Large Space Structure
Charging During Eclipse Passage

DAVID M. GAUNT'T

15 January 1980

Approved for public release; distribution unlimited.
This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.
Title: LARGE SPACE STRUCTURE CHARGING DURING ECLIPSE PASSAGE

Author(s): David M. Gauntt

Performing Organization:
- Air Force Geophysics Laboratory (PH)
- Hanscom AFB
- Massachusetts 01731

Monitoring Agency:
- Air Force Geophysics Laboratory (PH)
- Hanscom AFB
- Massachusetts 01731

Report Date: 15 January 1980

Number of Pages: 39

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:
Much work has been devoted to the study of the differential charging of geosynchronous spacecraft, primarily that charging caused by injection events and uneven illumination of isolated surfaces. However, as the lack of illumination in the penumbra eliminates the latter problem, little attention has been paid to charging during eclipse passage. For a sufficiently large structure (length greater than 1 km), the gradient of illumination in the penumbra is large enough to contribute significantly to differential charging.

Keywords:
- Spacecraft charging
- Large space structures
- Geosynchronous orbit
Abstract (Continued)

In this paper, three main subjects will be discussed: (1) the causes of charging at geosynchronous altitudes; (2) a simple model of the plasma from which the differential charging equations can be derived; and (3) the results of a computer program based on these equations, together with several theoretically fit sets of equations to approximate the results.
4. Plot of Eclipse Potentials Determined for 21 ATS-5 Events Employing a Planar (thin sheath) or Point (thick sheath) Approximation

5. Potential Drop Across a 10-km Solar Power Satellite with Its Center at $X_0 = 150$ km

6. Potential Drops Normalized by Dividing by the Total Potential Drop Across the Solar Power Satellite to Show Variation in Potential Across the Structure More Clearly

7. Maximum Potential Drop Across a Solar Power Satellite Located at 150 km

8. Maximum Voltage Drop Across the Solar Power Satellite (and Space Based Radar) for Various Plasma Conditions and Sheath Assumptions

9. Maximum Voltage Drops at $X_0 = -150$ km for the 21 ATS-5 Plasma Events as a Function of V_{max}, the Eclipse Potential

Tables

1. Space Plasma Parameters from ATS-5
Large Space Structure
Charging During Eclipse Passage

1. INTRODUCTION

The large variations in spacecraft potential measured relative to the plasma
that have been observed\(^1\) are believed to be the result of the dominance of the elec-
tron flux. This may be explained as follows. According to Garrett,\(^2\) the two
plasma populations, protons and electrons, can each be characterized as a pair of
Maxwellian populations:

\[f(V) = N \left(\frac{m}{2\pi kT} \right)^{3/2} \exp \left(\frac{-mv^2}{2kT} \right) \]

(1)

each of which has a number density (N) and a Maxwellian temperature (T). The
energy of each particle is proportional to the mass of the particle and the square
of its velocity; thus, for a given energy, protons, being three orders of magnitude
more massive than electrons, have velocities 43 times lower. Temperature and
number flux, being comparable on the macroscopic scale to energy and velocity on

(Received for publication 15 January 1980)

1. DeForest, S. E. (1972) Spacecraft charging at synchronous orbit, J. Geophys.
 Res. 77(No. 4):651.
 AFGL-TR-77-0288, AD A053 164.
the microscopic, have a similar relationship, leading to the dominance of the electron flux.

Under the influence of only these hot Maxwellian plasmas (kT greater than 10^2 eV), any object in the plasma absorbing charged particles would collect a net negative charge, attaining an electric potential large enough to repel the incident electron flux (-10 V to $-20,000$ V). However, other effects can change the situation. If an additional dense "cold" plasma population (kT less than 10 eV, N greater than 10^{12} n/cm3) is present, then any negative voltage is neutralized by an enhanced ion flux. This effect suppresses charging in low earth orbit but not at geosynchronous altitudes, where the cold population is extremely thin ($N = 10^{12}$ n/cm3). When the structure is illuminated (for example, a satellite in the sunlight), electrons are removed from the surface by the photoelectric effect. Often this photoelectron current dominates the ambient electron current, resulting in a small positive potential (0.1 to 10.0 V).

As a small satellite passes from eclipse, its voltage will undergo a drastic change (~ 1000 V in 1 min), corresponding to the change in illumination. If it is large, as mentioned earlier, the gradient of illumination will lead to a voltage differential across the surface. As will be seen, the magnitude of this differential potential will range from 10^{-3} to 10^3 V for a 10-km structure.

2. BASIC THEORY

If J_p is the total current density to a small spacecraft, then

$$J_p = J_e - (J_i + J_{se} + J_{si} + J_{bs}) + J_{th} - J_{pe} \frac{A_c}{A_s}$$

where

$J_e =$ the ambient electron current density

$J_i =$ the ambient ion current density

J_{se} = the secondary electron current density caused by primary ambient electrons

J_{si} = the secondary electron current density caused by primary ambient ions

\[J_{bs} = \text{the backscatter electron current density} \]
\[J_{th} = \text{the "thruster" current density, caused by ion drive, plasma beams, etc.} \]
\[J_{pe} = \text{the photoelectron current density} \]
\[A_c = \text{the sunlit cross-section area of the spacecraft, and} \]
\[A_s = \text{the surface area of the spacecraft} \]

The corresponding values for \(J_e, J_i, J_{se}, J_s, J_{pe}, \) and \(J_{bs} \) as functions of voltage, number density, and temperature have been derived by Tsipouras and Garrett \(^6\) (assuming a thick plasma sheath, an isotropic, two-Maxwellian plasma, and an aluminum surface); these values are listed in the Appendix. The thruster current density has been assumed to be zero for this study, and any capacitance, inductance, or local differential charging effects are ignored. For a system in equilibrium, the plasma current \(I_p \) (that is, the plasma current density \(J_p \) multiplied by the surface area \(A_s \)) will be equal to zero, defining by Eq. (2) a unique voltage for a given situation that will be the potential on the spacecraft as measured relative to the plasma. While the currents are time varying, the time constant for Eq. (2) to be satisfied is on the order of milliseconds, \(^7\) and the assumption of equilibrium is justified.

