ACTIVE BCAS PERFORMANCE IN A GARBLE ENVIRONMENT

JANUARY 1980

Document is available to the U.S. public through
The National Technical Information Service,
Springfield, Virginia 22161

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
OFFICE OF SYSTEMS ENGINEERING MANAGEMENT
Washington, D.C. 20591
A basic design tool has been developed which includes the principal BCAS design parameters, namely, transmitter power, receiver sensitivity, aircraft density, closure rate, degradable capability, and interrogation rate. This tool can be directly applied to the evaluation of alternative BCAS design concepts as well as for parametric design studies. Results of a comparison between an ATCRBS/DABS BCAS and an ATCRBS only BCAS are presented leaving little doubt concerning the performance advantage offered by the inclusion of the DABS link for evasive maneuver coordination. It must be emphasized that neither of the BCAS systems analyzed in this report are representative of the active BCAS defined in the draft National Standard for active BCAS.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. APPROACH</td>
<td>2</td>
</tr>
<tr>
<td>3. THREAT ACQUISITION PROBABILITY</td>
<td>12</td>
</tr>
<tr>
<td>4. APPLICATION TO MODE A DATA LINK</td>
<td>14</td>
</tr>
<tr>
<td>5. RESULTS</td>
<td>17</td>
</tr>
<tr>
<td>6. CONCLUSION</td>
<td>23</td>
</tr>
<tr>
<td>7. SUMMARY</td>
<td>25</td>
</tr>
<tr>
<td>8. REFERENCES</td>
<td>26</td>
</tr>
</tbody>
</table>

APPENDIX 1 - Program Listing for Threat Acquisition Simulation

APPENDIX 2 - Program Listing for Mode A Data Link Simulation
LIST OF FIGURES

FIGURE 1 Active BCAS Garble Phenomenon 3
FIGURE 2 BCAS Probability Model 5
FIGURE 3 RF Power and Sensitivity Effects 7
FIGURE 4 Mode A Data Link Coordination Algorithm 15
FIGURE 5 ATCRBS BCAS Time Line 18

LIST OF TABLES

TABLE 1 ATCRBS BCAS Acquisition 19
TABLE 2 ATCRBS BCAS Mode A Coordination 20
TABLE 3 DABS/ATCRBS BCAS Acquisition 22
ACKNOWLEDGMENT

The author wishes to thank Mr. Del Weathers and Ms. Sandy Boczenowski for their support in the development of the computer simulations used to obtain the results presented as part of this report.
ACTIVE BCAS PERFORMANCE ANALYSIS

INTRODUCTION

In the design of an active BCAS, there are many parameters which affect its capability to detect targets. Target detection is obviously critical to BCAS performance since without detection, all other considerations such as tracking accuracy, threat detection and resolution strategy and evasive maneuver coordination become secondary. This report presents a method of estimating BCAS ability to detect targets as a function of aircraft density, closing speed, RF power and receiver sensitivity, the ability to degarble overlapping replies, interrogation rate and the time at which coordination and execution of evasive maneuvers is to occur. Application of this analysis to the evaluation of the effectiveness of a Mode A data link for evasive maneuver coordination is also presented.
A fairly straightforward analysis based on the use of the Binomial Theorem coupled with a Monte-Carlo simulation has been applied to evaluate BCAS performance.

It is best to begin discussing this analysis by reviewing the active BCAS garble phenomenon. When an active BCAS interrogates either on Mode A or Mode C, it is assumed for purposes of this analysis that the interrogation travels uniformly in space at the speed of light. Aircraft receiving the BCAS interrogation reply in the appropriate format. Since this reply is 20.3 us long, when two aircraft are within a range of 1/2 the reply distance (about 1.69 nautical miles) their replies will overlap each other when they arrive at the BCAS aircraft. (See Figure 1)
FIGURE 1. ACTIVE BCAS GARBLE PHENOMENON
As seen in Figure 1, the replies of AC #1 and #2 and of #1 and #3 will arrive overlapped at BCAS. Replies of #2 and #3 will not overlap since their range difference is greater than 1/2 the reply distance (1.69 nm).

In order for these replies to overlap at BCAS, two criteria must be satisfied. First, the aircraft must be within the specified range differential from BCAS and second they must hear the BCAS interrogation, reply to it, and BCAS must hear the reply.

The probability that an aircraft will be within an annulus of thickness of $2\Delta r$ centered at a distance r from the center of a circle of radius R (see Figure 2) is given by:

$$P_E = \frac{(r + \Delta r)^2 - (r - \Delta r)^2}{R^2}$$

or more simply by:

$$P_E = \frac{4\Delta r \cdot r}{R^2}$$ \hspace{1cm} (1)

where it is assumed that it is equally likely that the aircraft is at any point in the circle.
FIGURE 2

BCAS PROBABILITY MODEL
The probability that BCAS will "see" an aircraft located at a distance \(r \) from BCAS has been derived in Reference 1 and basically is a function of range, transmitter power and receiver sensitivity which are used to compute the link margin.

