Remarks on the Inverse Scattering Problem for Low Frequency Acoustic
Remarks on the Inverse Scattering Problem for Low Frequency Acoustic Waves*

by

David Colton
Department of Mathematical Sciences
University of Delaware
Newark, Delaware 19711

TECHNICAL REPORT 70A

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFPR 190-18 (Tb). Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

* This research was supported in part by NSF Grant MCS 78-02452 and AFOSR Grant 76-02379.
1. Introduction

In a recent series of papers ([2], [3], [4]) the author has investigated the low frequency inverse scattering problem for "hard" and "soft" infinite cylinders and "soft" obstacles in space. It is the purpose of this paper to complete the story and consider the inverse scattering problem in space where the obstacle is "hard", i.e. the boundary condition is of Neumann type. A basic result of the analysis to date is that the low frequency inverse scattering problem can be stabilized. In the case of domains in the plane this is accomplished by transmitting two plane waves from different directions, where the second plane wave is used to determine the transfinite diameter of the obstacle ([2], [3]). Due to the lack of the availability of conformal mapping techniques, this approach does not extend to the three dimensional inverse scattering problem and alternate methods must be developed.

In the case of a "soft" obstacle (i.e. Dirichlet boundary data) stability was obtained by assuming an "a priori" knowledge of the radius of a ball containing the unknown scattering obstacle in its interior and using the fact that the boundary of the scattering obstacle is a level surface of the limiting static potential problem ([4]). Since the static solution is simply the conductor potential of the obstacle irregardless of which direction the incoming wave impinges upon the obstacle, no new information is gathered by sending in plane waves from different directions (however see Section IV of this paper). In the present paper we shall be considering the inverse scattering...
problem for a "hard" obstacle in space and as will be seen the situation is considerably altered. In particular, in order to achieve stability it is necessary to not only assume an "a priori" knowledge of the radius of a ball containing the scattering obstacle in its interior, but also an "a priori" bound on the gradient of the velocity potential of the total field for small values of the wave number. Further complications arise from the facts that the boundary of the obstacle is no longer a level surface of an appropriate potential problem and the solution of the limiting static potential problem is simply \(u_0(x) \equiv 1 \) which gives no information on the shape of the obstacle. These problems will be circumvented by identifying the second term in the low frequency expansion of the total field as the velocity potential of an incompressible, irrotational fluid flow past the scattering obstacle and using this function to determine the streamlines of the flow outside the given ball containing the obstacle in its interior. In this case sending in plane waves from different directions is equivalent to fluid flowing past the obstacle in different directions, and knowledge of the resulting streamlines then gives more information on the shape of the obstacle. In order to estimate the actual shape of the obstacle an important role is played by the fact that from the far field data it is possible to deduce the volume of the obstacle. Hence from a knowledge of the streamlines and the volume of the obstacle, accurate estimates can be made on its shape.
II. Reduction of the Inverse Scattering Problem to a Nonlinear Moment Problem

The aim of this section is to reduce the inverse scattering problem for a "hard" obstacle to a nonlinear moment problem involving the velocity potential of an incompressible, irrotational fluid flow past the unknown scattering obstacle. We shall assume that the scattering obstacle D is a bounded simply connected domain containing the origin with smooth boundary ∂D. In order to achieve our aim it is necessary to first consider the direct scattering problem, i.e. to find a solution $u \in C^2(R^3 \setminus D) \cap C^1(R^3 \setminus D)$ such that

\begin{align*}
 u(x) &= u^i(x) + u^s(x) \quad \text{in } R^3 \setminus D \\
 \Delta u + k^2 u &= 0 \quad \text{in } R^3 \setminus D \\
 \frac{\partial u}{\partial \nu} &= 0 \quad \text{for } x \in \partial D \\
 \lim_{r \to \infty} r \left(\frac{3u^s}{r} - iku^s \right) &= 0
\end{align*}

(2.1a) \quad (2.1b) \quad (2.1c) \quad (2.1d)

where the "incoming wave" u^i is a solution of (2.1b) in all of R^3, ν is the unit outward normal to ∂D, the wave number k is positive, and the radiation condition (2.1d) for the "scattered wave" u^s is assumed to hold uniformly in all direction as $r = |x|$ tends to infinity. The existence of a solution to (2.1a) - (2.1d)
is well known (c.f. [9]) and our first aim is to find a low frequency approximation to \(u \) evaluated on \(\partial D \). To this end we note that from [1] and [7] we can reformulate (2.1a) - (2.1d) as the integral equation.