The extension to a large structure such as a space based radar (SBR) or solar power satellite (SPS) is made by two changes in Eq. (2). First, the ambient plasma equations change, attenuating the number flux of the attracted species (thin sheath approximation); that is, the current of the attracted species is assumed to be independent of the voltage; there is no change in the repelled species (see Appendix). Second, an ohmic current, the current gained or lost to other parts of the spacecraft, is added to Eq. (2). Equation (3) now gives the net current to a particular surface, or node of the spacecraft:

\[I_n = I_p + I_{ohm} \] \(^{(3)}\)

\(^+\) (Please note that any future reference to \(I_p \) includes the ambient plasma, secondary electron, backscattered electron, and photoelectron currents; similar conventions hold for \(J_p \) and the phrases "plasma current" and "plasma current density." Also, direction of current flow is taken to be the direction of electron flow, and potentials are measured relative to the plasma.)

where

\[I_n \] = the total current to the node
\[I_{\text{ohm}} \] = the ohmic current to the node
\[I_p \] = the plasma current to the node [Eq. (2)]

Since the structure is assumed to be in equilibrium as before, the current to each node must be equal to zero. Finding the set of voltages for which this is true constitutes the solution to the charging problem.

3. RESULTS

A set of equations defined by Eqs. (2) and (3) was solved by program SHADOW using iterative means on the CDC 6600 system at AFGL, Hanscom AFB. Figure 1 presents the results for Eq. (2) (that is, a single node). The horizontal axis represents actual potentials observed by the NASA geosynchronous satellite ATS-5 during 21 eclipses from 1969 to 1970; the vertical axis represents the potentials predicted by SHADOW. The points plotted fall close to the identity line, and have a standard deviation of about 1200 volts, confirming the validity of SHADOW in calculating satellite potentials.

![Observed ATS-5 Potentials in Eclipse versus Potentials Predicted by Program SHADOW](image-url)
Figure 2 is a plot of the single point satellite potentials V_o normalized to the shadow potential V_{max} against position in orbit X_m. This parameter X_m is defined as the minimum altitude of the central ray of the disk of the sun as seen from the satellite (Figure 3a). The model used to describe the illumination of the spacecraft as a function of X_m, $F(X_m)$, assumes no attenuation due to the atmosphere, an earth radius of 6378 km, and an apparent solar radius of 185.2 km (see Appendix for formula). Figure 2a is a plot of the observed potentials (normalized by the eclipse potentials V_o) as the satellite ATS-5 entered or left eclipse, whereas Figure 2b is a plot of the potentials predicted by the program SHADOW, assuming a photoelectric current density of 0.4 nA/cm2 (or $4 \cdot 10^{-6}$ A/m2), the plasma conditions observed by ATS-5, a roughly spherical probe. The shape of the satellite is important in determining the ratio A_c/A_s of Eq. (2).

Figure 2a. Potential During Eclipse Passage, V_o. Normalized by the Potential in Eclipse, V_{max}, as a Function of the Minimum Ray Path Height, X_m, to the Center of the Sun. Twenty-one examples of actual ATS-5 and ATS-6 plasma observations during eclipse passage are plotted.

Next a series of runs was done for several SPS (Solar Power Satellite) and SBR (Space Based Radar) models. Each structure was broken into a series of segments or nodes, and the potential on each node found. The structures were assumed to be 10 km across, with a thickness of 1 cm. Each structure was divided into a series of 10 to 100 nodes, each with the same width and approximately uniform illumination (Figure 3b). The structures were also assumed to be homogeneous with the surface properties (photoelectron, secondary emission, etc.) of ATS-5. The conductivity, number of nodes, and plasma parameters were varied in order to test the numerical sensitivity of the program (10 nodes gave results accurate to ~2 percent of the 100-node model). A wide variety of information was extracted from each run. To list a few: the potential, ohmic energy dissipation, the ohmic current at each point in the structure, and the total voltage drop and energy dissipation across the structure.

The potentials in the penumbra, based on a thin sheath approximation, tend to be twice the magnitude of those potentials predicted using the thick sheath approximation (Figure 4). This is a direct result of the attenuation of the attracted species in the thin sheath approximation. Also, the potential gradients were
Figure 3a. Illustration of Parameter X_m Measurement. Note that X_m is the height of the minimum ray path to the center of sun (S) above the center of earth (E) as seen by the satellite (SAT).

Figure 3b. Solar Power Satellite Schematic Showing Coordinate System and Electrical Analog for Simulation Purposes.
greatly affected by the ohmic currents for low resistance models, differing by as much as 500 V from the high resistance potentials. The potentials for a poorly conducting surface are more positive toward the high X_m end (sunlit) than for a good conductor, whereas those toward the low X_m end (shadowed) tend to be more negative. This, of course, is due to the characteristic uniform potential of a perfect conductor. This latter potential, measured relative to the plasma, can be easily determined by using the average value of the photoelectron current density $J_{peo} \cdot F(X_m)$ across the structure in a single point, thin sheath potential calculation.

