ADAPTIVE TECHNIQUES FOR LARGE SPACE APERTURES. (U)

MAR 80 R J RICHARDSON, J COYNER, A FENN

RADC-TR-80-52
ADAPTIVE TECHNIQUES FOR LARGE SPACE APERTURES

Martin Marietta Corporation

R. J. Richardson
John Coyner
Alan Fenn
Al Brook

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-52 has been reviewed and is approved for publication.

APPROVED:
ROBERT F. OGRODNIK
Project Engineer

APPROVED:
FRANK J. REHM
Technical Director
Surveillance Division

FOR THE COMMANDER:
JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (OCTM), Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
Two missions which utilize large space apertures were considered on the program. These were the space-based radar mission (SBR) and the space-based millimeter-wave radiometer mission (MWR). The greater part of the effort was spent on the radar mission. The intent of the program was to investigate reflector-based alternates to the space-fed phased array system that is the current baseline for the space-based radar program. The three major tasks on the program were Task 1, Concept Development/Assessment; Task 2, Performance Analysis, Selected Approach; and Task 3, Specific Mission Designs.
The adaptive techniques of interest were those that might be required to compensate for surface irregularities in the large, space-deployable reflectors that would be required for these missions. This and other system requirements were considered in selecting an antenna system for each mission.

The selected design for the SBR uses a 70 meter primary reflector with an f/D of 1. The smaller field reflector is 28 meters in diameter and the planar phased array feed is also 28 meters in diameter. The total number of active modules is reduced by a factor of 4.3 from that used in the lens-array concept. The orbit altitude was selected as 5000 n.mi. The FOV for agile beam scanning is 20° x 11°, which is not sufficient for full-earth coverage. An attitude control concept was selected which uses gravity-gradient stabilization and rotation about the gravity-gradient axis to provide full-earth coverage using a combination of electronic and mechanical steering. The system was packaged for launch in a single shuttle, including the propulsion stage required to reach the operational orbit. Deployment is fully automatic and is done in the shuttle orbit under the control of the orbiter crew. It is then boosted to its operational orbit using a low-thrust liquid stage.

A similar design was made for a synchronous-orbit version of the SBR. It uses a primary reflector 300m. in diameter. It requires four shuttle flights to reach synchronous orbit using electric propulsion for orbit transfer or 6 shuttle flights if chemical propulsion is used. Deployment of the major components is done in shuttle orbit, but the components must be assembled by rendezvous at the operational orbit. This is a much more difficult mission than the lower-orbit SBR.

A brief look was also given to a reflectarray as another possible alternate to the baseline lens-array SBR system. Its main advantage over the baseline lens-array system is that a much shorter focal length can be used. This gives a lighter and stiffer structure. The reflectarray was sized at 91 m. with an f/D of 0.5 for the 5000 n.mi. orbit. It uses passive (phase shift only) reflectarray modules. It can be packaged in a single shuttle vehicle.

A 400 n.mi orbit was selected for the MWR mission. This was selected as the minimum altitude giving an acceptable level of atmospheric drag. It is gravity-gradient stabilized and nadir-pointing, operating in a pushbroom mode. Operating frequency was selected at the 95 GHz atmospheric window. The FOV is quite wide, 10,000 beamwidths. The pushbroom swath width on the ground is 125 n.mi. Sensitivity is sufficient to detect a military tank in most weather conditions except heavy rain. The resolution based on the individual beamwidths is 74 ft. but a data processing technique based on using monopulse sum and difference patterns can be used to improve this by a factor of 10 or more.

The structural concept selected for all of these designs is the deployable box truss.
PREFACE

