MANUFACTURING METHODS AND TECHNOLOGY PROGRAM FOR RUGGEDIZED TACTICAL FIBER OPTIC CABLE

R. HOSS & R. KOPSTEIN

THIRD QUARTERLY PROGRESS REPORT FOR PERIOD JANUARY 1, 1980 - MARCH 31, 1980

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER STATEMENT

The findings in this report are not to be construed as an
official Department of the Army position unless so designated
by other authorized documents.

DEPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not
return it to the originator.

ACKNOWLEDGEMENT STATEMENT

This project has been accomplished as part of the U.S. Army
Manufacturing Methods and Technology Program which has as its
objective the timely establishment of manufacturing processes,
techniques, or equipment to insure the efficient production
of current or future defense programs.
MANUFACTURING METHODS AND TECHNOLOGY
PROGRAM FOR RUGGEDIZED TACTICAL
FIBER OPTIC CABLE

THIRD QUARTERLY PROGRESS REPORT

FOR THE PERIOD OF JANUARY 1980 - MARCH 1980

Contract No DAAK80-79-C-0789

Prepared for:
U. S. Army Communications
Research and Development Command
Procurement Directorate, Procurement Division D
Fort Monmouth, New Jersey 08803

Prepared by:
ITT Electro-Optical Products Division
P.O. Box 7065
Roanoke, Virginia 24019

Approved for public release; distribution unlimited

Doc Id No: 80-17-04B

Roanoke, Virginia
This report covers the third quarter, January through March 1980, of the Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable. The scope of this quarter's effort, as reported herein, includes the following tasks and achievements:

1. Cable Process Optimization;

Abstract

Fiber Optic Cable, Fiber Optic Communications
Fiber Optic
(a) Complete polyurethane jacket evaluation samples (four types, four manufacturers),

(b) Complete fungus testing,

(c) Select optimized polyurethane type,

(d) Begin optimized cable fabrication for third engineering sample,

(e) Deliver second engineering sample and test report (lay length and polyurethane evaluation samples,

2. Use of Facilities;

(a) Achieve 75% of production rate on the high speed strander,

(b) Install new Kevlar serving line, start setting up, and make operational,

(c) Complete extruder set up and work toward 0.3 h/km rate,

(d) Set up and make spooler operational, achieve 50% production rate,

(e) Assemble test stations and characterize,

3) Secondary Performance Milestones,

(a) Achieve 0.5 dB/km induced attenuation from cabling operation,

In addition to reporting progress on these milestones the report covers any revisions or improvements in process, equipment, tooling manufacturing flow, and specifications. Any changes in key personnel on the program are identified. The program milestones for the next quarter are listed.
MANUFACTURING METHODS AND TECHNOLOGY PROGRAM
FOR RUGGEDIZED TACTICAL FIBER OPTIC CABLE

THIRD QUARTERLY PROGRESS REPORT

For the Period of January 1980 - March 1980

Object of Study:
To Establish an Automated Production Process for Ruggedized Tactical Fiber Optic Cable

Contract No DAAK80-79-C-0789

Prepared by:
R. J. Hoss, Program Manager
R. Kopstein, Project Engineer

Approved by:
R. J. Hoss, Program Manager
F. R. McDevitt, Director, Fiber Optics R&D and Systems

Approved for public release; distribution unlimited.
Roanoke, Virginia
ABSTRACT

This report covers the third quarter, January 1980 through March 1980, of the Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable. The scope of this quarter's effort, as reported herein, includes the following tasks and achievements:

1. Cable Process Optimization
   a. Complete polyurethane jacket evaluation samples (four types, four manufacturers)
   b. Complete fungus testing
   c. Select optimized polyurethane type
   d. Begin optimized cable fabrication for third engineering sample
   e. Deliver second engineering sample and test report (lay length and polyurethane evaluation samples)

2. Use of Facilities
   a. Achieve 75% of production rate on the high speed strander
   b. Install new Kevlar serving line, start setting up, and make operational
   c. Complete extruder set up and work toward 0.80 h/km rate
   d. Set up and make spooler operational, achieve 50% production rate
   e. Assemble test stations and characterize
3. Secondary Performance Milestones -
   a. Achieve 0.5 dB/km induced attenuation from cabling operation

In addition to reporting progress on these milestones the report covers any revisions or improvements in process, equipment, tooling manufacturing flow and specifications. Any changes in key personnel on the program are identified. The program milestones for the next quarter are listed.
PURPOSE

The purpose of this Manufacturing Methods and Technology (MM&T) Program is to establish automated production processes for Ruggedized Tactical Fiber Optic Cables in accordance with Specification MMT-789898 dated 2 February 1978, and ECIPPR No 15.
GLOSSARY

Fused Coupler - Optical coupler for power splitting formed by fusing two or more optical fibers

Injection Fiber - Illuminated fiber used as a measurement light source

ITT EOPD - ITT Electro-Optical Products Division

Lock-In Amplifier - Amplifier used for precise instrumentation measurements in which offset drift is compensated by using a chopped source signal as a reference

NA - Numerical aperture

PCS Fiber - Plastic clad silica fiber

RTV - Silicone buffer coating (room temperature vulcanizing)

PIXEL - Picture element

Roanoke, Virginia
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>PURPOSE</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>1.0</td>
<td>NARRATIVE AND DATA</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Ruggedized Cable Design</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Polyurethane Jacket Optimization</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Purpose of Phase III Polyurethane Optimization</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>Phase III Optimization</td>
<td>1-3</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Manufacturing Problems</td>
<td>1-3</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>Phase III Conclusions and Recommendations</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2</td>
<td>Process, Equipment and Tooling</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Cable Manufacturing Process</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Fiber Rewind Station</td>
<td>1-6</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Fiber Continuity Check Station</td>
<td>1-6</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>Kevlar Jacketing Station</td>
<td>1-8</td>
</tr>
<tr>
<td>1.2.1.4</td>
<td>Respooling Station for Polyurethane Jacket Kevlar</td>
<td>1-9</td>
</tr>
<tr>
<td>1.2.1.5</td>
<td>Optical Core Stranding Station</td>
<td>1-9</td>
</tr>
<tr>
<td>1.2.1.6</td>
<td>Optical Core Jacketing Station</td>
<td>1-10</td>
</tr>
<tr>
<td>1.2.1.7</td>
<td>Kevlar Stranding Station</td>
<td>1-10</td>
</tr>
<tr>
<td>1.2.1.8</td>
<td>Final Jacketing Station</td>
<td>1-11</td>
</tr>
<tr>
<td>1.2.1.9</td>
<td>Final Cable Respooling Station</td>
<td>1-11</td>
</tr>
<tr>
<td>2.0</td>
<td>FIBER AND CABLE TEST STATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>Fiber End Preparation Station</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Pulse Dispersion Station</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3</td>
<td>NA Test Station</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4</td>
<td>Attenuation Measurement Station</td>
<td>2-7</td>
</tr>
<tr>
<td>3.0</td>
<td>FLOW CHART OF MANUFACTURING PROCESS</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Data and Analysis</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Results</td>
<td>3-4</td>
</tr>
<tr>
<td>PARAGRAPH</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>4.0</td>
<td>CONCLUSIONS</td>
<td>4-1</td>
</tr>
<tr>
<td>5.0</td>
<td>PROGRAM FOR NEXT INTERVAL</td>
<td>5-1</td>
</tr>
<tr>
<td>6.0</td>
<td>PUBLICATIONS AND REPORTS</td>
<td>6-1</td>
</tr>
<tr>
<td>-1.0</td>
<td>IDENTIFICATION OF PERSONNEL</td>
<td>-1</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>PHASE II AND III OPTIMIZATION RESULTS</td>
<td>A1-1</td>
</tr>
<tr>
<td>B</td>
<td>PHASE III OPTIMIZATION RESULTS</td>
<td>B1-1</td>
</tr>
<tr>
<td>C</td>
<td>PROGRESS AGAINST ORIGINAL PROGRAMMING</td>
<td>C1-1</td>
</tr>
</tbody>
</table>

