TIGHT ROUNDS ON THE RESPONSE OF MULTIVARIABLE SYSTEMS WITH COMP-ECT 12/2
AUG 79 M G SAFONOV
F44620-76-C-0061
TIGHT BOUNDS ON THE RESPONSE OF MULTIVARIABLE SYSTEMS WITH COMPONENT UNCERTAINTY

MICHAEL G. SAFONOV
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90007

ABSTRACT

For Multi-Input-Multi-Output (MIMO) feedback systems having internal components that are subject to parameter variations, nonlinearity, or unmodeled dynamics within given 'conic sector' bounds, tight bounds (which also turn out to take the form of 'conic sector' bounds) are derived for the input-output relation of the closed-loop system. In the case of linear-time invariant systems, the 'conic sector' bounds are interpretable in terms of the maximal singular values of certain frequency-response matrices.

INTRODUCTION

One of the main motivations for the use of feedback in control system design is to reduce the effects of plant ignorance on system response. In the case of single-input-single-output (SISO) feedback systems in which plant ignorance is limited to a few (typically, 1 or 2) uncertain parameters known to lie within specified bounds, the Evans root-locus method (1) and Nichols chart frequency-response method (2, p. 197) are very useful (cf. [3, Ch. 61[4]). In both cases, one graphically constructs 'regions of uncertainty' containing (for all possible parameter values) the corresponding representation of the system response. In the case of root locus approach, these 'regions' are the set of values assumed by each of the system poles as system parameters vary over specified ranges. Similarly, in the Nichol's chart approach the 'regions of uncertainty' are the sets of values assumed by the systems open-loop log magnitude versus phase plot at various frequencies as system parameters vary over specified ranges. Because the 'regions of uncertainty' used in these approaches are difficult to construct for systems with more than one or two uncertain parameters and because these approaches are incompatible with MIMO systems or with systems having nonlinear or time-varying plant ignorance, there is a need for an alternative approach to the problem of bounding the effects of plant uncertainty on closed-loop system response. The results of this paper establish that 'conic sector conditions' provide such an alternative approach. For, linear time-invariant systems, these conditions can be expressed in terms of the 'singular values' of certain frequency response matrices.

NOTATION AND PROBLEM FORMULATION

We consider the class of systems which can be represented as a linear-time-invariant (LTI) interconnection of N uncertain multi-input-multi-output components. It is assumed that an 'approximate' LTI model Ci (1 ≤ i ≤ l,...,N) and associated transfer function matrix C(s) is available for each of the N uncertain components, but that the actual system components

Research supported in part by NSF Grant ENG 78-05628, in part by Joint Services Electronics Program contract F44620-76C-0061 monitored by AFOSR, and in part by the Honeywell Systems and Research Center, Minneapolis, MN 55413 with support from the Office of Naval Research under contract N00014-75-C-0144.
have 'perturbed' input-output relations which may in general include unmodeled 'cross-couplings' between components as well as uncertainty in the input-output relations of the individual components. Thus, we are considering the class of systems having an overall input-output relation

\[Y = T u \]

where the operator \(T \) is defined by feedback equations of the general form (See Figure 1)

(1a) \[\begin{bmatrix} Y \\ e \end{bmatrix} = H \begin{bmatrix} u \\ f \end{bmatrix} \]

(1b) \[\delta \Xi = (\Xi + \delta \Xi) e \]

where

\(H \) is an LTI operator (having transfer function matrix \(H(s) \)) representing the internal and external interconnections of the system's components;

\(\Xi = \text{diag}(\Xi_1, ..., \Xi_N) \); \(\delta \Xi \) represents the uncertain perturbations and may in general be nonlinear, dynamical, and time-varying;

\(e = \text{col}(e_1, ..., e_N) \) and \(f = \text{col}(f_1, ..., f_N) \);

\(e_i \) and \(f_i \) represent the input and output signals respectively of the \(i \)-th 'perturbed' component;

\(u \) is the exogenous input to the system;

\(y \) is the observed output of the system.