\[
\begin{align*}
\int_{\partial D} & u^i(x) + \frac{1}{4\pi} \int_{\partial D} [u(y) - u(x)] \frac{\partial}{\partial n} \frac{1}{|x-y|} \, ds(y) \\
+ & \frac{1}{4\pi} \int_{\partial D} u(y) \frac{\partial}{\partial n} \left[\frac{\exp[i|\chi-y|]-1}{|\chi-y|} \right] \, ds(y) = u(x)
\end{align*}
\]

for \(x \in \mathbb{R}^3 \setminus D \), or in obvious operator notation

\[
\begin{align*}
\int_{\partial D} & u^i + L^i_\chi[u] = u.
\end{align*}
\]

The important point here is that the spectral radius of \(L^i_\chi \) is less than one and that

\[
||L^i_\chi - L^i_\chi|| = 0(k^2)
\]

where \(|| \cdot || \) denotes the maximum operator norm ([7]). Hence for \(k \) sufficiently small, (2.3) can be solved by successive approximations and \(||(I - L^i_\chi)^{-1} - (I - L^i_\chi_0)^{-1}|| = 0(k^2) \) ([8], p. 164). In particular for \(u^i_\chi(x) = e^{ikx} \), \(x = (x_1, x_2, x_3) \), and \(k \) sufficiently small, we have for \(x \in \partial D \) that
\[u(x) = \sum_{n=0}^{\infty} L_n \left[1 + i k x_1 \right] + O(k^2) \]

\[= \sum_{n=0}^{\infty} L_n \left[1 + i k x_1 \right] + O(k^2) \]

\[= 1 + i k u_0(x) + O(k^2) \]

(2.5)

where \(u_0 \) can be identified as the unique harmonic function defined in the exterior of \(D \) such that

\[u_0(x) = x_1 + u^s_0(x) \quad \text{in} \quad \mathbb{R}^3 \setminus D \]

(2.6a)

\[\Delta^3 u_0 = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus D \]

(2.6b)

\[\frac{\partial u}{\partial \nu}(x) = 0 \quad \text{for} \quad x \in \partial D \]

(2.6c)

\[\lim_{r \to \infty} u^s_0(x) = 0, \quad r \to \infty \]

(2.6d)

i.e. \(u_0 \) is the velocity potential for an incompressible, irrotational fluid flow past \(D \) having constant velocity in the \(x_1 \) direction at infinity.

We now proceed to the reduction of the inverse scattering problem to a nonlinear moment problem. From (2.2) we have that ([5], p. 316)

\[u^s(x) = \frac{1}{4\pi} \int_{\partial D} u(y) \frac{3}{3x} \left[\exp \left[ik \frac{x-y}{x-y} \right] \right] ds(y) \]
\[F(n; k) + 0 \left(\frac{1}{x^2} \right) \eta = \frac{x}{|x|} \]

(2.7)

where

\[F(n; k) = \frac{1}{4\pi} \int_{\partial D} u(y) \left(\frac{\partial}{\partial \nu} \exp \left[-ik\eta \cdot y \right] \right) ds(y) \]

(2.8)

The inverse scattering problem we are considering is to determine \(D \) from a knowledge of the far field pattern \(F \) for all directions \(\eta \) and low values of the wave number \(k \). To this end we write \(\eta \) and \(y \) in spherical coordinates as

\[\eta = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \]

(2.9)

\[y = \rho (\sin \theta', \cos \phi', \sin \theta' \sin \phi', \cos \phi') \]

and expand \(F \) in a series of spherical harmonics

\[F(n; k) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \alpha_{mn}(k) P_n^m(\cos \theta) e^{im\phi}. \]

(2.10)

Then we can easily deduce from (2.8), (2.10) and the relation (c.f. [6])
\[e^{-ik \mathbf{n} \cdot \mathbf{y}} = \sqrt{\frac{\pi}{2k \rho}} \sum_{n=0}^{\infty} (-i)^n (2n+1)J_{n+\frac{1}{2}}(k \rho) P_n(\cos \gamma) \]

(2.11)

\[\mathbf{n} \cdot \mathbf{y} = \rho \cos \gamma \]

that

\[a_{nm}(k) = \sqrt{\frac{\pi}{2}} i^{-n} \int_{\Omega} u(y) \frac{\partial}{\partial y} \left[\frac{1}{\sqrt{k \rho^2}} J_{n+\frac{1}{2}}(k \rho) \right] P_n^{m}(\cos \theta') e^{-im \phi'} ds(y). \]

(2.12)

where we have used the standard notation for associated Legendre polynomials, Legendre polynomials, and Bessel functions. Since

\[\frac{1}{\sqrt{k \rho^2}} J_{n+\frac{1}{2}}(k \rho) = \frac{(k \rho)^n}{2^{n+\frac{1}{2}} \Gamma(n+\frac{1}{2})} + O((k \rho)^{n+2}} \]