The results of calculations using ATS-5 data from Day 289, 1969 (a particularly severe day for charging) at $X_O = -150$ km are plotted in Figures 5 to 10. Figure 5 shows the potential drop relative to the shadowed end of the SPS for five different resistances (see Table 1 for plasma parameters). In Figure 6 these potentials have been normalized by dividing by the total drop between the ends of the structure ΔV. The high-resistance curve is nearly linear, owing to the fact
Figure 5. Potential Drop Across a 10-km Solar Power Satellite with Its Center at $X_o = 150$ km. Various values of the conductance have been assumed while the ambient conditions were those measured by ATS-5 on Day 289, 1969. The dashed line is a similar plot for the Space Based Radar.

Table 1. Space Plasma Parameters From ATS-5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (cm$^{-3}$)</td>
<td>T (eV)</td>
</tr>
<tr>
<td>Electron</td>
<td>0.292</td>
<td>1060</td>
</tr>
<tr>
<td></td>
<td>0.550</td>
<td>6070</td>
</tr>
<tr>
<td>Ion</td>
<td>0.057</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>0.690</td>
<td>8090</td>
</tr>
</tbody>
</table>

Figure 6. The Potential Drops in Figure 5 are Redrawn, Normalized by Division by the Total Potential Drop across the Solar Power Satellite to Show Variation in Potential Across the Structure More Clearly.
that $F(X_m)$ is linear to the first order over the length of the structure at ~ 150 km.

The low-resistance curves show a definite S-shape. Also plotted in Figure 5 are potentials for a circular 10-km diam structure (SBR model) compared to the square SPS. This curve has been compared for a resistivity of $10^3 \ \Omega\cdot m$ for the same conditions as the SPS. There is little difference in this and the corresponding SPS curve; however, the potential drop of the SBR is less, most likely a result of the reduced SBR area compared to the SPS.

The effect of resistance on the total voltage drop is plotted in Figure 7. The vertical axis is the voltage drop; the horizontal axis is the common logarithm of resistance in ohms for a 10-km structure at $X_m = -150$ km, again for Day 289 of 1969. The change from a conductor to nonconductor occurs for resistivities of 10^0 to $10^5 \ \Omega\cdot m$, roughly the resistivity of semiconductors.

Figure 8 is a plot of the voltage drop against X_m for a resistance of $10^7 \ \Omega\cdot m$ for the plasma conditions on Day 289, 1969 and Day 291, 1970, and assumes a point or plane. Figure 9 is the potential drop against the maximum potential V_{max} in
Figure 8. Maximum Voltage Drop Across the Solar Power Satellite (and Space Based Radar) for Various Plasma Conditions and Sheath Assumptions

Figure 9. Maximum Voltage Drops at $X_0 = -150$ km for the 21 ATS-5 Plasma Events as a Function of V_{max}, the Eclipse Potential
the earth's shadow, for the 21 ATS-5 plasma conditions and for $X_m = -150$. The points are contained by the lines $V_{\text{Drop}} = 0.06 V + 120$ and $V_{\text{Drop}} = 0.03 V$.

As V_{max} approaches zero, the electron current is dominated by the photoelectron current. Thus it appears that at $V_{\text{max}} = 0$ V there would be a minimum voltage drop dictated by the photoelectron current; that is, the differential photoelectron currents by themselves would drive ohmic currents which would determine the voltage drop. In practice, because V_{max} is zero, one end must have $V > 0$ and the photoelectron current becomes negligible. This explains the region of Figure 9 where the potential ~ 0 but the voltage drop is >100 V. The last plot, Figure 10, is of the ohmic power dissipated through a structure as a function of the logarithm of resistivity. The value of resistivity for which the power is maximum has been empirically fit to a function of length and photoelectron current:

$$\rho_{\text{max}} = L^{-2} (J_p)^{-1/2} \times 10^{10.3}$$

where

$L =$ Length (km)
J_p = photoelectron flux (A/m^2)

ρ = ohm-m

4. THEORETICAL FIT

Several of the preceding results can be theoretically explained as follows. Assume that a homogeneous plane structure of uniform thickness T and resistivity ρ is divided along a line of equal illumination into two sections (Figure 3b). The current through the interface is equal to the plasma current at equilibrium to either section

$$\int J_p (V, X) \, dA = \frac{dV}{dR}$$

(4)

Here, $J_p (V, X) \, dA$ is the differential current from the ambient environment to surface dA at potential V for $J_T (V, X) = 0 = J_p (V, X) + J_o (V, X)$. X is a coordinate system measured perpendicular to the interface and relative to the center of the structure, increasing in the direction of increasing illumination (Figure 3b); R is the resistance coordinate, increasing in the direction of increasing X (defined as $R = \int \rho / A \, dA$). Since

$$dA = L(X) \, dX$$

(5)

$$dR = \frac{\rho \, dX}{T \, L(X)}$$

(6)

where $L(X)$ is the width of the structure at X,

$$\int J_T (V, X) \, L(X) \, dX = \frac{dV \, T \, L(X)}{\rho}$$

(7)

S is the length of the structure parallel to the X axis; X_1 is the value of X at the interface.
Differentiating,

\[
J_T(V, X) l(X) = \frac{d}{dX} \left(\frac{T L(X)}{\rho} \frac{dV}{dX} \right)
\]

(8)

This may be rewritten as

\[
\frac{d}{dT} J_T(V, X) = D^2 V + g(X) D_X V
\]

(9)

where

\[
g(x) = \frac{dL(x)}{dx} \frac{1}{L(x)}
\]

(10)

The left-hand side of Eq. (9) may be approximated by a Taylor's series:

\[
J_T(V, X) \approx J_T(V_1, X) + J_T'(V_1, X)(V - V_1) + J_T''(V_1, X) \frac{(V - V_1)^2}{2}
\]

(11)

