computation pass is necessary, the section of the element matrix which has not been used is placed on tape I3.

e) Steps 2, 3, 4, are repeated for each element.

f) The assembled matrix portion for each computation pass is placed on tape I3 in banded form. Each row of the matrix constitutes a record.

4. Input Arguments:

STA	Storage array for assembled matrix
NELEM	Number of elements
NMDB	Order of system
LISTEL	Element of assembly vector
NZEL	Cumulative total of non zero elements in rows 1 through i-1 or reduced matrix
IZR	Number of zero elements in row of reduced matrix
IRA	Work storage array
IMAX	Number of work storages available
ST	Storage array for element stiffness matrix
AREA	Element design parameter array
KASEM	Symmetric/anti-symmetric indicator
5. Output Arguments:

N5 Output element array read from tape I4
N6 Output element array read from tape I4
BIGS Output element array read from tape I4

6. Error Returns: None

7. Calling Sequence:

CALL BASS (STA, NELEM, NMDB, LISTEL, NzEL, IZR, IRA, IMAX,

8. Input Tapes:

Tape I4 - Element matrices and element controls

9. Output Tapes:

Tape I3 - Assembled matrix in banded symmetric form.
Each row equals a record.

10. Scratch Tapes:

I7 - Temporary storage for element matrices
I8 - First temporary storage for element matrices
for later computation pass

11. Storage Required:

(3456 Bytes) 864 words

12. Subroutine User: ATW01

13. Subroutine Required: None
1. Subroutine Name: BCB

2. Purpose: To evaluate the triple product: the transpose of a matrix A, a symmetric matrix S and the A matrix

3. Equations and Procedures:

\[AN_{NM} = \sum_{N} \sum_{N} A_{MN}^T \cdot S_{NN} \cdot A_{NM} \]

4. Input Arguments:

- A: The elements of the A matrix
- SYM: The elements of the S matrix (symmetric-bottom half)
- ND, MD: Dimension of A matrix
- N, M: Order of A matrix
- N1: Number of rows to be deleted in multiplication = 0
- SCAL: Scalar quantity
- IASSY: See remark

5. Output Arguments:

- AN: Elements of the matrix AN which is the final product

6. Error Returns: None

7. Calling Sequence:

CALL BCB(A, SYM, AN, ND, MD, N, M, N1, SCAL, IASSY)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

(1040 bytes) 260 words

12. Subroutine User:

ELEM7, ELEM4, ELEM5

13. Subroutine Required: None

14. Remarks:

IASSY controls the summation procedure.
If IASSY = 1, AN will be the sum of the calculated AN and all previous elements of AN.
IASSY = 0, AN will be the triple product.
1. Subroutine Name: BEQSX

2. Purpose:
 To perform simultaneous equation solution for banded symmetric matrix input using Cholesky procedure.

3. Equations and Procedures:
 1. The program is designed so that a "core-filled" piece is considered at one time. The procedure to handle this is set up.
 2. All loads are stored in pool from the input argument list.
 3. A call to ESCONT is made. This is the routine which actually does the computation.
 4. Displacements are stored in the DISPL array output from ESCONT.

4. Input Arguments:
 - AK: Storage array for input matrix
 - NZEL: Cumulative total of non-zero elements in rows 1 through i-1 of reduced matrix
 - IZR: Number of zero elements in row of reduced matrix
 - XK: Working storage array
 - PCOL: Load vector
 - NMDB: Order of system
 - NTOTAL: No. of work storages available
 - NL: No. of load conditions

5. Output Arguments:
 - DISPL: Displacements

6. Error Returns: None

7. Calling Sequence:
 CALL BEQSX (AK, NZEL, IZR, XK, DISPL, PCOL, I7, NMDB, NTOTAL, NL)

8. Input Tapes:
 - I7: Input triangularized banded matrix array

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:
 (1864 Bytes) 466 words
12. Subroutine User: ATWO1
13. Subroutine Required: ESCONT
1. Subroutine NAME: \textbf{BMAT}

2. Purpose
Generates a matrix for triangular plate. Also generates AREA of triangle.

3. Equation and Procedures
\[
\begin{vmatrix}
 x_2y_3 - x_3y_2 & 0 & 0 \\
 y_2 - y_3 & y_3 & -y_2 \\
 x_3 - x_2 & -x_3 & x_2 \\
\end{vmatrix}
\]

\[
BINV = \frac{x_2y_3 - x_3y_2}{x_2y_3 - x_3y_2}
\]

Area = \(\frac{1}{2} (x_1y_2 + x_2y_3 + x_3y_1 - y_3x_1 - x_3y_2 - x_2y_1) \)

4. Input Arguments
\[
\begin{align*}
 x(i) & : x \text{ coordinate values } \\
 y(i) & : y \text{ coordinate values }
\end{align*}
\]
\(i = 1, 2, 3 \)

5. Output Arguments
\begin{align*}
 \text{BINV} & : \text{output matrix} \\
 \text{AREA} & : \text{output value of area}
\end{align*}

6. Error Returns
None

7. Calling Sequence
\[
\text{CALL BMAT (BINV, X, Y, AREA)}
\]

8. Subroutine User
ORTH03

9. Subroutine Required
None
1. Subroutine Name: BUCKTB

2. Purpose:

This subroutine will determine the minimum plate thickness for the stability of a flat rectangular simply supported plate subjected to biaxial stresses and shear.

3. Equations and Procedures:

The Shear Buckling Coefficient, K_s, is determined for symmetric and antisymmetric buckling modes wherein the eigenvalue subroutine IGEW2 is employed. A one dimensional Newton Raphson iterative procedure is used to converge the K calculated and the K determined from the element geometry and state of stress. The solution is based on the Raleigh-Ritz method and the general form assumed for the deflected surface is

$$W = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

K_s is calculated from the homogeneous linear set of equations represented as

$$\sum_{p} \sum_{q} \frac{mnpq}{(m^2-p^2)(n^2-q^2)} \alpha_{pq} = -\frac{(m^2+n^2q^2)^2}{32K_s^3} \left[(m^2+n^2q^2)^2 - K_x m^2n^2 + K_y n^2q^2 \right]$$

where $\beta = a/b$; $m=1, 2, 3 \ldots$; $n = 1, 2, 3 \ldots$; and $(m+p, n+q)$ are odd numbers.

4. Input Arguments:

SIGX Stress in the x direction
SIGY Stress in the y direction
TAU Shear stress in x-y plane
TO Given thickness
AL, EL Lengths of sides of rectangle AL EL
DC Input material constant
IELE Element number

5. Output Arguments:

TB - Output material thickness
5. Calling Sequence:

 CALL BUCKTB(SIGX,SIGY,TAU,TO,AL,EL,DC,IELE,IOE,TB)

7. Input Tapes: None

8. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

 (9880 Bytes) 2470 words

12. Subroutine User: SCALE

13. Subroutine Required: IGEN2
1. Subroutine NAME
 CMAT3

2. Purpose
 Generates C_3 matrix for triangular plate

3. Equations and Procedures
 \[C_3 = T \times E_g \times T^T \]

 \[T = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

4. Input Arguments
 EG 3 x 3 material elasticity matrix

5. Output Arguments
 C_3 Matrix defined by equation above

6. Error Return:
 None

7. Calling Sequence
 CALL CMAT3 (C_3, EG)

8. Subroutine User
 ORTHO3
1. Subroutine Name: CUBIC

2. Purpose:
 To determine principle stresses for the tube (beam) element.

3. Equations and Procedures:
 Where X is the stress given
 \[X^3 + AX^2 + BX + C = 0 \]
 Solve the cubic equation and return the three roots.