This technical report covers work done on Contract No. F30602-79-C-0017, "Adaptive Techniques for Large Space Apertures". The period of performance was 6 November 1978 to 5 November 1979. The sponsor was Rome Air Development Center, Griffis AFB, N.Y. The principal contributors to the program were R. J. Richardson, Program Manager and RF system design; John Coyner, structural design; Alan Fenn, antenna performance analysis; and Al Brook, attitude control system design. The RADC technical monitor was Robert Ogrodnik, whose direction and guidance are hereby acknowledged.
TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. TASK 1. CONCEPT DEVELOPMENT/ASSESSMENT 3
 2.1 RF Concept Tradeoff ... 3
 2.1.1 RF Concepts, Space-Based Radar 3
 2.1.1.1 Phased Array .. 3
 2.1.1.2 Reflector-Based Concepts 4
 2.1.2 RF Concepts, Millimeter-Wave Radiometer 6
 2.2 Structural Concept Tradeoff 7
 2.2.1 Introduction .. 7
 2.2.2 Concept Description 8
 2.2.3 Concept Comparison 49
 2.2.4 Surface Figure Control Actuators 52
 2.3 Surface Figure Measurement 59
 2.3.1 Summary .. 59
 2.3.2 Detailed Discussion 62
 2.3.2.1 Potential Surface Measurement Approaches 62
 2.3.2.2 Operational Regimes for Active Surface Control . 69
 2.3.2.3 Typical Control Sequence 69
 2.4 Attitude Control .. 71
 2.4.1 Purpose of the Attitude Control System 71
 2.4.2 The Elements of Attitude Control 74
 2.4.2.1 Attitude Determination 74
 2.4.2.2 Position Knowledge 85
 2.4.2.3 Disturbing Torques and Forces 93
 2.4.2.4 Controllers .. 102
 2.4.3 Conclusions and Limitations 112
 3. TASK 2, PERFORMANCE ANALYSIS 113
 3.1 RF Performance Analysis 113
 3.1.1 Introduction ... 113
 3.1.2 Theory for Analyzing Two-Reflector Phased Array Fed Systems 116
 3.1.2.1 Introduction ... 116
 3.1.2.2 Theory .. 118
<p>| 3.1.3 Two-Reflector Systems, Results | 126 |
| 3.1.3.1 Introduction | 126 |
| 3.1.3.2 Observations and Effects of Primary Reflector Distortion | 126 |
| 3.1.3.3 Beam Scanning Characteristics | 135 |
| 3.1.3.4 Adaptive Nulling | 152 |
| 3.2 Structural Systems Performance Analysis | 164 |
| 3.2.1 Packaging in Orbiter | 164 |
| 3.2.2 Orbit Transfer | 166 |
| 3.2.3 Two-Reflector LEO Radar Mission | 173 |
| 3.2.4 Reflectarray LEO Radar Mission | 177 |
| 3.2.5 Two-Reflector HEO Radar Mission | 179 |
| 4. SPECIFIC MISSION DESIGNS | 183 |
| 4.1 Space-Based Radar, 5000 n.mi. Orbit | 183 |
| 4.1.1 RF System Design | 183 |
| 4.1.2 Truss Blockage Effects | 188 |
| 4.1.3 Stability, Pointing and Control | 191 |
| 4.1.3.1 Requirements | 191 |
| 4.1.3.2 Sensors | 192 |
| 4.1.3.3 Controllers | 192 |
| 4.1.4 Structural System Design | 194 |
| 4.2 Space-Based Radar, Synchronous Orbit | 196 |
| 4.2.1 System Design | 196 |
| 4.2.2 Structural Design | 196 |
| 4.3 Millimeter Wave Radiometer Mission | 200 |
| 4.3.1 Summary | 200 |
| 4.3.2 Mission Constraints | 200 |
| 4.3.3 Antenna Design | 201 |
| 4.3.4 Grating Lobes Due to Reflector Panel Edges| 211 |
| 4.3.5 Structural Approaches for the Schmidt Reflector | 215 |
| 4.3.5.1 Rigid Panels and Astro Cell Structure Approach | 218 |
| 4.3.5.2 Rigid Panels and Box Truss Structure Approach | 223 |
| 4.3.5.3 ECCM Approach | 223 |</p>
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.6 Stability, Pointing and Control</td>
<td>228</td>
</tr>
<tr>
<td>4.3.6.1 Sensors</td>
<td>229</td>
</tr>
<tr>
<td>4.3.6.2 Controllers</td>