Because of the relative insignificance of the higher order derivatives of \(J_T\) (calculated numerically):

\[
\frac{d}{dV} J_T(V, X) \approx 10^{-10} A/Vm^2
\]

\[
\frac{d^2}{dV^2} J_T(V, X) \approx 10^{-14} A/V^2m^2
\]

\[
\frac{d^3}{dV^3} J_T(V, X) \approx 10^{-18} A/V^3m^2
\]

and so on,

all but the first two terms may be ignored for a result accurate to within first order for \(|V - V_1| < 10^3\ V\)

\[
J_T(V, X) \approx J_T(V_1, X) + \frac{d}{dV} J_T(V_1, X) (V - V_1)
\]

(12)
Substituting in the value of V for which J_p is zero, namely V_z, we find:

$$J_p(V, X) = \frac{d}{dV} J_T(V, X) (V - V_z)$$ \hspace{1cm} (13)

Similarly, as V_z is a function of X and

$$\frac{d}{dX} V_z(X) \approx 10^{-1} \text{V/m}$$

$$\frac{d^2}{dX^2} V_z(X) \approx 10^{-3} \text{V/m}^2$$

and so on,

$$V_z(X) \approx V_z(0) + \frac{d}{dX} V_z(0) X$$ \hspace{1cm} (14)

Thus

$$J_p(V, X) = J_T(V, X) (V - V_z(0) - V_z(0) X)$$ \hspace{1cm} (15)

Because $J_T(V, X)$ is insignificant for the range considered,

$$J_T(V, X) \approx J_T(V_z, 0)$$ \hspace{1cm} (16)

$$J_T(V, X) = J_T(V_c, 0) (V - V_c - V_z(0) X)$$ \hspace{1cm} (17)

where

$$V_c = V_z(0) \text{, center of structure.}$$ \hspace{1cm} (18)

Substituting Eq. (17) into Eq. (10),

$$\frac{\rho}{T} J_T(V_c, 0) (V - V_c - V_z(0) X) = D_X^2 V + (D_X V) g(x)$$ \hspace{1cm} (19)

or, putting all references to V on the same side of the equation,

$$-\frac{\rho}{T} J_T(V_c, 0) (V_c + V_z(0) X) = (D_X^2 + g(x) D_X - \frac{\rho}{T} J_T(V_c, 0)) V$$ \hspace{1cm} (20)
we find that Eq. (20) can be solved using standard numerical techniques. However, if the width of the structure, $L(X)$, is a non-zero constant (SPS rectangular model), then $g(X)$ is zero, and Eq. (20) can be algebraically solved for V as a function of X:

$$V = \frac{c_1}{2} e^{a_3 X} + \frac{c_2}{2} e^{-a_3 X} + a_2 X + a_1$$

(21)

where

$$a_1 = V_c$$
$$a_2 = V_z'(0)$$
$$a_3 = (J(V_c, 0) \rho / T)^{1/2}$$

Assuming that $V(0) = V_c$,

$$V = c_1 \sinh (a_3 X) + a_2 X + a_1$$

(22)

By Eq. (7) when $X = -s/2$, $dV/dX = 0$, and by Eq. (22),

$$\frac{dV}{dX} = c_1 a_3 \cosh (a_3 X) + a_2$$

so substituting $-s/2$ for X, we get a value of

$$c_1 = -\frac{a_2}{a_3 \cosh (-sa_3/2)}$$

(23)

Thus, the final equation for the SPS model is

$$V = a_4 \sinh (a_3 X) + a_2 S + a_1$$

(24)

where

$$a_1 = V_c$$
$$a_2 = V_z'(0)$$
$$a_3 = (J(V_c, 0) \rho / T)^{1/2}$$
$$a_4 = -\frac{a_2}{a_3 \cosh (-sa_3/2)}$$

This equation fits the results of the numerical calculations, program SHADOW, to within approximately 10 percent. However, to achieve this accuracy,
it is necessary to have values of V_z and J_T for the plasma data used, and to stay within the ranges specified by the approximations used:

$$s < X_L$$

where X_L is the lowest value of X_M for any point on the structure, and

$$V_z(X) < 0 \text{ for all } X \text{ within the structure}$$

The worst instances of charging were observed using data from Day 289, 1969, and from these data, values of 10^{-1} V/m and 10^{-10} A/Vm² for V_z and J_T were derived. These values may be taken to be a worst case.

5. CONCLUSION

The results of this study indicate that potential differences of 1,000 V across 10-km structures are possible under even the mild plasma conditions and with the relatively weak photoelectric current of the ATS-5 eclipses. Furthermore, engineers must be made aware of the effects of surface properties and resistivities of various spacecraft materials on spacecraft charging. One of these effects, previously unsuspected, is the existence of a resistivity for which the energy dissipation through a structure becomes a maximum and which is a function of length and photoelectron current density.

Four tools are provided for the engineer for calculation of the voltages across a large space structure passing into eclipse: (1) the program SHADOW, which uses a detailed but efficient numerical algorithm; (2) differential Eq. (9) which may be solved using numerical methods; (3) Eq. (20), which can be solved with greater efficiency but with less accuracy; and (4) specifically for the SPS model, Eq. (24), which provides results with extreme efficiency and, so far as the limitation on shape takes it, the same accuracy as Eq. (20).