4. Input Arguments:
 A, B, C - Coefficients of cubic equation
 XX - Proportionality factor

5. Output Arguments:
 A, B, C - Three unequal real roots

6. Error Returns: None

7. Calling Sequence: CALL CUBIC (A, B, C, XX)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:
 (1748 Bytes) 437 words

12. Subroutine User: PS3D

13. Subroutine Required: None

14. Remarks: None
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Subroutine Name</td>
<td>EGMAT</td>
</tr>
<tr>
<td>2. Purpose</td>
<td>Generate E_g matrix for triangular plate</td>
</tr>
<tr>
<td>3. Equation and Procedures</td>
<td>$E_g = TET^T$</td>
</tr>
<tr>
<td>4. Input Argument</td>
<td>$E = 3 \times 3$ matrix $T = 3 \times 3$ transformation matrix</td>
</tr>
<tr>
<td>5. Out Arguments</td>
<td>$E_g = matrix$ defined by equations above</td>
</tr>
<tr>
<td>6. Error Returns</td>
<td>None</td>
</tr>
<tr>
<td>7. Calling Sequence</td>
<td>Call EGMAT (EG, E, T)</td>
</tr>
<tr>
<td>8. Subroutine User</td>
<td>ORTHO3</td>
</tr>
</tbody>
</table>
1. Subroutine Name EMAT

2. Purpose To generate elasticity matrix for either orthotropic or isotropic properties

3. Equations and Procedures
 Orthotropic (IMAT = 2)
 \[
 E = \begin{bmatrix}
 G_{11} & G_{12} & G_{13} \\
 G_{21} & G_{22} & G_{23} \\
 G_{31} & G_{32} & G_{33}
 \end{bmatrix}
 \]
 Isotropic (IMAT = 1)
 \[
 E = \begin{bmatrix}
 E_x & M_{xy} & 0 \\
 M_{xy} & E_y & 0 \\
 0 & 0 & G_{xy}
 \end{bmatrix}
 \]

4. Input Arguments Ex, Ey, M_{xy}, G_{xy} - material properties
 EM - contains G_{ij} values
 IMAT - Orthotropy code = 2 orthotropic
 Orthotropy code = 1 isotropic

5. Output Arguments E - output 3 x 3 matrix defined by equations above

6. Error Returns None

7. Calling Sequence Call EMAT (Ex, Ey, M_{xy}, G_{xy}, E, EM, IMAT)

8. Subroutine User
1. Subroutine Name: ELEM1

2. Purpose:

To compute the elemental stress and stiffness matrices for an axial element.

3. Input Arguments:

X, Y, Z Node point coordinates
E Modulus of elasticity
AMU Poisson's ratio
RHO Density
N5, N6 Element nodes
NEL Element number
N1 Degrees of freedom/node
N2 Total number of nodes

4. Output Arguments:

M Unreduced direction numbers for degrees of freedom of element
M(25) Order of stiffness matrix
M(26)=1 Number of stress components (tape NSS3)
ST(1) Start of stiffness matrix
ST(301) Start of stress matrix
AK(1) (on tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:

CALL ELEM1 (X, Y, Z, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2)

7. Input Tapes: None

8. Output Tapes: NSS3

9. Scratch Tapes: None

10. Storage Required:

(1789 Bytes) 445 words

11. Subroutine User: AONE

12. Subroutine Required: None

13. Remarks:

The stress matrix provides one stress component, \(\sigma x \).
1. Subroutine Name: ELEM2

2. Purpose:

To compute the element stress and stiffness matrices for a shear web element.

3. Input Arguments:

- X, Y, Z: Node point coordinates
- E: Modulus of Elasticity
- AMU: Poisson's Ratio
- RHO: Element Density
- N5, N6, N7, N8: Element nodes
- NEL: Element number
- N1: Degrees of freedom/node
- N2: Total number of nodes

4. Output Arguments:

- MM: Unreduced direction numbers for degrees of freedom element
- MM(25): Order of stiffness matrix
- MM(26)=1: Number of stress components (on tape NSS3)
- ST(1): Start of stiffness matrix
- ST(301): Start of stress matrix
- ARG1: (On tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:

CALL ELEM2 (X, Y, Z, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, MM, NEL, N1, N2)

7. Input Tapes: None

8. Output Tapes: NSS3 (Unit 3)

9. Scratch Tapes: None

10. Storage Required:

(7246 Bytes) 1811 words

11. Subroutine User: ACONE

12. Subroutine Required: None

13. Remarks:

A. This element can be defined by 2 or 4 nodes.
B. The stress matrix provides one stress component, γ_{xy}.
1. Subroutine Name: ELEM3

2. Purpose:

To compute the element stress and stiffness orthotropic matrices for a triangular plate element, with properties and material angle variation.

3. Input Arguments:

- X, Y, Z: Node point coordinates
- E: Modulus of elasticity
- AMU: Poisson's ratio
- RHO: Density
- N5, N6, N7: Element nodes
- NEL: Element number
- N1: Degrees of freedom/node
- N2: Total number of nodes
- EM: Material properties
- IMAT: Orthotropic code
- ANGLE: Material angle

4. Output Arguments:

- M: Reduced direction number for degrees of freedom of element
- M(25): Order of stiffness matrix
- M(26)=3: Number of stress components (on tape NSS3)
- ST(1): Start of stiffness matrix
- ST(301): Start of stress matrix
- AREA: (On tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:

 CALL ELEM3 (X, Y, X, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2, GM, IMAT, ANGLE)

7. Input Tapes: None

8. Output Tapes: NSS3 (Unit 3)

9. Scratch Tapes: None
10. Storage Required: (4876 Bytes) 1219 words

11. Subroutine User: AONE

12. Subroutine Required: ORTH03

13. Remarks:

Three components of stress at the midpoint are provided. These stresses are σ_x, σ_y, γ_{xy}.
1. Subroutine Name: **ELEM4**

2. **Purpose:**

 This routine computes the element stress and stiffness matrices for a quadrilateral plate element.

3. **Input Arguments:**

 - \(X, Y, Z \) Node point coordinates
 - \(E \) Modulus of elasticity
 - \(\text{AMU} \) Poisson's ratio
 - \(\text{RHO} \) Density
 - \(\text{N5, N6, } \) Element nodes
 - \(\text{NEL} \) Element number
 - \(\text{N1} \) Degrees of Freedom/node
 - \(\text{N2} \) Total number of nodes

4. **Output Arguments:**

 - \(M \) Unreduced direction numbers for degrees of freedom of element
 - \(M(25) \) Order of stiffness matrix
 - \(M(26)=7 \) Number of stress components (on tape NSS3)
 - \(\text{ST}(1) \) Start of stiffness matrix
 - \(\text{ST}(301) \) Start of stress matrix
 - \(\text{ARG1} \) (On tape NSS3) weight of element with unit design variable
 - \(X_2/X_3 \) Ratio (on tape NSS3) used in SCALE routine

5. **Error Returns:** None

6. **Calling Sequence:**


   ```
   CALL ELEM4 (X, Y, Z, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2)
   ```

7. **Input Tapes:** None

8. **Output Tapes:** NSS3 (Unit 3)

9. **Scratch Tapes:** None

10. **Storage Required:** (6544 Bytes) 1636 words

11. **Subroutine User:** AONE

12. **Subroutine Required:** M13Y EGB

13. **Remarks:** Seven components of stress are defined. These stresses are:

 \[\tau_{x_1}, \tau_y, \tau_{x_3}, \tau_{y_3}, \tau_{x_m}, \tau_{y_m}, \tau_{xy_m} \quad (M \text{-indicates midpoint}) \]
1. Subroutine Name: ELEM5

2. Purpose:

This subroutine computes the element stress and stiffness matrices for a beam (tube) element.

3. Input Arguments:

 X, Y, Z
 Node point coordinates

 E
 Modulus of elasticity

 AMU
 Poisson's ratio

 RHO
 Density

 N5, N6, N7
 Element nodes

 NEL
 Element number

 N1
 Degrees of freedom/node

 N2
 Total number of nodes

4. Output Arguments:

 M
 Unreduced direction numbers for degrees of freedom of element

 M(25)
 Order of stiffness matrix

 M(26)=6
 No. of stress components (on tape NSS3)

 ST(1)
 Start of stiffness matrix

 ST(301)
 Start of stress matrix

 ARG1
 (On tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:

 CALL ELEM5 (X, Y, Z, E, AMU, RHO, N5, N6, N7, N8, N9, N10, N11, N12, R, M, NEL, N1, N2)

7. Input Tapes: None

8. Output Tapes: NSS3 (Unit 3)

9. Scratch Tapes: None

10. Storage Required: (4466 Bytes) 1116 words

11. Subroutine User: AONE

12. Subroutine Required: BCB

13. Remarks:

 Six stresses are available from the stress matrix. These stresses are
 \(\sigma_x, \tau_{yz}, \tau_{my_1}, \tau_{my_2}, \tau_{mz_1}, \tau_{mz_2} \).
1. Subroutine Name: ELEM6

2. Purpose:

This subroutine computes the element stress and stiffness matrices for an axial element with a mid-point node.