To keep the mathematics tractable, it is assumed that \(H(s) \) and \(\Xi(s) \) are rational transfer function matrices -- this is not a serious restriction since most systems of interest with non-rational transfer functions can be approximated arbitrarily closely with respect to the \(L_2 \)-norm by systems with rational transfer functions.

Our ignorance regarding the accuracy of the 'approximate' models of the system components is assumed to be bounded by an \(L_2 \)-conic sector. Conic sectors are defined as follows:

Definition: Given any three compatible operators \(\Xi, \mathcal{R}, \mathcal{S} \), we define \(L_2\)-Cone \(\mathcal{R}(\Xi, \mathcal{S}) \) to be the set of ordered pairs of signals \((x, y) \in L_2 \times L_2 \) satisfying

\[||x - \Xi y||_{L_2} \leq ||x - y||_{L_2} \]

\[||x - \Xi y||_{L_2} \leq ||x - y||_{L_2} \]

1For any collection of operators \(\Xi_i \) \((i = 1, ..., n) \), the notation \(\text{diag}(\Xi_1, ..., \Xi_n) \) is defined by

\[\begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} \text{diag}(\Xi_1, ..., \Xi_n) = \begin{bmatrix} \Xi_1 e_1 \\ \vdots \\ \Xi_n e_n \end{bmatrix} \]

for all \(e_i \) \((i = 1, ..., n) \).

2We use the notation \(L_2 \) to denote the normed space of \(C^n \)-valued signals \(z: R \to C^n \) for some integer \(n \); for which the norm \(||z||_{L_2} \) is finite and is finite; \(||z||_{L_2} = \int_{-\infty}^{\infty} |z|^2_{C^n}(t) dt \) [5]; \(z \) is the complex conjugate of \(z \).
Lemma 8. If \(\mathbb{H} \) is an operator with the property that \(\mathbb{H} \) is \(L_2 \)-stable and if for all \((x,y) \in L_2 \times L_2\) with \(y = \mathbb{H} x \) we have
\[
\|\mathbb{H} y - \mathbb{H} x\|_2^2 \leq \|\mathbb{H} x\|_2^2
\]
then we say
\(\mathbb{H} \) inside \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\). (End of Definition)

It is a trivial consequence of Parseval's theorem (cf. [5, p. 236]) that, in the case of \(L_2 \)-stable LTI operators \(\mathbb{S}, \mathbb{R}, \) and \(\delta \mathbb{C} \) having respective transfer functions \(S(s), R(s) \) and \(\mathbb{H}(s)-\mathbb{C}(s) \), the condition (4) is equivalent to the frequency-domain condition
\[
\sigma_{\max} \left(S(j\omega) - \mathbb{C}(j\omega) \right) R^{-1}(j\omega) \leq 1
\]
for all \(\omega \)

(5)

where \(\sigma_{\max}(A) \) denotes the largest singular value of the complex matrix \(A \)
i.e., the square root of the largest eigenvalue of \(A^*A \) (or equivalently, of \(AA^* \)) -- cf. [7, Ch. 1]. The motivation for the designation of \(\mathbb{C}, \mathbb{R}, \) and \(\mathbb{S} \) as the center, input radius, and output radius respectively of \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\) is that in the special case where \(\mathbb{H}, \mathbb{C}, \mathbb{R}, \mathbb{S} \) are SISO and LTI, the statement \(\mathbb{H} \) inside \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\) means that the \(\omega \)-dependent function \(\mathbb{H}(j\omega) : \mathbb{C} \to \mathbb{C} \) given by \(Y(j\omega) = \mathbb{H}(j\omega) U(j\omega) \) maps inputs \(U(j\omega) \) lying inside the circle of radius \(\mathbb{R}(j\omega) \) in the complex plane \(\mathbb{C} \) into outputs \(Y(j\omega) \) lying inside the circle of center \(\mathbb{C}(j\omega) \) and radius \(\mathbb{S}(j\omega) \) in the complex plane \(\mathbb{C} \).