In Reference 1, the computation of link margin is described as the relationship of link margin and link reliability. This relationship is presented as Figure 3.
FIGURE 3

RF POWER AND SENSITIVITY EFFECTS
Let the link reliability be denoted by \(p_L \). Then, the probability \(p \) that an aircraft lies in the annulus (see Figure 2) and will be "seen" by BCAS is given by:

\[
p = p_\text{E} \cdot p_L
\]

(2)

The probability \(p \) is computed as a function of free space path loss, receiver sensitivity, interrogator power and cabling losses. This is accomplished first by computing the normal link margin and then using the appropriate curve from Figure 3.

With this basic probability, it is now possible to derive the probability that a threat aircraft located at a distance \(r \) from BCAS in an airspace with \(N \) other aircraft uniformly distributed over the area of a circle of radius \(R \) will be "seen" by the BCAS aircraft located at the center of the circle.

This probability is directly computed using the Binomial Theorem which yields the probability that exactly \(k \) aircraft will be region \(i \) (See Figure 2) and be seen by BCAS.
This probability is given by:

\[
P_k = \binom{N}{k} p^k (1 - p)^{N-k}
\]

where \(p \) is calculated from equation 2 and where:

\[
\binom{N}{k} = \frac{N!}{k! (N-k)!}
\]

Now, to treat the effect of garble, assume that one overlap of the threat aircraft's reply to BCAS can be degarbled with a probability \(g_1 \) and that two overlaps of the threat aircraft's reply to BCAS can be degarbled with a probability \(g_2 \). Further, assume that it is impossible to degarble more than 2 overlaps of the threat aircraft's reply to BCAS. This being the case, the probability that BCAS will successfully "see" the threat aircraft is given by:

\[
P = p_L \left[(1 - p)^N + Np (1 - p)^{N-1} g_1 + \frac{N(N-1)}{2} p^2 (1 - p)^{N-2} g_2 \right]
\]
In equation 5, note that \(p \) is a function of the distance of the threat aircraft from BCAS.

Next, consider that the target aircraft is moving toward BCAS in relative motion. To compute the probability \(P \) in equation 5 as the target moves toward BCAS, consider the threat aircraft range from BCAS as a function of time \(t \) and closing speed \(w \). Assuming rectilinear motion, this relationship is given by:

\[
r = w t
\]

so that for constant closing speed and specified times \(t_i \) the probability that BCAS will successfully see the threat aircraft at time \(t_i \) is computed from:

\[
r_i = w t_i
\]

and

\[
p_i = p (r_i)
\]

and

\[
P_i = P (p_i) \tag{6}
\]

Equation (6) in effect causes the annulus to move with the target as it approaches the BCAS aircraft thus changing the probability \(P_i \) as a function of time.
Thus, given t_i, closing speed W, number of aircraft N, radius R, link reliability P_L (also a function of range), degarble capability g_1 and g_2 and reply message length it is possible to compute the probability P_i that BCAS will "see" the threat aircraft in region i.
THREAT ACQUISITION PROBABILITY

In general, active BCAS systems acquire ATCRBS targets by interrogating on Mode C at a regular interval Δt. This time interval is called a BCAS epoch. For successful target acquisition, track initiation and threat detection assume that it is necessary to successfully "see" a target L out of M tries. To compute this probability of successful acquisition, one is tempted to again use the Binomial Theorem but in equation 6 one notes that the probability of "seeing" a target from one epoch to the next is different since the range is changing. The brute force approach to solving this problem is to use either a "tree" analysis (Reference 2) or a Monte Carlo analysis. Because of the potentially large number of epochs, the "tree" analysis was discarded and a Monte Carlo simulation was employed instead. The program listing for this simulation is presented as Appendix 1. Briefly speaking, this simulation simply "flies" the threat aircraft toward BCAS and computes the probabilities. A fundamental assumption in this analysis is that the position of aircraft other than BCAS and the threat aircraft are statistically independent from one epoch to the next. Also,
the BCAS was assumed to have a fairly sophisticated degarbling capability. This is based on empirical data which indicates that there exist techniques which will provide degarbling values of $g_1 = 80\%$ and $g_2 = 60\%$. It should be noted that the system's capability is very sensitive to the choice of degarbling values, and one should not assume that a BCAS using less sophisticated techniques will provide comparable performance.

Using these probabilities, 20,000 trials are then executed and the successful number of threat acquisition based on the L out of M rule are recorded. The probability of successful BCAS threat acquisition is then calculated from:

$$P_s = \frac{\text{Number of successes}}{\text{Total number of trials}}$$ \hspace{1cm} (7)
APPLICATION TO MODE A DATA LINK

Assuming that two aircraft are BCAS equipped, it is possible for each aircraft to choose a maneuver given that they detect each other as a threat. A special Mode A code loaded into the transponder of each BCAS can then be used as the basis for coordination if each BCAS interrogates the other on Mode A. To analyze the effectiveness of a Mode A data link utilizing two separate codes to indicate maneuver intent (e.g., 7100 climb, 7200 dive) again equations 5, 6, and 7 are employed. In this case, however, the method for computing the number of successes in equation 7 is changed. Fundamentally, the criterion for success in this case is the successful reception by both BCAS aircraft in the conflict situation of each other's maneuver intent twice in a row and that the maneuvers are compatible. A default mode of posting the last maneuver chosen, even in the event that no coordination occurs, is included. The detailed flow chart of this algorithm is presented as Figure 4. In any event, a maneuver is selected and the number of successes is counted by considering the total number of displayed maneuvers which are compatible. It should also be noted that in this simulation the degarble probabilities were chosen to be unity since that would be the upper limit, if it were possible to construct a device to perfectly utilize the priori information concerning the codes of interest.
FIGURE 4 -- MODE A DATA LINE COORDINATION ALGORITHM
This is in contrast to the more standard but yet sophisticated
degarbling techniques used without a priori information as in
threat acquisition in which case values of $g_1 = 80\%$ and $g_2 = 60\%$
were used based on empirical data. The listing for this
program is presented as Appendix 2.
RESULTS