Roanoke, Virginia
**LIST OF ILLUSTRATIONS**

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic MM&amp;T Cable Design</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Cable Fabrication Flow Chart</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>Modified Fiber Positioning Fixture Design</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>Dispersion Test Measurement Station</td>
<td>2.3</td>
</tr>
<tr>
<td>5</td>
<td>90% Power NA Measurement Station</td>
<td>2.6</td>
</tr>
<tr>
<td>6</td>
<td>Attenuation Measurement Station</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Incoming Inspection and Quality Control</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Flow Chart</td>
<td></td>
</tr>
</tbody>
</table>

**LIST OF TABLES**

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Data</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>Dispersion Station Test Results</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>90% Power NA Characterization</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>Production Rate by Operation</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>Personnel Working on the MM&amp;T Program</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Roanoke, Virginia
1.0 NARRATIVE AND DATA
The following information covers a physical description of the device (Appendix A), performance, effects of processes, and measurement techniques used on this program.

1.1 Device
The following paragraphs define the methods used to optimize the ruggedized tactical fiber optic cable, manufacturing processes, and measurement techniques.

1.1.1 Ruggedized Cable Design
The purpose of this program is to establish an automated production process for a ruggedized tactical fiber optic cable. Figure 1 shows the general cable configuration to be optimized on the program.

1.1.2 Polyurethane Jacket Optimization
The polyurethane material type was optimized by evaluating four different manufacturers of polyether grade urethanes.

1.1.3 Purpose of Phase III Polyurethane Optimization
The third group of samples in the MM&T engineering phase
evaluates all four manufacturers of polyurethanes to select the most durable type for use in the MM&T final optimized engineering samples.

1.1.3.1 Phase III Optimization
Four cables have been constructed under this phase using the basic cable design of Figure 1 with the following jacket material variations:

a. Design 1 - Uniroyal Roylar E9-B Polyurethane
b. Design 2 - B. F. Goodrich 58500 Polyurethane
c. Design 3 - Upjohn 2103-80 WC Polyurethane
d. Design 4 - Mobay Texin 985A Polyurethane

1.1.3.2 Manufacturing Problems
All cables were constructed with only minor extrusion condition variations for each polyurethane type. The extrusion temperature was varied less than ±5% of the processing conditions for Roylar E9-B to optimized each polyurethane type. The polyurethanes evaluated in cable design 2, 3, and 4 demonstrated much higher adhesion to itself on the reel than does the standard Roylar E9-B evaluated in design 1.

Roanoke, Virginia
1.1.3.3 Phase III Conclusions and Recommendations

Detailed data from the Phase III optimization is contained in the second engineering sample test report. The data summary from the Phase III samples, located in Appendix B, was used to select an optimized polyurethane type based on environmental and mechanical performance. The method used to select the optimized polyurethane is illustrated in Table 1. The following conclusions were drawn:

a. Impact resistance - Uniroyal Roylar E9-B and Mobay Texin 985A performed very well as possible jacketing materials.

b. Polyurethane tackiness - Only cables extruded with Roylar E9-B exhibited a low adhesion to itself on the reel, making the manufacturing process less likely to cause fiber damage.

Based on the above results, Uniroyal Roylar E9-B is recommended as the optimized polyurethane type, with Mobay Texin 985A as a possible second source material.

1.2 Process, Equipment and Tooling

This section covers the manufacturing process, equipment used, and any necessary tooling.

1.2.1 Cable Manufacturing Process

This section describes each manufacturing station and its capabilities.
Table 1. Summary of Data.

<table>
<thead>
<tr>
<th>Test Performed</th>
<th>Design Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>Very Good</td>
<td>Poor</td>
<td>Fair</td>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td>Twist</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Bend</td>
<td>Excellent</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Tensile Load</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Cold Bend</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Fungus</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Polyurethane Tackiness</td>
<td>Very Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Cable Rating</td>
<td></td>
<td>33</td>
<td>26</td>
<td>26</td>
<td>29</td>
</tr>
</tbody>
</table>

*Excellent* = 5

*Very Good* = 4

*Good* = 3

*Fair* = 2

*Poor* = 0

*Design 1 - Uniroyal Roylar E9-B Polyurethane*

*Design 2 - B. F. Goodrich 58300 Polyurethane*

*Design 3 - Upjohn 2103-80WC Polyurethane*

*Design 4 - Mobay Texin 9854A Polyurethane*
1.2.1.1 Fiber Rewind Station

This station (Figure 2, Operation E1) will be used to respool and inspect fibers in preparation for the subsequent stranding operation. The equipment consists of a rewinder, an optical lump detector to examine the fiber buffer jacket for any nonuniformities, and a constant-tension compensating payoff to eliminate any fiber breaks due to high tension levels.

This unit will allow fibers to be inspected for buffer jacket flaws optically at control tensions.

The Amacoil rewind station has constantly developed malfunctions. These malfunctions require a long time to repair because of foreign suppliers of parts. For these reasons, the unit is being returned to the manufacturer for adjustments or replacement. This will be scheduled so no program impact occurs.

1.2.1.2 Fiber Continuity Check Station

Before the fibers are stranded into a cable bundle it is essential that each fiber's continuity be tested and any
Figure 2. Cable Fabrication Flow Chart.
broken fibers removed to ensure a high production yield. The unit used at this station (Figure 2, Operation E2) will include a large area light emitting diode (LED) and a large silicon detector. The LED and detector will be properly mounted for automatic axial alignment and quick operation to minimize the time required to examine each fiber for light transmission.