3. Input Arguments:

- X, Y, Z: Node point coordinates
- E: Modulus of elasticity
- AMU: Poisson's ratio
- RHO: Density
- $N5, N6, N7$: Element nodes. $N7$ (NEL) is the midpoint node
- NEL: Element number
- $N1$: Degrees of freedom/node
- $N2$: Total number of nodes

4. Output Arguments:

- M: Unreduced direction numbers for degrees of freedom of element
- $M(25)$: Order of stiffness matrix
- $M(26) = 2$: No. of stress components (on tape NSS3)
- $ST(1)$: Start of stiffness matrix
- $ST(301)$: Start of stress matrix
- WT: (On tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:

CALL ELEM6 ($X, Y, Z, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2$)

7. Input Tapes: None

8. Output Tapes: NSS3 (Unit 3)

9. Scratch Tapes: None

10. Storage Required: (2674 Bytes) 669 words

11. Subroutine User: AONE

12. Subroutine Required: None

13. Remarks:

A. Two stress components are provided by the stress matrix. These stresses are: σ_x and σ_y.

B. The coordinates for the mid-point node are computed in the routine.
1. Subroutine Name: ELEM7

2. Purpose:
This subroutine computes the element stress and stiffness matrices for a triangular plate element with midpoint nodes.

3. Input Arguments:
- X, Y, Z: Node point coordinates
- E: Modulus of elasticity
- AMU: Poisson's ratio
- RHO: Density
- N5, N6, N7: Element nodes
- N8, N9, N10: Element nodes
- NEL: Element no.
- N1: Degrees of freedom/node
- N2: Total no. of nodes

4. Output Arguments:
- M: Unreduced direction numbers for degrees of freedom of element
 - M(25): Order of stiffness matrix
 - M(26)=12: No. of stress components (on Tape NSS3)
- ST(1): Start of stiffness matrix
- ST(301): Start of stress matrix
- WT: (On tape NSS3) weight of element with unit design variable

5. Error Returns: None

6. Calling Sequence:
CALL ELEM7 (X, Y, Z, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2)

7. Input Tapes: None
8. Output Tapes: NSS3 (Unit 3)
9. Scratch Tapes: None
10. Storage Required: (8022 Bytes) 2006 words
11. Subroutine User: AONE
12. Subroutine Required: MINV BCB

125
13. Remarks:

A. Twelve components of stress are provided by the stress matrix. These stresses are:

\[\sigma_{x_1}, \sigma_{y_1}, \tau_{xy_1}, \sigma_{x_2}, \sigma_{y_2}, \tau_{xy_2}, \sigma_{x_3}, \sigma_{y_3}, \tau_{xy_3}, \]

\[\sigma_m, \sigma_m, \tau_{xy_m} \]

where \(m \) denotes the centroid of the element.

B. Coordinates of the midpoint nodes are computed in the routine.
1. Subroutine Name: ELEM8

2. Purpose:
 This subroutine computes the element stress and stiffness matrices for a quadrilateral plate element with midpoint nodes.

3. Input Arguments:
 - XC, YC, ZC Node point coordinates
 - E Modulus of elasticity
 - AMU Poisson's ratio
 - RHO Density
 - N5, N6, N7 Element nodes
 - N8, N9, N10 Element nodes
 - N11, N12 Element no.
 - N1 Degrees of freedom/node
 - N2 Total no. of nodes

4. Output Arguments:
 - M Unreduced direction numbers for degrees of freedom
 - M(25) Order of stiffness matrix
 - M(26) No. of stress components (on tape NSS3)
 - ST(1) Start of stiffness matrix
 - ST(301) Start of stress matrix
 - WT (On tape NSS3) weight of element with unit design variable

5. Error Returns:
 If the ranking routine MFGR outputs a rank not equal to 16, there will be a print out (B matrix error). This will usually be due to a program input error.

6. Calling Sequence:
 CALL ELEM8 (XC, YC, ZC, E, AMU, RHO, N7, N5, N6, N8, N9, N10, N11, N12, R, M, NEL, N1, N2)

7. Input Tapes: None
8. Output Tapes: NSS3 (Unit 3)
9. Scratch Tapes: None
10. Storage Required: (31162 Bytes) 7791 words
11. Subroutine User: AOE
12. Subroutine Required:

MFGR
MINV
GMFRED
GTFRED
HCB

13. Remarks:

A. Fifteen stress components are provided by the stress matrix. These are:

\[\sigma_x_1, \sigma_y_1, \tau_{xy_1}, \sigma_x_2, \tau_{xy_2}, \sigma_x_3, \tau_{xy_3}, \sigma_y_3, \tau_{xy_4}, \tau_{xy_4}, \]

\[\tau_{xy_4}, \sigma_{x_m}, \sigma_{y_m}, \tau_{xy_m}, \]

where \(m \) denotes the element centroid.

B. Coordinates of the midpoints are computed by the subroutine.
1. Subroutine Name: FSCONT

2. Purpose:
Solves matrix equation $A \cdot A^T \cdot X = F$ for X.

3. Equations and Procedures:
The matrix equation $A \cdot A^T \cdot X = F$ is solved for X by solving
the matrix equations $A \cdot X = X_K$
$A^T \cdot X = X_K$
where A is a banded lower triangular matrix and X and F are
column vectors.

Procedure:

(1) Rows ISTRT to ICALC of A are read from tape I7.

(2) A call to XCALC routine computes X_K.

(3) A call to XCALC routine computes X.

(4) Steps 1, 2 and 3 are repeated for each pass.

4. Input Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Order of system</td>
</tr>
<tr>
<td>NPASS</td>
<td>Number of computation passes necessary</td>
</tr>
<tr>
<td>NROW</td>
<td>Array for control of computation passes</td>
</tr>
<tr>
<td>IZR</td>
<td>Banding information array</td>
</tr>
<tr>
<td>NZEL</td>
<td>Banding information array</td>
</tr>
<tr>
<td>A</td>
<td>Storage array for input matrix</td>
</tr>
<tr>
<td>F</td>
<td>Storage array for input column</td>
</tr>
<tr>
<td>NTAPB</td>
<td>Input tape logical number</td>
</tr>
<tr>
<td>X</td>
<td>Working storage array</td>
</tr>
<tr>
<td>NL</td>
<td>No. of load conditions</td>
</tr>
</tbody>
</table>

5. Output Arguments: X=Output answer column array

6. Error Returns: None

7. Calling Sequence:

CALL FSCONT (N,NPASS,NROW,IZR,NZEL,A,F,X,XK,NTAPB,NL)

8. Input Tapes:

Tape I7 contains input triangular matrix A. A is in banded form. Each row is a separate record.

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (2000 Bytes) 500 words
12. Subroutine User: BEQSX

13. Subroutines Required:

KCALC
XCALK
1. **Subroutine Name**: FOMO
2. **Purpose**: Process force cards
3. **Equations and Procedures**
 The cards are read from file L5 and counted by a counter KFORCE. The input values are $(\text{Force } 1(i), i = 1, 2)$, F, and $(\text{Force } 2(i), i = 1, 2, 3)$; $(\text{Force } 2(i) = F - F_n(i), i = 1, 2, 3)$.
4. **Input Arguments**
 - OUT = storage for reading data
 - FORCE 1 = set id number, grid point number
 - FN (i), i = 1, 2, 3 = components of force
 - L5 = input file number
 - L6 = output file number
 - F = scale factor
5. **Output Arguments**: Force 2(i) for each component
6. **Error Returns**: None
7. **Calling Sequence**: Call FOMO (FORCE 1, FORCE 2, L5, NFO, K FORCE, OUT, L6)
8. **Subroutine User**: ZZ
1. Subroutine Name: GMPRD

2. Purpose:
 Multiply two general matrices to form a resultant general matrix

3. Equations and Procedures:
The M by L matrix 'B' is premultiplied by the N by M matrix 'A' and the result is stored in the N by L matrix 'R'.

