RECENT ADVANCES IN COOPERATIVE PHENOMENA AND MATTER FIELD INTER-ETC (U)

JAN 80 D W HOWGATE, C M BOWDEN, C A COULTER

UNCLASSIFIED

DRSCI/RR-80-2

END

DATE
8-80
TECHNICAL REPORT RR-80-2

RECENT ADVANCES IN COOPERATIVE
PHENOMENA AND MATTER/FIELD
INTERACTIONS

D.W. Howgate
C.M. Bowden
Research Directorate
US Army Missile Laboratory

C.A. Coulter, Department of Physics
University of Alabama
University, Alabama 35486

C.C. Sung, Department of Physics
University of Alabama in Huntsville
Huntsville, Alabama 35807

January 1980

Approved for public release; distribution unlimited.
DISPOSITION INSTRUCTIONS
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER
THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES
USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**

 RR-80-2 ✅

2. **GOVT ACCESSION NO.**

 AD-A083 946

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**

 **RECENT ADVANCES IN COOPERATIVE PHENOMENA AND MATTER/FIELD INTERACTIONS.

5. **TYPE OF REPORT & PERIOD COVERED**

 Technical Report

6. **PERFORMING ORG. REPORT NUMBER**

 DRSMI-RR

7. **AUTHOR(S)**

 D. W. Howgate, C. A. Coulter
 C. M. Bowden, C. C. Sung

8. **CONTRACT OR GRANT NUMBER(S)**

 (34)

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**

 Commander
 US Army Missile Command
 ATTN: DRSMI-RR
 Redstone Arsenal, Alabama 35809

10. **CONTROLLING OFFICE NAME AND ADDRESS**

 Commander
 US Army Missile Command
 ATTN: DRSMI-RPT
 Redstone Arsenal, Alabama 35809

11. **MONITORING AGENCY NAME AND ADDRESS (if different from Controlling Office)**

 DRSMI/PR-80-2

12. **REPORT DATE**

 January 1980

13. **NUMBER OF PAGES**

 32

14. **SECURITY CLASS. (of this report)**

 Unclassified

15a. **DECLASSIFICATION/DEGRADED INFORMATION DESIGNATION**

16. **DISTRIBUTION STATEMENT (of this Report)**

 Approved for public release; distribution unlimited.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**

 The material contained in this report was prepared for presentation at the 6th Vavilov Conference on Coherent and Nonlinear Optics held at Novosibirsk, USSR, on 20-22 June 1979. It was subsequently accepted, on (Cont)

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**

 Recent breakthroughs in the areas of swept-gain superradiance, laser induced chemistry, and optical bistability have led to a broad program which encompasses and is germanely relevant to the major areas of specialization in coherent cooperative effects being undertaken at universities under Government sponsorship. In addition to the obvious applications, a deeper and more profound understanding of advanced directed radiation and phase changes in matter/light interactions has been developed through the
18 19 September 1979, by the board of the Soviet Journal of Quantum Electronics for publication in that journal. However, on 17 January 1980, in keeping with President Carter's policy of technological sanctions against Soviet Russia arising out of their invasion of Afghanistan, the decision was made to withdraw from publication in that journal and publish as a Technical Report.

20 appropriate utilization of basic first principles and the in-depth analysis and study of coherent cooperative behavior.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction.</td>
<td>3</td>
</tr>
<tr>
<td>II. Interaction of a Molecular Gas with the Electromagnetic Field.</td>
<td>5</td>
</tr>
<tr>
<td>III. An Effective Hamiltonian for the Treatment of N Identical Two-Level Atoms Interacting with the Electromagnetic Field</td>
<td>11</td>
</tr>
<tr>
<td>IV. Light-Atom Interaction in Cooperative Phenomena in Quantum Optics.</td>
<td>18</td>
</tr>
<tr>
<td>V. Conclusion.</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>25</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Recent efforts here in the field of Quantum Optics have led to the generation and establishment of important results and findings in the areas of swept-gain superradiance \[1,2\], laser induced chemistry \[3\] and optical bistability \[4\]. These areas constitute examples of collective phenomena in light-matter interactions which have incurred widespread interest and theoretical and experimental activity, not only from the standpoint of the fundamental understanding of cooperative effects, but also from the motivation stemming from obvious potential applications.

State-of-the-art results in the areas of superradiance and cooperative effects were first reported here in December 1976 as part of the US Army sponsored Symposium on New Laser Concepts. Subsequently, these presentations were published by Plenum Press as part of the text Cooperative Effects in Matter and Radiation, edited by Bowden, Howgate, and Robl \[5\]. In April 1977, the first swept-gain superradiance experiment \[1\] was performed at our laboratory using CO\(_2\)-pumped CH\(_3\)F. As part of a coordinated effort, our theoretical program has modeled superradiance in a collection of three-level molecules, where the dynamical transient effects of coherent optical pumping are explicitly treated \[6\]. Here, it was shown that two-photon, coherent, stimulated Raman transitions play an important role in the evolution of macroscopic collective polarization. The connection between pure superradiance and swept-gain superradiance was then explicitly established, both experimentally and theoretically.