To complete this unit, minor modifications to existing equipment is all that will be required.

1.2.1.3 Kevlar Jacketing Station
The purpose of this station (Figure 2, Operation E3) is to overcoat a Kevlar 49-380 denier yarn with a polyurethane jacket which will be used as the central core for the optical bundle. The extruder to be used is a 1 in unit with the capacity of pressure extruding the polyurethane jacket at a current rate of 76 m/min.

This unit is an existing production station. An automatic diameter controlling process unit has been installed. This
unit will detect the diameter of the core element being extruded and regulate the extruder rpm to provide a constant diameter over the length of a standard production run.

1.2.1.4 Respooling Station for Polyurethane Jacket Kevlar
This operation will be completed using the fiber rewind station equipment outlined in paragraph 1.2.1.1. The capacity of this unit is ample to complete both fiber rewind and respooling operations (Figure 2, Operation E4).

1.2.1.5 Optical Core Stranding Station
The purpose of this station (Figure 2, Operation E5) is to strand the six optical fibers helically around the Kevlar center core member. To do this operation, a high speed single twist closing unit equipped with a seven bay neutralizing unit will be used.

Fibers stranded on the second engineering samples and standard production cables indicate that there was a tension control problem causing high peak tensions and excessive
cable attenuation increases. The equipment has been modified and no further problems have developed on standard production cables running at 75% of production speed.

1.2.1.6 Optical Core Jacketing Station
This station is to be used to extrude the polyurethane jacket over the optical bundle. The extruder is a 1 1/2 inch extrusion line capable of extruding the above jacket at 68 m/min, well over the required MM&T rate of 20 m/min.

The new payoff unit has been installed and functions properly. This unit will handle the larger capacity spools needed to run long lengths (1 km) of cable.

1.2.1.7 Kevlar Stranding Station
The purpose of this station (Figure 2, Operation E7) is to strand 18 Kevlar strength members around the jacketed optical core. The modified yarn serving machine has been received, installed, and currently operational at 50% of production rate for the MM&T program.
1.2.1.8 Final Jacketing Station
the 2-inch extrusion line (Figure 2, Operation E8) will be used to extrude the final jacket on the ruggedized cable. The extrusion line was used to extrude the final jacket at 42 m/min on the polyurethane evaluation samples in Phase III. This rate is double that required (0.8 h/km) on the MM&T program.

1.2.1.9 Final Cable Respooling Station
At this station (Figure 2, Operation E9) the cable will be spooled onto the shipping reel, inspected for visual defects, and cut into 1 km ±5 m lengths.

An Eaton-Dynamatic Multi-Trol system will be used to improve the payoff tension control. This unit provides a constant tension at all respooling speeds by regulating the payoff spool and braking functions.
2.0 FIBER AND CABLE TEST STATIONS

In the third quarter, the major emphasis was on the assembly and characterization of the evaluation stations.

The modifications required to meet the contract objectives were made to the stations and tests were conducted to determine the test stations characteristics.

2.1 Fiber End Preparation Station
The modified barrel fixture of Figure 3 was ordered. During vendor fabrication however, a problem with precision drill availability necessitated a change to a precision jewel fiber aperture. The precision jewel fiber aperture units will be delivered in early April for characterization.

2.2 Pulse Dispersion Station
The second avalanche photodiode was added to the dispersion station of Figure 4. This addition facilitates continuous monitoring of the input pulse condition during a measurement without disturbing the fiber under test. Of a number of detectors which were tested for similarity of time response referenced to the output detector, a C30921E cane-coupled APD was selected. The test results before and after pigtailing the APD are shown in Table 2. As indicated, the pulsewidth
MODIFIED FIBER POSITIONING FIXTURE DESIGN

Figure 5
DISPERSION TEST MEASUREMENT STATION

Figure 4.
Table 2. Dispersion Station Test Results

A. Monitoring APD Tests

<table>
<thead>
<tr>
<th></th>
<th>Before Y-596</th>
<th>After Y-596</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pigtailed</td>
<td>Pigtailed</td>
</tr>
<tr>
<td>Output Detector</td>
<td>.54</td>
<td>.54</td>
</tr>
<tr>
<td>Monitor APD Y-596</td>
<td>.52</td>
<td>.58</td>
</tr>
</tbody>
</table>

B. Monitoring Tests

<table>
<thead>
<tr>
<th>Laser Current</th>
<th>Ratio of Pulse Widths (FWHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
</tr>
<tr>
<td>V Threshold + .6 V</td>
<td>.87</td>
</tr>
<tr>
<td>V Threshold + .8 V</td>
<td>.92</td>
</tr>
<tr>
<td>V Threshold + 1.0 V</td>
<td>.94</td>
</tr>
<tr>
<td>V Threshold + 1.2 V</td>
<td>.94</td>
</tr>
<tr>
<td>V Threshold + 1.4 V</td>
<td>1.00</td>
</tr>
</tbody>
</table>

C. Dispersion Reproducibility

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Dispersion (ns/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.43</td>
</tr>
<tr>
<td>2</td>
<td>.38</td>
</tr>
<tr>
<td>3</td>
<td>.40</td>
</tr>
</tbody>
</table>

.40 Avg. ±0.03 ns/km

Roanoke, Virginia
increased. This effect is believed due to coupling differences in the initial tests due to packaging differences.

To demonstrate the capability of the monitor APD to track the input pulse, tests were conducted comparing the beamsplitter pulse with the pulse from a one meter length of graded index fiber at various drive levels. The results, shown in Table 2, show good agreement near the usual drive condition of V threshold = 1 V. At lower and higher drive levels, the agreement is much less reproducible due to instabilities in the laser output. Additional testing will be conducted to determine stability and deviation.

Three dispersion measurements were performed on a 1200 m graded index fiber to gauge reproducibility. The results shown in Table 2 indicate acceptable variations of ±7 per cent.

2.3 NA Test Station
The 90% power NA station was reconfigured for faster operation. The new station is shown in Figure 5.

The motorized micropositioner, which moved at a speed of 0.14 mm/sec was replaced by a motorized traverse which moves at speeds in excess of 15 mm/sec.

Position of the fiber end is monitored by a
dual caliper graduated to .001". Tests were conducted to
determine the reproducibility of the station. The data,
shown in Table 3 indicates a variation of ±0.4% worst
case for the same injection conditions on a short length
test. The long length measurement variation was ±1.9%
when new detection ends were made with each measurement.