4. Input Arguments:
 A Name of first input matrix
 B Name of second input matrix
 N Number of rows in A
 M Number of columns in A and rows in B
 L Number of columns in B

5. Output Arguments:
 R Output matrix

6. Error Returns: None

7. Calling Sequence:
 CALL GMPRD (A,B,R,N,M,L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (656 Bytes) 164 words

12. Subroutine User: ELEM8

13. Subroutine Required: None

14. Remarks:
 1. All matrices must be stored as general matrices.
 2. Matrix R cannot be in same location as matrix A.
 3. Matrix R cannot be in same location as matrix B.
 4. Number of columns of matrix A must be equal to number of rows in matrix B.
1. Subroutine Name: GTPRD

2. Purpose:
Premultiply a general matrix by the transpose of another general matrix.

3. Equations and Procedures:
Matrix transpose of A is not actually calculated. Instead elements of matrix A are taken columnwise rather than row-wise for post-multiplication by matrix B.

4. Input Arguments:
A Name of first input matrix
B Name of second input matrix
N Number of rows in A and B
M Number of columns in A and rows in R
L Number of columns in B and R

5. Output Arguments:
R Name of output matrix

6. Error Returns: None

7. Calling Sequence:
CALL GTPRD (A,B,R,N,M,L)

8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None

11. Storage Required: (656 Bytes) 164 words

12. Subroutine User: ELEM8

13. Subroutine Required: None

14. Remarks:
1. Matrix R cannot be in the same location as matrix A.
2. Matrix R cannot be in the same location as matrix B.
3. All matrices must be stored as general matrices.
1. Subroutine Name: IGEN2

2. Purpose:
Compute eigenvalues used in buckling analysis.

3. Equations and Procedures:
Eberleins method is used. This consists of a sequence of similarity transformations which are intended to reduce the Euclidean norm of the matrix under study (A), so that it can practically speaking, be made arbitrarily normal.

4. Input Arguments:
- A: Matrix whose eigenvalues are desired
- N: Order of A-matrix
- YR: Used to control convergence (min. 1E-7 smallest element of A)
- ISW=0: Do not form eigenvectors (control)
- ID=6: Dimension of 'A' in calling routine

5. Output Arguments:
- A: Overlayed with matrix of eigenvalues along diagonal
- IT: Iteration counter (maximum of 50)

6. Error Returns:
- IIT: If off diagonal elements of 'diagonalized'

7. Calling Sequence:
CALL IGEN2 (N,YR,ISW,IT,IT,IT,IT,IT,IT,IT,IT,IT,IT,IT)

8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None
11. Storage Required: (5700 Bytes) 1425 words
12. Subroutine User: BUCKTB
13. Subroutine Required: None
14. Remarks: None
1. Subroutine Name
 INSPC

2. Purpose
 Stores data obtained from input card into working storage

3. Equations and Procedures
 SPCINF = Out storage, SPCTYP

4. Input Argument
 SPCTYP = Special code for type of card
 OUT = Storage for card data

5. Output Argument
 SPCINF
 NSCARD = Counter for no. special input cards

6. Error Returns

7. Calling Sequence
 Call INSPC (NSCARD, OUT, NSPCS, SPCTYP, SPCINF)

8. Subroutine User
1. Subroutine Name INSRT1

2. Purpose Stores element properties and material numbers into working storage

3. Equations and Procedures
 \[F(I) = FA \] If \(NA = NAST(I) \) and \(G(I) = GA \) If \(NP = NPROP(I) \)
 \[MATNO(I) = NM \]

4. Input Argument
 - \(FA \) = Element property
 - \(GA \) = Element property
 - \(NM \) = Material property SID
 - \(NUM \) = Number elements
 - \(NAST \) = Element id number
 - \(NPROP \) = Property ?D
 - \(NA \) = Work value of NAST
 - \(NP \) = Work value of NPROP

5. Output Argument

6. Error Return None

7. Calling Sequence Call INSRTI (NAST, NA, NPROP, NP MATNO, NM, F, FA, GA, GA, NUM)

8. Subroutine User
1. Subroutine Name: KCALC

2. Purpose:
Solve for XK where A* XK=F and A is a banded lower triangular matrix.

3. Equations and Procedures:
Determine elements ISTRT to ICALC of each load vector XK in the matrix equation A* XK=F.

\[
XX(l) = \frac{F_l}{A_{ll}} \quad \text{for } l = 1, \ldots, N
\]

This constitutes the first step in equation solution by Cholesky or "square root" method.
Repeat above procedure for all load conditions.

4. Input Arguments:
- ISTRT: Beginning row number of computation pass
- ICALC: End row number of computation pass
- IZR: Number zero elements in row of reduced matrix
- NZEL: Cumulative total of nonzero elements in rows 1 through i - 1 of reduced matrix
- A: Storage array for input matrix
- F: Column vector array
- N: Order of System
- NL: Number of load conditions

5. Output Arguments: XK = output vector array

6. Error Returns: None

7. Calling Sequence:
CALL KCALC (ISTRT, ICALC, IZR, NZEL, A, F, XK, N, NL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (310 Bytes) 203 words

12. Subroutine User: ESCONT

13. Subroutines Required: None
1. **Subroutine Name**

 KMAT

2. **Purpose**

 Generate stiffness matrix for membrane triangle

3. **Equations and Procedures**

 SYMM = BINV * C BINV * H * AREA

4. **Input Argument**

 S = Intermediate work storage
 BIUV = BINV matrix (transformation)
 C = Elastic C matrix
 AREA = Area of triangle
 H = Thickness of plate

5. **Output Arguments**

 KSYM = output symmetric stiffness matrix

6. **Error Returns**

 None

7. **Calling Sequence**

 CALL KMAT (S, BIUV, C, KSYM, AREA, H)

8. **Subroutine User**

 ORTHO3
1. Subroutine Name: MFGR

2. Purpose:
Determine rank and linearly independent rows and columns of a given matrix

3. Equations and Procedures:
The standard Gaussian elimination technique with complete pivoting is used. This implies that the rows and columns of the given M by N matrix A are interchanged at each elimination step if necessary. The interchange information is recorded in two integer permutation vectors IROW and ICOL.

The i^{th} Row of the interchanged matrix corresponds to the $\{\text{IROW}(i)^{th} \text{ Row } \}$ in the original matrix A.

The i^{th} Column of the interchanged matrix corresponds to the $\{\text{ICOL}(i)^{th} \text{ Column } \}$ in the original matrix A.

Initially $\text{IROW}(J) = J$ and $\text{ICOL}(J) = J$.

4. Input Arguments:
- A: Given matrix with M rows and N columns
- M: Number of rows of matrix A
- N: Number of cols of matrix A
- EPS: Test value for zero affected by roundoff noise

5. Output Arguments:
- IRANK: Resultant rank of given matrix
- IROW: Integer vector of dimension M containing the subscripts of basic rows in $\text{IROW}(1)$...$\text{IROW}(\text{RANK})$
- ICOL: Integer vector of dimension N containing the subscripts of basic columns in $\text{ICOL}(1)$ UP TO $\text{ICOL}(\text{RANK})$

6. Error Returns: None

7. Calling Sequence:
CALL MFGR (A,M,N,EPS,IRANK,IROW,ICOL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None
11. Storage Required: (2092 Bytes) 523 words
12. Subroutine User: ELEM8
13. Subroutine Required: None
14. Remarks: None
1. Subroutine Name: MINV

2. Purpose: Invert a matrix

3. Equations and Procedures:
 Uses the standard Gauss-Jordan method in which the inverted matrix is stored back on itself.

4. Input Arguments:
 A Matrix to be inverted
 N Order of matrix
 D Determinant value
 L Work vector of length N
 M Work vector of length N

5. Output Arguments:
 A Contains the inverted matrix

6. Error Returns:
 If D=0, matrix is singular

7. Calling Sequence:
 CALL MINV (A,N,D,L,M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (2068 Bytes) 517 words

12. Subroutine User:
 ELEM4, ELEM7, ELEM8

13. Subroutine Required: None

14. Remarks: None
1. Subroutine Name: MODIFY

2. Purpose:
Evaluate the recursion relationships for the iterative
determination of an element's design variable when
a displacement constraint is violated.