Because these methods ignore the effects of capacitance and inductance, they must be considered qualitative. However, knowledge of the potential and thus charge distribution can be used to estimate the former effects. Therefore, these techniques may prove an invaluable aid in predicting the charging effects on large space structures passing into eclipse.
References

Appendix A

Current Values as Functions of Voltage, Number Density, and Temperature

CURRENT DENSITY EQUATIONS

For incident ambient electrons (or ions) the current density is the sum of the current densities of two populations where the current density for each population is:

\[J = J_0 \exp\left(-\frac{|qV|}{kT}\right) \] (for the repelled species)

\[J = J_0 \left(1 + \frac{|qV|}{kT}\right) \] (for the attracted species)

where \(J_0 \) is the population's current density at \(V = 0 \), \(q \) the charge of the particular species, and \(kT \) the Maxwellian temperature of a single population. The current densities of the secondary electron and backscatter electron fluxes, known collectively as the secondary current densities, are the sum of the secondary current densities caused by each of the primary populations; that is, the secondary electron current density is the sum of the secondary current densities caused by each of the two electron populations and the two ion populations, and the backscatter current density is the sum of the backscatter densities of the two ambient electron populations. On this population by population basis, the equations are relatively simple:
\[J_{sel} = J_{el} \cdot a(V, T_e) \]
\[J_{sil} = J_{il} \cdot b(V, T_i) \]
\[J_{bsl} = J_{el} \cdot c(V, T_e) \]

and so on,

where

\[
a(V, T_e) = 0 \quad V > 0
\]
\[
= 0.8431 + (-0.8424) \exp (-0.0286 \cdot T_e) \quad V < 0, \quad T_e < 200 \text{ eV}
\]
\[
a(V, T_e) = 0.1431 + 0.665 \exp (-0.0003 \cdot T_e) \quad V < 0, \quad T_e > 200 \text{ eV}
\]
\[
c(V, T_e) = 0.222 \quad V < 0
\]
\[
= (0.263 + (-0.0218) \exp (-0.00901 \cdot V))
\]
\[
+ (0.11536 + (-0.00328) \cdot \exp (-0.15127 \cdot V))
\]
\[
\cdot \exp ((-0.00081 + 0.00019 \exp (0.02217 \cdot V)) \cdot T_e) \quad V > 0
\]
\[
b(V, T_i) = 0 \quad V > 0
\]
\[
b(V, T_i) = (4.78 - 0.6526 \exp (V \cdot 0.9783 \cdot 10^{-4}))
\]
\[
+ (-0.5299 - 3.78 \exp (V \cdot 0.1844 \cdot 10^{-3}))
\]
\[
\cdot \exp (T_i \cdot (-0.5715 \cdot 10^{-4} - 0.1829 \cdot 10^{-3})
\]
\[
\cdot \exp (0.1447 \cdot 10^{-3} \cdot V)) \quad V < 0
\]

These values of a, b, and c have been calculated for aluminum. They have been multiplied by arbitrary coefficients to fit the ATS-5 observations (that is, \(J_{se} = X \cdot J_{el} \cdot a, \quad X = 1.3; \quad J_{si} = Y \cdot J_{il} \cdot b, \quad Y = 0.55; \quad J_{bs} = Z \cdot J_{el} \cdot c, \quad Z = 0.4 \)).

The photoelectron current density is:

\[
J_{pe} = J_{peo} \cdot F(X_m)
\]
\[
= J_{peo} \cdot F(X_m) \cdot (1 + V/0.7)^{-2} \quad V > 0
\]

26
when

\[J_{\text{peo}} \] is the saturation photoelectron current \((V = 0, \ X_m = 200) \)

\[F(X_m) \] is the fractional illumination of the spacecraft:

\[F(X_m) = 1 - \frac{\left(\frac{R_E}{R_s} \right)^2 (A - \sin A) + (B - \sin B)}{2\pi} \]

where

\[A = 2 \cos^{-1} \left(\frac{(X_m + R_E)^2 + R_s^2 - R_E^2}{2(X_m + R_E) R_E} \right) \]

\[B = 2 \cos^{-1} \left(\frac{(X_m + R_E)^2 + R_s^2 - R_E^2}{2(X_m + R_E) R_s} \right) \]

\(R_E = \) earth radius

\(R_s = \) apparent radius of sun at surface of the earth as seen by satellite.

As outlined in the Introduction, the different \(J \)'s are computed for a given \(V \).

In the case of ohmic currents, \(J_{\text{ohm}} \) is given by:

\[J_{\text{ohm}}(X_1) = \frac{V(X_1) - V(X_{l-1})}{R} + \frac{V(X_{l+1}) - V(X_1)}{R} \]

The potential \(V \) is then varied until either Eq. (3) or, for a single point, Eq. (2) is satisfied.

FORTRAN LISTINGS

Program Units

On the following pages are listed the iterative charging program SHADOW and its subprograms. SHADOW, itself, is only a blanket program directing the calls to data input and processing subroutines and performing data output directly. The first set of executable cards directs the input of plasma, structure, and other
parameters, with the option of calling either SBR or SPS for reading structure
data. The next group is a DO loop which, for a series of structure positions,
calculates voltages by calling CNVG and then prints the results.

Subroutine PLASMA reads the values of number density and temperature
from which are calculated current density for both populations of each species,
protons and electrons, and reads the photoelectron current density.

Subroutine MODEL determines the positions of the structure for which poten-
tials are determined and stores values in common block ZERO.

Function CNORM determines current density from number density and tem-
perature.

Subroutine SBR reads the dimensions, conductivity, and number of nodes of
a circular structure and calculates the surface area of each node, the distance
between nodes, and the conductance between nodes. Solar Power Satellite per-
forms the equivalent operations for a square structure.

Function CURV determines the current to a structure as a function of potential
and position on the first node, assuming current balance to all but the last node.

Function CURV is the net current to a node of potential VC and position X.

Subroutine CNVG finds the potential on each node. For low conductances,
the method is to set each potential at the zero plasma value and then adjust poten-
tials to counter current flow, eventually reaching equilibrium. For high conduc-
tances, the zero value of CURV is found, defining the values of array V.

Function ZERO finds the zero value of function FUNC.

Function DCDV finds the derivative of CURV with respect to V.

Function CT finds the total plasma current density to a node of potential V
and position X.

Function CJPE is the photoelectron current density.
Function LNEX determines the value of CHI(. V).
Function BS determines the value of c.
Function SE determines the value of a.
Function SI determines the value of b.
Function FL is a service function for BS, SE, SI.
Function F determines the fraction of sunlight striking the spacecraft.