2.4 Attenuation Measurement Station
The attenuation station of Figure 6 was assembled. The
station utilizes GE detectors to monitor both the input and
output power over the wavelength region of interest
(0.82 to 1.20 μm).

A large area output detector was tested and proved excessively
noisy. A smaller area device was then substituted, which
required output optics.

A number of tests have been initiated to determine measurement
reproducibility. Several problems related to the stability
of the lock-in amplifiers have impacted the completion of
these tests.

Roanoke, Virginia
Table 3. 90% Power NA Characterization

A. Short Length - Repeated with same injection conditions
1. .2125
2. .2131
3. .2127
4. .2121
5. .2113
Average .2122 - Max +0.4%, Min -0.4%
Sample = 5 m of fiber (M-3) graded index

B. Full Length - New Detection Ends
1. .2026
2. .2028
3. .1997
4. .2072
5. .2048
Average .2034 - Max +1.9%, Min -1.8%
Sample = 1200 m of fiber (M-3) graded index
3.0 FLOW CHART OF MANUFACTURING PROCESS

Figures 2 and 7 show the flow of materials and product through the proposed pilot line production facility. Each station is identified with a letter/number code.

Plans are to produce cables in lengths of 4 km, thus reducing setup time at each station considerably. The expected result of the above is to increase efficiency so that the overall production yield will be 87%. This yield will be evaluated after the final optimized engineering samples are constructed in a 3.6 km continuous length.

Table 4 lists all operations with the expected production rate at each work station. (Major work stations have been discussed in paragraph 1.2.) At this time in the program there is no obvious reason to believe that the proposed production rates cannot be met or exceeded.

3.1 Data and Analysis

The data summary for the second engineering samples is located in Appendix B along with the analysis as indicated in the second test report.
Figure 7. Incoming Inspection and Quality Control Flow Chart.
Table 4. Production Rate by Operation.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operation Description</th>
<th>Set-up Time hrs/km</th>
<th>Run Time hrs/km</th>
<th>Total Time hrs/km Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Receive Incoming Fibers</td>
<td>0.020</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>Visual Inspection</td>
<td>0.020</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>A03</td>
<td>Prepare Fiber Ends</td>
<td>0.050</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>A04</td>
<td>Perform Dispersion Measurement</td>
<td>0.050</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>A05</td>
<td>Perform NA Measurement</td>
<td>0.050</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>A06</td>
<td>Perform Loss Measurement</td>
<td>0.050</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>A07</td>
<td>Perform Dimensional Measurement</td>
<td>0.250</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>A08</td>
<td>Reduce Test Data and Prepare Test Report</td>
<td>0.380</td>
<td>0.736</td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>Receive Incoming Polyurethane</td>
<td></td>
<td>0.326</td>
<td></td>
</tr>
<tr>
<td>B02</td>
<td>Visual Inspection</td>
<td>0.020</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>Verify Certificate of Conformance</td>
<td>0.010</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>B04</td>
<td>Offline Sampling Tests</td>
<td>0.013</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>C01</td>
<td>Receive Incoming KEVLAR</td>
<td></td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>Visual Inspection</td>
<td>0.020</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>Offline Sampling Tests</td>
<td>0.026</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>D01</td>
<td>Receive Shipping Reels</td>
<td></td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>D02</td>
<td>Visual Inspection</td>
<td>0.050</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td>Verify Certificate of Conformance</td>
<td>0.050</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>E01</td>
<td>Spool Optical Fibers</td>
<td>0.030</td>
<td>0.090</td>
<td>0.327</td>
</tr>
<tr>
<td>E02</td>
<td>Check Continuity</td>
<td>0.050</td>
<td>0.344</td>
<td></td>
</tr>
<tr>
<td>E03</td>
<td>Jacket KEVLAR</td>
<td>0.150</td>
<td>0.574</td>
<td></td>
</tr>
<tr>
<td>E04</td>
<td>Spool KEVLAR</td>
<td>0.030</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>E05</td>
<td>Strand Optical Core</td>
<td>0.060</td>
<td>0.040</td>
<td>0.918</td>
</tr>
<tr>
<td>E06</td>
<td>Jacket Optical Core</td>
<td>0.260</td>
<td>0.240</td>
<td>0.918</td>
</tr>
<tr>
<td>E07</td>
<td>Strand KEVLAR</td>
<td>0.200</td>
<td>0.210</td>
<td>0.700</td>
</tr>
<tr>
<td>E08</td>
<td>Jacket Cable</td>
<td>0.230</td>
<td>0.918</td>
<td></td>
</tr>
<tr>
<td>E09</td>
<td>Spool, Inspect &amp; Cut to Length</td>
<td>0.170</td>
<td>0.918</td>
<td></td>
</tr>
<tr>
<td>E10</td>
<td>Prepare Inspection Report</td>
<td>0.500</td>
<td>0.356</td>
<td></td>
</tr>
<tr>
<td>F01</td>
<td>Prepare Fiber &amp; Cable Ends</td>
<td>0.750</td>
<td>0.833</td>
<td></td>
</tr>
<tr>
<td>F02</td>
<td>Perform Dispersion Measurement</td>
<td>0.800</td>
<td>0.918</td>
<td></td>
</tr>
<tr>
<td>F03</td>
<td>Perform NA Measurement</td>
<td>0.870</td>
<td>0.744</td>
<td></td>
</tr>
<tr>
<td>F04</td>
<td>Perform Loss Measurement</td>
<td>0.800</td>
<td>0.913</td>
<td></td>
</tr>
<tr>
<td>F05</td>
<td>Perform Dimensional Measurement</td>
<td>0.300</td>
<td>0.913</td>
<td></td>
</tr>
<tr>
<td>F06</td>
<td>Prepare Cable Ends for Shipping</td>
<td>0.190</td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td>F07</td>
<td>Reduce Test Data and Prepare Test Report</td>
<td>0.660</td>
<td>2.734</td>
<td></td>
</tr>
<tr>
<td>F08</td>
<td>Offline Sampling Tests</td>
<td></td>
<td>0.356</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Production Time</td>
<td></td>
<td>13.277</td>
<td></td>
</tr>
</tbody>
</table>

3-3
3.2 Results

Based on the data reported in Appendix B, Uniroyal Roylar E9-B was selected for the polyurethane jacket material on the final optimized engineering samples. The Mobay Texin 985A performed equally well on the environmental and mechanical testing, but the cable jacket adheres to itself on the reel severely making the manufacturing operations more difficult. Mobay Texin 985A will be further considered as a possible second source for this NM&T program.
4.0 CONCLUSIONS

The data from Phase I samples has resulted in the 1.02 mm Hytrel 7216 fibers being selected because of best overall performance. This fiber will be used in all further cable optimization processes.