<td>229</td>
</tr>
<tr>
<td>4.3.6.3 Disturbing Torques and Forces</td>
<td>232</td>
</tr>
<tr>
<td>5. CONCLUSIONS</td>
<td>233</td>
</tr>
<tr>
<td>5.1 Conclusions, Space-Based Radar Mission</td>
<td>233</td>
</tr>
<tr>
<td>5.2 Conclusions, Millimeter Wave Radiometer Mission</td>
<td>233</td>
</tr>
<tr>
<td>6. RECOMMENDATIONS, CRITICAL TECHNOLOGY</td>
<td>235</td>
</tr>
<tr>
<td>6.1 Antenna Performance Analysis</td>
<td>235</td>
</tr>
<tr>
<td>6.2 Deployable Structures</td>
<td>235</td>
</tr>
<tr>
<td>6.3 Attitude and Figure Control, Flexible Bodies</td>
<td>235</td>
</tr>
<tr>
<td>Appendix A, Ray Tracing, Distorted Primary Reflector to Subreflector</td>
<td>236</td>
</tr>
<tr>
<td>Appendix B, Ray Tracing, Subreflector to Primary Reflector Image</td>
<td>246</td>
</tr>
<tr>
<td>Appendix C, Computer Program Listings</td>
<td>250</td>
</tr>
<tr>
<td>C.1 Program TRPPBB</td>
<td>251</td>
</tr>
<tr>
<td>C.2 Program FFPTBB</td>
<td>262</td>
</tr>
<tr>
<td>C.3 Program TGBATCH</td>
<td>270</td>
</tr>
<tr>
<td>C.4 Program PTBATCH</td>
<td>284</td>
</tr>
<tr>
<td>C.5 Program PTNUL2</td>
<td>292</td>
</tr>
<tr>
<td>C.6 Program GRATE2</td>
<td>300</td>
</tr>
<tr>
<td>Appendix D, Executive Summary</td>
<td>303</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE NO.	PAGE
2.1-1 Reflectarray System | 5
2.2-1 Harris Corporation Dual - Mesh Configuration | 9
2.2-2 Feed Support Structure of Harris Corporation Radial-Rib Antenna | 9
2.2-3 Design Elements of Harris Radial-Rib Antenna | 10
2.2-4 Typical Lockheed Wrap Rib Antenna: Deployed Configuration | 10
2.2-5 Lockheed Wrap - Rib Antenna: Furling Mechanism | 12
2.2-6 General Dynamics Radial Rib Concept | 14
2.2-7 Harris Curved Astromast Radial Rib Concept | 15
2.2-8 Harris Radial Column Concept | 17
2.2-9 Harris Articulated Radial Rib Concept | 18
2.2-10 Lockheed Maypole Parabolic Reflector | 20
2.2-11 Harris Hoop/Column Concept | 22
2.2-12 Mesh Shaping Configuration of Harris Corporation Hoop and Column Antenna | 24
2.2-13 Harris Hoop/Column Deployment Sequence | 25
2.2-14 Basic Structural Elements of Grumman Phased-Array Concept | 26
2.2-15 Grumman Phased-Array Planar Configuration | 26
2.2-16 Lockheed Polyconic Reflector Concept | 28
2.2-17 General Dynamics Expandable Truss | 30
2.2-18 Box Truss Deployment Scenario | 32
2.2-19 Martin Marietta Deployable Box Truss | 33
2.2-20 Box Truss Step by Step Row Deployment | 35
2.2-21 Box Truss Step Column Deployment | 36
2.2-22 Box Truss Antenna Surface Stowage/Deployment | 38
2.2-23 TRW Solid Deployable Reflector | 39
2.2-24 LMSC High Frequency Radial-Rib Antenna | 41
2.2-25 Astro Research Expandable Module Assembly Approach | 41
2.2-26 Caltech Configuration of 10-m Millimeter-Wave Antenna | 43
2.2-27 Rigid Panel Millimeter Wave Radiometer | 43
2.2-28 A 28 Meter Deployable Truss with Hexagonal Panels | 44
2.2-29 Martin Marietta Radiometer Concept Using Box Truss and Solid Panels | 45
2.2-30 General Research 30 Meter Electrostatic Controlled Radiometer | 47
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-31</td>
<td>MIT Controlled Thin-Film Antenna Concept</td>
</tr>
<tr>
<td>2.2-32</td>
<td>Surface Precision for Passive Box Truss Structure</td>
</tr>
<tr>
<td>2.2-33</td>
<td>Truss Adjustment Provisions.</td>
</tr>
<tr>
<td>2.2-34</td>
<td>Long Stroke 0.010 Inch Incremental Actuator</td>