Subroutine AVG is a service function for function ZERO.

COMMON BLOCKS

For high efficiency, COMMON blocks are used for communication between
subprograms. Thus, it is essential that their content be known to the programmer.
<table>
<thead>
<tr>
<th>Block</th>
<th>Variable</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>NP</td>
<td>Number of nodes (points)</td>
</tr>
<tr>
<td>BOSTON</td>
<td>SEP</td>
<td>Separation between nodes (km)</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X_m for most illuminated node</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Service index variable for function CURV</td>
</tr>
<tr>
<td>V(112)</td>
<td></td>
<td>Array of potentials (volts)</td>
</tr>
<tr>
<td>CON</td>
<td>CON (112)</td>
<td>Array of conductances between nodes (ohm$^{-1}$)</td>
</tr>
<tr>
<td>ALL</td>
<td>CI</td>
<td>Ion population 1 current density (A/m^2)</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>Electron population 1 current density</td>
</tr>
<tr>
<td></td>
<td>TI</td>
<td>Ion population 1 temperature (eV)</td>
</tr>
<tr>
<td></td>
<td>TE</td>
<td>Electron population 1 temperature</td>
</tr>
<tr>
<td></td>
<td>CP</td>
<td>Saturation photoelectron current density</td>
</tr>
<tr>
<td>TWOMAX</td>
<td>CI2</td>
<td>Ion population 2 current density (A/m^2)</td>
</tr>
<tr>
<td></td>
<td>CE2</td>
<td>Electron population 2 current density</td>
</tr>
<tr>
<td></td>
<td>TI2</td>
<td>Ion population 2 temperature</td>
</tr>
<tr>
<td></td>
<td>TE2</td>
<td>Electron population 2 temperature</td>
</tr>
<tr>
<td>STRUCT</td>
<td>AREA (112)</td>
<td>Array of nodal surface areas (m^2)</td>
</tr>
<tr>
<td>GCON</td>
<td>GCON</td>
<td>Conductivity of structure (ohm$^{-1}$ m$^{-1}$)</td>
</tr>
<tr>
<td>MATER</td>
<td>AA</td>
<td>Material-dependent secondary and backscatter</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>emission coefficient</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>SHAPE</td>
<td>SHAPE</td>
<td>Value is 1 for spherical probe; 0 for plane surface</td>
</tr>
</tbody>
</table>

The first card of a data deck specifies the distance between spacecraft positions and the number of positions. The first value is in E 15.6 format and the next is in 14 format; the distance is in kilometers.

Next come the cards specific to each run: the cards specifying the plasma conditions and the structure parameters. The first card is a title card, with alphanumeric data in columns 1-57 and the spacecraft shadow potential in columns 58-80 in F22.10 format. In the listed version of SHADOW, the shadow potential is ignored.
The next card lists the plasma parameters: ion population 1 number density, electron population 1 number density, ion population 2 number density, electron population 2 number density, and photoelectron saturation current density; the number densities are in n/cm3, the current density is in A/m2. Next come the four population temperatures in eV: ion population 1 temperature, electron population 1 temperature, and so on. The values on the first card are listed in E15.5 format; on the second card, F15.5 format.

The last card for each run lists the thickness (m) and conductivity (ohms$^{-1}$ m$^{-1}$) of the structure in E15.5 format, and the width or diameter (km) and number of nodes in F15.5 format.

Sample deck
PROGRAM SHAPE (INPUT, OUTPUT), TAPES, TAPES*, INPUT, TAPEO=OUTPUT,
DEBUG=OUTPUT
DIMENSION XL(112), FL(112), VSP(112), VR(112), /VSP(112),
1 IMON(112)
COMMON /NP,NP/ /BOSTON/S:EP, X, III, W(112),
1 COMMON /YV/, TP, TPY, T1Y, TPY, TPY, TPY, FP,
2 COMMON /AC, ACCU, ACCU, VG, VCI(112),
3 COMMON /Acc, ACCU, ACCU, VCI(112),
4 /NCOL, APA, AP(112)/ /SC1, SCD, SHAP, SHAPE, SHAPE
DIMENSION CUR (112), CNT (112), TIT.E(6)
DATA SPACE PLAN / 1, 0, / AA = 1.3
BD = 2.4
CC = 0.55
3 READ DATA, DATA
CALL MODEL (DELTA, N)
2 CONTINUE
READ (5, +1) (TITLE(I), I=1,6), VAC
40 FORMAT (5A11, A7, FE2.16)
IF (EOF(1)) VAC, 0, STOP
WRITE (6, 41) (TITLE(I), I=1,6), VAC
41 FORMAT (6A11, S10, A7, T10.2)
CALL PLAN
SHAPE = 1, LANE
COLLECT DATA = 1, CALCULATE VOLTAGE ON A SQUARE STRUCTURE
CALL SP5
COMMENT IN ORDER TO CALCULATE THE VOLTAGES ON A ROUND STRUCTURE, USE STATEMENT
CALL SP5
VX = 200.4 (T, ESS)
WRITE (6, 70)
70 FORMAT (1H6, 25X, SHAPE, 5X, SUMENER, 5X, NH_LOCAL / 11, 15 EH / 2X,
1 65(1H) / 3X, 2+4X, 2X, 2K, 5X, SHF, 5K, 3X, ENERGY, 2X,
2 8HNET 5X, 5X, 5K, 1X(4), 2K, 1+4X, 5K, 4WMP, 5K,
1 SHAFZ, -Y, 3X(1), 4X, SHFENERGY, 2X, 8HNET CUR, 2, 2X, SHFLOCAL, CUR.)
II = 113 - NP
00 I = 1, N
X = -115, + |LOA(I-1)*DELTA - 0.5*SEP|
CALL NP4
XX = (- SF*SF*LOA(NP-1))
F = PX - PX
ENERG = 1.
CALL GA, 9
DO 1 J = 1, NP
111* = -1
X(J) = X - "LOA(I-1)*SEP"
G(J) = 0.00 - SF*(LOA(I) - FLAT(J-1)*SEP) + G(J)
C(J) = 2.* (V(J) - FLAT(J-1)*SEP) + C(J)
F(J) = F(J) + V(J)
V(J) = V(J) + V(J)
WSP(J) = WSP(J) + VSP(J)
VSP(J) = VSP(J) / (V(J+1) - V(J))
IF (V(J+1) = V(J)) CON(J) = V(J+1)
IF (V(J) = V(J)) CON(J) = V(J
END
EN-3EN = ENERGY + GMM(1)**2/CON(I)