For memoryless operators \(\mathbb{H}(x)(t) = h(x(t), t), (\mathbb{C}x)(t) = \mathbb{C} x(t), (\mathbb{R}x)(t) = \mathbb{R} x(t), \) and \((\mathbb{S}y)(t) = \mathbb{S} y(t) \), the condition (4) is equivalent to the condition
\[
\|S \left(h(x, t) = \mathbb{C} x \right) \|_{R^n} \leq \|\mathbb{R} x\|_{R^n}
\]
(6)

where \(\|z\|_{R^n} = \sqrt{\sum_{k=1}^{n} |z_k|^2} \) for all \(z \in R^n \). The motivation for using the term 'conic sector' comes from the fact that in the special case where \(S, h(\cdot), \mathbb{C}, \) and \(\mathbb{R} \) are scalar, condition (6) implies that for each \(t \) the graph of \(h(x, t) \) vs. \(x \) is in a cone shaped subset of the real plane -- cf. [13].

Our results assume that
\[
\mathbb{C} + \delta \mathbb{C} \text{ inside } L_2 \text{-Cone}(\mathbb{C}_C, \mathbb{R}_C, \mathbb{S}_C)
\]
(7)

where \(\mathbb{C} \) is as in equation (1) and \((\mathbb{R}_C, \mathbb{S}_C) \) are given. It is further assumed that \((\mathbb{R}_C, \mathbb{S}_C) \) are \(L_2 \)-stable LTI operators with square, rational transfer function matrices \([R_C(s), S_C(s)] \) having the property that \(R_C^*(j\omega) R_C(j\omega) \) and \(S_C^*(j\omega) S_C(j\omega) \) are uniformly positive definite for all \(\omega \).

An operator \(\mathbb{H} \) is said to be \(L_2 \)-stable if \(\mathbb{H} \) is \(L_2 \)-stable whenever \(x \in L_2 \) and further, for some constant \(k < \infty \),
\[
\|\mathbb{H} x\|_{L_2} \leq k \|x\|_{L_2}
\]
(5)

In the multivariable generalization of the circle stability criterion in [6], a set called \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\) is employed which is closely related, but different, from the set \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\). In general neither set is a proper subset of the other, but if \(\mathbb{H}, \mathbb{C}, \mathbb{R}_C \) and \(\mathbb{S}_C \) are stable nonanticipative operators, then it can be shown (using the definition in [6] of \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\)) that \(\mathbb{H} \) inside \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\) if and only if \(\mathbb{H} \) inside \(L_2 \)-Cone \((\mathbb{C}, \mathbb{R}, \mathbb{S})\).

(6)

For any matrix \(A \), the transpose of \(A \) is denoted \(A^T \) and the complex conjugate of \(A \) is denoted \(\bar{A} \).
In the special case when there is no ignorance regarding the interconnection structure of the system (i.e., when the perturbation δ^C contains no 'cross-coupling' between components), then δ^C takes the special form

$$\delta^C = \text{diag} (\delta^C_1, \ldots, \delta^C_N)$$

where δ^C_i represents the ignorance regarding the dynamics of the i-th component ($i = 1, \ldots, N$). If there are conic sector bounds available for the uncertainty in the individual components' input-output relations

$$C_{vi} + \delta^C_i \text{ inside } L_2\text{-Cone } (C_{vi}, R_i, S_i), \quad (i = 1, \ldots, N) \quad (8)$$

then it follows (cf. [9, Lemma 6.2 (vi)], [10, Lemma 4.2 (vi)]) that (5) holds with

$$R_C = \text{diag} (R_1, \ldots, R_N) \quad (9)$$

$$S_C = \text{diag} (S_1, \ldots, S_N) \quad (10)$$

We denote by L^* the LTI operator whose transfer function matrix is (suppressing the argument 's')

$$L = \left[\begin{array}{c|c} L_{yu} & L_{yv} \\ \hline L_{eu} & L_{ev} \end{array} \right] = \left[\begin{array}{c|c} \frac{H_{fu} + H_{fo} C(I - H_{ef} C)^{-1} H_{eu}}{I - H_{ef} C} & \frac{H_{fo} C(I - C H_{ef})^{-1}}{I - H_{ef} C} \\ \hline \frac{H_{fo} C(I - C H_{ef})^{-1}}{I - H_{ef} C} & \frac{H_{ef} (I - C H_{ef})^{-1}}{I - H_{ef} C} \end{array} \right] \quad (11)$$