</tr>
<tr>
<td>2.2-35</td>
<td>Short Stroke - 0.0002 Inch Increment Actuator.</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Operating Regimes, Surface Figure Sensing</td>
</tr>
<tr>
<td>2.3-2</td>
<td>Lateral Effect Silicon Photodiode (LESP).</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Synthetic Wavelength Interferometer (SWI)</td>
</tr>
<tr>
<td>2.4-1</td>
<td>Generalized Control Schematic</td>
</tr>
<tr>
<td>2.4-2</td>
<td>Relative Magnitudes of the Environmental Torques on an Earth Satellite</td>
</tr>
<tr>
<td>2.4-3</td>
<td>Alternate Attitude Determination Sensor Configurations.</td>
</tr>
<tr>
<td>2.4-4</td>
<td>Attitude Uncertainty As A Function of Time</td>
</tr>
<tr>
<td>2.4-5</td>
<td>Attitude Determination With Space Sextant</td>
</tr>
<tr>
<td>2.4-6</td>
<td>Position/Attitude Crosscoupling of the Landmark Tracker</td>
</tr>
<tr>
<td>2.4-7</td>
<td>Ground Position Uncertainty</td>
</tr>
<tr>
<td>2.4-8</td>
<td>Solar Pressure Effects</td>
</tr>
<tr>
<td>2.4-9</td>
<td>Atmospheric Pressure as a Function of Orbit Altitude.</td>
</tr>
<tr>
<td>2.4-10</td>
<td>Aerodynamic Torque as a Function of Orbit Altitude</td>
</tr>
<tr>
<td>2.4-11</td>
<td>Drag Make-Up Examples.</td>
</tr>
<tr>
<td>2.4-12</td>
<td>Reaction Wheel System Weight (Single Axis) as a Function of Momentum Capability</td>
</tr>
<tr>
<td>2.4-13</td>
<td>Reaction Wheel Peak Power Requirements (Single Axis) as a Function of Momentum Capability.</td>
</tr>
<tr>
<td>2.4-14</td>
<td>CMG Control System Weight as a Function of System Momentum Capability</td>
</tr>
<tr>
<td>2.4-15</td>
<td>Continuous CMG Power as a Function of System Momentum Capability</td>
</tr>
<tr>
<td>2.4-16</td>
<td>Reliability vs Cost</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Two-Reflector System with Phased Array Feed</td>
</tr>
<tr>
<td>3.1-2</td>
<td>Two-Reflector Confocal System</td>
</tr>
<tr>
<td>3.1-3</td>
<td>One-to-One Mapping Between Primary Reflector and Phased Array</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>FIGURE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Two Reflector Confocal System With Distorted Primary Reflector</td>
</tr>
<tr>
<td>3.1-5</td>
<td>Ray Path Self Correcting Property of Confocal Parabolic System for a Small Distortion (Counterclockwise rotation)</td>
</tr>
<tr>
<td>3.1-6</td>
<td>Ray Path Self Correcting Property of Confocal System for a Small Distortion (Clockwise Rotation of Segment)</td>
</tr>
<tr>
<td>3.1-7</td>
<td>Geometry for Ray Tracing Analysis</td>
</tr>
<tr>
<td>3.1-8</td>
<td>Two Reflector Phased Array Fed System</td>
</tr>
<tr>
<td>3.1-9</td>
<td>Comparison Between a Distorted and Undistorted Primary Reflector in Amplitude and Phase at the Array</td>
</tr>
<tr>
<td>3.1-10</td>
<td>Comparison Between a Distorted and Undistorted Primary Reflector in Amplitude and Phase at the Array</td>
</tr>
<tr>
<td>3.1-11</td>
<td>Comparison Between a Distorted and Undistorted Primary Reflector in Amplitude and Phase at the Array</td>
</tr>
<tr>
<td>3.1-12</td>
<td>Comparison Between a Distorted and Undistorted Primary Reflector in Amplitude and Phase at the Primary</td>
</tr>
<tr>
<td>3.1-13</td>
<td>Far-Field Pattern for Undistorted Primary Reflector, Boresight</td>
</tr>
<tr>
<td>3.1-14</td>
<td>Far-Field Pattern for Distorted-Uncompensated Primary Reflector</td>