10 CONTINUE

VCENP = ENERGY

WRITE (6, 100) NP, XX, XX = W2CP, OUT, 1, -J+113

* FF(L-1*(J+113), F(-1*(J+113), F*(1*(J-113), F*(1*(J+113)

* VMFM-1 = VMFM + VMFN, OUX(1, L+113), OUX(1, L+113)

* J = J+112

100 FORMAT (4x,T1, 6.2, 1X, 20X, 20X, 14X, E14.3)

1 F3.2, 1X, E10.3, F9.1, F9.1, F9.1, E10.3, 2(LX, E10.3) /

2 (A6X = A6X + A6X, F08.5, F08.5, F08.5, E10.5, E10.5) +

IF (NP = 0) GO TO 6

6 CONTINUE

GO TO 2

END

CONTINUE

COMMON /NP/NP

/ BOSTON/SEP

1 COMMON /ON(1) / STRUCT/AREA(I)

2 / :CONF GC34

READ (6) 100 NP, GC34, 9, P

100 FORMAT (+ 15.7, 2(E10.5, F12.5)

NP = P

WRITE (6, 111) TC, GC34, 5, NP

1 26HCONDUCTIVITY (MIOUS/MIETER) = E 12, 11, 1

2 NCM1094 (CM4) = 1

2 H10.2, 11X, 2PMEMBER OF PTS/TS IN MODEL = 13 /

GEO - 2

CON (1) = GC414IFS / SEP

5 - 319.12

AREA (1) = 59.5P

D I F, 112

CON (1) = CON (1)

1 AREA (1) = AREA (1)

RETURN

END
COMMON /STRT/ARTA(112)
1
2

DATA KI, CE / 1.24 F 0.5, 5.31 E + 0.5/
READ (5, F0) DT, DT2, DE, OEE, OEE, OEE, OEE, T1, T12, T1, T12
70 FORMAT (5, F 15.6 / 4 F 15.6)
Oi = OMON(0.5, 1, 11, 111)
CI2 = CHROM (O1, T12, KI)
CE = OMON (3, 3, 3, 3)
GE2 = CHROM (OEE, T12, CE)

WRITE (6, 72) OI, TE, O12, HE2, T1, TE, T12, T12, CI, CE, CI2, CE2
1, AF
72 FORMAT (30MION NUMBER DENSITY (POP. 1) =, E12.4, 5X, 35ELECKTON N
4 NUMBER DENSITY (POP. 2) =, E12.4, 5X, 35ELECKTON N
2 30MION NUMBER DENSITY (POP. 2) =, E12.4, 5X,
2 35ELECKTON NUMBER DENSITY (POP. 2) =, E12.4, 5X,
2 SIMELECKTON TEMPRATURE (POP. 1) =, F12.4, 5X,
5 SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
6 SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
7 SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
8 SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
9 SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
A SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
B SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,
C SIMELECKTON TEMPRATURE (POP. 2) =, F12.4, 5X,

RETURN
END

COMMON /DELTA, N/
COMMON /POP/ AC11, ACCU2
READ (5, F6) DELTA, N
50 FORMAT (E 15.8, 14)
ACCU2 = 0.01
WHITE (7, 7, 7, ACCU2, AC11, DELTA, N
51 FORMAT (14.6, 5H, SHOStt, V1, 15.6, 1H DELTA, N, 14 H
RETURN
FUNCTION SDTH (T, K)
REAL K
GNORM = .1
IF (T = T. 5.) RETURN
GNORM = 1.522F+41A+45.52-45/3
RETURN
END

FUNCTION F(x)
DATA RE,75/6175.195.2/
F = 0.
IF (X .LT. (1.0E-3)*RS) RETURN
F = 0.
IF (X .GE. (1.0-E-61)) RETURN
A = X*RE2 (1.0+RE**2+RE**2)/ (2.0+RE*RE)
B = 2.0*RE**2 (1.0+RE**2+RE**2)/ (2.0+RE*RE)
F = 2.0+RE**2*E**2*(A-B)**2+
+3.5*RE**2*A**2+16.0*RE**4*A**2+7.5*RE**4*B**2
RETURN
END

FUNCTION F(i, AR)
DIMENSION AR(3)
IF (AR(i) = VLT. 7.0) GO TO 2
FI = AR(i)+AR(1)*1.0E+10
RETURN
2 IF (AR(2)< V LT. -5.0) GO TO 1
FI = AR(1)
RETURN
1 FT = AR(2)+AR(1)*EXPP(AR(2)*i)
RETURN
END

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY PUBLISHED TO ODC
FUNCTION 3E (V, T)
COMMON /VATER/ AA, BB, CC
DIMENSION A(A), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
DATA A(1), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
1 IF (V ~ T) G3 TO 2
O(1) = FIT(V, A)
O(2) = FIT(V, B)
O(3) = FIT(V, C)
RETURN
1 SE = FIT(1, A) * AA
RETURN
2 SE = 0.
RETURN
END

