ON 11 CM IRREGULARITIES DURING EQUATORIAL SPREAD F

1. REPORT NUMBER
NRL Memorandum Report 4271

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
ON 11 CM IRREGULARITIES DURING EQUATORIAL SPREAD F

5. TYPE OF REPORT & PERIOD COVERED
Interim report on a continuing NRL problem.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
J.D. Huba* and S.L. Ossakow

8. CONTRACT OR GRANT NUMBER

9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
62704H; 67-0889-0-0 & 61153N; RR0330244; 67-0883-0-0

10. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Research Laboratory
Washington, D.C. 20375

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Nuclear Agency
Office of Naval Research
Washington, D.C. 20305
Arlington, VA 22217

12. REPORT DATE
July 17, 1980

13. NUMBER OF PAGES
23

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

15. SECURITY CLASS. (of this report)
UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 18, if different from Report)

18. SUPPLEMENTARY NOTES
This research was sponsored partially by the Defense Nuclear Agency under subtask S99QAXHC041, work unit 21, and work unit title "Plasma Structure Evolution," and partially by the Office of Naval Research.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Equatorial spread F
Lower hybrid drift instability
11 cm irregularities
Kwajalein radar observations
Theory

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The recent Kwajalein radar backscatter observations of 11 cm irregularities at high altitudes (~500 km) during equatorial spread F are explained in terms of the kinetic lower-hybrid-drift instability. The absence of radar backscatter from 11 cm irregularities at lower altitudes (~240 km) is attributed to the stabilizing influence of electron-neutral collisions.
CONTENTS

I. Introduction 1
II. Theory .. 2
III. Discussion 6
 Acknowledgments 8
ON 11 CM IRREGULARITIES DURING EQUATORIAL SPREAD F

I. Introduction

During the past several years, high-frequency radar backscatter experiments have revealed a spectrum of short-wavelength (i.e., below the ion gyroradius) irregularities during equatorial spread F (ESF). Radar backscatter observations at 50 MHz, 155 MHz and 415 MHz indicate density fluctuations exist with scale sizes of 3m, 1m and 36 cm, respectively [Farley et al., 1970; Woodman and LaHoz, 1976; Costa and Kelley, 1978a,b; Huba et al., 1978]. Most recently, Tsunoda (1980) has observed radar backscatter from 11 cm (1320 MHz) irregularities during equatorial spread F at high altitudes, using the TRADEX radar. These observations were part of a coordinated Defense Nuclear Agency campaign at Kwajalein to study ionospheric irregularities during equatorial spread F. The program was designed to obtain simultaneous radar backscatter results and in situ rocket measurements of density and fluctuating fields. Unfortunately, the 11 cm observations were made prior to the rocket launch (but during ESF), so coincidental in situ plasma and fluctuation data are not available. However, presumably ionospheric plasma conditions were similar during the various measurements.

Sharp density gradients were observed during this campaign (M. C. Kelley, private communication, 1980) and have been observed during past equatorial spread F events (Costa and Kelley, 1978a,b). The scale lengths of these gradients range from tens of meters to several hundred meters and are presumably due to primary longer wavelength instabilities such as the Rayleigh-Taylor instability. Since the typical ion gyroradius is \(r_{Li} \sim 5m \), it is found that \(r_{Li}/L_n < 0.2 \) where \(L_n \) is the density gradient scale length. Based upon this evidence, it has been suggested that various drift instabilities are responsible for the short wavelength irregularities [Huba et al., 1978; Costa and Kelley, 1978a,b; Huba and Ossakow, 1979a,b], depending upon

Manuscript submitted May 29, 1980.
the wavelength observed. Although collisionless drift waves would easily be excited under these circumstances, collisional effects have a stabilizing influence on the instabilities investigated thus far [Huba and Ossakow, 1979a,b; Sperling and Goldman, 1980]. Specifically, the lower-hybrid-drift instability is the prime candidate to explain the 1m, 36 cm and 11 cm irregularities. However, recent work [Huba and Ossakow, 1979a; Sperling and Goldman, 1980] has indicated that electron-electron, electron-ion and electron-neutral collisions stabilize the instability and an approximate threshold condition has been derived [Sperling and Goldman, 1980].