3. Equations and Procedures:
The general recursion relationship is

$$ A_j = \left(\frac{\sum_k \left| \delta^P \right| T_k^{EL} \left| \delta^Q \right|}{\left(\sum_k C_{kj}^L C_{kj}^Q \right)} \right)^{\frac{1}{2}} $$

which allows for all members of a linked group to participate in the redesign. Members are considered
passive in the above equation if the size of that member is defined by other than a displacement constraint.
The largest area generated in the above equation is taken from the combined set resulting from all loads and
displacement constraints. These areas are then compared with those based upon stresses or minimum sizes and the
larger values selected for each member.

4. Input Arguments:
SIGL,SIGU Lower and upper stress bounds for each element
ALL Minimum design variable
DISPU,DISPJ Upper and lower limits for displacement
constraints
DELMIA Displacement matrix
BIGS Residual strength matrix output by scale
routine
LIST Array containing number of stress
components for each element
PAR Element information array originally
on NSS3

5. Output Arguments:
AREA New design variable for each element

6. Error Returns: None
7. Calling Sequence:

```
CALL MODIFY (SIGL,SIGU,ALL,N7,DISPU,DISPL,NEDF,NE,
DELTA,BIGS,AREA,STRESS,LST,PAR,NEDF2,NE2,AQEA,N5,
N6,X,AREAD,NSTRES,NSS1)
```

8. Input Tapes:

NSS1 (Unit 1) Element stiffness matrices

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (7516 Bytes) 1879 words

12. Subroutine User: ATWO

13. Subroutine Required: None

14. Remarks: None
1. Subroutine Name: NEWS

2. Purpose:

To determine max core available vs problem size and set up dynamic storage subscripts for the initialization phase of the program.

3. Equations and Procedures:

Storage requirements for the arrays used by the NONE (utilization routine) are computed from the input parameters.

If the storage required exceeds MAXCOR (the size of the W array) then TBR is set to one, a message is written describing the additional storage required and the routine returns to the main routine.

If the storage available is adequate, locations in the W array are computed for the required arrays and routine AONE is called.

4. Calling Arguments: (* Input)

*N1 Control for degrees of freedom of a node set to 3 internally.
*N2 No. of nodes in problem.
*NCT Number of elements in problem
*NSG Number of components in integer array indicating linked groups
*NAAALL Number of generalized constraint groups (NAA) + cumulative length of all groups
*NBCU Total number of constrained degrees of freedom for a symmetric load condition
*NSYM Number of symmetric load conditions
*NNSYM Number of nonsymmetric load conditions
*NASYM Number of anti-symmetric load conditions
*NEL Number of individual constraints
*NAA Number of generalized constraints
*NATAPE Input tape for AONE routine (Unit 8)
*NPOF Print-out data set (Unit 6)
*NSS1 Output data sets for Unit 1
*NSS2 Output data sets for Unit 2
*NSS3 Initialization phase Unit 3
*NSSL Initialization phase Unit 4
*INUL Buckling control
*NZL Number of loads input
*NALD Total number of load conditions (NSYM+NASYM+NNSYM)
*NLX2 Number of nodes on symmetry plane
*NTERM Maximum number of iterations
*NCTDS Number of title cards
*NRST Print control for printing input
*IEN Integer array indicating number of each type element, e.g., IEN(5)=N type 5 elements
NREACT: Integer array six elements long indicating total number of constraints e.g. NREACT(1) = number of constrained U components

*C1INP: Convergence control
*C2INP: Convergence control
NRDF: Number of reduced degrees of freedom for symmetric load condition
NRDF2: Number of reduced degrees of freedom for antisymmetric load condition
NEAA: Number of generalized constraint groups (NAA) + cumulative length of all groups
NEA2: Same as above
NDLI: Sum of individual constraints minus bounded constraints for symmetric load condition
NDL2: Same as above except for antisymmetric load condition
NBOUN2: Total number of constrained degrees of freedom for antisymmetric load condition
*KNLMAX: Max. length of a generalized constraint group
*IRST: Calculation control which determines use of OPDVIR section
*MAXCOR: Size of 'W' array available for dynamic storage
*W: Array used for dynamic storage
IEF: Error control

5. Error Returns:
IER40 not enough core available to complete initialization

6. Calling Sequence:
CALL NEWS(N1,N2,ITOT, NSG, NAAALL, NBOU, NSYM, NONSYM, NASYM, NDL, NAA, NTAPE, NPOT, NSS1, NSS2, NSS3, NSS4, IBUKL, NNZL, NALD, KLN2, ITERN, NTCD, IREST, IELI, NREACT, C1INP, C2INP, NRDF, NRDF2, NEAA, NEA2, NDL1, NDL2, NBOUN2, KNLMAX, IRST, IBGP, MAXCOR, W, IER)

7. Input Tapes: None
8. Output Tapes: None
9. Scratch Tapes: None
10. Storage Required: (3436 Bytes) 859 words
11. Subroutine User: MAIN
12. Subroutine Required: AONE
13. Remarks: None

145
1. Subroutine Name: **OPINPT**

2. Purpose:

 To complete NTAPE (Unit 8); input to the AONE routine.

3. Equations and Procedures:

 Process input needed by the AONE routine in this order.

 COORD
 ELEM
 OEXTERN
 LINKS
 BOUND
 OLOADS
 ICON
 GCON
 OPDVIR

 Place all information on NTAPE (Unit 8).
 Print diagnostic messages if necessary.

4. Input Arguments:

 - **NPIT** Unit 5 (card reader)
 - **NPOT** Unit 6 (printer)
 - **NTAPE** Unit 8 (tape)
 - **N2** Number of nodes
 - **NDL** Number of individual constraints
 - **NAA** Number of generalized constraints
 - **NNZL** Number of input cards for loads
 - **NSS1** Unit 1 (tape)
 - **NREF** Info from System section input
 - **NGRD**
 - **NDOFPN**
 - **NALD**
 - **ITOT**
 - **NIBCP**

5. Output Arguments:

 - **NREACT** Array indicating number of bounded DOF
 - **IER** Error indicator

6. Error Returns:

 - **IER=0**

7. Calling Sequence:

 CALL OPINPT(NPIT, NPOT, NTAPE, NREF, NGRD, NDOFPN, NALD, ITOT, NIBCP, N1, N2, NSGIN, NDL, NAA, NDLA, NREACT, NNZL, IELI, IIRST, NAANUM, NSG, NSS1, KNIMAX, IER, GRID, IBOUND, NBOUND, INODE, NEDF, DISPU, DISPL, LINKB, LINKN, ILINK, DVIR, IBUCKL, NAM, IBO, IG1, IG2, IG3, IBGP)

146
8. Input Tapes: None
9. Output Tapes: NTAPE
10. Scratch Tapes:
 NSS1 (Unit 1) used to merge ELEM and OEXTRN sections
11. Storage Required: (15844 Bytes) 3961 words
12. Subroutine User: MAIN
13. Subroutine Required: None
14. Remarks: None
1. Subroutine Name OPTIM2

2. Purpose:

To control the program execution.

3. Equations and Procedures:

Identify all external files and rewind them. Read REPORT, TITLE, SYSTEM and OPTIM sections to define variables needed for dynamic storage. If there are any title cards read them and put them on NTAPE (Unit 8). Print message if any sections are out of order. Call OPINPT routine to read rest of input sections. If there is any error (IER≠0) call exit. Call NEWS routine to perform dynamic storage allocation and call routines to perform initialization. If there is any error (IER≠0) call exit. Call SIZE routine to perform dynamic storage allocation and call routines to perform problem calculation. If there is any error (IER≠0) call exit.

4. Input Arguments: None

5. Output Arguments: None

6. Error Returns: (IER≠0) call exit

7. Calling Sequence: Call OPTIM2 (WORK, NPIT)

8. Input Tapes: WORK = Wcrk storage NPIT = Input file number

9. Output Tapes: NTAPE (Unit 8)

10. Scratch Tapes:

NSS1 (Unit 1) These tapes are defined and rewound
NSS2 (Unit 2) only.
NSS3 (Unit 3)
NSS4 (Unit 4)

11. Storage Required:

(35630 Bytes) 8907 words
This size includes 'W' work array of 8000. This array is used to dynamically locate arrays.

