Subharmonic Solutions of a Forced Wave Equation

Paul H. Rabinowitz
Mathematics Department
University of Wisconsin
Madison, Wisconsin 53706

This research was sponsored in part by the Office of Naval Research under Contract No. N00014-76-C-0360. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Subharmonic Solutions of a Forced Wave Equation

Introduction

In a recent paper [1], we established the existence of subharmonic solutions of forced Hamiltonian systems of ordinary differential equations. The goal of this note is to show that subharmonics also occur for a class of semilinear wave equations.

To be more precise, let $z(t) = (z_1(t), \ldots, z_{2n}(t))$, $H: \mathbb{R}^{2n} \to \mathbb{R}$, and consider the Hamiltonian system of ordinary differential equations:

$$\frac{dz}{dt} = JH_z(t, z), \quad J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

where I denotes the identity matrix in \mathbb{R}^n. Suppose $H(t, 0) = 0$, $H(t, z) > 0$, and H is T periodic in t. It was shown in [1] that if H satisfies appropriate additional conditions near $z = 0$ and $z = -$, then (0.1) possesses an infinite number of distinct subharmonic solutions, i.e. for each $k \in \mathbb{N}$, (0.1) has a solution $z_k(t)$ of period kT and infinitely many of the functions z_k are distinct. For single second order equations of the form

$$v'' + g(t, v) = 0$$

with g T-periodic in t, more delicate such results were obtained earlier under related hypotheses by Jacobowitz [2].
Further work on this question was carried out by Hartman [3] who weakened the hypotheses of [2] and improved the conclusions.

We will show how analogues of some of the results of [1] can be obtained for a family of forced semilinear wave equations. Thus consider

\[
\begin{cases}
 u_{tt} - u_{xx} + f(x,t,u) = 0 & \quad 0 < x < \ell \\
u(0,t) = 0 = u(\ell,t)
\end{cases}
\]

(0.3)

where \(f \) is \(T \) periodic in \(t \). It was shown in [4] that (0.3) possesses a nontrivial classical \(T \) periodic solution provided that \(T \in \mathbb{Q} \), i.e. \(T \) is a rational multiple of \(t \), and \(f \) satisfies appropriate conditions. Recently a slightly stronger result has been obtained by Brezis, Coron, and Nirenberg [5]. In the following section we will prove that the hypotheses required in [4] for the above existence theorem imply that (0.3) also has subharmonic solutions: for all \(k \in \mathbb{N} \), (0.3) possesses a \(kT \) periodic solution \(u_k \) and infinitely many of these functions are distinct. The proof relies on an amalgam of ideas from [1] and [4].

\[1. \textbf{The existence theorem}\]

Suppose \(f : [0,\ell] \times \mathbb{R}^2 \to \mathbb{R} \) and satisfies

\((f_1) \quad f(x,t,0) = 0, \ f_x(x,t,r) > 0 \) for \(0 \neq r \) near 0, and \(f(x,t,r) \) is strictly monotonically increasing in \(r \) for all \(r \in \mathbb{R} \).

\((f_2) \quad f(x,t,r) = o(|r|) \) at \(4 = 0 \)

\((f_3) \quad \text{There are constants } \quad u > 2 \quad \text{and} \quad \bar{r} > 0 \quad \text{such that} \)

\[\]
\[0 < \mu F(x,t,r) = \int_{0}^{r} f(x,t,s) ds \leq r f(x,t,r) \]

for \(|r| \geq \bar{r}\)

(f_4) There is a constant \(T > 0\) such that \(f(x,t + T,r) = f(x,t,r)\) for all \(x,t,r\).

Note that \((f_3)\) implies that

\[(1.1) \quad F(x,t,r) \geq a_1 |r|^\mu - a_2 \]

for some constants \(a_1 > 0, a_2 > 0\) and for all \(r \in \mathbb{R}\), i.e. \(F\) grows at a more rapid rate than quadratic at \(r = 0\).