</tr>
<tr>
<td>3.1-15</td>
<td>Far-Field Pattern for Distorted-Compensated Primary Reflector</td>
</tr>
<tr>
<td>3.1-16</td>
<td>Far-Field Pattern for Distorted-Uncompensated Reflector, Boresight</td>
</tr>
<tr>
<td>3.1-17</td>
<td>Far-Field Pattern for Distorted Primary Reflector with Phase Compensation at the Array, Boresight</td>
</tr>
<tr>
<td>3.1-18</td>
<td>Beam Scanning Performance for Two-Reflector System with Magnifications of 5 and 10</td>
</tr>
<tr>
<td>3.1-19</td>
<td>Beam Scanning Performance of Two-Reflector System for f/D = 0.5, 0.7, and 1.0</td>
</tr>
<tr>
<td>3.1-20</td>
<td>Beam Scanning Performance of Two-Reflector System for Various Oversized Subreflectors</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>3.1-21</td>
<td>Deleted</td>
</tr>
<tr>
<td>3.1-22</td>
<td>Far-Field Pattern of Two-Reflector System, Boresight</td>
</tr>
<tr>
<td>3.1-23</td>
<td>Far-Field Pattern of Two-Reflector System, Twelve-Beamwidths Off-Axis</td>
</tr>
<tr>
<td>3.1-24</td>
<td>Far-Field Pattern of Two-Reflector System, Twenty-Four Beamwidths Off-Axis</td>
</tr>
<tr>
<td>3.1-25</td>
<td>Far-Field Pattern of Two-Reflector System, Thirty-Six Beamwidths Off-Axis</td>
</tr>
<tr>
<td>3.1-26</td>
<td>Far-Field Pattern of Two-Reflector System, Forty-Eight Beamwidths Off-Axis</td>
</tr>
<tr>
<td>3.1-27</td>
<td>Symmetric Plane of Two-Reflector Phased Array Fed System</td>
</tr>
<tr>
<td>3.1-28</td>
<td>Offset Plane of Two-Reflector Phased Array-Fed System</td>
</tr>
<tr>
<td>3.1-29</td>
<td>Rear View of a Two Reflector Phased Array-Fed System</td>
</tr>
<tr>
<td>3.1-30</td>
<td>Beam Scanning Performance, Two-Reflector Antenna</td>
</tr>
<tr>
<td>3.1-31</td>
<td>Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, On-Axis</td>
</tr>
<tr>
<td>3.1-32</td>
<td>Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, Scanned 21 Beamwidths</td>
</tr>
<tr>
<td>3.1-33</td>
<td>Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, Scanned 36 Beamwidths</td>
</tr>
<tr>
<td>3.1-34</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, On-Axis</td>
</tr>
<tr>
<td>3.1-35</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned +7 Beamwidths</td>
</tr>
<tr>
<td>3.1-36</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned +14 Beamwidths</td>
</tr>
<tr>
<td>3.1-37</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned -7 Beamwidths</td>
</tr>
<tr>
<td>3.1-38</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned -14 Beamwidths</td>
</tr>
<tr>
<td>3.1-39</td>
<td>Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned -21 Beamwidths</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1-40</td>
<td>163</td>
</tr>
<tr>
<td>3.2-1</td>
<td>165</td>
</tr>
<tr>
<td>3.2-2</td>
<td>168</td>
</tr>
<tr>
<td>3.2-3</td>
<td>169</td>
</tr>
<tr>
<td>3.2-4</td>
<td>170</td>
</tr>
<tr>
<td>3.2-5</td>
<td>172</td>
</tr>
<tr>
<td>3.2-6</td>
<td>174</td>
</tr>
<tr>
<td>3.2-7</td>
<td>175</td>
</tr>
<tr>
<td>3.2-8</td>
<td>178</td>
</tr>
<tr>
<td>3.2-9</td>
<td>180</td>
</tr>
<tr>
<td>3.2-10</td>
<td>184</td>
</tr>
<tr>
<td>3.2-11</td>
<td>185</td>
</tr>
<tr>
<td>3.2-12</td>
<td>187</td>
</tr>
<tr>
<td>4.1-1</td>
<td>189</td>
</tr>
<tr>
<td>4.1-2</td>
<td>190</td>
</tr>
<tr>
<td>4.1-3</td>
<td>193</td>
</tr>
<tr>
<td>4.1-4</td>
<td>197</td>
</tr>
<tr>
<td>4.1-5</td>
<td>198</td>
</tr>
<tr>
<td>4.1-6</td>