Two system approaches have been studied using the above analysis. Neither of these approaches represents the FAA active BCAS described in the draft National Aviation Standard for Active BCAS. The first of these is based on Mode C acquisition of ATCRBS targets utilizing a 3 second epoch, 600 watt transmitter, -77 dBm receiver sensitivity, and a Mode A data link for the tie-breaker. Diversity antennas were assumed on all aircraft. In order to post a compatible collision avoidance command at 25 seconds, the problem starts at 59 seconds before collision and requires 3 out of 4 successful epochs to acquire the threat, initiate track and perform conflict detection and prediction. At 47 seconds Mode A data link coordination is initiated and proceeds for eight epochs (see Figure 5) requiring at least two consecutive epoch successes as described above. These acquisition and coordination parameters have been chosen to achieve the high reliability required for maneuver coordination given a collision situation between two BCAS aircraft. The results of these analyses are presented in Tables 1 and 2.

The second system analyzed differs from the first in that the epoch time is 1 second, a 500W transmitter is used, and a data link using the DABS message structure is employed for coordination (see Reference 3). Using the DABS data link
FIGURE 5

ATCRBS BCAS TIME LINE
TABLE #1

SYSTEM #1

ACQUISITION PROBABILITY

number of aircraft in 20 nm radius

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.97935</td>
<td>0.89570</td>
<td>0.75095</td>
<td>0.57530</td>
<td>0.39905</td>
<td>0.25360</td>
</tr>
<tr>
<td>400</td>
<td>0.96485</td>
<td>0.81680</td>
<td>0.58670</td>
<td>0.39425</td>
<td>0.18100</td>
<td>0.08400</td>
</tr>
<tr>
<td>500</td>
<td>0.94360</td>
<td>0.71735</td>
<td>0.41715</td>
<td>0.18580</td>
<td>0.06895</td>
<td>0.02130</td>
</tr>
<tr>
<td>600</td>
<td>0.91660</td>
<td>0.61115</td>
<td>0.27175</td>
<td>0.08755</td>
<td>0.02150</td>
<td>0.00480</td>
</tr>
<tr>
<td>700</td>
<td>0.88400</td>
<td>0.49685</td>
<td>0.16140</td>
<td>0.03815</td>
<td>0.00535</td>
<td>0.00100</td>
</tr>
<tr>
<td>800</td>
<td>0.84040</td>
<td>0.38960</td>
<td>0.09405</td>
<td>0.01435</td>
<td>0.00195</td>
<td>0.00020</td>
</tr>
<tr>
<td>900</td>
<td>0.78525</td>
<td>0.29400</td>
<td>0.05210</td>
<td>0.00580</td>
<td>0.00065</td>
<td>0.00005</td>
</tr>
<tr>
<td>1000</td>
<td>0.72510</td>
<td>0.22015</td>
<td>0.02790</td>
<td>0.00245</td>
<td>0.00010</td>
<td>0.00005</td>
</tr>
<tr>
<td>1100</td>
<td>0.66205</td>
<td>0.16220</td>
<td>0.01550</td>
<td>0.00105</td>
<td>0.00005</td>
<td>0.00005</td>
</tr>
<tr>
<td>1200</td>
<td>0.59765</td>
<td>0.12460</td>
<td>0.01010</td>
<td>0.00005</td>
<td>0.00005</td>
<td>0.00005</td>
</tr>
</tbody>
</table>
TABLE #2

SYSTEM #1
MODE A COORDINATION

number of aircraft in 20 nm radius

<table>
<thead>
<tr>
<th>Speed (knots)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>600</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.997</td>
<td>0.997</td>
<td>0.9852</td>
</tr>
<tr>
<td>900</td>
<td>1.000</td>
<td>1.000</td>
<td>0.9993</td>
<td>0.9863</td>
<td>0.9454</td>
<td>0.8862</td>
</tr>
<tr>
<td>1200</td>
<td>1.000</td>
<td>0.9998</td>
<td>0.9878</td>
<td>0.9510</td>
<td>0.8412</td>
<td>0.7405</td>
</tr>
</tbody>
</table>
allows for fast, highly reliable coordination at 26 seconds
before collision thus allowing more time for threat
acquisition. The 1 second update rate permits more attempts at
threat acquisition and does not require the same high epoch
success ratio (3/4) to establish track and perform the conflict
detection and prediction functions.