In the light of the new observations of 11 cm irregularities and theoretical results, we show that the lower-hybrid-drift instability is the most probable cause of the small-scale irregularities (i.e., 11 cm, 36 cm and 1m) observed during equatorial spread F. Moreover, we discuss the role of these irregularities on the large scale plasma behavior during these periods.

II. Theory

We consider a plasma immersed in a homogeneous, unidirectional field $\mathbf{B} = B_0 \hat{z}$ with an inhomogeneous density profile $n = n(x)$ and a constant temperature ($T_e = T_i = T$). Each species α (i.e., electrons and O^+ ions) has a diamagnetic drift velocity $v_{d\alpha} = \left(\frac{v_a^2}{2\Omega_{\alpha}}\right) \frac{d \ln n}{dx}$ where $v_a = \left(\frac{2T_a}{m_a}\right)^{1/2}$ is the thermal velocity, $\Omega_{\alpha} = e_B \omega / m_c$ is the cyclotron frequency and $n = n_e \approx n_i$. A net current exists in the plasma $J_0 = e_n (V_{di} - V_{de}) \hat{y}$ which provides the free energy to drive an instability. Perturbed quantities are assumed to vary as $\exp[iky - i\omega t]$ and we consider only electrostatic oscillations since $\beta \ll 1$. We make use of the local approximation which requires $kL_n \gg 1$ where $L_n = (d \ln n/dx)^{-1}$ is the density gradient scale length. The ions are taken to be unmagnetized while the electrons are
considered to be magnetized. The ions behave as unmagnetized particles for
the wavelengths under consideration \((k r_{Li} \sim 10^2)\) because of ion-ion col-
lisions (Huba and Ossakow, 1979a). Electron-neutral, electron-electron and
electron-ion collisions are included in the analysis via an effective
collision frequency \(v_e = v_{en} + v_{ei}(1 + 0.15 k^2 r_{Le}^{-2})\) where \(r_{Le} = v_e/|\Omega_e|\) is
the mean electron Larmor radius (Kadomtsev, 1965; Sperling and Goldman, 1980).
We note that our coefficient of \(k^2 r_{Le}^{-2}\) differs from that of Sperling and
Goldman (1980) due to a different definition of the thermal velocity.

Based upon these assumptions, we obtain the following dispersion
equation for the lower-hybrid-drift instability

\[
D(w,k) = 1 + \chi_i + \chi_e
\]

where (Huba et al., 1978)

\[
\chi_i = \frac{2w_p e^2}{k^2 v_i^2} \left[1 + \frac{w-kV_{di}}{kv_i} \right] Z \left(\frac{w-kV_{di}}{kv_i} \right)
\]

and (Sperling and Goldman, 1980)

\[
\chi_e = \frac{2w_p e^2}{k^2 v_e^2} \left[1 - \frac{w-kV_{de} + iv_e}{w+iv_e} \right] \frac{\Gamma_o(b_e)}{\Gamma_o(b_e) - 1}
\]

where \(w_p \alpha^2 = 4\pi n_e e^2/m\), \(v_e^2 = 2T_e/m_e\), \(\Omega_e = eB_0/m_e\), \(v_{de} = (v_e^2/2\Omega_e)\)d \(\ln n/\Delta x\),
\(v_e = v_{en} + v_{ei}(1 + 0.3b_e)\), \(b_e = k^2 r_{Le}^{-2}/2\), \(\Gamma_o(x) = \Gamma_o(x)e^{-x}\), \(\Gamma_o\) is the modified
Bessel function of order \(n\) and \(Z\) is the plasma dispersion function. We note
that Eq. (3) is based upon the BGK collision model and, strictly speaking,
does not correctly treat electron-electron collisions (Rukhadze and Silin,
1968). However, electron viscosity is approximately modeled via the term
proportional to \(k^2 r_{Le}^{-2}\) (Mikhailovskii and Pogutse, 1966). Since the 11 cm
irregularities correspond to \(kr_{Le} \approx 2\), it is clear that electron viscous
effects are only moderately important. Moreover, the BGK model is adequate
in the absence of temperature gradients (Rukhadze and Silin, 1968) which is
the situation in the F region. Thus, Eq. (3) can be used with confidence to
describe the electron response qualitatively. The quantitative results based
upon Eq. (3) are approximately correct since a model Fokker Planck equation
is used to describe the collisionality.