(2.13)

we have from (2.12) and (2.13) that for \(n \geq 1 \)

\[a_{nm}(k) = \frac{i^{-n} \pi k^n}{2^{n+\frac{1}{2}} \Gamma(n+\frac{1}{2})} \int_{\Omega} u(y) \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} P_n^{m}(\cos \theta') e^{-im \phi'} \right] ds(y) \]

(2.14)

\[+ O(k^{n+2}) \]

and since the quantity in brackets is harmonic, (2.5) and (2.14) imply that
\[a_{nm}(k) = \frac{i^{-n+1-\sqrt{k}+1}}{2^{n+1} \Gamma (n+\frac{1}{2})} \int_{\partial D} u_0(y) \frac{\partial}{\partial y} \left[\rho^n P_n (cos \phi') e^{-i\alpha'} \right] ds(y) \]

\[+ O(k^{n+2}) \]

for \(n \geq 1 \). In the case \(n=0 \) a similar analysis shows that

\[a_{\infty}(k) = -\frac{\sqrt{\pi} k^2}{8 \Gamma (\frac{1}{2})} \int_{\partial D} \frac{3}{\partial y^2} \rho^2 ds + O(k^3). \] (2.16)

If we now define

\[u_{nm} = \lim_{k \to \infty} \left[\frac{2^{n+1-\sqrt{k}+1}}{i^{-n+1-\sqrt{k}+1}} a_{nm}(k) \right]; \; n \geq 1 \]

\[u_{\infty} = -\lim_{k \to \infty} \left[\frac{4 \Gamma (\frac{1}{2})}{3k^2} a_{\infty}(k) \right] \]

then we can rewrite (2.15) in the form

\[u_{nm} = \int_{\partial D} u_0(y) \frac{\partial}{\partial y} \left[\rho^n P_n (cos \phi') e^{-i\alpha'} \right] ds(y); \; n \geq 1 \] (2.18)

and note that (2.16) yields

\[u_{\infty} = \frac{1}{6} \int_{\partial D} \frac{3}{\partial y^2} \rho^2 ds \]

\[= \frac{1}{6} \int_D \int_D \rho^2 dv \] (2.19)

\[= \text{volume of } D. \]
Hence we have reduced our inverse scattering problem to that of determining D from the nonlinear moment problem (2.18) along with the fact that we now know the volume of D from the far field data u_{00}. Note that although the u_{nm} are explicitly computable from the far field pattern F, small errors in measuring the coefficients $a_{nm}(k)$ will result in large errors in the numbers u_{mn} if n is large. Hence in practice we must assume that only a finite number of the u_{nm} are known and for the sake of simplicity we shall assume that these are known exactly. Observe that the "moment" problem (2.18) is nonlinear since both u_0 and the region of integration depend on D.

III. Analysis of the Nonlinear Moment Problem

We shall now show how information on the shape of D can be extracted from the nonlinear moment problem (2.18). First suppose that the moments u_{nm} are known for $n = 1, 2 \ldots N$, $-n \leq m \leq n$, and that constants a and M are known such that

\begin{enumerate}
 \item $D \subset B = \{x : \|x\| < a\}$
 \item $\max_{\mathbb{R}^3 \setminus B} |\nabla u| \leq kM$ for $0 < k < k_0$
\end{enumerate}

where k_0 is a fixed constant and M is independent of k. Note that from (2.5) we have from the second condition that

$$\max_{\mathbb{R}^3 \setminus B} |\nabla u_0| < M.$$ \hspace{1cm} (3.1)
For \(x \in \Omega \) we have that \(u_0 \) has an expansion of the form

\[
u_0(x) = x_1 + \sum_{n=0}^{\infty} \sum_{m=-n}^{n} b_{nm} p_n \left(\cos \theta \right) e^{im\psi}.
\] (3.2)

Furthermore from Green's formula, (2.6c) and (2.18) we have that for \(n \geq 1 \)

\[
u_{nm} = \int_{\partial B} \left\{ \frac{3u_0}{\partial \rho} \left[\alpha n^m (\cos \psi) e^{-im\psi} \right] - \beta n^m (\cos \psi) e^{-im\psi} \right\} ds
\] (3.3)

and from (3.2), (3.3) and the orthogonality of the associated Legendre polynomials we can conclude that

\[
u_{nm} = 4\pi b_{nm} \frac{(n+m)!}{(n-m)!} ; \quad n \geq 1.
\] (3.4)