The data from Phase II samples shows excellent optical and mechanical performance. The 3.0 in lay length was chosen for all further cable optimization processes because of an increased cable production rate over shorter lay lengths, without any penalty in performance.

Tubing extrusion was selected over pressure extrusion for the following reasons:

a. Higher production speed
b. Better concentricity
c. Greater production yield
d. Equal optical and mechanical performance
e. Less material scrap
The polyurethane selection process in Phase III samples has resulted in Uniroyal Roylar E9-B indicating the best overall performance as noted in Section 1.1.3.2 and will be used in the final optimized engineering samples.

No problems have been identified in the equipment or measuring station design which will adversely affect the delivery schedules or performance milestones. All milestones have been achieved on or ahead of schedule.
5.0 PROGRAM FOR NEXT INTERVAL

Milestone achievements for the next quarterly interval are listed below:

a. Construct optimized engineering samples
b. Complete optical and mechanical testing of final optimized engineering samples
c. Deliver third engineering samples and test report (final optimized engineering samples)
d. Receive DR-5 reels for confirmatory samples
e. Achieve 75% of production rate on the high speed strander
f. Achieve 50% of production rate on the Kevlar serving line
g. Optimize 2 in extruder performance
h. Achieve 75% of production rate on fiber respooling and inspection line
i. Complete preliminary assembly of measurement test stations, run time study, and make final modifications
j. Achieve 0.35 dB/km induced attenuation from cabling operation
k. Evaluate yield to achieve 50% goal
6.0 PUBLICATION AND REPORTS

There have been no publications, conferences and/or talks made during the period on or associated with the research, study, or development under contract.
7.0 IDENTIFICATION OF PERSONNEL

Table 5 is a list of the names of personnel working on the program who are considered professional and skilled technical personnel. The task performed and the manhours of work performed by each during the interval of the report are given.
Table 5. Personnel Working on the MM&T Program

<table>
<thead>
<tr>
<th>Name</th>
<th>Task</th>
<th>Manhours Expended</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Hoss</td>
<td>Program Management</td>
<td>16</td>
</tr>
<tr>
<td>*J. Smith</td>
<td>Cable Production Management</td>
<td>22</td>
</tr>
<tr>
<td>R. Thompson</td>
<td>Technical and Administrative</td>
<td>33</td>
</tr>
<tr>
<td>R. Kopstein</td>
<td>Project Engineer</td>
<td>96</td>
</tr>
<tr>
<td>S. Mahurin</td>
<td>Measurements Supervision and Project Engineering</td>
<td>24</td>
</tr>
<tr>
<td>*H. Heinzer</td>
<td>Measurements Engineering</td>
<td>47</td>
</tr>
</tbody>
</table>

*Due to a change in the ITT EOPD organization, J. C. Smith is responsible for Cable R&D production management and H. Heinzer has been assigned responsibility for measurements engineering.
BIOGRAPHICAL INFORMATION

NAME: Hans E. Heinzer

POSITION: Senior Engineer

EDUCATION:

Mr. Heinzer was awarded a degree comparable to a BS in Electrical Engineering from the Cologne Chamber of Commerce, Cologne, Germany, in 1959.

EXPERIENCE:

Mr. Heinzer joined ITT Electro-Optical Products Division in May, 1978, after seven years at ITT Cable-Hydrospace Division (CHD) in San Diego, California. As Senior Engineer in the Fiber Optics Laboratory, he is presently working on special projects relating to optical fiber cables, terminations and undersea systems.

RESEARCH AND DEVELOPMENT

While associated with ITT CHD as a Transmission Engineer, Mr. Heinzer was engaged in the development of an underwater fiber optic link. He also participated in the design of hardware for underwater repeater housing and bulkhead fiber penetrators and prepared manufacturing documentation. In addition, he participated in a fiber optic repeater study. While under assignment as Deputy Program Manager of the Systems Group, Mr. Heinzer participated in overall system implementation for a $5.5 million sea cable system in the China Sea. In this capacity he performed repeater testing and evaluation, survey, program control and logistics, and system documentation.

Prior to joining ITT CHD, Mr. Heinzer was associated with U.S. Undersea Cable Corporation in Washington, D.C., for five years. His research and development work there concerned envelope delay distortion equalization for wideband communications systems from 1969 to 1970. As Senior Test and Equipment Engineer, he performed measurement and testing on carrier frequency equipment, equalizers and associated circuits.

From 1953 to 1966 Mr. Heinzer was an Electronic Technician at Felten & Guilleaume Carlswerk A.G. in Cologne. There he took part in the development of the first bidirectional underwater repeater. He made major contributions to the design and manufacture of a line of equalizers designed for shipboard or in-the-field assembly. He also participated in the implementation of 16 sea cable systems totalling 6871 nautical miles.
GOVERNMENT

From 1963 to 1967 Mr. Heinzer participated in building, laying and installation of 10 submarine cable systems totalling 4137 miles for the U.S. Air Force.

ADMINISTRATIVE

Mr. Heinzer was supervisor of the equalizer assembly white (clean) room on board the cable ship "Neptun" while associated with U.S. Undersea Cable Corporation. At Felten and Guilleaume Carlswerk A.G. he was supervisor of design and drafting and of quality control and test programs.

MANUFACTURING

Mr. Heinzer participated in the manufacture of underwater repeaters and equalizers and terminal equipment for telecommunication systems.

TECHNICAL

Mr. Heinzer's technical expertise includes the design of printed circuit boards and the packaging of electronic equipment (filters, equalizers, and underwater repeaters).

ORGANIZATIONS:

Mr. Heinzer is a member of IEEE.

PATENTS:

1. Submarine Housing for Submarine Cable System Repeater Components or the Like (No 4,172,212).

APPENDIX A

PHASE II AND III OPTIMIZATION RESULTS
A1.0 NARRATIVE AND DATA

The following information covers a physical description of the device, performance, effects of processes, and measurement techniques used on this program.

A1.1 Device

The following paragraphs define the methods used to optimize the ruggedized tactical fiber optic cable, manufacturing processes, and measurement techniques.

A1.1.1 Ruggedized Cable Design

The purpose of this program is to establish an automated production process for a ruggedized tactical fiber optic cable. Figure 1 shows the general cable configuration to be optimized on the program.

The light transmitting elements of the optical cable are the optical fibers consisting of a glass core and glass cladding. To preserve the mechanical strength of the glass fibers, they are coated with plastic buffers, the buffer being a solid plastic coating surrounding the optical fiber.
Figure A.1  Basic MM&I Cable Design.