For any full rank rational para-hermitian matrix $A(s)$ for which $A(jw)$ positive definite for all w, we denote by $A^{1/2}(s)$ the rational spectral factor of $A(s)$ (unique to within a constant unitary left multiplier) having the properties that $A(s) = (A^{1/2}(-s))^T A^{1/2}(s)$, that $(A^{1/2}(s))^{-1}$ exists, and that $A^{1/2}(s)$ and its inverse have no poles in $\text{Re}(s) > 0$; $A^{1/2}(s)$ always exists [8, Theorem 2]. If A is an operator, not necessarily nonanticipative, whose bilateral Laplace transform transfer function matrix is proper, rational, para-hermitian and has the property that $A(jw)$ is uniformly positive-definite for all w, then $A^{1/2}$ denotes the nonanticipative minimum phase LTI operator having transfer function $A^{1/2}(s)$. Given any L_2-stable LTI operator A, we denote by A^{*} the L_2 adjoint operator; i.e., denoting by $A_0(t)$ the impulse response matrix of A, A^{*} is the LTI operator with impulse response matrix $A^{*}(t)$. Note that if $A(s)$ is the bilateral Laplace transform transfer function matrix of A, then $A^{T}(-s)$ is the transfer function matrix of A^* and further $A^{*T}(-jw) = A^{*}(jw)$.

MAIN RESULT

Our main result is the following theorem giving tight bounds on the overall systems input-output relation T.

Theorem 1: Suppose that (7) holds. If

(a) uniformly for all w

$$\sigma_{\min} (S_C(jw) L_{ev}^{-1}(jw) R_C^{-1}(jw)) > 1 \quad (12)$$

(where $\sigma_{\min}(A)$ denotes the smallest singular value of A), and
then, provided \(L_{yy}(\omega) L_{yy}(\omega) \) is full rank for all \(\omega \),
\[
T \text{ inside } L_{2}-\text{Cone (} \mathcal{T}_{\text{nom}}, \mathcal{P}_{T}^{1/2}, \mathcal{Q}_{T}^{1/2} \text{)}
\]
(13)

where \(\mathcal{T}_{\text{nom}}, \mathcal{Q}_{T}, \text{ and } \mathcal{P}_{T} \) are the (not necessarily causal) \(L_{2} \)-stable LTI operators specified in terms of their bilateral Laplace transform transfer matrices by

\[
\mathcal{T}_{\text{nom}}(s) \triangleq L_{yu}(s) + L_{yy}(s) \left(\begin{array}{cc}
S_{C}^{T}(-s)S_{C}(s) - L_{ev}(s)R_{C}^{T}(-s)R_{C}(s)L_{ev}(s) \end{array} \right)^{-1} \cdot L_{ev}(s)R_{C}^{T}(-s)R_{C}(s)\]

\[
\mathcal{Q}_{T}(s) \triangleq \left(L_{yy}(s) \left(\begin{array}{cc}
S_{C}^{T}(-s)S_{C}(s) - L_{ev}(s)R_{C}(s)L_{ev}(s) \end{array} \right)^{-1} \cdot L_{ev}(s) \right)^{-1}
\]

\[
\mathcal{P}_{T}(s) \triangleq \left(\begin{array}{cc}
R_{C}(s)L_{ev}(s) \end{array} \right)^{-1}
\]

(14)

Moreover, the set \(L_{2}-\text{Cone (} \mathcal{T}_{\text{nom}}, \mathcal{P}_{T}^{1/2}, \mathcal{Q}_{T}^{1/2} \text{)} \) is the tightest possible bound on \(T \) in the sense that for every pair of signals \((u, y) \) \(L_{2}-\text{Cone (} \mathcal{T}_{\text{nom}}, \mathcal{P}_{T}^{1/2}, \mathcal{Q}_{T}^{1/2} \text{)} \), there exists at least one 'perturbation' \(\delta_{C} \) satisfying (7) such that \(y = T u \).

\textbf{Proof.} See Appendix .