FUNCTION 3E (V, T)
COMMON /VATER/ AA, BB, CC
DIMENSION A(A), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
DATA A(1), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
1 IF (V ~ T) G3 TO 2
O(1) = FIT(V, A)
O(2) = FIT(V, B)
O(3) = FIT(V, C)
RETURN
1 SE = FIT(1, A) * AA
RETURN
2 SE = 0.
RETURN
END

FUNCTION 3E (V, T)
COMMON /VATER/ AA, BB, CC
DIMENSION A(A), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
DATA A(1), A(2), A(3) /-37.347361, 1844087, 3, 5.59035 /
1 IF (V ~ T) G3 TO 2
O(1) = FIT(V, A)
O(2) = FIT(V, B)
O(3) = FIT(V, C)
RETURN
1 SE = FIT(1, A) * AA
RETURN
2 SE = 0.
RETURN
END
```
FUNCTION LNX: VT, XI
COMMON /SHAP/ SHAPE
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
COMMON /SHAP/ CI, CI, XI, TI, TI; CP /SHAP/ SHAPE
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```

```
FUNCTION LNX: VT, XI
DATA SHAPE /1.0
C = 1.
IF (SHAPE .EQ. SHAPE) C = 3.9
IF (XI .LT. 0.) 10 TO 1
RETURN
1: 0. = 3*F(1.44*VT+4.7)**1 + C
RETURN
END
```
FUNCTION CT (V, X)
REAL LNX
COMMON /ALL/ G1, G2, T1, T2, CP /WOMAK/ D1, D2, T1, T2

CT (V) = CJEL (V) - CJ1 (V) - CJSE (V) - CJSI (V) - CJSE (V) - CJPE (V, X)

CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)
CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)
CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)
CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)
CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)
CJSE (V) = CF' (V/TE)*SE1 (V, TE) + CE2 (V/TE)*SE2 (V, TE)

1 IF (ABS V > 0.3) GOTO 0, 50 GO TO 2
CT = (CT (1, 1) - 2T1 (1, 1))*V + CT (1, 0)
RETURN
2 CT = CT (1, 1)
RETURN
END

FUNCTION GSBY (V, X)
COMMON /CNV/ CON, 10 /STRUCT/ AREA (10) /NP
IF (C, V, X) GO TO 1
GS = CON (1)
GO TO 2
1 IF (C, V, X) GO TO 2
GS = CON (1)
GO TO 3
2 GS = CON (1) + CON (1)
3 GS = (C, V, X) + AREA (1)*CT (V*, 0, 0) + CT (V, 0)*1.5
RETURN
END

FUNCTION FIMP (V, X)
COMMON /ROF/ ACON, ACC12
V = 0,
V1 = 0,
V2 = 0,
C = FUNC (V, X)
IF (ABS (V, X) < 0.1, ACON) AND: (ABS (V, X) > 0.4) GO TO 3
IF (C < 0.1) GO TO 4
CALL AVG (V, Z, V)
GO TO 6
6 CALL AVG (V, Z, V)
GO TO 5
3 CALL AVG (V, Z, V)
RETURN
END

37
EXTERNAL I2, J2, K2
COMMON /I?/ TN, COI2 /2/ S, II, IV11
1 /ZTREW/ Accr1, AccruV/2/ Vc(10)
2 /S00/ VV
* /Ana/ rrea(10) /COM/ Con(10)
* /Ana/ inpol Vtr, Gct, OcuV.VC
IF (Con(1) = 3.5) GO TO 12
I + 1
P = 1./Con(1)
DP = I = 3. Np
IF (Con(n-1) .F.) GOTO 12
I = R + T/DP(n-1)
11 CONTINUE
46 = Z/ST046/44
46 = (CT(V(1)) - CT(V(1), 0.1) * ARFA(1) * 100. ** 2 .LT. 5.0) G0 TO 12
12 VSI = 1.E+10
90 - 1.E + 104
1 VVI = ZER0 (CT, X-FLOAT(I-1)*5P)
2 CONTINUE
40 = NP
40 I = 1, 44
VC(I) = WII
II = 1
VII = WIII - CURL(VIII), X-FLOAT(II1)*5.P/OCO/(VIII), III
40 * 0.5
II = NP+1
IV = IT + 000
VII = WIII - CURL(VIII), X-FLOAT(II1)*5.P/OCO/(VIII), III
40 * 0.5
3 CONTINUE
VII = 0.
90 1 = 1, NP
6 VIV = VII + (VII) - VD4(I)**2
IF (VIV .F. 1. ACCJ2P/2) G0 TO 5
3 = VIV, 2, 1. ACCJ2P/2) G0 TO 10
00 8 I = 1, NP
8 VIV = VD4(I)
VSI = V4
G0 TO 2
5 70 5 I = 1, 4P
5 VII = WIII + VDI*10.
VSI = V4
G0 TO 2
6 CONTINUE
RETURN
10 CONTINUE
VIV = 2.100043V, 43
RETURN
433
FUNCTION CURS (v, i)

COMMON /NP/NP

2 /BOSTON/SEP, XX, II, V(I)

V(I) = VC

V(I) = V(2) + T(V,XX,AREA1+CON(I))

IF (NP .LT. 3) GO TO 2

100 FORMAT (? E 15.5, E 15.5)

WRITE (6, 101) T(4), GCON, I, NP

101 FORMAT (150, 150*HOFNESS (+=TERI)) = E 12.3, I, I

1 = 0

R = 50;

SEP = 2.*IP

H0 = 4.*NP

X = -R * FLOT(I-2)*SEP

AREA(I-1) = AREA(SX)+X*SEP

AREA(SX) = AREA(1)

SEP = 90./10.1

RETURN