OPTICAL FIBERS
KEVLAR® 49-380 DENIERS
POLYURETHANE JACKET
NON-IMPREGNATED KEVLAR® 49
1420 DENIERS 18 YARNS
OUTER POLYURETHANE JACKET

ALL DIMENSIONS IN MM

3.05
3.56
4.37
6.35 MAX
The graded-index optical fibers are to meet the following specifications at 0.82 μm wavelength after proof loading at 100,000 psi:

- a. Fiber core ≥ 50 μm
- b. Fiber od 125 μm ± 6 μm
- c. Attenuation ≤ 5.0 dB/km
- d. Dispersion ≤ 2.0 ns/km
- e. Numerical aperture (90% power) ≥ 0.20

A 1.1.1.1 Primary Buffer

A room temperature vulcanizing (RTV) silicone protective coating, Dow Corning Sylgard® 184, is applied by dip coating to a finished diameter of 300 μm immediately after drawing. This protective coating guards the fibers from any initial handling or foreign substances that may damage or reduce the quality of the product and is compatible with the buffering materials.

A 1.1.1.2 Secondary Buffer

All fibers have a Hytrel® 7246 buffer layer for additional protection. This layer is extruded to a finished diameter of 0.5 mm. An additional layer is extruded to 1.0 mm to provide the optimum mechanical and environmental performance. The "1" extruder is used for this operation.

Roanoke, Virginia

A 1-3
Hytrel® has a very low expansion/contraction coefficient, thereby improving the high/low temperature performance.

A1.1.1.3 Center Filler
The center filler shall be a Kevlar® 49 (380 denier) coated with polyurethane (Roylar® E-30) to a diameter of 1.0 mm. The center filler provides a cushioning to improve impact resistance.

A1.1.1.4 Polyurethane Inner Jacket
The polyurethane inner jacket is extruded after the cabling operation. The polyurethane used is a polyether based compound. It is chosen because of its extreme toughness, abrasion resistance, low temperature flexibility, resistance to hydrolysis, fungus resistance, and excellent stability to atmospheric conditions. This jacket supplies support for the fiber making up the cable core and provides a buffer layer between the fiber and Kevlar® reducing abrasion.

A1.1.1.5 Kevlar® Strength Member
Kevlar® 49 has been chosen as the strength member for this application because of its strength versus weight and durability. A total of 18 yarns (1420 denier) is applied
helically with a 4.0 in lay length. The lay length was selected to be greater than that of the fibers to ensure that the Kevlar® takes the tensile load. The strength member will provide 400 lb tensile strength at 1% elongation. One percent elongation is the 100 kpsi fiber proof test point.

A1.1.1.6 Polyurethane Outer Jacket
The outer jacket material is identical to the inner jacket specified in Section A1.1.1.4.

A1.1.2 Optimization Process
The basic fiber optic cable will be optimized in four specific areas or phases. The three sets of engineering samples will be selected from this four-phase optimization process.

A1.1.2.1 Fiber Buffer Optimization (Phase I)
Three buffered fiber diameters of 0.94 mm, 1.02 mm, and 1.14 mm with Hytrel® 7246 were evaluated. Also, fibers were evaluated at 1.0 mm with Hytrel® 4056, Hytrel® 5556, and polyurethane Roylar® E-80. This phase is completed and cable samples from this phase were shipped as the first set of engineering samples.
A1.1.2.2 Lay Length Evaluation (Phase II)
Cables were evaluated with fiber lay lengths of 2.0 in, 2.5 in, and 3.0 in. It is felt that lay lengths shorter than 2.0 in would cause induced microbending losses and lay lengths greater than 3.0 in would cause additional tensile load stresses along with high bending stresses.

A1.1.2.3 Pressure Versus Tubing Inner Jacket
The inner jacket was optimized by evaluating pressure versus tubing extrusion process.

A1.1.2.4 Outer Jacket
The polyurethane was optimized by evaluating four different manufacturers of polyether grade urethanes.

A1.1.3 Purpose of Phase I Optimization
Phase I of the MM&T program was designed to evaluate the effects of buffered fiber diameter and material type and hardness on the cable performance as follows:

a. Buffered fiber diameter, Hytrel® 7246 (0.94 mm, 1.02 mm, 1.14 mm)
b. Hytrel® hardness effects (4056, 5556, 7246)
c. Material comparison (Hytrel® versus polyurethane)
A1.1.4 Purpose of Phase II Optimization

Phase II of the MM&T program optimized the fiber lay length (2.0 in, 2.5 in, 3.0 in).

A1.1.4.1 Phase II Optimization

This optimization evaluated the cabled fiber lay length. Three cables have been constructed using the high speed strander at 50% of production rate under this phase II program following the basic cable design of Figure 1 with 1.02 mm Hytrel \textsuperscript{®} 7246 fibers and the following variations:

a. Design no 1 - 2.0 in lay length
b. Design no 2 - 2.5 in lay length
c. Design no 3 - 3.0 in lay length

A1.1.4.2 Manufacturing Problems

All cables were constructed without any problems; therefore, the lay length of the cabled optical fibers does not affect the manufacturing difficulty but does have a direct relationship to the manufacturing rate. It was decided at the onset of this phase to evaluate tubing versus pressure extrusion of the cable core in the event that the cable
could not pass the impact testing requirement. Tubing extrusion was selected over pressure extrusion without further engineering samples because the fibers already withstand the impact test and pressure extrusion would only improve impact performance but would have the following disadvantages:

a. Lower production speed
b. Poor concentricity
c. Lower production yield
d. Equal optical and mechanical performance
e. More material scrap

Construction of engineering samples to evaluate pressure versus tubing performance was not a requirement in the NMMT program.

A1.1.4.3 Phase II Conclusions and Recommendations

The data from the phase II samples (see Tables 2 and 3) was used to select the optimized lay length from the optical and mechanical results. All three cables had excellent optical results. One of the fibers was broken in the 2.0 in lay length cable because of stepper motor problems with the high speed strander. The motor was replaced and no further problems have developed.
Table A.2  Attenuation Data.