12. Subroutine User: Not applicable

13. Subroutine Required: OPINPT NEWS SIZE

14. Remarks: None
1. Subroutine Name: PS3D
2. Purpose:
 Create cubic equation coefficients from stress components for beam (tube) element
3. Equations and Procedures:
 \[
 \gamma^3 - (\gamma_{xx} + \gamma_{yy} + \gamma_{zz}) \gamma^2 + (\gamma_{xx} \gamma_{yy} \gamma_{zz} + \gamma_{zz} \gamma_{xx} - \gamma_{xy} \gamma_{yz} \gamma_{xz}) - \gamma_{xz}^2 - \gamma_{xy}^2 - \gamma_{yz}^2 \gamma^2
 \]
 \[- (\gamma_{xx} \gamma_{yy} \gamma_{zz} - \gamma_{xx} \gamma_{yz} \gamma_{xz} - \gamma_{yy} \gamma_{xz}^2) = 0\]
 or
 \[
 \gamma^3 - A \gamma^2 + B \gamma - C = 0
 \]
4. Input Arguments:
 \(S_1 - S_6\) Stress components \((xx,yy,zz,xy,yz,zx)\)
 \(XX\) Proportioning factor
5. Output Arguments:
 \[
 \begin{cases}
 A \\ B \\ C
 \end{cases}
 \text{ Roots returned from cubic}
6. Error Returns: None
7. Calling Sequence:
 CALL PS3D(S1,S2,S3,S4,S5,S6,XX,A,B,C,)
8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None
11. Storage Required: (696 Bytes) 176 words
12. Subroutine User: PS3R
13. Subroutine Required: CUBIC
14. Remarks: None
1. Subroutine Name: PS3R
2. Purpose: Normalize Stresses
3. Equations and Procedures:
 \[X = \frac{1}{\text{average stress}} \]
 Multiply all stresses by average stress
4. Input Arguments: \(B1 \rightarrow B6 \)
5. Output Arguments:
 A, B, C Principal stresses of Beam (tube) element
6. Error Returns: None
7. Calling Sequence:
 CALL PS3R (B1, B2, B3, B4, B5, B6, A, B, C)
8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None
11. Storage Required: (664 Bytes) 166 words
12. Subroutine User: SCALE
13. Subroutine Required: PS3D
14. Remarks: None
1. Subroutine Name READI

2. Purpose Reads and modifies input data

3. Equations and Procedures Reads the card data from file J5, right adjust the data fields, counts each data type, prints the data and finally stores the modified data on file J6

4. Input Argument
 - LABEL = array of BCD label codes
 - ILAB = array of label integers
 - ISPECL = array of special labels
 - NILAB = total no. of labels
 - J6 = output file number
 - NSPECL = total no. special labels

5. Output Arguments
 - NCARDS = array of card counters
 - L7CASE = code to indicate that file is = 7

6. Error Returns None

7. Calling Sequence CALL READI (LABEL, ILAB, ISPECL, NCARDS, NILAB, NSPECL, J6, L7CASE)

8. Subroutine User SORT

9. Subroutines Used ADJUST
1. Subroutine Name: SCALE

2. Purpose:

To scale the stresses, displacements and design variables of the structure. For the in-core solution

3. Equations and Procedures:

A. Determine maximum ratio BIG = actual stress/allowable for all elements and all load conditions.
 For the beam (tube) element use maximum principle stress from both ends as allowable.
 For all other elements use Von Mises reference stress
 \[\sigma_{\text{REF}} = (\sigma_x^2 - \sigma_y^2 - \tau_{xy}^2 + 3 \tau_{xy}^2)^{\frac{1}{2}} \]

B. Determine max. ratio (BIG) using individual and generalized displacement constraints

C. Scale element design variables (use minimum if larger)
 If buckling is specified use this criteria for quadrilateral selected.

D. Scale all actual element stresses
 \[\tilde{\sigma} = \sigma_{\text{act}} / \text{BIG} \]

E. Determine residual ratio (BIGS) for each element after scaling stresses. First use
 \[\text{BIGS}(i) = \frac{\text{minimum design var.}}{\text{actual design var.}} \]
 Then compare against ratio obtained as in step B). Use maximum for each element.

4. Input Arguments:

- LK: No. of stresses
- SIGL: Lower stress limit for each element
- SIGU: Upper stress limit for each element
- ALL: Minimum design variable for each element
- N7: Not used
- DISPU: Upper displacement limits
- DESPL: Lower displacement limits reduced deg. of free.
- NSDF: Integer array locating RDOF of individual constraints symmetric load conditions
- NE: Integer array locating RDOF of generalized constraints anti-symmetric load conditions
- DELTA: Displacement matrix
BIGS Residual ratio for each element after scaling
STRESS Stress matrix
LIST Integer array giving no. of stress components for each element
PAR Array containing element weight factors and the parameter x_2/x_3 for element 4 (quadrilateral)
NBDF2 Integer array locating RDOF of individual constraints for anti-symmetric load conditions
NE2 Same as NE except for anti-symmetric load condition
AREA Not used
AL Lengths of sides of quadrilaterals
BL Constant Array - used to control buckling analysis

5. Output Arguments:
AQEA Element design parameters

6. Error Returns: None

7. Calling Sequence:
CALL SCALE (LK, SIGL, SIGU, ALL, N7, DISPL, DISPU, NBDF, NE, DELTA, BIGS, AREA, STRESS, LIST, PAR, NBDF2, NE2, AQEA, AL, BL, IBUKL, IBK)

8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None
11. Storage Required: (9110 Bytes) 2277 words
12. Subroutine User: ATWO
13. Subroutine Required:
 PS3R
 BUCKTB
1. Subroutine Name: SCALE1

2. Purpose:

To scale the stresses, displacements and design variables of the structure for an "out-of-core-solution".

3. Procedure:

The procedure followed here is identical to the SCALE routine except the stress matrix is on data set NSS3 (one column/record).

A. Determine max. ratio (BIG) = actual stresses/allowable stress for all elements and all load conditions.
 For the beam (tube) element use matrix principle stress from both ends as allowable
 For all other elements use Von Misses Reference stress.

B. Determine max. ratio (BIG) using individual and generalized displacement constraints.

C. Scale element design variables (use specified minimum (if larger).
 If buckling is specified use this criteria for quadrilaterals selected.

D. Scale all actual element stresses.

\[\delta = \frac{\delta_{\text{act}}}{\text{BIG}} \]

E. Determine residual ratio (BIGS) for each element after scaling stresses

4. Input Arguments:

See SCALE write-up for more complete listing of Arguments.

- LK: No. of stresses
- SIGL: Lower stress limit for each element
- SIGU: Upper stress limit for each element
- ALL: Minimum design variable for each element
- DISPU: Upper displacements limits
- DISPL: Lower displacement limits
- DELTA: Displacement matrix
- NSS3: Data set containing stress matrix

5. Output Arguments:

- AREA: Element design parameters

6. Error Returns: None
7. Calling Sequence:

CALL SCALE1 (LK,SIGL,SIGU,ALL, N7,DISP,DISPL,NEDF,NE,
DELT,BIGS,AREA,STRESS,LIST,PAR,NEDF2,NE2,AQEA,AL,BL,
IBUKL,IBK,NSS3,BIG)

8. Input Tapes:

NSS3 Stress matrix (1 column/record)

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (8836 Bytes) 2209 words

12. Subroutine User: ATWO1

13. Subroutine Required:

PSJR
BUCKTB
1. Subroutine Name: SIZE

2. Purpose:
To determine max. core available vs problem size and set up dynamic storage subscripts for the calculation phase of the program in-core solution.

3. Equations and Procedures:
Storage requirements for the arrays used by the ATWO (calculation routine) are computed from the input parameters. If the storage required exceeds MAXCOR (the size of the \(W \) array) then a message is written describing the additional storage required and the program calls the SIZE1 routine for an attempt at an out-of-core solution. If the storage available is adequate, locations in the \(W \) array are computed for the required arrays and routine ATWO is called.