Since \(V_{di} \ll V_e \) (which corresponds to \(r_{L_i} \ll L_n \)), we can expand the
plasma dispersion function in the small argument limit (i.e., \(Z(\psi) \approx i/\pi \)).

The dispersion equation assumes the form

\[
D(w,k) = 1 + \frac{2w_{pi}^2}{k^2 v_i^2} \left[1 + i\sqrt{\frac{\omega - kV_{di}}{kV_{di}}} \right] \nonumber
\]

\[
+ \frac{2w_{pe}^2}{k^2 v_e^2} \left[1 - \frac{\omega - kV_{de} + iv_e}{\omega + iv_e} \Gamma_o(b_e) \right] \frac{i\nu_e}{w + iv_e} \Gamma_o(b_e)^{-1} = 0. \nonumber
\]

(4)

In the limit \(\gamma \sim v_e \ll \omega_r \), where \(\omega = \omega_r + i\gamma \), Eq. (4) has the following
solution

\[
\omega_r = kV_{di} \left[1 + k^2 \lambda_{di}^2 + (T_i/T_e)(1 - \Gamma_o) \right]. \nonumber
\]

(5)

\[
\gamma = -\omega_r (\omega_r/kV_{di}) \left[\frac{\pi}{\Gamma_o} \frac{\omega - kV_{di}}{kV_{di}} + \frac{T_i}{T_e} \frac{\nu_e}{\omega_r} (1 - \Gamma_o) \left(1 + \frac{kV_{di}}{\omega_r} \frac{T_e}{T_i} \right) \right]. \nonumber
\]

(6)

where \(\lambda_{di}^2 = v_i^2/2w_{pi}^2 \) and the argument of \(\Gamma_o \) has been suppressed. In the
absence of collisions \((\nu_e = 0) \), instability occurs for \(\omega_r < kV_{di} \) and there is
no threshold requirement. However, electron collisions are stabilizing and
place a threshold condition on the drift velocity to excite the mode (Huba
and Ossakow, 1979a; Sperling and Goldman, 1980). Substituting Eq. (5) into
Eq. (6), the critical drift velocity (i.e., such that \(\gamma > 0 \)) is given by

\[
\left(\frac{V_{di}}{V_e} \right)_{cr} > \left[\frac{\nu_e}{\Omega_i \Gamma^2} \frac{m_e}{m_i} \frac{1}{\sqrt{\pi}} \frac{(1 - \Gamma_o) (2 + k^2 \lambda_{di}^2)^2}{\Gamma_o} \frac{r_o}{2(1 - \Gamma_o) + k^2 \lambda_{di}^2} \right]^{1/2} \nonumber
\]

(7)
This corresponds to a critical density gradient scale length via

\[L_{nc}^{cr} \leq \left(\frac{v_i}{V_{di}} \right)_{cr} \left(\frac{r_L}{2} \right). \]

We now apply Eq. (7) to plasma conditions relevant to equatorial spread F to determine whether or not the lower-hybrid-drift instability is responsible for the 11 cm radar backscatter observations. We choose \(B = 0.3 \) G, \(T_e = T_i = 0.1 \) eV and \(m_i = 16 m_p \). The collision frequency is given by

\[\nu_e = \nu_{en} + \nu_{ei}(1 + 0.15 k^2 r_{Le}^2) \]

(8)

where (Braginskii, 1965; Johnson, 1961)

\[\nu_{en} = 5.0 \times 10^{-8} n_n^{1/2} T_e^{1/2} \text{sec}^{-1} \]

(9)

\[\nu_{ei} = (\lambda/3.5 \times 10^5)(n_e/T_e^{3/2}) \text{sec}^{-1} \]