Also, the influence of chemical reactivity and/or dissociation on laser-induced population transfer in multilevel systems has been studied \[7\] and simple analytical models \[3,7,8,9\] have been devised to determine the nature of essential fundamental processes in larger systems. Conditions under which population can be trapped in excited
states in multilevel systems undergoing dissociation and/or reaction have been established [3]. Also, a convenient and economical computer algorithm has been developed from which a computer simulation model was established; and rules for the reduction of the effective manifold of states in a multilevel laser pumped system have been devised which can significantly increase the efficiency of and decrease the cost of machine computation [9].

Likewise, investigation of the instabilities in the ground state of the Dicke Hamiltonian [10,11] has resulted in the establishment of optical bistability as a first-order phase transition far from thermodynamic equilibrium [4] — which is caused by virtual photon exchange in atomic pair correlations in a mean-field interaction. This observation has led to a demonstration of the precise formal connection between optical bistability, superfluorescence, superradiance, and the BCS theory of superconductivity. To emphasize our interest and support in this dynamic new area, an International Conference on Optical Bistability is being sponsored jointly by the US Army Research Office and this installation, to be held 3-5 June 1980 in Asheville, North Carolina, USA.

It is not the purpose of this paper to review in detail our total program which is (on the whole) well documented in the open literature, but rather to focus attention on several critical areas of thrust and current momentum. With this in mind, we shall attempt in the remainder of this discussion to outline and present some of our results in several areas of current endeavor. Specifically, Section II will consider a rigorous procedure for systematically handling the general interaction of a molecular gas with the electromagnetic field, while Sections III and IV will deal more directly with specific models that enhance our understanding of and effective treatment of cooperative phenomena in light-matter interactions. Section V will
provide a brief summary of our conclusions and future goals and direction.

II. INTERACTION OF A MOLECULAR GAS WITH THE ELECTROMAGNETIC FIELD

In recent years a number of papers [12] have considered theoretical models for the interaction of molecular systems with the quantum electromagnetic field. Problem areas centering around the treatment of the molecular system itself (i.e., motion of the center of mass) and restrictions pertaining to field origin and structure, etc. tend to impact the formalism such that one neither knows implicitly the approximations which have been made in the model nor how one could improve on the results of the calculations. Ideally, the basic equations of the theory should be physically "exact" in the sense that they are derived from first principles; they should be of a form which makes the physical and mathematical significance of various approximations reasonably clear; and they should permit any desired physical effect to be calculated with sufficient effort.

In order to achieve some of these goals for the case where the molecular system is a gas, a complete second-quantized Hamiltonian for a system of nonrelativistic massive charged particles interacting electromagnetically with each other and with the quantum electromagnetic field has been formulated (by C.A.C.) subject only to three a priori approximations or constraints: The nuclei of the molecules can be considered as elementary particles, all massive particles can be treated nonrelativistically, and wall effects on the internal states of the molecules can be neglected. A key step in the formalism of the theory is the choice of an appropriate set of operators for the description of the molecular system. For this purpose we introduce the operators \(P_k(X,t) \) which destroy a molecule in internal state \(k \) with center-of-mass position \(X \) at time \(t \), along
with its adjoint $P_k^+(x,t)$ which creates such a molecule. A Hamiltonian is then used to derive equations of motion for the $P_k(x,t)$ which contain only these operators, their adjoints, and the electromagnetic vector potential. The current term in the equation for the electromagnetic vector potential is also expressed in terms of these molecular operators. The resulting set of operator equations is closed, forms a complete basis for the description of the interaction, and has the convenient feature that in it the internal molecular states (which are involved in electromagnetic transitions) and the molecular center-of-mass coordinates (which play a role in transport, density fluctuations, Doppler shifts, etc.) enter in different ways. This fact is advantageous in allowing use of experimentally-determined parameters in numerical calculations for specific systems, and it permits one to see in what ways various approximations in treating the molecular system interact with one another.

The total Hamiltonian for the system in rationalized Gaussian units, nonrelativistic in the massive particles, is

$$H = \sum_m \frac{1}{2m^2} \int d^3x \, \psi_m^+(x) \left[\frac{\hbar}{\sqrt{2}} \nabla - \frac{q_m}{c} A(x) \right]^2 \psi_m(x)$$

$$+ \frac{1}{2} \sum_{m,m'} q_m q_{m'} \int d^3x d^3x' \, \psi_m(x) \, \psi_{m'}^+(x') \frac{1}{|x-x'|}$$

$$\times \psi_{m'}(x') \psi_m(x) + \frac{1}{2} \int d^3x \left[\frac{1}{c^2} \left(\frac{\partial A}{\partial t} \right)^2 + (\nabla \times A)^2 \right],$$

where $\psi_m(x,t)$ is the annihilation operator for a particle of type m (i.e., electron, nuclei) at position x and time t, $A(x,t)$ is the electromagnetic vector potential in the Coulomb gauge, q_m and M_m is the charge and mass of the mth species of particles, respectively, etc.
We now define

\[P_k(x, t) = \int \phi_k(y) \Pi \psi_i(x_i, t) \Pi d^3y_j \]

(2)

relevant to a molecule where \(x_i \) is the coordinate of its \(i \)th particle, \(X \) is the coordinate of its center of mass (\(X = \chi + \sum b_{ij} x_{ij} \)), \(\phi_k \) denotes the \(k \)th eigenstate, and \(\psi_i \) is the annihilation operator of its \(i \)th particle (to be distinguished from \(\psi_m \), as \(m \) denotes specific type while \(i \) specifies a given particle).