\textbf{DISCUSSION}

The uncertainty bound provided by Theorem 1, like the uncertainty bound on the plant ignorance \(\delta_{C} \), takes the form of an \(L_{2} \)-conic sector condition. Consequently, in the special case in which the perturbation \(\delta_{C} \) is linear-time-invariant, Parseval's theorem [5, p. 236] implies that the \(L_{2} \)-conic sector bound on the overall system input-output relation provided by Theorem 1 can be expressed using singular values giving the bound on the system's frequency response matrix

\[
\sigma_{\text{max}}(Q_{T}^{1/2}(\omega)(T(\omega) - T_{\text{nom}}(\omega))P_{T}^{-1/2}(\omega)) \leq 1
\]

cf. equation (5). In particular for single-input-single-output LTI systems having uncertain LTI components, this bound becomes

\[
|T(\omega) - T_{\text{nom}}(\omega)|^{2} \leq \frac{P_{T}(\omega)}{Q_{T}(\omega)}
\]

(16)

For nonanticipative systems, \(L_{2} \)-stability is implied by \(L_{\infty} \)-stability (which is defined in [6]). It can be shown that if the system (1) is nonanticipative and is \(L_{2}\)-stable when \(\delta_{C} = 0 \), then (12) is sufficient to guarantee that (1) is \(L_{2}\)-stable for all \(\delta_{C} \) satisfying (7) [6]. Consequently, at least for nonanticipative systems, condition (b) of Theorem 1 is not very restrictive and may be easily verified by checking that \(\mathcal{T} \) is \(L_{\infty} \)-stable.
Theorem 1 gives the tightest possible bound on the overall system input-output relation T only when all available information about the perturbation δC is contained in condition (7). This is an important limitation, since in general this will not be the case. For example, if bounds on system uncertainty are given in the form of (8) then, although condition (7) holds with R and S specified by (9)-(10), condition (7) does not retain the 'structural' information that δC is diagonal (i.e., that δC has no 'cross-couplings' between components). Consequently, in such situations one may in general expect the bound provided by Theorem 1 to be conservative. In contrast, the classical root-locus and frequency-response methods (cf. [3, Ch. 6] and [4]) for generating 'regions of uncertainty' (viz., root loci and frequency response 'templates') to bound system response need not be conservative. Thus, the response bounds provided by Theorem 1 are the most useful in the case of systems for which these classical approaches are impractical or inapplicable. Such systems include multiloop feedback systems, multi-input-multi-output systems, systems with more than a very few uncertain parameters, and systems with nonlinear components.

The problem formulation used in this paper is sufficiently general to accommodate multiloop 'two degree of freedom' (cf. [12, §6.11, 4]) feedback structures with plant parameter ignorance such as depicted in Figure 2. For this configuration, one finds that the transfer function matrix $L(s)$ of (11) is given by (suppressing the argument 's')

$$
\begin{bmatrix}
L_{yu} + L_{yu} & L_{yv} \\
L_{eu} + L_{ev}
\end{bmatrix} = \begin{bmatrix}
G_0 (I + F C)^{-1} P & G_0 (I + C F)^{-1} \\
(I + F C)^{-1} T & -F (I + C F)^{-1}
\end{bmatrix}
$$

where $F = G_F + G_I G_C G_{FC}$ and $P = G_{IC} G_C G_{PC}$. As one might expect based on the work of Horowitz et al. (e.g., [4], [12]), it can be shown using Theorem 1 that the 'two degree of freedom' structure of Figure 2 permits one to adjust the amount of system uncertainty and the nominal value δ_{nom} of the closed-loop system input-output relation independently to a certain extent --- this is the subject of a forthcoming paper.

ACKNOWLEDGEMENT

I would like to thank all those whose criticisms and comments contributed to this paper. In particular, I thank Mr. J. Doyle of Honeywell, Inc. and Mr. P. Van Dooren of the University of Southern California.

APPENDIX

Proof of Theorem 1

We begin by establishing a useful lemma.