(10)

and \(n_n \) is the neutral density, \(n_e \) is the electron density \(\lambda = 23.4 - 1.15 \log n_e + 3.45 \log T_e \), and \(T_e \) is given in eV. We plot \((V_{di}/v_i) \) and \(L_{nc}^{cr} \) (meters) versus \(kr_{Le} \) in Fig. 1 for the following values:

\(n_e = 10^4, 10^5, 10^6 \) cm\(^{-3} \) and \(n_n = 10^8, 5 \times 10^9 \) cm\(^{-3} \). The range in electron density corresponds to the ambient density \(n_e \sim 10^6 \text{cm}^{-3} \) to the density within ionospheric bubbles or plasma depletions \(n_e \sim 10^4 \text{cm}^{-3} \). The values of the neutral density are for altitudes of 500 km \(n_n \sim 10^8 \text{cm}^{-3} \) and 240 km \(n_n \sim 5 \times 10^9 \text{cm}^{-3} \) during sunspot maximum (Johnson, 1961). The altitude of 500 km corresponds to the region from which the 11 cm radar backscatter returns were observed (Tsunoda, 1980); whereas, the 240 km altitude corresponds to the bottom of the F region on that same night. Also, we have marked the values of \(kr_{Le} \) which correspond to 1m, 36 cm and 11 cm, respectively. Several interesting features of Fig. 1 are as follows.
First, minimum values of \((V_{di}/v_i)_{cr}\) and \(L_n^{cr}\) exist for \(kr_{Le} \sim 0.6\) as noted by Sperling and Goldman (1980). The minimum is rather broad for low \(n_e\) but becomes sharper as \(n_e\) is increased. This indicates that for a given density and density gradient scale length only a certain range of \(kr_{Le}\) can be excited linearly. Second, larger values of the neutral density require larger drift velocities (or shorter density gradient scale lengths) as expected. This is a more dramatic effect at lower electron densities \((n_e \sim 10^4 cm^{-3})\) than higher electron densities \((n_e \sim 10^6 cm^{-3})\) simply because \(v_{ei}/v_n\) scales as \(n_e\). And finally, for \(n_e = 10^6 cm^{-3}\) there is a cutoff at \(kr_{Le} \approx 1.5\). This arises because \(k\lambda_{de} \approx 1\) for these values and one does not expect collective plasma phenomena to occur on length scales shorter than a Debye length. Thus, for electron densities less than \(10^4 cm^{-3}\), there will be no density fluctuations with scale lengths shorter than 20 cm other than thermal fluctuations.

III. Discussion

Recently, during a coordinated ground-based rocket campaign to study ionospheric irregularities during equatorial spread F at Kwajalein, Tsunoda (1980) observed radar backscatter from 11 cm irregularities. These are the smallest scale irregularities observed thus far and are comparable to the mean electron Larmor radius \((r_{Le} \sim 3 cm)\). An important feature of the experimental results is that these irregularities were only observed at high altitudes \((\sim 500 km)\). During the rocket flight, which occurred subsequent to the 11 cm radar backscatter measurements, in situ probes detected sharp density gradients \((L_n \geq 45m; Kelley, private communication, 1980)\) and large density depletions \((n_e \sim several \times 10^4 cm^{-3}; E. Szuszczewicz, private communication, 1980)\) at high altitude \((\sim 500 km)\). We note that previous in situ rocket measurements have found density gradient scale lengths as small as 30m (Costa and Kelley, 1978a).
These data suggest the following scenario. As equatorial spread F develops, density depletions rise to the topside of the F region where the neutral density is low (~ 500 km). Within these plasma bubbles (where electron collisional effects are minimal) sharp density gradients exist which can excite the lower-hybrid drift instability. The density fluctuations associated with the instability give rise to the radar backscatter measurements at 1 m, 36 cm and 11 cm. This can occur for $L_n > 20 m$, $n_e < 10^{5} \text{cm}^{-3}$ and $n_n \sim 10^{8} \text{cm}^{-3}$ (see Fig. 1) which is consistent with observational results to within a factor of two. This is quite good considering the approximations involved in deriving the electron response (Eq. (3)). At lower altitudes (< 250 km) the increased neutral density requires a sharper density gradient scale length for a given value of n_e (or lower values of n_e for fixed density gradient scale length) especially for the 11 cm irregularities (see Fig. 1) and the mode is stable. Also, it is possible that the density within the lower altitude density depletions is $n_e < 10^{6} \text{cm}^{-3}$ and radar backscatter is not observed at 11 cm since this is smaller than the Debye length. Thus, based upon the linear theory of the lower-hybrid-drift instability, it is found that this mode is the most probable cause of the small-scale irregularities (< 1 m) observed during equatorial spread F.