It is obvious from this definition that \(P_k(X, t) \) destroys a molecule with internal coordinate \(k \) and center-of-mass coordinates \(X \) at time \(t \), and correspondingly that \(P_k^+(X, t) \) creates a molecule of this kind. The field operators \(P_k P_k^+ \) are convenient in studying molecular interactions with the electromagnetic field because they reflect properties of an entire molecule rather than of the individual particles that constitute the molecule.

We now develop equations of motion in which only the operators \(P_k, P_k^+ \) and \(A \) appear, together with constants and functions determined by the internal molecular states. This set of three equations now forms a complete and closed set of operator equations for the description of the resulting \(N \)-molecule system interacting with the quantum electromagnetic field -- the only approximations being those three a priori constraints specified earlier. For simplicity an additional dipole approximation can now be introduced on the assumption that for states of interest the electromagnetic vector potential varies slowly enough over molecular dimensions that this variation can be neglected. In situations requiring greater accuracy, this (optional) approximation could just as well be omitted in the resulting calculation of the dynamical properties of the system.

7
Our basic procedure is now to use these operator equations to generate equations for a hierarchy of Green functions. By making various factorization assumptions one may then retain as much of the exact content of these equations as is necessary and/or feasible in the case of interest. We therefore define the Green functions

\[P_{kl}(x,x') = b_1 \langle P^+(x) \ P(x') \rangle , \]

\[P_{k_1k_2k_3k_4}(x_1,x_2,x_3,x_4) = b_2 \langle P^+(x_1) P^+(x_2) P(x_3) P(x_4) \rangle , \] (3)

\[a(x) = \langle A(x) \rangle , \]

where \(t \) is understood and \(b_1 \) and \(b_2 \) are normalization constants.

Under a rational factorization procedure,

\[\langle P^+ A \rangle = \langle P^+ P \rangle \langle A \rangle , \]

\[\langle P^+ A^2 \rangle = \langle P^+ P \rangle \langle A \rangle^2 . \] (4)

The resulting Green function hierarchy can be truncated to include only those functions defined under expression (3). In this minimal "semi-classical" approximation (that includes also the dipole approximation), equations of motion for \(P_{kl}(x,x',t) \) and \(a(x,t) \) assume a representation,

\[\hbar \frac{\partial}{\partial t} P_{kl}(x,x',t) \]

\[= \left[\frac{\hbar^2}{2m} \left(\nabla_x^2 - \nabla_{x'}^2 \right) - (E_k - E_x) \right] P_{kl}(x,x') - \frac{N-1}{V} \sum_{k_1k_2k_3} P_{kl}(x,x',t) \]
\[\begin{align*}
&x \int d^3x' \left[Q_{k_1k_2k_3k_4}^{X_0} P_{k_1k_2k_3k_4}^{X_0} \right] \\
&- Q_{k_1k_2k_3k_4}^{X_1} P_{k_1k_2k_3k_4}^{X_1} \\
&- \frac{i}{\hbar} \sum_k \left[\omega_k \cdot d_k \cdot a(X) P_k \cdot \chi(X, X') + \omega_k \cdot \chi_k \cdot d_k \right] \\
&\times a(X') P_{kk'}(X, X') - \left(\sum_i \frac{q_i^2}{M_i c} \right) P_{kk}(X, X') \\
&\times \left[a^2(X) - a^2(X') \right] \\
&\left[\frac{1}{2} \frac{\partial^2}{\partial t^2} - \frac{\hbar^2}{2m} \right] a(X, t) = \frac{N \hbar^2}{c} \left[\sum_k \omega_k d_k \cdot P_k(X, X) \right] \left[\sum_i \frac{q_i^2}{M_i c} \right] a(X) \sum_k P_{kk}(X, X) \right] t.
\end{align*} \]

where \([-\cdots]_t\) is the solenoid part (zero divergence) of the vector quantity in brackets. The role of parameters such as transition energy \(\omega_{kk'}\), associated dipole moment \(d_{kk'}\), intermolecular coupling \(Q_{k_1k_2k_3k_4}\), etc. is obvious upon inspection of the Equations (5), which do not form a closed system because of the presence of the functions \(P_{k_1k_2k_3k_4}\). If the intermolecular interactions are to be treated, one must either include additional Green function equations or make additional approximations to express the \(P_{k_1k_2k_3k_4}\) in terms of the \(P_{kk}\).

Without the presence of the intermolecular term, Equations (5) do become a closed set describing the evolution of the system. They describe the processes of absorption and emission of radiation, Doppler shifts, density fluctuations, etc., but contain no direct field-molecule correlations and cannot produce the spontaneous
emission of radiation. To proceed to the next higher order of accuracy one can drop the assumption that \(<p_k^+ p_k A>\) factorizes and define a new Green function proportional to this quantity. It is then also necessary to introduce a Green function proportional to \(<p_k^+ p_k A>\) and factorization now must be assumed for quantities of the form \(<p^+ p p^+ p A>\), etc. This new set of equations propagates field-molecule correlations existing in the initial state, but does not generate new correlations; i.e., if the quantity \(<p^+ p A>\) factors at the initial time, it factors at later times as well. Spontaneous emission of radiation is not generated by the equations for this set of Green functions, and one must go to the next higher order of accuracy and consider a Green function proportional to \(<p^+ p p^+ p>\). The set of equations for Green functions correct to this order is straightforward to derive, but too cumbersome to illustrate as part of this publication.