Lemma 1: If $Q \in \mathbb{C}^{n \times n}$ is a positive definite hermitian matrix and if $B \in \mathbb{C}^{r \times n}$ is a matrix of full rank $r < n$, then the matrix $\tilde{Q} = (B^* Q B)^{-1}$ exists and has the following properties:

1) $\tilde{Q} - B^* \tilde{Q} B$ is positive semi definite;

2) if S is any matrix such that $Q - B^* S B$ is positive semi definite, then $\tilde{Q} - S$ is positive semidefinite

3) $(B^*)^* \tilde{Q} B^* = (B^*)^* \tilde{Q} B B^*$ \hspace{2cm} (A1)
Proof: For any positive definite matrix M and any positive integer m, let C^n_m denote the inner product space of complex m-vectors with inner product $<z_1, z_2> \triangleq z^*_1 M z_2$. Consider B as a linear mapping C^n_q into C^n_1. Then the adjoint of B, which we denote as B^a, is

$$B^a = Q^{-1} B^*$$

(recall B^* denotes the complex-conjugate of B^T) and B^+ is the pseudo-inverse of B [11, pp. 150-165]. Further,

$$Q^B = (B Q^{-1} B^*)^{-1} = ((B Q^{-1} B^*)^{-1} B Q^{-1}) Q (B Q^{-1} B^*)^{-1} = (B^+) Q^{-1} B^+.$$

(A3)

For any vector $x \in C^n_q$, let $x_{\eta(B)}$ and $x_{\eta^-(B)}$ denote the respective projections of x onto the nullspace of B and the orthogonal complement of the nullspace of B. Now, for any $x \in C^n_q$ and any $y \in C^n_1$,

$$B^+ B x = x_{\eta^-(B)},$$

$$B B^+ y = y.$$

(A4)

(A5)

It follows that for all x

$$x^* (Q - B^* Q B) x = x_{\eta(B)}^* Q x_{\eta(B)} > 0$$

which establishes property (i). For any matrix S satisfying $Q - B^* S B \geq 0$ and any $y \in C^n_1$ we have

$$y^* S y = y^* (B B^+) S (B^+ B^+) y$$

= $$(B^+ y)^* B S B^+ (B^+ y)$$

< $$(B^+ y)^* Q (B^+ y)$$

= $y^* Q y$$

(A6)

which establishes property (ii). The identity of property (iii) follows by direct substitution of (A2) into (A1).

We now prove that, under the conditions of Theorem 1, equation (13) holds. We begin by noting the input-output relation $y = T u$ defined by (1) can be described equivalently by

$$[y] = \mathcal{L} [u] = \begin{bmatrix} (L_{yu} u + L_{yv} v) \\ (L_{eu} u + L_{ev} v) \end{bmatrix}$$

(A7)

$$y = \mathcal{L} \delta z e.$$

(A8)