We will prove the following theorem:

Theorem 1.2: Let \(f \in C^2([0,\ell] \times \mathbb{R}^2, \mathbb{R})\) and satisfy \((f_1) - (f_4)\). If \(T \in \mathbb{Q}\), then for all \(k \in \mathbb{N}\), the problem

\[(1.3) \quad \begin{cases} u_{tt} - u_{xx} + f(x,t,u) = 0 , & 0 < x < \ell \\ u(0,t) = 0 = u(\ell,t) \end{cases} \]

possesses a nonconstant \(kT\) periodic solution \(u_k \in C^2\). Moreover infinitely many of the functions \(u_k\) are distinct.

Before giving the proof of Theorem 1.2, several remarks are in order. Since \(T \in \mathbb{Q}\) implies that \(kT \in \mathbb{Q}\) for all \(k \in \mathbb{N}\), the first assertion of the theorem is a special case of Theorem 4.1 and Corollary 4.14 of [4]. However, since we do not know \(kT\) is an minimal period of \(u_k\), the functions \(u_k\) may all represent the same \(T\) periodic
function or possibly a finite number of distinct periodic functions. Thus what is new and of interest here is that in fact infinitely many of the functions u_k must be distinct.

To establish this result we will show that on the one hand, if only finitely many of the functions u_k were distinct, a corresponding variational formulation of (1.3) would have an unbounded subsequence of critical values, c_k, with corresponding critical points representing reparametrizations of the same function. The growth of the c_k's will be like k^2. On the other hand it turns out that c_k grows at most linearly in k, a contradiction.

To make this statement, which contains variants of ideas in [1], more precise, a closer inspection must be made of the existence mechanism of [4]. For convenience we take $t = \pi$ and $T = 2\pi$. Fixing $k \in \mathbb{N}$, we seek a solution of (1.3) which is $2\pi k$ periodic in t. It is convenient to rescale time $t = kr$ so that the period becomes 2π and (1.3) transforms to

$$
\begin{align*}
&u_{tt} - k^2(u_{xx} - f(x, kr, u)) = 0 \\
&u(0, t) = 0 = u(\pi, t); u(x, t + 2\pi) = u(x, t)
\end{align*}
$$

The solution of (1.4) is obtained via an approximation argument. Three approximations are made. First observe that the wave operator part of (1.4), $u_{tt} - k^2 u_{xx}$ has an infinite dimensional null space, N, in the class of functions satisfying the periodicity and boundary conditions, namely...
To provide some compactness for the problem in N, we perturb the wave operator by adding a term $-\beta v_{TT}$ to it where $\beta > 0$ and v denotes the L^2 orthogonal projection of u into N. Secondly the unrestricted rate of growth of $f(x,t,r)$ at $|r| = \infty$ creates technical problems which we bypass by suitably truncating f, i.e., we replace f by $f_K(x,t,r)$ where f_K coincides with f for $|r| \leq K$, satisfies $(f_1) - (f_4)$ with μ replaced by a new constant $\bar{\mu} = \min(4, \mu)$ in (f_3). Moreover f_K grows like r^3 at ∞. (See Eq (5.22) of [4]). Thus we replace (1.4) by

$$
\begin{align*}
\begin{cases}
 u_{TT} - \beta v_{TT} - k^2(u_{xx} - f_K(x,k,T,u)) = 0, & 0 < x < \pi \\
 u(0,\tau) = 0 = u(\pi,\tau); u(x,\tau + 2\pi) = u(x,\tau)
\end{cases}
\end{align*}
$$

Formally (1.5) can be cast as a variational problem, namely that of finding critical points of

$$
I(u;k,\beta, K) = \int_0^{2\pi} \int_0^\pi \left[\frac{1}{2} u_k^2 \beta v_k^2 - k^2 \left(\frac{1}{2} u^2 + F_K(x,k,T,u) \right) \right] dx \, d\tau
$$

where F_K is the primitive of f_K. Our final approximation is to pose this variational problem in a finite dimensional space

$$
E_m = \text{span}\{\sin jx \sin n\tau, \sin jx \cos n\tau | 0 \leq j, n \leq m \}.
$$

A critical point of $I|_{E_m}$ will be a solution of the L^2 orthogonal projection of (1.5) onto E_m.