Finally, we discuss the role of this instability in the evolution of the large scale plasma phenomena occurring during equatorial spread F. Typically, plasma microturbulence influences the plasma via its anomalous transport properties (i.e., scattering of particles by the collective fields associated with the instability). A recent theoretical study of the lower-hybrid-drift instability (Drake, 1980) indicates that this mode can only produce irreversible electron heating and diffusion when $e\phi/T > 0.2 - 0.5$ where ϕ is the fluctuating electrostatic potential. To produce this level
of turbulence requires very sharp density-gradients \((L_n \ll r_{Li})\) which do not exist during equatorial spread F. For typical ionospheric conditions (i.e., \(L_n \gg r_{Li}\)), the instability will saturate at a low level of turbulence and not be an effective anomalous transport mechanism. Thus, the small-scale density and field fluctuations associated with this mode are a signature of equatorial spread F (under the proper conditions) and will probably not significantly influence the macroscopic fluid evolution of the plasma for scale sizes \(\ll L_n\).

Acknowledgments: This work was supported by the Defense Nuclear Agency. We wish to thank Drs. Kelley, Szuszczewicz, and Tsunoda for valuable discussions concerning the data obtained during the 1979 DNA supported Kwajalein equatorial campaign.
Fig. 1 - Plot of \(\frac{V_{di}}{v_i} \) and \(L^c_m \) (meters) vs. \(k r_{Le} \). Values of \(V_{di}/v_i \) and \(L_n \) above the curves lead to instability, while those below lead to stability. The following densities are considered: electron density \(n_e = 10^4, 10^5, 10^6 \text{cm}^{-3} \) and neutral density \(n_n = 10^8 \text{cm}^{-3} \) and \(n_n = 5 \times 10^9 \text{cm}^{-3} \).
References

<table>
<thead>
<tr>
<th>Department of Defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Secretary of Defense</td>
</tr>
<tr>
<td>Command, CNO, Cont & Intell</td>
</tr>
<tr>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN J. BABCOCK</td>
</tr>
<tr>
<td>OICY ATTN M. EPSTEIN</td>
</tr>
<tr>
<td>Assistant to the Secretary of Defense</td>
</tr>
<tr>
<td>Atomic Energy</td>
</tr>
<tr>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN EXECUTIVE ASSISTANT</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Command Control Technical Center</td>
</tr>
<tr>
<td>Pentagon, RM Bldg 685</td>
</tr>
<tr>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN C-650</td>
</tr>
<tr>
<td>OICY ATTN C-312 R. MASON</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>Architect Building 1400 Wilson Blvd.</td>
</tr>
<tr>
<td>Arlington, VA 22209</td>
</tr>
<tr>
<td>OICY ATTN NUCLEAR MONITORING RESEARCH</td>
</tr>
<tr>
<td>OICY ATTN STRATEGIC TECH OFFICE</td>
</tr>
<tr>
<td>Defense Communication Engineer Center</td>
</tr>
<tr>
<td>1860 Wib dile Avenue</td>
</tr>
<tr>
<td>Reston, VA 22090</td>
</tr>
<tr>
<td>OICY ATTN CODE R820</td>
</tr>
<tr>
<td>OICY ATTN CODE R910 James W. McLean</td>
</tr>
<tr>
<td>OICY ATTN CODE R720 J. Worthington</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Defense Communications Agency</td>
</tr>
<tr>
<td>Washington, D.C. 20305</td>
</tr>
<tr>
<td>(4DR CANB: ATTN CODE 2NO FOR)</td>
</tr>
<tr>
<td>OICY ATTN CODE 1018</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td>Cameron Station</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>(12 COPIES IF OPEN PUBLICATION, OTHERWISE 2 COPIES)</td>
</tr>
<tr>
<td>12CY ATTN TC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Intelligence Agency</td>
</tr>
<tr>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN DT-18</td>
</tr>
<tr>
<td>OICY ATTN DB-4C E. O'FARRELL</td>
</tr>
<tr>
<td>OICY ATTN DIAAP A. WISE</td>
</tr>
<tr>
<td>OICY ATTN DIAST-5</td>
</tr>
<tr>
<td>OICY ATTN DT-182 R. HORTON</td>
</tr>
<tr>
<td>OICY ATTN HQ-TR J. STEWART</td>
</tr>
<tr>
<td>OICY ATTN W. WITTI GC-70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Nuclear Agency</td>
</tr>
<tr>
<td>Washington, D.C. 20305</td>
</tr>
<tr>
<td>OICY ATTN SYL</td>
</tr>
<tr>
<td>OICY ATTN TIL</td>
</tr>
<tr>
<td>OICY ATTN ODST</td>
</tr>
<tr>
<td>OICY ATTN RAEE</td>
</tr>
<tr>
<td>OICY ATTN ATC-Q W. DAVIES</td>
</tr>
<tr>
<td>OICY ATTN ATC-R DON RUSSELL</td>
</tr>
</tbody>
</table>
IONOSPHERIC MODELING DISTRIBUTION LIST
UNCLASSIFIED ONLY