For purposes of this analysis, the problem was started at 40
seconds before collision. Fifteen epochs were then allowed for
threat acquisition with only 5 epoch successes required for
track initiation, conflict detection and conflict prediction.
One second was left for coordination of the evasive maneuver,
ample time for the DABS link to perform its required function.
The reliability of this link, (DABS to DABS) is about 99.5% for
a single attempt at closure rates of 1200 knots, and 30 seconds
before collision (Reference 1). About 5000 coordination
attempts are possible with the DABS link in one second thus the
probability of successful DABS coordination closely
approximates unity. The results of the target acquisition
probability analysis are presented as Table 3.
TABLE #3

SYSTEM #2

ACQUISITION PROBABILITY

<table>
<thead>
<tr>
<th>Number of Aircraft in 20 nm. radius</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99985</td>
<td>0.99890</td>
</tr>
<tr>
<td>400</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99980</td>
<td>0.99720</td>
<td>0.98355</td>
</tr>
<tr>
<td>500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99985</td>
<td>0.99745</td>
<td>0.97745</td>
<td>0.89465</td>
</tr>
<tr>
<td>600</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99930</td>
<td>0.98575</td>
<td>0.89750</td>
<td>0.68705</td>
</tr>
<tr>
<td>700</td>
<td>1.0000</td>
<td>0.99990</td>
<td>0.99640</td>
<td>0.94510</td>
<td>0.73495</td>
<td>0.41020</td>
</tr>
<tr>
<td>800</td>
<td>1.0000</td>
<td>0.99985</td>
<td>0.98735</td>
<td>0.85065</td>
<td>0.50510</td>
<td>0.19100</td>
</tr>
<tr>
<td>900</td>
<td>1.0000</td>
<td>0.99955</td>
<td>0.96435</td>
<td>0.70105</td>
<td>0.29205</td>
<td>0.07095</td>
</tr>
<tr>
<td>1000</td>
<td>1.0000</td>
<td>0.99845</td>
<td>0.91390</td>
<td>0.51390</td>
<td>0.14350</td>
<td>0.02065</td>
</tr>
<tr>
<td>1100</td>
<td>1.0000</td>
<td>0.99575</td>
<td>0.83200</td>
<td>0.34105</td>
<td>0.05955</td>
<td>0.00540</td>
</tr>
<tr>
<td>1200</td>
<td>1.0000</td>
<td>0.99040</td>
<td>0.72320</td>
<td>0.20405</td>
<td>0.02200</td>
<td>0.00140</td>
</tr>
</tbody>
</table>
CONCLUSION

It is obvious from the results presented that the system approach using a DABS data link for coordination is far superior in performance to that achievable in the ATCRBS only BCAS approach analyzed. In terminal areas, at densities of up to 0.02 aircraft/nm² threat acquisition probability are on the order of 97.75% at 25 seconds for head-on encounters (500 knots) and improve significantly for crossing or overtake encounters. At 20 seconds (i.e., a 5 second late alarm), the probability of acquisition improves to 99.98%. Coordination probabilities in all cases approach unity. In lower density en route airspace, say on the order of 0.008 aircraft/nm², a 99% probability of detection for 1200 knot closure rates is achievable at 25 seconds improving to 99.99% at 20 seconds.

In contrast to this approach, the ATCRBS only BCAS using Mode A data link has a 6% probability of acquisition at closure rates of 500 knots in a density of 0.02, a 42% probability at 500 knot closures in a density of 0.12 and a 12% probability
1200 knot closures in a density of 0.008. Further, the coordination probability in densities of 0.02 at terminal speeds is on the order of 99.7% for head-on encounters, but approaches DABS reliability in lesser densities even for 1200 knot closures. For example, at 1200 knot closures in a density of 0.008 a 99.98% reliability can be achieved. This, however, is of little help since the target cannot be acquired.
A basic analysis tool has been developed which includes the principal BCAS design parameters, namely, transmitter power, receiver sensitivity, aircraft density, closure rate, degradable capability, and interrogation rate. This tool can be directly applied to the evaluation of alternative BCAS design concepts as well as for parametric design studies. Results of a comparison between a BCAS using a DABS data link and an ATCRBS only BCAS are presented leaving little doubt concerning the performance advantage offered by the inclusion of the DABS link for evasive maneuver coordination. Neither of the systems analyzed represents the Active BCAS described in the Draft National Aviation Standard for BCAS.
REFERENCES

APPENDIX 1

Program Listing for Threat Acquisition Simulation
TARGET ACQUISITION PROBABILITY
USING MONTE CARLO SIMULATION

TWO AIRCRAFT...

DELL WEATHERS, SANDY BOZENOWSKI -- AEM-200
FINAL VERSION JAN 22, 1980

INTEGER*2 IX, IY, EPOCH, TAQ, EPS, REPMIN
INTEGER*2 CODE1, CODE2, PRIN11
INTEGER*4 NUMBER
REAL*4 P(30), MTL

WRITE(1, 100)
CALL SETUP2 (T0, EPS, ETIM, REPMIN, G1, G2, MTL, TP)

-- CONTROL DENSITY OF AIRCRAFT --

DO 25 N = 5, 30, 5
 WRITE(1, 150) N

-- CONTROL RELATIVE SPEED --
DO 20 IS = 300, 1200, 100
 S = FLOAT(IS) / 3600.

CALL PROB(T0, EPS, ETIM, G1, G2, TP, MTL, N, S, P)
CALL SETUP2(NUMBER, ST, IX, IV)

-- CONTROL NUMBER OF TRIALS --
DO 15 II = 1, NUMBER
 TAQ = 0

-- EPOCH CONTROL LOOP --
DO 10 EPOCH = 1, EPS
 CALL CTRIAL (P,IX,IY,EPOCH,TAQ)
10 CONTINUE ! EPOCH LOOP

--- ---- TEST FOR SUCCESSFUL TARGET ACQUISITION

IF (TAQ .GE. REPMIN) ST = ST + 1.