It should now be sufficiently clear how the technique may be applied to calculate equations describing any desired physical effect. Consideration of higher order effects by such methods usually must be carried out for the simplest model systems. Nevertheless, the hierarchy of Green function equations does allow one to determine in a rather clear manner exactly how various physical effects are interrelated and what the effects of various approximations may be. Even with neglect of the intermolecular interaction term, the semiclassical Equations (5) still contain interesting features. If one ignores molecular motion by dropping the differential operator \(-\frac{1}{2}\frac{\partial^2}{\partial x'^2}\), such that it is sufficient to consider only the case of \(X' = X\), then one obtains a set of equations equivalent (for a finite set of molecular levels) to the Maxwell-Schrodinger model. Thus even in the dipole approximation one cannot consider a molecule as a point particle in the semiclassical approximation, as evident by the structure of the kinetic energy term in Equations (5), which cannot be
expressed in terms of a single center-of-mass coordinate and internal molecular variables.

As one illustration of the basic theory in the semiclassical approximation (using a dipole approximation and ignoring the intermolecular interaction term), we have considered a typical three-level swept-gain superradiance model in which relaxation times and diffraction losses are introduced empirically and an initial tipping angle (Bloch model) replaces the inclusion of spontaneous emission [2,6]. In this example, we have shown that the growth of cooperative macroscopic polarization in the medium during the pumping process scales as the ratio of the pump's temporal duration p to the characteristic superradiance time τ, rather than to D (the delay time), as has been speculated previously in the literature [13]. The influence of the pump pulse shape, as well as area, was also determined to be critical with regard to subsequent cooperative relaxation. Also, two-photon, coherent, stimulated Raman contributions were shown to make important contributions to pulse evolution during the pump time regime. This finding, in turn, has opened up a new area of research and investigation which we are now in the process of vigorously pursuing. Other, significant and meaningful examples to illustrate the basic theory can easily be constructed, while important effects such as spontaneous emission, diffraction, etc., can be rigorously treated or accounted for solely upon the inclusion of higher order levels of approximation.

III. AN EFFECTIVE HAMILTONIAN FOR THE TREATMENT OF N IDENTICAL TWO-LEVEL ATOMS INTERACTING WITH THE ELECTROMAGNETIC FIELD

Our interests in the Dicke model via superradiance, optical bistability, etc., have led us to examine in some detail the
interaction of a set of N identical atoms with the electromagnetic field \([4,6]\). In effect, the field creation and annihilation operators a_k, a_k^\dagger conform to standard Bose commutation relations involving two specific modes, k and ℓ, while the atomic operators C_{jk}, C_{jk}^\dagger are Bose operators \([14]\) which satisfy the commutator relations

$$\left[C_{jk}, C_{\ell k}^\dagger \right] = \delta_{jk} \delta_{\ell k}, \quad \left[C_{jk}, C_{\ell k} \right] = 0,$$ \hspace{1cm} (6)

where i,j identifies the specific atomic level and k,ℓ identifies the specific atom. In this way one attempts to treat a system which can be identified by the existence of a many-particle Hamiltonian and single-particle eigenstates, thereby assuring the existence of elementary anti-commutator properties for the products $C_{jk}^\dagger C_{ik}$. As a consequence, for a two-level system (energies $\varepsilon_2 > \varepsilon_1$), we may choose a vector operator f^i,

$$f_1^i = (c_{2i}^\dagger c_{2i} - c_{1i}^\dagger c_{1i}), \quad f_2^i = 2 c_{1i}^\dagger c_{2i},$$ \hspace{1cm} (7)

$$f_3^i = 2 c_{2i}^\dagger c_{1i}, \quad f_4^i = 1,$$

and transform to a representation obeying the commutation (−)/anticommutation (+) relations

$$\left[f_1^i, f_1^j \right] = \sum_m S_{2,km}^z f_m^i,$$ \hspace{1cm} (8)

where $S_{2,km}^z$ can be established on the basis of C_{jk}, C_{jk}^\dagger and their relations in a system involving only single particle eigenstates. It is also to be noted that the three-dimensional operator \hat{f}^i (components f_1^i, f_2^i, f_3^i) acts as an angular momentum.
operator in which \(\hat{f}^i \) denotes the direction of diagonalization or measurement. If \(H^i \), a Hamiltonian in \(\hat{f}^i \), has the form

\[
H^i = \Gamma \cdot \hat{f}^i, \quad \Gamma_1 = E \cos \theta, \quad \Gamma_2 = 2^{-i} E \sin \theta e^{-i\alpha}, \\
\Gamma_3 = 2^{-i} E \sin \theta e^{i\alpha},
\]

where \(\Gamma \) is not explicitly dependent upon time, it is a simple matter to rotate \(\hat{f}^i \) about the \(\theta \) axis to obtain a frame of reference in which \(H^i \) is diagonal. The transformation \(T \) (expressed in terms of Euler's angles), which rotates \(\hat{f}^i \), then can be used to evaluate the temporal and thermal variation of \(\hat{f}^i \) in a frame of reference in which the generator \(H^i \) is not diagonal, assuming simple relations exist for this variation in that frame of reference in which \(H^i \) is diagonal. Cases in which the temporal and thermal generators are diagonal in different frames can also be adequately handled, requiring (of course) the explicit use of more than one transformation, when three different frames (i.e., \(\hat{f}^i(1), \hat{f}^i(2), \hat{f}^i(3) \)) are considered in the mathematical expression of one physical quantity. Our initial argument is then that if one can reduce a Hamiltonian for the interaction of \(N \) identical two-level atoms with an electromagnetic field to the form specified by expression (9), then one is in a position to manipulate it with relative ease and rigor.