<table>
<thead>
<tr>
<th>Fiber Ident</th>
<th>Design No 1</th>
<th>Design No 2</th>
<th>Design No 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0&quot; Lay Length</td>
<td>2.5&quot; Lay Length</td>
<td>3.0&quot; Lay Length</td>
</tr>
<tr>
<td><strong>Attenuation (dB/km)</strong></td>
<td><strong>Attenuation (dB/km)</strong></td>
<td><strong>Attenuation (dB/km)</strong></td>
<td></td>
</tr>
<tr>
<td>Fiber Id</td>
<td>Before</td>
<td>After</td>
<td>δ</td>
</tr>
<tr>
<td>1. Red</td>
<td>4.10</td>
<td>4.16</td>
<td>-0.06</td>
</tr>
<tr>
<td>2. White</td>
<td>3.74</td>
<td><strong>-</strong></td>
<td><strong>-</strong></td>
</tr>
<tr>
<td>3. Blue</td>
<td>3.79</td>
<td>3.99</td>
<td>+0.20</td>
</tr>
<tr>
<td>4. White</td>
<td>3.76</td>
<td>4.31</td>
<td>+0.55</td>
</tr>
<tr>
<td>5. White</td>
<td>3.81</td>
<td>3.56</td>
<td>-0.25</td>
</tr>
<tr>
<td>6. White</td>
<td>3.71</td>
<td>3.86</td>
<td>+0.15</td>
</tr>
<tr>
<td>Avg.</td>
<td>3.85</td>
<td>3.98</td>
<td>+0.13</td>
</tr>
</tbody>
</table>

*Attenuation measured at 0.82 µm wavelength and 0.089 injection NA
**Fiber broke on high speed strand as when bearings of the stepper motor failed.
Table A.3 Mechanical Testing.*

<table>
<thead>
<tr>
<th></th>
<th>Design No 1 2&quot; Lay Length</th>
<th>Design No 2 2.5&quot; Lay Length</th>
<th>Design No 3 3.0&quot; Lay Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fibers</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Failures</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent surviving</td>
<td>97.2</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twist Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fibers</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Failures</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent surviving</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bend Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fibers</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Failures</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent surviving</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Load Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fibers</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Failures</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent surviving</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All testing was conducted at room temperature.
The mechanical testing data showed excellent results also with only one fiber failure on the 2.0 in lay length cable during the room temperature impact testing.

A 3.0 in lay length was selected for Phase III (polyurethane evaluation) based on the test results and because an increase in stranding rate can be realized over the shorter lay lengths. Stranding speed is a direct function of lay length. Further information was included in the test report for the second engineering samples.
APPENDIX B

PHASE III OPTIMIZATION RESULTS
B1.0 TEST RESULTS ON PHASE II

All data is summarized below for the second set of engineering samples.

B1.1 Attenuation Measurement Results

The attenuation was measured on spools with a 6" drum prior to cabling and after the cables were completed. The results of the data are summarized by the maximum, minimum, and average values for the six designs as noted in Table B-1.

The results indicate that changing the lay length from 5.1 cm (2.0") to 7.6 cm (3.0") does not affect the attenuation parameter. The after cabling data for the polyurethane evaluation samples showed erratic results because of tension control instability in the high speed strander. This problem has since been corrected.

B1.2 Pulse Dispersion Measurement Results

The pulse dispersion on all fibers in the six designs performed very well, with all values less than the 2.0 ns/km
## Table B.1. Attenuation Measurement Results

### Attenuation Before Cabling* (dB/km)

<table>
<thead>
<tr>
<th>Cable Design</th>
<th>Design</th>
<th>Max</th>
<th>Min</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniroyal Roylar® E9-B</td>
<td>1</td>
<td>4.20</td>
<td>3.71</td>
<td>3.84</td>
</tr>
<tr>
<td>2.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar® E9-B</td>
<td>2</td>
<td>3.95</td>
<td>3.54</td>
<td>3.76</td>
</tr>
<tr>
<td>2.5&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar® E9-B</td>
<td>3</td>
<td>4.16</td>
<td>3.43</td>
<td>3.73</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. F. Goodrich 58300</td>
<td>4</td>
<td>3.36</td>
<td>3.46</td>
<td>3.40</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upjohn 2103-80WC</td>
<td>5</td>
<td>4.26</td>
<td>3.38</td>
<td>3.93</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobay Texin 985A</td>
<td>6</td>
<td>4.43</td>
<td>3.47</td>
<td>4.06</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Attenuation After Cabling* (dB/km)

<table>
<thead>
<tr>
<th>Cable Design</th>
<th>Design</th>
<th>Max</th>
<th>Min</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniroyal Roylar® E9-B</td>
<td>1</td>
<td>4.81</td>
<td>4.02</td>
<td>4.42</td>
</tr>
<tr>
<td>2.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar® E9-B</td>
<td>3</td>
<td>5.98</td>
<td>3.43</td>
<td>3.78</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. F. Goodrich 58300</td>
<td>4</td>
<td>7.25</td>
<td>4.60</td>
<td>5.93</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upjohn 2103-80WC</td>
<td>5</td>
<td>6.00</td>
<td>4.42</td>
<td>5.24</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobay Texin 985A</td>
<td>6</td>
<td>5.91</td>
<td>3.86</td>
<td>5.11</td>
</tr>
<tr>
<td>3.0&quot; Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Measured at 0.82 µm wavelength, 0.089 Injection NA

Roanoke, Virginia

USE OR DISCLOSURE OF PROPOSAL DATA IS SUBJECT TO THE RESTRICTION ON THE TITLE PAGE OF THIS PROPOSAL
Table B.2. Pulse Dispersion Measurement Results

<table>
<thead>
<tr>
<th>Cable Design</th>
<th>Pulse Dispersion (ns/km)*</th>
<th>Max</th>
<th>Min</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniroyal Roylar&lt;sup&gt;®&lt;/sup&gt; E9-B 1 2.0&quot; Lay Length</td>
<td>1.12</td>
<td>0.38</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar&lt;sup&gt;®&lt;/sup&gt; E9-B 2 2.5&quot; Lay Length</td>
<td>2.01</td>
<td>0.50</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar&lt;sup&gt;®&lt;/sup&gt; E9-B 3 3.0 Lay Length</td>
<td>0.62</td>
<td>0.55</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>B. F. Goodrich 58300 4 3.0&quot; Lay Length</td>
<td>0.60</td>
<td>0.20</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Upjohn 2103-80WC 5 3.0&quot; Lay Length</td>
<td>1.45</td>
<td>0.39</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Mobay Texin 985A 6 3.0&quot; Lay Length</td>
<td>1.35</td>
<td>0.30</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

*Pulse dispersion measurement accuracy below 0.5 ns/km can vary because of fiber length and input pulse width.
requirements (see Table B-2), except for the one fiber indicating 2.01 ns/km.

The pulse dispersion values on most of the fibers were equal to the input pulse width because of the cable length and quality of fibers.

B1.3 Numerical Aperture Measurement Results
The 90% power NA was measured on the finished cables. The results of the data are summarized in Table B.5. The data indicates that the fibers used in the lay length evaluation samples were close to the required 0.20 NA, and that the fibers in the polyurethane evaluation samples all exceed the required 90% power NA value of 0.20. This improvement in NA is the effect of better fiber diameter fluctuation control and a minor change in the graded index fiber profile during the deposition process.