CONTINUE ! TRIALS LOOP
PST = ST/FLOAT(NUMBER)
WRITE(1,160)IS,PST

CONTINUE ! RELATIVE SPEED LOOP
CONTINUE ! NO. OF AIRCRAFT LOOP

STOP
100 FORMAT(/' -- TARGET ACQUISITION SIMULATION --'/)
150 FORMAT(3X,'NO. OF AC',I4,4X,'VEL.',5X,'PROB.'
155 FORMAT(' ',I8,DISP1,DISP2 -- ',3(2X,I4))
160 FORMAT(18X,I6,3X,F9.5)
END

SUBROUTINE CTRIAL (P,IX,IY,EPOCH,TAQ)
REAL*4 P(30)
INTEGER*2 TAQ,EPOCH
R = RAN(IX,IY) ! PROBABILITY OF GARBLE THIS EPOCH
IF (R .LE. P(EPOCH)) TAQ = TAQ +1
RETURN
END

SUBROUTINE SETUP0(NUMBER,ST,IX,IY)
INTEGER*2 IX,IY
INTEGER*4 NUMBER
C
WRITE(1,110)
C
READ (1,112) NUMBER
NUMBER=20000
C
ST=0. 'INITIALIZE ACQUISITION COUNTER
IX=0 'INITIALIZE RANDOM NUMBER SEED
IY=0
C
RETURN
110 FORMAT('$ NUMBER OF TRIALS -->')
114 FORMAT('$ DEBUG PRINTOUTS (Y=1/N=2) -->')
112 FORMAT(I4)
119 FORMAT(I8)
END

--

SUBROUTINE TO GENERATE PROBABILITY OF MODE A COORDINATION
FOR UP TO 30 CONSECUTIVE EPOCHS

WRITTEN BY S. BOCZENOWSKI 12/17/79

--

SUBROUTINE PROB (T0,LIMIT,ETIM,G1,G2,TP,MTL,N,S,P)
REAL*4 P(30),A(30),NC
REAL*4 TP,FSPL,CL,MTL,LR,LM,PI

C----- CONSTANT VALUE 1/2 MESSAGE LENGTH
C
DR = 20.3 / 6.08 * 5
R = 20. 'RADIUS OF SURVEILLANCE
C
TI = T0
NC = FLOAT (N -1) !DO NOT COUNT TARGET AIRCRAFT
C----- COMPUTE PROBABILITY FOR EACH OF THE EPOCHS
C
DO 111 K = 1, LIMIT
PI = 3.14159265
FSPL = 20.0 * ALOG10(4.0*PI*SI**TI *6076.115 / 0.903)
CL = 6.0
LM = TP - FSPL - CL - MTL
LR = .5406214 + 0.1141024*LM -.00948411*(LM**2)+.0002628*(LM**3)
IF(LR .GT. 1.0) LR = 1.0 !LIMIT TO ONE
C WRITE(1,333)LR,LM,TP,FSPL,CL,MTL
333 FORMAT(' LR -->',6F10.4)
 A(K) = ((4.*SIXKRTI)/R**2)*LR
 P(K) = (1. - A(K))**NC
 P(K) = (P(K) + NC*A(K))*(1. - A(K))**(NC-1.)*G1
 P(K) = P(K)+(G2/2.)*NC*(NC-1.)*(A(K)**2)*((1-A(K))**(NC-2))
 P(K) = P(K)*LR
C WRITE(1,999)K, TI, P(K)
999 FORMAT(' EPOCH ', I4, ' TAU ', F9.0, ' PROB. ', F9.4)
 TI = T0 -(ETIM * K)
111 CONTINUE
RETURN
END
C
C REQUEST INPUT FOR VARIABLE CONDITIONS IN SIMULATION
C INITIAL TAU, NO. OF EPOCHS, EPOCH DURATION, MINIMUM
C NUMBER OF REPLIES TO DECLARE A SUCCESS
C DEARBLE PROBABILITY, TRANSMIT POWER, AND
C MINIMUM TRIGGERING LEVEL OF RECEIVER
C
WRITTEN BY S. BOCZENOWSKI 12/17/79
C
C
SUBROUTINE SETUP2 (T0, EPS, ETIM, REPMIN, G1, G2, MTL, TP)
INTEGER*2 EPS, REPMIN
REAL*4 MTL
C
WRITE(1,100)
C
WRITE(1,908) INITIAL TIME
READ(1,903) T0
WRITE(1,916) NO. OF EPOCHS
READ(1,901) EPS
WRITE(1,917) TIME PER EPOCH
READ(1,901) ITIM
ETIM = FLOAT(ITIM)
WRITE(1,918) MINIMUM REPLIES FOR SUCCESS
READ(1,901) REPMIN
WRITE(1,920) PROB OF DEGBALE
READ(1,903) G1
WRITE(1,922) DEGBALE OF 2 OVERLAPS
READ(1,903) G2
WRITE(1,924) TRANSMIT POWER
READ(1,903) TP
WRITE(1,926) MINIMUM TRIGGERING LEVEL
READ(1,903) MTL
RETURN
C---
C CONSOLE I/O FORMATS
C---
100 FORMAT(' ---ROUTINE SETUP2---')
901 FORMAT(I5)
903 FORMAT(F12.4)
906 FORMAT(' EPOCH INTERVAL IN SECONDS (R) --> ')
908 FORMAT(' INITIAL TIME (TAU IN SECONDS) (R) --> ')
916 FORMAT(' NO. OF EPOCHS (I) --> ')
917 FORMAT(' EPOCH TIME IN SECONDS (I) --> ')
918 FORMAT(' NO. OF REPLIES FOR TARGET ACQUISITION (I) --> ')
920 FORMAT(' DEGBALE PROBABILITY 1ST OVERLAP (R) --> ')
922 FORMAT('$ DEGRABLE PROBABILITY 2ND OVERLAP (R) -- '> ')
924 FORMAT('$ TRANSMITTING POWER (R) -- '> ')
926 FORMAT('$ MINIMUM TRIGGERING LEVEL (R) -- '> ')
988 FORMAT('$ PAGE OUTPUT(1) OR SCROLLING(2)-- '> ')
998 FORMAT(X, A1)
 END
APPENDIX 2