Denoting the (internal) field by \(\hat{a}_k, \hat{a}_k^\dagger \) and the atoms by \(\hat{f} = \sum_k f_k \hat{a}_k \), let the temporal variation of a general operator \(X \) be established in this environment through its Hamiltonian generator \(H_X \) and the resulting equation of motion. For complex \(\omega \), one may define also its transform

\[
X(\omega) = G_X (\omega; H_X),
\]

as an analytic two-branch operator defined everywhere outside the real axis [15] and obeying an equation of motion.
As our system spans the product space of a and f, H_x would assume a functional representation

$$H_x = F_x(a,f) ,$$

(12)

and the temporal variation of X would then evolve from expressions (11) and (12) and the statistics for a and f. An inherent problem in this configuration is the hierarchy of equations generated from relation (11) when one handles a (or the electromagnetic field) in its present representation. In this light (as a first step toward achieving expression (9)), it would be desirable to project a into the space of f such that Equation (11) is at least solvable exactly at the single-particle level with no explicit time dependence appearing in the Hamiltonian. In so doing we must abandon the statistics of a and establish a mapping of a onto f (and its statistics) that is consistent within the framework of the theory and sufficiently general to warrant its application. It will, of course, not be exact or absolute as it is a projection or approximation that in practice will depend on the constraints of modeling and interpretation. In so doing our new representation of a, and thus the total system, will be in f rather than $a@f$, and it should not be looked upon as an approximation that one introduces arbitrarily or at random.

In order to effectively stabilize our system and make it accessible to statistical interpretation, we shall now introduce a phenomenological damping coefficient γ_k (rate of photon escape from the quantization volume V) for the k^{th} photon mode. This device will effectively account for the reflectivity from cavity mirrors which limit the quantization volume, etc. and will emphasize the
Markovian nature of the system for times long compared with some characteristic relaxation time $\tau_c = \gamma_k^{-1}$. The electromagnetic field we (in turn) interpret to exhibit both internal and external origins, with the latter potentially identifiable as an applied field in a coherent state, with field amplitude a and carrier frequency ω_0. The generator H_{ak}, we shall assume to induce an equation of motion for a_k of the form

$$\frac{\partial a_k}{\partial t} = \Omega_k a_k + \lambda_k^k \cdot f, \quad \gamma_k = -\text{Im}(\Omega_k), \quad (13)$$

with a similar equation for the conjugate a_k^\dagger. Taking the transform of Equation (13), using expression (11), then establishes the requirement that if

$$(\omega - \Omega_k) a_k(\omega) \rightarrow 0, \quad \text{as} \quad (\omega - \Omega_k) \rightarrow 0, \quad (14)$$

then [16]

$$a_k = -2\pi \lambda_k^k \cdot f(\Omega_k)a, \quad (15)$$

with a similar statement for a_k^\dagger. Thus f acts as an operator whose temporal variation provides a means for transmitting the statistics of a (contained in H_a) into $f(\Omega_k)$ and its conjugate, and, as such, Equation (15) must still be identified as existing in $a \otimes f$. Requirement (14), on the other hand, implies that f is capable of supporting a to the extent that the interaction af will prevent $a_k(\Omega_k)$ from tending to become singular or otherwise unconstrained in its integral over time. In any event, the field a has now been correlated to the atoms f through the interaction (coefficients λ_k^k); and the external field (or source) may, in turn, either drive the atoms or be coupled
directly to the internal field \mathbf{a} through the coefficient λ_k^k as it appears in Equation (15).

Substituting Equation (15) into expression (12) and defining [17]

$$H_f = F_1(f(\Omega_k)_{a}, \Omega_k)$$
$$F_1 = \lambda_q(F_1 + F_1^+)$$

one is now led to insert this expression into the transform (10) thereby obtaining

$$f(\Omega_k) = G_f(\Omega_k; F_1(f(\Omega_k)_{a}, \Omega_k))$$

(17)

In general, expression (17), as an operator equation, cannot be directly evaluated, and one must go to some statistical average or measurement in order to extract information useful for physical interpretation. The statistical average of the product of $f(\Omega_k)$ and an arbitrary parameter Q, or $\langle f(\Omega_k) Q \rangle$, is a likely basis for evaluation. One is now in a position to reduce expression (17) to the space of f by defining the respective mappings

$$\langle f(\Omega_k) Q \rangle = A(\Omega_k) \langle f Q \rangle \ , \ f(\Omega_k)_{a} = B(\Omega_k)f$$

(18)

where Ω_k is now arbitrary in nature and f could just as well be represented by its single-particle version f^1. For the general case of many particles, relations (18) can only be identified in the realm of approximations to the system and the mappings (matrices) A and B are impacted by modeling considerations. For restrictive situations A can be taken identical to B and the statistical average of expression (17) becomes an equation for self consistency in B. In the case of a
many-particle system, the substitution of $f(Q_k)$, as approximated by relation (18) into H_f, as defined by expression (11), does not immediately produce H_i, as defined in expression (9). One must first resort to a "mean-field" form of approximation in order to decouple operator products involving different atoms (i.e., $f_i^j f_k^j$, $i \neq j$). Thus, in the fabrication of a single atom Hamiltonian H_i^i, the operator f_k^j must be replaced by its statistical average $<f_k^j>$. The mean-field approximation is certainly justified in models which assume that all of the atoms are contained in a volume much smaller than an atom resonance wavelength. In summary, the three steps necessary for the fabrication of an H_i^i are: (a) the correlation of a_k to $f(Q_k)$; (b) the mapping of $f(Q_k)$ into f_i; and (c) the factoring of $f_i^j f_k^j$ in a mean-field approximation. Of primary importance is, of course, the choice of A and B, which impacts one's ability to successfully model any systems considered.