4. Input Arguments:
- \(\text{NELEM} \): Total number of elements
- \(\text{NRDF} \): No. of reduced degrees of freedom for symmetric load conditions
- \(\text{NSYM} \): No. of symmetric load conditions
- \(\text{NASYM} \): No. of antisymmetric load conditions
- \(\text{NCNSTM} \): No. of nonsymmetric load conditions
- \(\text{NPOT} \): Printer data set
- \(\text{NSS1-NSS5} \): Data sets
- \(\text{IP1, IP2} \): Print controls
- \(\text{MAXCOR} \): Size of \(W \) array
- \(\text{W-WORK} \): Array for dynamic storage

5. Output Arguments:
- \(\text{IER}=0 \) indicates error (problem exceeds storage reserved)

6. Error Returns:
If MAXCOR is exceeded then the ATWO routine is not called and the program writes storage required. Then a call is made to the SIZE1 routine.

7. Calling Sequence:
\[\text{CALL SIZE (NELEM, NRDF, NDL1, NAA, NRDF2, NDL2, NSYM, NASYM, NCNSTM, IEL1, NSG, NEAA, NEA2, NDL, NBOU, NBOUN2, NPOT, NSS1, NSS2, NSS3, NSS4, NSS5, IP1, IP2, IREST, ITERN, IPRINT, ISUKL, MAXCOR, W, IER))} \]
8. Input Tapes: None
9. Output Tapes: None
10. Scratch Tapes: None
11. Storage Required: (2780 Bytes) 695 words
12. Subroutine User: MAIN
13. Subroutine Required:
 A^W0
 SIZ?
14. Remarks: None
1. Subroutine Name: SIZE1

2. Purpose:

To determine max. core available vs problem size and set up dynamic storage subscripts for the calculation phase of the program out-of-core solution.

3. Equations and Procedures:

Storage requirements for the arrays used by the ATWO1 (out-of-core) calculation routine are computed from the input parameters. If the storage required exceeds MAXCOR (the size of the W array) then a message is written describing the additional storage required and the program halts after a return to the MAIN routine. If the storage available is adequate, locations in the 'W' array are computed for the required arrays and routine ATWO1 is called.

4. Input Arguments:

NELEM Total number of elements
NRDF No. of reduced degrees of freedom for symmetric load conditions
NSYM No. of symmetric load conditions
NASYM No. of antisymmetric load conditions
NONSYM No. of nonsymmetric load conditions
NPOT Printer data set
NSS1-NSS5 Data sets
IP1,IP2,i) Print controls
IPRINT MAXCOR Size of 'W' array
W Work array for dynamic storage

5. Output Arguments:

IER=0 indicates error (problem exceeds storage reserved)

6. Error Returns:

If MAXCOR is exceeded then the ATWO routine is called and the program writes storage required. A return to the 'MAIN' routine then halts the program.

7. Calling Sequence:

CALL SIZE1 (NELEM,NRDF,NDL1,NAA,NRDF2,NDL2,NSYM,NASYM,NONSYM,IELI,NSG,NEAA,NEA2,NDL,NEOU,NEOUN2,NPOT,NSS1,NSS2,NSS3,NSS4,NSS5,IP1,IP2,IRST,ITERN,IPRINT,IBUKL,MAXCOR,W,IER)

8. Input Tapes: None
9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (2728 Bytes) 682 words

12. Subroutine User: SIZE

13. Subroutine Required: ATWO1
1. Subroutine Name SMAT

2. Purpose Generate stress element matrix for membrane triangular plate with orthotropic properties

3. Equations and Procedures SMAK = T*C*BINV where T is generated in SMAT, C and BINV are input

4. Input Arguments C = 6 x 6 matrix
 BINV = 6 x 6 matrix

5. Output Arguments SMAK = 3 x 6 stress matrix

6. Error Returns None

7. Calling Sequence CALL SMAT (C, SMAK, BINV)

8. Subroutine User ORTHO3
1. Subroutine NAME Sort

2. Purpose Sort and count data based on LABEL information.

3. Equations and Procedures Using READI, the data is read and counted. The final counters are then modified.

4. Input Arguments L4 = file number for storage of sorted input deck

 \[
 \begin{align*}
 \text{MEL} &= \text{total no. elements} \\
 \text{MGR} &= \text{total no. grid points} \\
 \text{MMT} &= \text{" materials} \\
 \text{MCGCON} &= \text{" generalized constraints} \\
 \end{align*}
 \]

5. Output Arguments

 \[
 \begin{align*}
 \text{MICON8} &= \text{" INdividual Constraints} \\
 \text{MILINKS} &= \text{" Links} \\
 \text{MFO} &= \text{" Forces} \\
 \text{MMO} &= \text{" Moments} \\
 \text{MLOADS} &= \text{" Loads} \\
 \end{align*}
 \]

6. Error Returns None

7. Calling Sequence Call Sort (MEL, MGR, MMT, MCGCON, MICON8, MILINKS, MFO, MMO, MLOADS, MGROUP, MSPCS, L4, L7CASE)

8. Subroutine User Main Program

9. Subroutines Used READ I
1. Subroutine NAME SPCSUB

2. Purpose Process SPC (single point constraint) Cards

3. Equations and Procedures Boundary information is processed as read in OUT (I) and NOUT (I). This information is interpreted and stored in LBOUND.

4. Input Arguments

- NOUT = input data storage
- OUT = input data storage
- NSPC = no. SPC cards
- KWORD = work storage
- NUM = work storage
- NKIND = type of boundary information available
- NGR = total no. grid points

5. Output Arguments

- LBOUND = boundary array information
- NBCARD = counter of boundary information

6. Error Returns None

7. Calling Sequence Call SPCSUB (NOUT, OUT, NSPC, KWORD, NUM, LBOUND, NBCARD, NKIND, NGR)

8. Subroutine User ZZ

9. Subroutines Used XTRAK
1. Subroutine Name: TCONTX

2. Purpose:
This routine controls tape flow for the triangularization routine.

3. Equations and Procedures:
1. Controls for setting up computation passes are computed in ICALC and ISTRT.

2. A portion of the input matrix A is read in from Tape I3=MTAPE.

3. This information is given to the routine TTRI which actually performs the triangularization for row numbers ISTRT to ICALC.

4. This triangularized output portion in A is stored on tape NTAPE = 17.

5. Computation is repeated for each portion of the matrix until all rows are completed.

4. Input Arguments:
N order of system to be handled
IZR banding information array
NZEL banding information array
A storage array for input row of banded matrix which is read by routine
NTOTAL total number of words which can be considered as a "full-core"
ATRI intermediate storage array equals length of maximum order
MTAPE input tape logical number
NTAPE output tape logical number

5. Output Arguments:
IEROR error indication value
WS accumulative determinant

6. Error Returns:
IEROR not = 0 if WS is returned from TTRI as less than zero

7. Calling Sequence:
CALL TCONTX(N,IZR,NZEL,A,NTOTAL,ATRI,MTAPE,NTAPE,IEROR,WS)
8. Input Tapes:

$MTAPE = I3 =$ input matrix A in banded row form. Each row equals 1 record.

9. Output Tapes:

$NTAPE = I7 =$ triangularized matrix T in banded row form. Each row equals 1 record.

10. Scratch Tapes: None

11. Storage Required: (1592 Bytes) 398 words

12. Subroutine User: ATWO1

13. Subroutines Required: TTRI
1. Subroutine NAME

2. Purpose
Generate transformation matrix for triangular plate orthotropic material angle.

3. Equations and Procedures
\[
T = \begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & \sin \theta \cos \theta \\
\sin^2 \theta & \cos^2 \theta & -\sin \theta \cos \theta \\
-2 \sin \theta \cos \theta & 2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}
\]

4. Input Arguments
THETA = material angle

5. Output Arguments
T = 3 x 3 matrix

6. Error Returns
None

7. Calling Sequence
CALL TMAT (THETA, T)

8. Subroutine User
ORTH03

9. Subroutines Used
None
1. Subroutine Name: TTRI

2. Purpose:

To triangularize rows ISTRT to ICALC of a bonded matrix A.