Program Listing for Mode A Data Link Simulation
CALL PROB(T0,LIMIT,IDG,N,S,P)
CALL SETUP0(NUMBER,IX, iy, MATRIX)

-- CONTROL NUMBER OF TRIALS --

DO 15 II = 1, NUMBER
 CALL SETUP1 (OWN,POWN, OTHER, POTH, OTHG, POTHG, CODE1, CODE2,
 OWNG, PWNG, DISP1, DISP2, IX, iy)

-- EPOCH CONTROL LOOP --

DO 10 EPOCH = 1, LIMIT

-- OWN SYSTEM --

IF(EPOCH .NE. 1) CODE2 = OTHER
 CALL ALG (OWN, CODE2, POTH, OTHG, POTHG, EPOCH, P,
 IX, iy, DISP1, LIMIT)
 IF(PRINT1 .EQ. 1) CALL PRINT1 (OWN, CODE2, POTH, OTHG, POTHG,
 EPOCH, DISP1)
 POTH = CODE2

-- OTHER SYSTEM --

IF(EPOCH .NE. 1) GOTO 5
 CALL SETUP4(OTHER, IX, iy)
5
 CODE1 = OWN
 CALL ALG (OTHER, CODE1, POWN, OWNG, PWNG, EPOCH, P,
 IX, iy, DISP2, LIMIT)
 IF(PRINT1 .EQ. 1) CALL PRINT2 (OTHER, CODE1, POWN, OWNG, PWNG,
 EPOCH, DISP2)
 POWN = CODE1

10 CONTINUE
IF(PRIN11 .EQ. 1) WRITE(1,155) II,DISP1,DISP2
CALL TABLE(DISP1,DISP2,MATRIX)
C 15 CONTINUE *TRIALS LOOP
WRITE(1,160)N,IS,DGP(IDG)
CALL OUTPUT (MATRIX,NUMBER)
C 20 CONTINUE *RELATIVE SPEED LOOP
25 CONTINUE *NO. OF AIRCRAFT LOOP
30 CONTINUE *DEGARBLE CAPABILITY LOOP
C C STOP
100 FORMAT(\" -- MANEUVER COORDINATION SIMULATION --\")
155 FORMAT(\" $,DISP1,DISP2 -- \",3(2X,I4))
END
C C SUBROUTINE OUTPUT(MATRIX,NUMBER)
INTEGER*4 MATRIX(3,3),NUMBER
REAL*4 RATIO
C C WRITE(1,110)
WRITE(1,112) MATRIX(1,1),MATRIX(1,2),MATRIX(1,3)
WRITE(1,112) MATRIX(2,1),MATRIX(2,2),MATRIX(2,3)
WRITE(1,112) MATRIX(3,1),MATRIX(3,2),MATRIX(3,3)
C C RATIO = MATRIX(2,3)+MATRIX(3,2)
RATIO = RATIO / FLOAT(NUMBER-1) *CONVERT TO PERCENT
C C WRITE(1,114)RATIO
RETURN
110 FORMAT(\" OUTPUT FROM SIMULATION \")
112 FORMAT(\" -- \",3(4X,18))
114 FORMAT(' PERCENT OF COMPAT AND COMPLI MANEUVERS -->',F10.2//)
 END

C
C
SUBROUTINE SETUP (NUMBER,IX,IY,MATRIX)
 INTEGER*2 IX,IY,LIMIT,PRIM11
 INTEGER*4 MATRIX(3,3),NUMBER
 DO 10 I=1,3
 DO 10 J=1,3
 MATRIX(I,J) = 0
 CONTINUE
 WRITE(1,110)
 READ(1,119) NUMBER
 NUMBER=20000
 IX=0 !INITIALIZE RANDOM NUMBER SEED
 IY=0
 RETURN