A series of lemmas in [4] use \((f_1) - (f_4)\) and the form of \(I\) to establish the existence of a nontrivial critical point \(u_{mk}\) of \(I|_{E^m}\) as well as an estimate on the corresponding critical value \(c_{mk}\) of the form

\[
0 < c_{mk} = I(u_{mk}, k, \beta, K) \leq M_k
\]

where \(M_k\) is a constant independent of \(\beta, K,\) and \(m\). Further arguments in [4] allow successively letting \(m \to \infty\) and \(\beta \to 0\) to get a solution \(u_k\) of

\[
\begin{aligned}
u_{\tau\tau} - k^2 (u_{xx} - f_K(x, k\tau, u)) &= 0 & 0 < x < \pi \\
u(0, \tau) = n(\pi, \tau); u(x, \tau + 2\pi) &= u(x, \tau)
\end{aligned}
\]

with \(c_k = I(u_k, k, 0, K) \leq M_k\). Moreover for \(K = K(k)\) sufficiently large, \(||u_k||_{L^\infty} \leq K\) so \(f_K(x, k\tau, u_k) = f(x, k\tau, u_k)\) and \(u_k\) satisfies (1.4). Lastly a separate argument shows \(c_k > 0\) so \(u_k \neq 0\) via \((f_1)\) and the form of \(I\).

Returning to the question of how many of the functions \(u_k\) are distinct, we will first study the dependence of \(M_k\) on \(k\). To do so requires a closer look at how the bound \(M_k\) is determined. Lemma 1.13 of [4] provides a minimax characterization of \(I(u_{mk}, k, \beta, K)\) which in turn yields the bound \(M_k\).

Let

\[
W_{mk} = \text{span}\{\sin jx \sin n\tau, \sin jx \cos n\tau | 0 \leq j, n \leq m \}
\]

and \(n^2 \leq j^2 k^2\), \(v_k = a_k \sin x \sin (k + 1)\tau\).
and a_k is chosen so that $||\varphi_k||_{L^2} = 1$.

Set $V_{mk} = W_{mk} \oplus \text{span } \{\varphi_k\}$. It was shown in [4] that

\begin{equation}
0 < c_{mk} \leq \max_{u \in V_{mk}} I(u; k, \beta, K)
\end{equation}

(Note that $I \to -\infty$ as $||u||_{L^2} \to \infty$ via (f$_3$) so we have a max rather than a sup in (1.9)). Let $z = z_{mk}$ denote the point in V_{mk} at which the max is attained. We can write

\begin{equation}
z = ||z||_{L^2}(\gamma \xi + \delta \varphi_k)
\end{equation}

where $\xi \in W_{mk}$ with $||\xi||_{L^2} = 1$ and $\gamma^2 + \delta^2 = 1$.

Substituting (1.10) into (1.9) and using the form of I yields

\begin{equation}
k^2 \int_0^{2\pi} \int_0^{\pi} F_K(x, k\tau, z) \, dx \, d\tau \leq \frac{1}{2} \int_0^{2\pi} \int_0^{\pi} (z^2 - k^2 \varphi_k^2) \, dx \, d\tau
\leq \frac{\delta^2}{2} ||z||_{L^2}^2 \int_0^{2\pi} \int_0^{\pi} (\varphi_k^2 - k^2 \varphi_k^2) \, dx \, d\tau
\leq \overline{M} ||z||_{L^2}^2 k
\end{equation}

where \overline{M} is independent of k and m (as well as β and K). Since F_K satisfies (1.1) with a constant $\overline{\mu}$ independent of K, (1.11) shows that

\begin{equation}
k(a_1 ||z||_{L^2}^{\overline{\mu}} - a_3) \leq \overline{M} ||z||_{L^2}^2
\end{equation}
By the Hölder inequality we find that

\[(1.13) \quad k(a_4 |z| \|\vec u\|_{L^2} - a_3) \leq \bar M |z| \|_{L^2}^2 \]

which implies that

\[(1.14) \quad \|z\|_{L^2} \leq \bar M_1 \]

with \(\bar M_1\) independent of \(m, k, \beta, K\). Returning to \((1.9)\) and using \((1.14)\) yields

\[(1.15) \quad c_{mk} = I(u_{mk}; k, \beta, K) \leq \bar M_2 k \]

with \(\bar M_2\) independent of \(m, k, \beta, K\). It follows that \(c_k\) satisfies the same estimate:

\[(1.16) \quad c_k = I(u_k; k, 0, K) \leq \bar M_2 k \]