Although we have mentioned the existence of an applied external field, we have as yet not taken into account the impact of its potential explicit dependence on time. Any explicit time dependence must be removed initially prior to other considerations, otherwise fabrication of H_i^i (as previously envisioned) is jeopardized, and statistical and equilibrium properties of a given system cannot be effectively treated. A convenient solution is to canonically transform to a doubly rotating frame of reference rotating at the carrier frequency ω_0 and discuss statistics and thermodynamics in the rotating frame. In this frame the applied electromagnetic field appears as a dc field. After canonical frequency renormalization, the transformed Hamiltonian H_T will assume the form UH_U^{-1} for an appropriate transformation operator U. The existence of a given U may impose certain constraints or restrictions on the generality of H, particularly in regard to the preservation of counterrotating terms which may defy manipulation. In order to discuss thermodynamic equilibrium properties in the presence of a time-dependent external
field, one must introduce an effective or "spin" temperature. Agreement with nonequilibrium models would then exist in the limit of zero effective temperature. The combination of effective or "spin" temperature and transformation to a frame rotating at the carrier frequency \(\omega_0 \) has been employed effectively by two of us (CMB and CCS) in the treatment of first- and second-order phase transitions in the extended Dicke model [4].

IV. LIGHT-ATOM INTERACTION IN COOPERATIVE PHENOMENA IN QUANTUM OPTICS

As introduced in the previous section, one of the principal theoretical efforts in quantum optics in our group is concerned with the atom-atom interaction via the electromagnetic field - an area that has drawn considerable attention in the literature for some time. A complete review on this subject is given by Milonni and Knight [18]. A second area of emphasis and study in our program is an investigation of the thermodynamic properties of the Dicke model [17-19], defined by the Hamiltonian

\[
H = \sum_1^N g (\sigma^+_i \mathbf{a}_i + \sigma^-_i \mathbf{a}^+_i) + \sum_i \varepsilon \sigma^Z_i ,
\]

where \(\sigma^+_i \), \(\sigma^-_i \), and \(\sigma^Z_i \) are the spin operators for atom \(i \) and \(\mathbf{a}^+_i (\mathbf{a}) \) are the field creation (annihilation) operators for the resonant single mode.

It was first shown by Hepp and Lieb [19] that a second-order phase transition appears at a critical temperature \(T_c \) if \(\hbar \omega / 8 \pi d^2 \rho < 1 \), where \(d \) is the atomic dipole moment matrix element, \(\omega \) the frequency, and \(\rho = N/V \) the density of atoms in a cavity. Despite considerable
progress made by Wang and Hioe [20] and Gilmore and Bowden [21] in the
simplification of the calculation and the study of the effect of the
nonlinear term in \(H \), it was still not clear as to the physical
mechanism which causes the phase transition. Subsequently, we have
used various different formalisms to study the problem and it is now
clear from our work [10,11] that the phase transition of the atomic
system is simply caused by the atom-atom pair interaction induced by
the radiation field,

\[
H_{\text{int}} = \sum_{i,j} \bar{g} \sigma_i^+ \sigma_j^-
\]

(20)

where \(\bar{g} \sim g^2/\epsilon \).

Equation (20) shows that the atomic interaction in the Dicke model
is an infinitely long range force, since \(\bar{g} \) has no spatial dependence.
This conclusion is valid for a single mode of the radiation field.
Otherwise, we must assume that the volume \(V_\text{g} \) containing the atoms is
much smaller than the resonant wavelength, which therefore is much
smaller than the field quantization or cavity volume \(V \). When the
inter-atomic distance becomes larger than the resonant wavelength,
then \(\bar{g} \) becomes equivalent to the Van der Waal force between two atoms
[18]. These observations seem to have been neglected in the
literature. We also have extended our calculations to three-level
atoms in the Dicke model and have shown the existence of two
second-order phase transitions.

Optical Bistability (OB) [22] has drawn a great deal of attention
in the last few years after the pioneering experimental work by Gibbs,
McCall, and Venkatesan, and McCall's own theoretical effort [23].
Theoretical models [24,25] for the analytical interpretation of the hysteresis of the input field E_1 versus the transmitted field E_T are based on the coupled Maxwell-Bloch equations. The theoretical results obtained show that the relation E_T versus E_1 is qualitatively consistent with experimental observations for the absorptive case. OB based on this model [26] is essentially a saturation phenomenon similar to magnetic resonance, and (as a matter of fact) the condition for OB implies specifically that the atomic absorption must be saturable.