B1.4 Impact Testing Results
The impact testing was conducted in accordance with
Table B.3. Numerical Aperture Measurement Results.

<table>
<thead>
<tr>
<th>Cable Design</th>
<th>Design</th>
<th>Max</th>
<th>Min</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniroyal Roylar E9-B</td>
<td>1</td>
<td>.22</td>
<td>.18</td>
<td>.20</td>
</tr>
<tr>
<td>2.0” Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar E9-B</td>
<td>2</td>
<td>.20</td>
<td>.19</td>
<td>.19</td>
</tr>
<tr>
<td>2.5” Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniroyal Roylar E9-B</td>
<td>3</td>
<td>.21</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>3.0 Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. F. Goodrich 38500</td>
<td>4</td>
<td>.22</td>
<td>.20</td>
<td>.21</td>
</tr>
<tr>
<td>3.0” Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upjohn 2103-80WC</td>
<td>5</td>
<td>.22</td>
<td>.20</td>
<td>.21</td>
</tr>
<tr>
<td>3.0” Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobay Texin 985A</td>
<td>6</td>
<td>.22</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>3.0” Lay Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MIL-C-13777F at room temperature, +71°C (+160°F), and at 
-54°C (-65°F). The lay length evaluation samples exhibited 
only one failure at room temperature on the 5.1 cm (2.0") 
lay length cable. The results indicate that changing the 
lay length to 7.6 cm (3.0") does not affect the impact re-
sistance. The polyurethane evaluation samples had fiber 
failures and jacket splitting with B. F. Goodrich 58500 having 
the poorest performance and Mobay Texin 985A and Uniroyal 
Roylar E9-B showing the best performance.

Uniroyal Roylar E9-B was selected for the final optimized 
engineering Phase III samples because of its performance and 
the fact that the Mobay Texin 985A has problems with adhering 
to itself on the reel causing manufacturing difficulty.

B1.5 Twist Test Results
The twist testing was conducted in accordance with 
MIL-C-13777F at room temperature, +71°C (+160°F), and at 
-54°C (-65°F). All testing of the six-cable designs was 
completed without any failures.
Bl.6 Bend Testing Results
The bend testing was conducted in accordance with MIL-C-13777F at room temperature +71°C (+160°F) and at -54°C (-65°F). All testing of the six-cable designs was completed without any jacket splitting, but the B. F. Goodrich 58500 sample had two fiber failures at +71°C (+160°F) and the Upjohn 2105-80WC sample had one fiber failure at -54°C (-65°F).

Bl.7 Tensile Load Testing Results
The cables were subjected to a static tensile load of 181.44 kg (400 lb) over a gage length of 6 meters for 1 minute. All testing was completed on this group without any fiber failures or degradation.

Bl.8 Cold Tend Testing Results
The cold bend testing was conducted in accordance with MIL-C-13777F at -54°C (-65°F) around a 31.75 mm od mandrel (5x) for 1 cycle.

The data results indicate no fiber degradation or cracking of the jacket when examined visually under 5x magnification.

Roanoke, Virginia
B1.9 Fungus Testing Results

The fungus testing was conducted in accordance with MIL-STD-810B, Method 508.1, Procedural. At the end of the test period the samples were removed and examined for fungus growth. A very light growth was observed on the surface of each sample, however, this growth did not affect the jacket integrity.
APPENDIX C

DISTRIBUTION LIST
Commander
US Army Electronic Proving Ground
ATTN: STEEP-MT
Fort Huachuca, AZ 85613

Commander
USASA Test & Evaluation Center
ATTN: IAO-CDR-T
Fort Huachuca, AZ 85613

Dir, US Army Air Mobility R&D Lab
ATTN: T. Gossett, Bldg 207-5
NASA Ames Research Center
Moffett Field, CA 94035

HQDA (DAMO-TCE)
Washington, DC 20310

Deputy for Science & Technology
Office, Assist Sec Army (R&D)
Washington, DC 20310

Commander, DARCOM
ATTN: DRCDE
5001 Eisenhower Avenue
Alexandria, VA 22333

CDR, US Army Signals Warfare Lab
ATTN: DELSW-QS
Arlington Hall Station
Arlington, VA 22212

CDR, US Army Signals Warfare Lab
ATTN: DELSW-AQ
Arlington Hall Station
Arlington, VA 22212

CDR, AVRADCOM
ATTN: DRSAS-E
PO Box 209
St. Louis, MO 63166

Director
Joint Comm Office (TRI-TAC)
ATTN: TP-AD (Tech Docu Cen)
Fort Monmouth, NJ 07703

Commander
US Army Satellite Communications Agency
ATTN: HRCIPM-SC-3
Fort Monmouth, NJ 07703

TRI-TAC Office
ATTN: TP-SE (Dr. Pritchard)
Fort Monmouth, NJ 07703

CDR, US Army Research Office
ATTN: DRXHO-IP
PO Box 12211
Research Triangle Park, NC 27709

Advisory Group on Electron Devices
201 Varick Street, 9th Floor
New York, NY 10014

Advisory Group on Electron Devices
ATTN: Secy, Working Group D (Lasers)
201 Varick Street
New York, NY 10014

TACTEC
 Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201
Corning Glass Works
Telecommunication Prod Dept
Corning, NY 14830

Galileo Electro-Optics Corp.
Galileo Park
Sturbridge, MA 01518

Deutsch Co.
Elec Components Div
Municipal Airport
Banning, CA 92220

General Cable Corporation
15 Prospect Lane
Colonia, NJ 07067
ATTN: Mr. I. Kolodny

Windings, Inc.
Meadow Street
Goldens Bridge, NY 10526

Martin Marietta Corp.
Orlando, FL

Hughes Aircraft Corporation
Tucson Systems Engg Dept
PO Box 802, Room 600
Tucson, AZ 85734
ATTN: Mr. D. Fox

Belden Corporation
Technical Research Center
2000 S. Batavia Avenue
Geneva, IL 60134
ATTN: Mr. J. McCarthy

Optelecom, Inc.
15940 Shady Grove Road
Gaithersburg, MD 20760

Bell Telephone Laboratories
Whippany Road
Whippany, NJ 07981
ATTN: Mr. G. A. Baker

Harris Electronics Systems Division
PO Box 37
Melbourne, FL 32901
ATTN: Mr. R. Stachouse
Fiber Optics Plant
Rodes Boulevard

ITT Defense Communications Division
492 River Road
Nutley, NJ 07110
ATTN: Dr. P. Steensma

Electronics Group of TRW, Inc.
401 N. Broad Street
Philadelphia, PA 19108

GTE Sylvania Inc.
Communications System Division
109 B. Street
Needham Heights, MA 02194
ATTN: Mr. J. Concordia