For \(n=0 \) we have from Green's formula that

\[
0 = -\int_{\partial B} \frac{3u_0}{\partial \rho} ds
\]
\[
= b_{00} \int_{0}^{2\pi} \int_{0}^{\pi} \sin \theta d\theta d\psi
\] (3.5)

\[
= 4\pi b_{00},
\]

i.e., \(b_{00} = 0 \). Hence since the \(u_{nm} \) are assumed known for \(n=1, 2, \ldots, N, -n \leq m \leq n \), we know

\[
u_0(x) = x_1 + \sum_{n=0}^{N} \sum_{m=-n}^{n} b_{nm} p_n \left(\cos \theta \right) e^{im\psi}
\] (3.6)
and from assumptions 1) and 2) above we can easily obtain explicit
L_2 error estimates for $\nabla (u_o - u_N)$ in terms of the constants a, M and N. In particular if $x = (x_1, x_2, x_3)$ then
\[
\frac{3}{3x_i} (u_o - u_N) = \sum_{n=N+1}^{\infty} \sum_{m=-n}^{n} \alpha_{nm} \varepsilon_n^{(i)} \varepsilon_{n-1} \cos^m \theta e^{i m \phi}.
\] (3.7)

Hence we can conclude by a short calculation (c.f. [4]) that
\[
\frac{1}{4\pi \rho^2} \int_{|x| = \rho} |\nabla (u_o - u_N)|^2 ds \leq 6\pi M \sum_{n=N+1}^{\infty} (2n+1) (\frac{a}{\rho})^{2n+2} (3.8)
\]

and thus we can determine how many Fourier coefficients of the far
field pattern are needed in order to approximate ∇u_o for
$|x| \geq a_o \cdot a$ to obtain a given degree of accuracy in the L_2 sense.

Identifying u_o as the velocity potential of an incompressible,
irrotational fluid flow past D, we now note that the unknown
obstacle D is a surface containing streamlines of the fluid flow
past D. Hence if we can determine streamlines lying in the exterior
of D this will give us information on the shape of D. To this end
let x_o be a point in $\mathbb{R}^3 \setminus B$. Then the streamline passing through x_o
can be determined by solving the system of ordinary differential
equations
\[
\frac{d\xi}{dt} = \nabla u
\]
\[
\xi(0) = x_o
\] (3.9)
where \(x = x(t) \) is a parametric representation of the given streamline. Since \(\nabla u \) is only known to a given degree of accuracy for \(x \) in \(\mathbb{R}^3 \setminus \mathcal{B} \), (3.9) will only allow us to construct the streamlines lying in the exterior of \(\mathcal{B} \). However, we do know the volume of \(D \) from (2.19), and hence by extrapolation we can determine an approximation to the shape of \(D \). Note that by sending in plane waves from different directions we can also determine the streamlines corresponding to a fluid flowing past \(D \) from different directions and this can be used to refine the initial estimate for the shape of \(D \).

IV. Passing Remarks on the Dirichlet Problem

We noted in the Introduction that for the Dirichlet problem the solution of the static potential problem corresponding to a single incoming plane wave is the conductor potential and hence, in contrast to the Neumann problem, no new information is gained by sending in plane waves from different directions. This particular problem can be overcome if two plane waves are transmitted from opposite directions, e.g. \(e^{ikx_1} \) and \(e^{-ikx_1} \), and the corresponding solutions of the scattering problems added together in such a way that the combined incident field is \(\frac{1}{k} \sin kx_1 \). The analysis of [4] can then be used to show that the corresponding static potential problem on this case is

\[
\begin{align*}
\mathbf{u}_o(x) &= x_1 + u^S_o(x) \quad \text{in } \mathbb{R}^3 \setminus D \\
\Delta^3 \mathbf{u}_o &= 0 \quad \text{in } \mathbb{R}^3 \setminus D \\
\mathbf{u}_o(x) &= 0 \quad \text{for } x \in \partial D \\
\lim_{r \to \infty} u^S_o(x) &= 0
\end{align*}
\]
The boundary of the obstacle is again a level surface and except for this boundary the level surfaces change if the plane waves are sent in from different directions than along the x_1 axis. Hence if this is done more information can be obtained on the shape of D.

Acknowledgment: The author would like to thank Professor R.J. Weinacht for helpful discussions in the course of preparing this paper.

References

REMARKS ON THE INVERSE SCATTERING PROBLEM FOR LOW FREQUENCY ACOUSTIC WAVES

David Colton

University of Delaware
Applied Mathematics Institute
Newark, DE 19711

Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332

May 15, 1980

Approved for public release; distribution unlimited.

Inverse scattering
acoustic waves

The low frequency inverse scattering problem in \mathbb{R}^3 is studied subject to Neumann boundary conditions and acoustic wave propagation.