110 FORMAT(' NUMBER OF TRIALS -->')
114 FORMAT(' DEBUG PRINTOUTS (Y=1/N=2) -->')
112 FORMAT(I4)
119 FORMAT(I8)
 END

C
C
SUBROUTINE TABLE(D1,D2,MATRIX)
 INTEGER*2 D1,D2
 INTEGER*4 MATRIX(3,3)
 IF((D1 .EQ. 0) .AND. (D2 .EQ. 0)) MATRIX(1,1)=MATRIX(1,1)+1
 IF(D1 .EQ. 7100) .AND. (D2 .EQ. 7100)
 MATRIX(2,2) = MATRIX(2,2)+1
 IF(D1 .EQ. 7200) .AND. (D2 .EQ. 7200)
I

+ MATRIX(3,3) = MATRIX(3,3)+1
+ IF((D1 .EQ. 0) .AND. (D2 .EQ. 7100))
+ MATRIX(1,2) = MATRIX(1,2)+1
+ IF((D1 .EQ. 0) .AND. (D2 .EQ. 7200))
+ MATRIX(1,3) = MATRIX(1,3)+1
+ IF((D1 .EQ. 7100) .AND. (D2 .EQ. 0))
+ MATRIX(2,1) = MATRIX(2,1)+1
+ IF((D1 .EQ. 7100) .AND. (D2 .EQ. 7200))
+ MATRIX(2,3) = MATRIX(2,3)+1
+ IF((D1 .EQ. 7200) .AND. (D2 .EQ. 0))
+ MATRIX(3,1) = MATRIX(3,1)+1
+ IF((D1 .EQ. 7200) .AND. (D2 .EQ. 7100))
+ MATRIX(3,2) = MATRIX(3,2)+1

C
RETURN
END

C
SUBROUTINE SETUP4(OTHER,IX,IY)
INTEGER*2 OTHER,IX,IY
REAL*4 R

C
OTHER=7100
R=RAN(IX,IY)
IF(R .GE. 0.5)OTHER=7200
RETURN
END

C
SUBROUTINE SETUP1 (OWN,POUN,OTHER,POTH,OTHG,POTHG,CODE1,CODE2,
+ OUNG,POUNG,DISP1,DISP2,IX,IY)
INTEGER*2 OWN,POUN,OTHER,POTH,OTHG,POTHG
INTEGER*2 OUNG,POUNG,DISP1,DISP2
INTEGER*2 CODE1,CODE2,IX,IY
REAL*4 R

C
C WRITE(1,100)
C
C R=RAN(DX,DX) !PICK OWN CODE RANDOMLY
OWN=7100
C IF(R .LT. 0.5)OWN=7200
CODE1=OWN
POWN=1200 !PREVIOUS OWN CODE
OTHER=1200 !OTHER'S INITIAL CODE
POTh=1200 !OTHER'S PREVIOUS INITIAL CODE
OTHG=0 !OTHER'S CURRENT GARBLE STATUS (Y=1/N=0)
POTHG=0 !OTHER'S PREVIOUS GARBLE STATUS
OWNG=0 !OWN'S CURRENT GARBLE STATUS
POUNG=0 !OWN'S PREVIOUS GARBLE STATUS
CODE2=1200
DISP1=BB1
DISP2=BB2
RETURN
100 FORMAT(' ---ROUTINE SETUP1---')
END
C
C SUBROUTINE ALG (CODE1,CODE2,PCODE,OG,PG,EPOCH,P,
+ IX,IX,DISP,LIMIT)
INTEGER*2 CODE1,CODE2,PCODE,OG,PG,A,B
INTEGER*2 EPOCH,IX,IX,DISP,LIMIT
REAL*4 P(B),R
C WRITE(1,100)
C IF(CODE1 .EQ. 7200)GOTO 50
A = 7100
B = 7200
GOTO 60
50 A = 7200
B = 7100
C
* -- CHECK OTHER'S GARBLE STATUS

60 PG = OG
 R = RAN(IX,IY) 'PROB OF GARBLE THIS EPOCH
 OG = 0 'ZERO OUT CURRENT GARBLE
 IF(R .LE. P(EPOCH)) GOTO 400 'LOOP ON NOT GARbled
 OG = 1 'SET GARbled STATUS
 CODE2 = 1515 'MESS UP CODE2

-- CHECK CODE2'S CURRENT CODE

400 IF(CODE2 .EQ. A)GOTO 500
 IF(CODE2 .NE. B)GOTO 550
 GOTO 901

-- CHECK CODE2'S PREVIOUS CODE (RIGHT LOOP) --

500 IF(PCODE .NE. A) GOTO 902
 CODE1 = B 'SWITCH CODE
 GOTO 902

-- CHECK CODE2'S PREVIOUS CODE (CENTER LOOP) --

550 IF(PCODE .EQ. A)GOTO 902
 IF(PCODE .EQ. B)GOTO 901

-- CHECK IF CODE2 IS CURRENTLY GARbled --

 IF(OG .EQ. 0)GOTO 901 'LOOP ON NOT GARbled

-- CHECK IF CODE2 WAS GARbled IN THE PREVIOUS EPOCH --

 IF(PG .EQ. 1)GOTO 903 'LOOP ON PREV GARbled
 GOTO 901

-- TYPE 1 RETURN --

901 IF(EPOCH .EQ. LIMIT) DISP = A
 RETURN

-- TYPE 2 RETURN --
IzCLCN.C.-WOWX0-LZ0XL0(L01)