3. Equations and Procedures:

1. This routine triangularizes rows ISTRT to ICALC of a banded matrix A where rows 1 to ISTRT-l of the A matrix (already triangularized) are on tape NTAPE.

2. If ISTRT = 1, then NTAPE and work storage ATRI are not used since A is assumed to be in core.

3. Procedure:

Using Cholesky technique, the off diagonal terms of the portion in core are triangularized. Off diagonals are then computed. Output is stored in array A.

4. Cholesky equations:

\[
\begin{align*}
(1) \quad s_{11} &= (a_{11})^{1/2} \\
(2) \quad s_{ij} &= \frac{a_{ij}}{s_{11}} \\
(3) \quad s_{ii} &= (a_{ii} - \sum_{k=1}^{i-1} s_{ki}^2)^{1/2} \quad i > 1 \\
(4) \quad s_{ij} &= a_{ij} - \sum_{k=1}^{i-1} s_{ki} s_{kj} \quad j > 1
\end{align*}
\]

5. Input Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISTRT</td>
<td>Beginning row of triangularized portion</td>
</tr>
<tr>
<td>ICALC</td>
<td>End row of triangularized portion</td>
</tr>
<tr>
<td>IZR</td>
<td>Banding information array</td>
</tr>
<tr>
<td>NZEL</td>
<td>Banding information array</td>
</tr>
<tr>
<td>NTAPE</td>
<td>Logical tape number of input tape. NTAPE=I7</td>
</tr>
<tr>
<td>A</td>
<td>Storage array for input A and also output array</td>
</tr>
<tr>
<td>ATRI</td>
<td>Working storage array</td>
</tr>
</tbody>
</table>

6. Output Arguments: A=output array

7. Error Returns:

IERROR = I = row numbers such that WS = sii is not greater than zero.

166
7. Calling Sequence:

 CALL TTRI (ISTRT, ICALC, IZR, NZEL, NTAPE, A, ATRI, IERROR, WS)

8. Input Tapes:

 NTAPE = tape which contains already triangularized rows of matrix.

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (1844 Bytes) 461 words

12. Subroutine User: TCONTX

13. Subroutines Required: None
1. Subroutine NAME

WRITEL

2. Purpose

Tests character of element connection card and writes element information into file.

3. Equations and Procedures

If C_1 and C_3 are 0, C_2 and C_4 are stored.
If C_2 & C_4 are 0, C_1 & C_3 are stored.

4. Input Arguments

L_7 = Output file number
IGR = Grid point number
M = Position of A array to be restored
C_1, C_2, C_3, C_4 = Input codes

5. Output Arguments

IGR and A array are stored on file L_7

6. Error Returns

None

7. Calling Sequence

CALL WRITEL (C_1, C_2, C_3, C_4, M, IGR, L)

8. Subroutine User

ZZ

9. Subroutines Used

None
1. Subroutine Name: XCALK

2. Purpose:
Solves for X where $A*X = XK$ and A is upper triangular matrix.

3. Equations and Procedures:
Determine ISTRT to ICALC of each load vector X in the matrix equation $A*X = XK$ where A is upper triangular matrix and X and XK are column vectors.

$$X(N) = \frac{XK(N)}{A_{nn}}$$
$$X(I) = XK(I) - \sum_{L=I+1}^{N} A_{IL}X_L \quad I < N$$

This constitutes the second part in calculating an equation solution by Cholesky or "square root" method. Repeat above procedure for all load conditions.

4. Input Arguments:

- N: Order of system
- ISTRT: Beginning row number of computation pass
- ICALC: End row number of computation pass
- IZR: Number zero elements in row of reduced matrix.
- NZEL: Cumulative total of nonzero elements from row 1 through i of reduced matrix
- A: Storage array for matrix
- XK: Column vector array
- NL: No. of load conditions

5. Output Arguments:

- X: Output vector array

6. Error Returns: None

7. Calling Sequence:
CALL XCALK (N, ISTRT, ICALC, IZR, NZEL, A, XK, X, NL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (1116 Bytes) 279 words

12. Subroutine User: ESCONT

13. Subroutines Required: None
1. Subroutine NAME: XTRAK

2. Purpose: Interpret degree of freedom information

3. Equations and Procedures: Interprets NWORD and breaks this down into 6 individual components. These components are then stored in KWORD array.

4. Input Arguments:
 - NWORD = No. components input word
 - NP = Control word

5. Output Arguments:
 - KWORD = Output data array
 - NUM = Total no. DOF recognized

6. Error Returns: None

7. Calling Sequence: CALL XTRAK (NWORD, KWORD, NUM, NP)

8. Subroutine User: SPCSUB

9. Subroutines Used: None
1. Subroutine NAME XTRAK2

2. Purpose Interpret degree of freedom
 information for generalized constraint
 data.

3. Equations and Checks on information supplied in
 Procedures NP and stores codes into LGCON array.

4. Input Arguments NP = Input word to be interpreted
 NM = 2nd input word to be interpreted.
 NODE = Node point number

5. Output Arguments LGCON = Generalized constraint array

6. Error Returns None

7. Calling Sequence CALL XTRAK2 (LGCON, NODE, NP, NM)

8. Subroutine User

9. Subroutines Used XTRAK
1. Subroutine NAME ZZ

2. Purpose Generates OPTIM data which is
 input by NASTRAN format input cards.

3. Equations and Each card is read and interpreted
 Procedures based on content and use in the OPTIM
 program.

4. Input Arguments L5 = Input file tape number
 L7 = Output file tape number

5. Output Arguments All of the grid point, boundary
 condition, element, material property,
 load, constraint and buckling
 information arrays needed by OPTIM.

6. Error Returns

7. Calling Sequence CALL ZZ (NAST, NOPT, MATNO, NPROP,
 NBUCK, NNODES, NOID, REF, OPDVIR,
 LBOUND, COOR, AMAT, MID, EYEC, LINKS,
 NEL, NGR, NMT, NICON8, NLINKS, NOGCON,
 NP, PA, NAP, GA, NFO, NM3, NLOADS,
 NSPCS, IGRID, SPCINF, GCOND, FORCE3,
 ANGLE, FORCE1, FORCE2, MOMNT1, MOMNT2,
 OPLOAD, GROUP, L5, L7);

8. Subroutine User Main program

9. Subroutines Used None
SECTION 5

PROBLEM SIZE LIMITATIONS

The key limitations are brought about by the total number of elements, number of load conditions and the number of degrees of freedom in the problem.

Due to dynamic storage allocation techniques the problem size can be controlled by changing two cards in the 'MAIN' routine. Both the dimension of the 'WORK' array (card MAIN0050) and the size of the variable 'NWORK' (card MAIN 0290) must be equal. The delivered size is 20,000 words, but may be adjusted to your system.

If there is insufficient storage space defined for a problem the program will print a message indicating the amount of storage required for the problem and the amount of storage reserved by the above mentioned cards in the 'MAIN' routine. To execute the problem modify the 'dimension and 'NWORK' variable to be what the problem needs or reduce the number of elements, number of load conditions and/or number of degrees of freedom indicated on the input sheet.
SECTION 6
STORAGE ALLOCATIONS

This section includes two diagrams indicating the manner of arranging the stress and displacement matrices to handle all load conditions.

The key to handling non-symmetric loads and displacements is in defining the nonsymmetric load as a symmetric and an anti-symmetric load.

The definition of a number of key parameters used in the diagrams follows:

NDL1 - Total no. of individual constraints minus any constraints that may be bounded during execution of the problem. For symmetric load conditions.

NDL2 - Same as above except for anti-symmetric load conditions.

NAA - No. of generalized constraints, all are assumed unbounded.

NRDF - No. of reduced degrees of freedom (i.e., all bounded degrees of freedom removed) for symmetric load condition.

NRDF2 - Same as above except for anti-symmetric load condition.

See Figures 4 and 5.
Stress Matrix

Load Conditions

Symmetric Anti-Symmetric

For out-of-core
Solution
LOAD1+LOAD2 columns
on tape NSS5

Before entry into scale routine

Figure 4: STRESS MATRIX STORAGE ALLOCATION

175
FIGURE 5. DISPLACEMENT AND LOAD MATRIX STORAGE ALLOCATION

Singly Subscripted
In-core for both in-core and out-of-core solutions.