To complete the proof of Theorem 1.2, we will show that
\[(1.16)\) is violated if more than finitely many solutions \(u_k\) correspond to the same function in the original \(t\) variables. To present the idea in its simplest setting, suppose first that all of the functions \(u_k(x, \tau)\) are reparameterizations of \(u_1(x,t)\). Then \(u_k(x, \tau) = u_1(x, k\tau) = u_1(x,t) \equiv u(x,t)\). For \(K = K(k)\) sufficiently large we have
(1.17) \[c_k = \int_0^{2\pi} \int_0^\pi \left[\frac{1}{2} u_{kt}^2 - k^2 \left(\frac{u_{kx}}{2} + F(x, kt, u_k) \right) \right] dx \, dt \]

\[= k \int_0^{2\pi k} \int_0^\pi \left[\frac{1}{2} u_t^2 - u_x^2 \right] dx \, dt \]

\[= k^2 \int_0^{2\pi} \int_0^\pi \left[\frac{1}{2} u_t^2 - u_x^2 \right] dx \, dt \]

\[= k^2 c_1 \]

since \(u \) is \(2\pi \) periodic in \(t \). The positivity of \(c_1 \) and (1.17) show that \(c_k \) tends to infinity like \(k^2 \) contrary to the bound (1.16). This argument shows (1.3) has at least one \(2\pi k \) periodic solution distinct from \(u_1(x, t) \).

For the general case we argue similarly. Suppose two solutions \(u_j(x, \tau) \) and \(u_k(x, \tau) \) correspond to the same function of \((x, t) \), i.e. \(u_j(x, \tau) = u_j(x, \frac{t}{j}) \equiv v(x, t) \equiv u_k(x, \frac{t}{k}) \). Thus \(u_j(x, \tau) = v(x, j\tau) \) and \(u_k(x, \tau) = v(x, k\tau) \). Since \(v(x, t) \) is both \(2\pi j \) and \(2\pi k \) periodic in \(t \), there are \(j_1, k_1, \sigma \in \mathbb{N} \) such that \(j = \sigma j_1, k = \sigma k_1 \) and \(v \) is \(2\pi \sigma \) periodic in \(t \). (We can take \(\sigma \) to be the greatest common divisor of \(j \) and \(k \).) Arguing as in (1.17) yields

(1.18) \[c_k = k \int_0^{2\pi \sigma} \int_0^\pi \left[\frac{1}{2} (v_t^2 - v_x^2) - F(x, t, v) \right] dx \, dt \]

\[= k^2 \frac{2\pi \sigma}{\sigma} \int_0^{2\pi \sigma} \int_0^\pi \left[\frac{1}{2} (v_t^2 - v_x^2) - F(x, t, v) \right] dx \, dt \]

\[= \frac{k^2}{\sigma} A \]

and
Thus if there is a sequence u_{k_i} of solutions of (1.4) corresponding to the same function v, by (1.18) - (1.19) we have

\begin{equation}
(1.20)
\frac{k_i^2}{\sigma^A}
\end{equation}

where $\sigma \in \mathbb{N}$ is the greatest common divisor of $\{k_i\}$. Hence $c_{k_i} \to \infty$ like k_i^2 contrary to (1.16) and the proof of Theorem 1.2 is complete.

Remark 1.21: Note that if $F(x,t,r)$ and F_K satisfy

$$F, F_K \geq a_1 |r|^\nu$$

for some $\nu > 2$, it follows from (1.11) that

$$\|z\|_2 \leq a_5^\frac{1}{\nu-2}$$

and therefore

$$c_k \leq a_6^\frac{1-2}{\nu-2} = a_6^\frac{\nu-4}{\nu-2}$$

Thus if $\nu < 4$, $c_k \to 0$ as $k \to \infty$. Further restrictions on F (as in [1]) imply $u_k \to 0$ as $k \to \infty$.

Remark 1.22: Existence of infinitely many distinct subharmonic solutions was also established in [1] for a family of subquadratic Hamiltonian systems, i.e. Hamiltonian systems where H grows less rapidly than quadratically as $|z| \to \infty$. There are several existence theorems for periodic solutions of semi-linear wave equations in which the primitive of the forcing term is subquadratic [6-10]. We believe the conclusions of this paper carry over to the subquadratic case via the arguments used here and in [1].
References