In the spirit of the study of atom-field interactions, we propose a new model for OB which is assumed to be represented by a thermodynamic ensemble in the rotating frame of the external field. After transformation to the rotating frame of reference, we obtain an atom-atom interaction similar to Equation (20), except that

$$\tilde{g} = \frac{g_0^2 (\omega_c - \omega_0 - \sigma)}{(\omega_c - \omega_0 - \sigma)^2 + \gamma^2}, \quad (21)$$

where ω_c is the cavity frequency of the Fabry-Perot interferometer, γ is the photon escape rate, and

$$\sigma = \left[(\epsilon - \omega_0)^2 + \Delta^2\right]^{1/2} \quad (22)$$

is the renormalized atomic level separation with Δ to be determined self-consistently from the equation of motion. Distinctive characteristics of our model are that we take Δ into account in the operator equation for $a^\dagger(a)$ and study OB in the limit of large T_1.
and T_2 -- the small absorption limit. The resultant equation for E_T versus E_I is then given by

$$E_T = E_I + 2 E_T \frac{\tanh \left(\frac{\alpha}{2K T_s} \right)}{\sigma}.$$

(23)

where T_s is the effective temperature directly analogous to the "spin temperature" in the rotating frame, and Δ (as specified in Equation (22)) is simply E_T.

In the limit $\omega_c = \omega_o = \varepsilon$, the condition for perfect tuning, Equations (21) and (22) reduce to the well-known formula (for establishing OB) given in the previous literature [24,25] with different coupling constant C. Although our work may be used to explain the dispersive effect better than the previous works [24,25], we should emphasize our fundamental difference in approach and physical mechanism to explain OB. It seems our model (by using the Green's function approach) requires T_1 and T_2 to be sufficiently large so that each atomic level is not critically broadened; whereas the Maxwell-Bloch equations assume small T_1 and T_2 for observation of OB.

Experimentally, the Stark shift Δ (in our model) can easily be observed in the light spectrum; likewise the change in the linewidth discussed in the Maxwell-Bloch model can also be observed easily. We hope some experimental work in this area will appear soon to clarify the situation. Regardless of the outcome as to which model is more adequate to describe OB, we believe it interesting that a first-order phase transition can indeed be deduced from the Dicke model when an external field is introduced to modulate the atomic interaction. At present, we are working on the effect of introducing finite T_1 and
T_2 into our model and including the spatial dependence of the interaction discussed earlier. Likewise, an attempt will be made to extend our modeling activities to larger and more complex systems.

V. CONCLUSION

In the preceding sections we have outlined the scope of our program in cooperative phenomena and matter/field interactions and detailed some specific areas of current thrust and momentum. We have tried to emphasize the development of appropriate building blocks from scientific first principles and the establishment of effective techniques for the structuring and analysis of theory and data. The theory developed in Section II and depicted in Equation (5) is exceedingly general and definitive both in its scope and content. Its application to the case of swept-gain superradiance is but one illustration of its general appeal. Even here a rigorous treatment of effects, such as relaxation, diffraction, and spontaneous emission, is available upon consideration of higher levels of detail and approximation.

Concurrently, our investigations into OB have characterized that phenomenon from a purely thermodynamic point of view. As a dipole-dipole pair correlation, the effective interaction is identical to the retarded dipole-dipole interaction that gives rise to cooperative radiation reaction and frequency shifts in superfluorescence [27] and is the same effective interaction responsible for the existence of the "superradiant" phase transition in thermodynamic equilibrium [11,19]. Likewise, the interaction is also identical in form to the interaction coupling Cooper pairs in the BCS theory of superconductivity [11,28]. Our results provide not only a description of OB as a first-order phase transition, but also, give conditions for OB in terms of characteristic material and cavity
parameters, and incorporate the effects of dispersion as well as absorption. In Sections III and IV we have attempted to present certain basic aspects of this research that impact the development of the formalism and provide insight into its structure and implications.

In future research, we will increase the rigor and complexity of our present modeling applications and generalize our theoretical activity to the consideration and understanding of new systems and new and related phenomena and effects. Applications involving strong oscillating fields, multiple-level systems, a combined temporal and spacial variation, the rigorous treatment of relaxation, diffraction, spontaneous emission, etc. will be considered both from the standpoint of evaluation and implementation.
REFERENCES

REFERENCES (Concluded)

16. The subscript a on $f(k)$ in Equation (15) denotes the fact that its temporal generator is H_a, not H_f.

17. For the sake of functional simplicity we ignore the dependence of H_f on a_k^\dagger in expression (16) letting a_k here substitute for a_k^\dagger. The influence of a_k^\dagger although not specifically represented or incorporated into the development that follows is assumed or implied.

22. For a simple account of all aspects of optical bistability, see H. M. Gibbs et. al., Optics News 5, Summer issue, 1979.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Mechanics and Materials Research Center</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Robert Fitzpatrick</td>
<td></td>
</tr>
<tr>
<td>Arsenal Street</td>
<td></td>
</tr>
<tr>
<td>Watertown, Massachusetts</td>
<td></td>
</tr>
</tbody>
</table>

Director	
Ballistic Missile Defense Advanced Technology Center	1
ATTN: ATC-O Mr. J. D. Carlson	
P.O. Box 1500	
Huntsville, Alabama 35707	

Department of Energy	1
ATTN: Dr. Airey	
Dr. Cannivan	
1000 Independence Avenue, SW	
Washington, DC 20314	

Naval Research Laboratory	1
ATTN: Dr. J. M. MacCallum (Code 5503)	
Dr. A. I. Schindler (Code 6003)	1
Dr. J. T. Schriempf (Code 6410)	1
Dr. P. Livingston (Code 5560)	1
Dr. R. F. Wenzel (Code 6415)	1
Dr. R. W. Rice (Code 6360)	1
Washington, DC 20375	