PLEASE DISTRIBUTE ON COPY TO EACH OF THE FOLLOWING PEOPLE:

ADVANCED RESEARCH PROJECTS AGENCY (ARPA)
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VIRGINIA

CAPT. DONALD M. LEVINE

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375

DR. P. HANGE
DR. R. MEIER
DR. E. SZUSZCZEWICZ - CODE 4127
DR. TIMOTHY COFFEY - CODE 4700 (25 COPIES)
DR. S. OSSAKOW - CODE 4780 (100 COPIES)
DR. J. GOODMAN - CODE 7560

SCIENCE APPLICATIONS, INC.
1250 PROSPECT PLAZA
LA JOLLA, CALIFORNIA 92037

DR. D. A. HAMLIN
DR. L. LINSON
DR. D. SACHS

DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
NOAA
BOULDER, COLORADO 80302

DR. A. GLENN JEAN
DR. G. W. ADAMS
DR. D. M. ANDERSON
DR. R. DAVIES
DR. R. F. DONNELLY

A. P. GEOPHYSICS LABORATORY
L. G. MANSO FIELD
BEDFORD, MASS. 01730

DR. T. ELKINS
DR. W. SHIDER
MRS. R. SAGALYN
DR. J. M. FORBES
DR. T. J. KENESHEA
DR. J. AARONS

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

DR. N. MULANEY

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CALIFORNIA 92152

DR. M. BLEWEISS
DR. L. ROTHMULLER
DR. V. MILDEBRAND
MR. R. ROSE

U. S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MARYLAND

DR. J. MEINEL

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360

DR. T. CIUHA

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MASS. 02138

DR. M. B. NELHOY
DR. R. LINZEN

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. D. E. BARAN
DR. L. A. CARPENTER
DR. M. LEE
DR. R. D'IVANY
DR. P. BENNETT
DR. E. KLEIN

UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILLAGARD AVENUE
LOS ANGELES, CALIFORNIA 90024

DR. F. V. CORONITI
DR. C. KENNEL

UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

DR. M. HUDSON

UTAH STATE UNIVERSITY
4TH N. AND 8TH STREETS
LOGAN, UTAH 84322

DR. P. M. BANKS
DR. R. HARRIS
DR. V. PETERSON
DR. R. MEGILL
DR. K. BAKER

CORNELL UNIVERSITY
ITHACA, NEW YORK 14850

DR. W. E. SHWARTZ
DR. R. SUDAN
DR. D. FALEY
DR. M. KELLEY

NASA
GOODSPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771

DR. S. CHANDRA
DR. K. NAEDIO