902 IF(EPOCH .EQ. LIMIT) GOTO 912
 RETURN
912 CODE1 = B
 DISP = B
 RETURN

C -- TYPE 3 RETURN --
C 903 IF(EPOCH .EQ. LIMIT) DISP = CODE1
 RETURN
C 100 FORMAT('---ROUTINE ALG---')
 END

C SUBROUTINE PRINT1 (OWN,OTHER,POTH,OTHG,POTHG,EPOCH,DISP1)
 INTEGER*2 OWN,OTHER,POTH,OTHG,POTHG,EPOCH,DISP1
 WRITE(1,110)OWN,OTHER,POTH,OTHG,POTHG,EPOCH,DISP1
 RETURN
110 FORMAT('OWN,OTHER,PREV,G,PG,EPOCH,DISP -->',7(1X,I4))
 END

C SUBROUTINE PRINT2 (OTHER,OWN,POWN,OUNG,POUNG,EPOCH,DISP2)
 INTEGER*2 OTHER,OWN,POWN,OUNG,POUNG,EPOCH,DISP2
 WRITE(1,110)OTHER,OWN,POWN,OUNG,POUNG,EPOCH,DISP2
 RETURN
110 FORMAT('OTHER,OWN,PREV,G,PG,EPOCH,DISP -->',7(1X,I4))
 END

C SUBROUTINE TO GENERATE PROBABILITY OF MODE A COORDINATION
FOR 8 OR 9 CONSECUTIVE EPOCHS
C WRITTEN BY S. BOCZENOWSKI 12/17/79
C
C SUBROUTINE PROB (T0,LIMIT,IDG,N,S,P)
REAL4 P(9), DGP(4), A(9), NC
REAL4 TP, FSPL, CL, MTL, LR, LM, PI
LOGICAL CLEAR
DATA DGP/0., .55, .85, 1./
DATA CLEAR/"032/

WRITE(1,100)

C----- CONSTANT VALUE 1/2 MESSAGE LENGTH
C
DR = 20.3 / 6.08 *.5
R = 20.
!RADIUS OF SURVEILLANCE
C
TI = T0
!INITIAL TAU
NC = FLOAT (N -1)
!DO NOT COUNT TARGET AIRCRAFT
C
IF(IPG .EQ. 1) WRITE(1,998) CLEAR

C----- COMPUTE PROBABILITIES FOR EACH OF THE EPOCHS
C
DO 111 K = 1, LIMIT
PI = 3.14159265
FSPL = 20.0 X ALOG10(4.0XPI*STI X6076.115 / 0.903)
TP = 57.78
CL = 6.0
MTL = -77.0
LM = TP - FSPL - CL - MTL
LR = .5406214+ 0.11410244*LM-.00948111*(LM**2)+.00026289*(LM**3)
IF(LR .GT. 1.0) LR = 1.0
!LIMIT TO ONE
C
WRITE(1,333) LR, LM, TP, FSPL, CL, MTL
C
FORMAT(' LR -->', 6F10.4)
333 FORMAT(' LR -->', 6F10.4)
A(K) = ((4.0XPI*STI)/R**2) X LR
P(K) = (1. - A(K))**NC
P(K) = (P(K) + NC*A(K)*(1. - A(K))**NC)/(NC+IDG)
P(K) = P(K)+.50*NC*(NC-1)*(A(K)**2)*((1-A(K))**2*(NC-2))
*

\[
\begin{align*}
P(K) &= P(K) \times LR \\
\text{WRITE}(1,900) & K, T, P(K) \\
900 & \quad \text{FORMAT(' EPOCH ', I4, ' TAU ', F9.0, ' PROB. ', F9.4)} \\
\text{TI} &= T0 - (3 \times K) \\
111 & \quad \text{CONTINUE} \\
\text{RETURN} \\
100 & \quad \text{FORMAT(' ---ROUTINE PROB---')} \\
998 & \quad \text{FORMAT(X, A1)}
\end{align*}
\]

C

REQUEST INPUTS FOR VARIABLE CONDITIONS
OF SIMULATION INITIAL TAU, NO. OF EPOCHS

C

WRITTEN BY S. BOCZENOWSKI 12/17/79

SUBROUTINE SETUP2 (T0, LIMIT)

C

WRITE(1,100)

C

WRITE(1,908) \quad ! INITIAL TIME
READ(1,903) T0
WRITE(1,916) \quad ! NO. OF EPOCHS
READ(1,901) LIMIT
IF(LIMIT .GT. 9) LIMIT = 9
RETURN

C

CONSOLE I/O FORMATS

100 FORMAT(' ---ROUTINE SETUP2---')
900 FORMAT(' ENTER NO. OF AIRCRAFT (I)---> ')
901 FORMAT(I5)
902 FORMAT(' RADIUS OF SURVEILLANCE (R)---> ')
903 FORMAT(F12.4)
904 FORMAT(' RELATIVE SPEED IN KTS. (R)---> ')
906 FORMAT('SEPOCH INTERVAL IN SECONDS (R)-->
908 FORMAT('SINITIAL TIME (TAU IN SECONDS)R-->
912 FORMAT('SDEGRABLE PROBABILITY (R)-->
914 FORMAT('SFROOT PROBABILITY (R)-->
916 FORMAT('SNR. OF EPOCHS (8 OR 9)-->
988 FORMAT('SPAGE OUTPUT(1) OR SCROLLING(2)-->
998 FORMAT(X,A1)
END