we take (u, y, v, e, f, v) to be a solution of (1) and (A7). For any $z \in L_2$ and any L_2-stable operator \mathcal{A}, we use the notation $\hat{\mathcal{A}}$ and $\hat{\mathcal{A}}$ to denote the Fourier transform of \mathcal{A}, z and frequency response of \mathcal{A} respectively.
Suppose that (7) holds. Then \((e, f) \in L_2\text{-Cone } (C, \mathcal{R}_C, \mathcal{S}_C)\) and hence
\[
0 \geq ||S_C(e - C \varphi)||^2_{L_2} - ||R_C \varphi||^2_{L_2} \\
= \langle \hat{S}_C \varphi - (\hat{S}_C \varphi + \hat{R}_C) \varphi, \hat{S}_C \varphi - (\hat{S}_C \varphi - \hat{R}_C) \varphi \rangle > L_2 \\
= \langle (\hat{S}_C + \mathcal{R}_C \varphi) \varphi + \mathcal{R}_C \varphi, (\hat{S}_C - \mathcal{R}_C \varphi) \varphi \rangle > L_2 \\
= \langle (\hat{S}_C + \hat{R}_C \varphi) \varphi + \hat{R}_C \varphi, (\hat{S}_C - \hat{R}_C \varphi) \varphi \rangle > L_2 \\
= \langle (\psi - \hat{T}_y \varphi), \hat{Q}_y (\psi - \hat{T}_y \varphi) \rangle > L_2 - \langle \varphi, \hat{P}_y \varphi \rangle > L_2 \quad (A9)
\]
where \(Q_y, Z, \hat{Q}, \hat{T}_y, \) and \(P_y\) are the (not necessarily causal) \(L_2\)-stable operators specified in terms of their bilateral Laplace transform transfer functions by
\[
Q_y(s) = \frac{S_C^T(-s) S_C(s) - L_c^T(s) R_C^T(s) R_C(s) L_c(s)}{Z(s)} \quad (A10) \\
Z(s) = L_c^T(-s) R_c(-s) R_c(s) L_c(s) \quad (A11) \\
\Theta(s) = L_e^T(-s) R_c(-s) R_c(s) L_e(s) \quad (A12) \\
T_y(s) = Q_y^{-1}(s) Z(s) \quad (A13) \\
P_y(s) = \Theta(s) + Z_T(-s) Q_y^{-1}(s) Z(s) = P_T(s) \quad (A14)
\]
where the latter equality in (A14) follows using the matrix identity
\[
I + A (B - C A)^{-1} C = (I - A B^{-1} C)^{-1} \quad (A15)
\]
Thus, applying part (i) of Lemma A1, we have from (A9) that
\[
0 \geq \langle \hat{L}_y (\psi - \hat{T}_y \varphi), \hat{L}_y \hat{Q}_y^{-1} \hat{T}_y \varphi \rangle \\
\hat{L}_y (\psi - \hat{T}_y \varphi) > L_2 - \langle \varphi, \hat{P}_y \varphi \rangle > L_2 \\
= \langle \psi - \hat{T}_{\text{nom}} \varphi, \hat{T}_{\text{nom}} (\psi - \hat{T}_{\text{nom}} \varphi) \rangle > L_2 \\
- \langle \varphi, \hat{T}_{\text{nom}} \varphi \rangle > L_2 \quad (A16)
\]
Hence, from Parseval's theorem
\[
||Q_y^{1/2} (\psi - \hat{T}_{\text{nom}} \varphi) ||_{L_2} \leq ||P_y^{1/2} \varphi ||_{L_2} \quad (A17)
\]
from which (13) follows.
specified by
\[\hat{v} = \hat{L}_{yv}^+ (\hat{y} - \hat{L}_{yu} \hat{u}) + \hat{T}_v \hat{u} \]
(A18)

where
\[\hat{L}_{yv}^+ = \hat{Q}_v^{-1} L_{yv}^* (\hat{L}_{yu} \hat{Q}_v^{-1} L_{yu}^*)^{-1} \]
(A19)

Then, \((u, y, v)\) are consistent with (1) and (A7) and (using part (iii) of Lemma (A1) and Parseval's theorem) it follows that for all \((u, y) \in L_2^\infty\) Cone \((\mathcal{X}_0, \mathcal{X}_T, \mathcal{X}_T^{1/2})\)

\[0 \geq |\hat{S}_T (\hat{\phi} - \hat{\phi}_x)|^2_{L_2} - |\hat{P}_T^{1/2} \hat{u}|^2_{L_2} \]

\[= < (\hat{\phi} - \hat{T}_v \hat{u}), \hat{L}_{yv} \hat{L}_{yu} \hat{Q}_v^{-1} \hat{L}_{yu}^* (\hat{\phi} - \hat{T}_v \hat{u}) >_{L_2} \]

\[= |\hat{S}_C (\hat{\phi} - \hat{\phi}_x)|^2_{L_2} - |\hat{R}_C \hat{e}|^2_{L_2} \]

(A20)

where the latter equality follows as in (A9). Let \(\delta_C \hat{z}\) be the map defined by

\[\delta_C \hat{z} = |\hat{R}_C \hat{e}|^{-2}_{L_2} < \hat{R}_C \hat{e}, \hat{R}_C \hat{e} >_{L_2} \hat{v}. \]
(A21)

Using (A20) and the Schwartz inequality, one readily verifies that \(\delta_C \hat{e} = \hat{v}\) and that \(\delta_C \) satisfies (7).

(End of proof)

REFERENCES

Figure 1. The system.

Figure 2(a). Multiloop 'two degree of freedom' feedback control system.

Figure 2(b). Internal structure of uncertain plant in Figure 2(a).