Commander	1
Naval Surface Weapons Center	
White Oak Laboratory	
ATTN: M. T. Madden, WA-23	
Silver Spring, Maryland 20910	

Headquarters, USAF (RDPS)	1
ATTN: LTC Anthony J. Chiota	
Washington, DC 20330	

Air Force Weapons Laboratory	1
ATTN: COL Donald L. Lamberson (AR)	
COL C. E. Brunson (PO)	1
COL L. Bernasconi (PG)	1
COL Demos Kyrazis (LR)	1
LTC A.D. Maio (AL)	1
Kirtland Air Force Base, New Mexico 87117	
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>Environmental Research Institute of Michigan</th>
<th>Department of STATE</th>
<th>US Army Control and Disarmament Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics Systems Division/XRE/S10</td>
<td>ATTN: IRLA (Laser Library)</td>
<td>ATTN: Dr. Arthur C. Morrissey</td>
<td>ATTN: Dr. Pierce Corden</td>
</tr>
<tr>
<td>Hanscom Air Force Base, Massachusetts 01731</td>
<td>P.O. Box 618</td>
<td>INR/STA Room 6524A</td>
<td>Room 5919</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, Michigan 48107</td>
<td>Washington, DC 20520</td>
<td>Washington, DC 20451</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERDA/AIS-NRA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. J. K. Hancock</td>
<td>Code RR, FOB 108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20454</td>
<td>600 Independence Avenue, SW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Aeronautics and Space Administration</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lewis Research Center</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. John W. Dunning, Jr.</td>
<td>ATTN: Dr. John W. Dunning, Jr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland, Ohio 44135</td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Aeronautics and Space Administration</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ames Research Center</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. Kenneth W. Billman</td>
<td>ATTN: Dr. Kenneth W. Billman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moffett Field, California 94035</td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Intelligence Agency</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: MIIA-OSS, Mr. Sherman Delmage</td>
<td>US Army Intelligence Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort George G. Meade, Maryland 20755</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Director
US Army Ballistic Research Laboratory
ATTN: Dr. Robert Eichelberger
 Mr. Frank Allen
Aberdeen Proving Ground, Maryland 21005

Commander
US Army Electronics Command
ATTN: DRSEL-CT-L, Dr. R. G. Buser
Fort Monmouth, New Jersey 07703

Office of Naval Research
ATTN: Dr. Fred Quelle
495 Summer Street
Boston, Massachusetts 02110

US Naval Weapons Center
ATTN: Mr. E. B. Niccum (Code 4085)
China Lake, California 93555

Headquarters
Foreign Technology Division
ATTN: Mr. R. W. Buxton (ET60)
Wright Patterson Air Force Base, Ohio 45356

Air Force Aero Propulsion Laboratory
ATTN: LTC Bobbie L. Jones
Wright Patterson Air Force Base, Ohio 45356

Air Force Rocket Propulsion Laboratory
ATTN: B. R. Bornhorst (LKCB)
Edwards Air Force Base, California 93523

Defense Intelligence Agency
ATTN: Mr. Seymour Berier (DTIA)
Washington, DC 20301

Lawrence Livermore Laboratory
ATTN: Dr. R. E. Kidder
P.O. Box 808
Livermore, California 94550
<table>
<thead>
<tr>
<th>Institute for Defense Analyses</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: Dr. Alvin Schmitzler</td>
<td></td>
</tr>
<tr>
<td>400 Army Navy Drive</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22202</td>
<td></td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Dr. Keith Boyer</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1663</td>
<td></td>
</tr>
<tr>
<td>Los Alamos, New Mexico 87544</td>
<td></td>
</tr>
<tr>
<td>US Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRXRO-PH, Dr. Robert Lontz -2C, Dr. Hermann Robl</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Headquarters, Army</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DAMA-ARZ-A, Dr. Lasser -D, Mr. Hershner Dr. Verderame</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20310</td>
<td></td>
</tr>
<tr>
<td>OUSDR&E</td>
<td>1</td>
</tr>
<tr>
<td>Deputy Assistant for Research</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. G. Gamota</td>
<td></td>
</tr>
<tr>
<td>Room 3D1067, The Pentagon</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20310</td>
<td></td>
</tr>
<tr>
<td>US Army Materiel Systems Analysis Activity</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRXY-MP</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Maryland 21005</td>
<td></td>
</tr>
<tr>
<td>IIT Research Institute</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: GACIAC</td>
<td></td>
</tr>
<tr>
<td>10 West 35th Street</td>
<td></td>
</tr>
<tr>
<td>Chicago, Illinois 60616</td>
<td></td>
</tr>
<tr>
<td>DRSMI-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>DRSMI-R, Dr. Kobler</td>
<td>1</td>
</tr>
<tr>
<td>-RH, COL DeLeuil</td>
<td>1</td>
</tr>
<tr>
<td>-RH, Dr. Honeycutt</td>
<td>1</td>
</tr>
<tr>
<td>-RHS, Dr. Barr</td>
<td>1</td>
</tr>
<tr>
<td>-RHS, Dr. Roberts</td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION (Concluded)

<table>
<thead>
<tr>
<th>DRSMI-RPR</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>-RPT, (Reference Copy)</td>
<td>3</td>
</tr>
<tr>
<td>-RPT, (Record Copy)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>