<td>202</td>
</tr>
<tr>
<td>4.1-7</td>
<td>203</td>
</tr>
<tr>
<td>4.2-1</td>
<td>205</td>
</tr>
<tr>
<td>4.2-2</td>
<td>206</td>
</tr>
<tr>
<td>4.3-1</td>
<td>207</td>
</tr>
<tr>
<td>4.3-2</td>
<td>208</td>
</tr>
<tr>
<td>4.3-3</td>
<td>212</td>
</tr>
<tr>
<td>4.3-4</td>
<td>213</td>
</tr>
<tr>
<td>4.3-5</td>
<td>214</td>
</tr>
<tr>
<td>4.3-6</td>
<td>216</td>
</tr>
<tr>
<td>4.3-7</td>
<td>217</td>
</tr>
<tr>
<td>4.3-8</td>
<td>16</td>
</tr>
<tr>
<td>4.3-9</td>
<td>16</td>
</tr>
<tr>
<td>4.3-10</td>
<td>20</td>
</tr>
<tr>
<td>4.3-11</td>
<td>22</td>
</tr>
<tr>
<td>4.3-12</td>
<td>24</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>4.3-13</td>
<td>218</td>
</tr>
<tr>
<td>4.3-14</td>
<td>219</td>
</tr>
<tr>
<td>4.3-15</td>
<td>220</td>
</tr>
<tr>
<td>4.3-16</td>
<td>222</td>
</tr>
<tr>
<td>4.3-17</td>
<td>224</td>
</tr>
<tr>
<td>4.3-18</td>
<td>225</td>
</tr>
<tr>
<td>4.3-19</td>
<td>226</td>
</tr>
<tr>
<td>4.3-20</td>
<td>228</td>
</tr>
<tr>
<td>4.3-21</td>
<td>230</td>
</tr>
<tr>
<td>A-1</td>
<td>237</td>
</tr>
<tr>
<td>A-2</td>
<td>240</td>
</tr>
<tr>
<td>A-3</td>
<td>241</td>
</tr>
<tr>
<td>A-4</td>
<td>243</td>
</tr>
<tr>
<td>B-1</td>
<td>247</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-1</td>
<td>Two Reflector and Reflectarray Concept Comparison</td>
<td>50</td>
</tr>
<tr>
<td>2.2-2</td>
<td>Schmidt Reflector Concept Comparison</td>
<td>51</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Position Measurement Requirements</td>
<td>59</td>
</tr>
<tr>
<td>2.3-2</td>
<td>System Level Characteristics</td>
<td>60</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Selected Approaches For Precision Surface Control</td>
<td>60</td>
</tr>
<tr>
<td>2.3-4</td>
<td>Potential Surface Measurement Approaches</td>
<td>62</td>
</tr>
<tr>
<td>2.3-5</td>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>2.3-6</td>
<td>Angle Sensing Dilemma</td>
<td>63</td>
</tr>
<tr>
<td>2.3-7</td>
<td>SWI Operating Range Potential</td>
<td>67</td>
</tr>
<tr>
<td>2.3-8</td>
<td>SWI Phase Measurement Accuracies (Example)</td>
<td>68</td>
</tr>
<tr>
<td>2.4-1</td>
<td>Strapdown/Gimballed IMU Comparison</td>
<td>78</td>
</tr>
<tr>
<td>2.4-2</td>
<td>Preliminary Characteristics of CCD Star Tracker</td>
<td>81</td>
</tr>
<tr>
<td>2.4-3</td>
<td>Space Sextant Characteristics</td>
<td>83</td>
</tr>
<tr>
<td>2.4-4</td>
<td>Autonomous Satellite System Concepts</td>
<td>87</td>
</tr>
<tr>
<td>2.4-5</td>
<td>Summary of Autonomous Navigation Systems</td>
<td>88</td>
</tr>
<tr>
<td>2.4-6</td>
<td>Tradeoff of Landmark Tracking Techniques</td>
<td>95</td>
</tr>
<tr>
<td>2.4-7</td>
<td>Atmospheric Drag Vs. Altitude</td>
<td>96</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Payloads For Various OTV Configuration</td>
<td>167</td>
</tr>
<tr>
<td>3.2-2</td>
<td>Transfer Modes to 5000 n.mi. x 65°</td>
<td>173</td>
</tr>
<tr>
<td>3.2-3</td>
<td>Radar Antenna Size and Weight (LEO)</td>
<td>176</td>
</tr>
<tr>
<td>3.2-4</td>
<td>Thermal Distortion.</td>
<td>177</td>
</tr>
<tr>
<td>3.2-5</td>
<td>Reflectarray Size and Weight (LEO)</td>
<td>179</td>
</tr>
<tr>
<td>3.2-6</td>
<td>Thermal Distortion.</td>
<td>179</td>
</tr>
<tr>
<td>3.2-7</td>
<td>Deployable Astromast Parameters</td>
<td>181</td>
</tr>
<tr>
<td>3.2-8</td>
<td>Deployable Box Truss Parameters</td>
<td>181</td>
</tr>
<tr>
<td>3.2-9</td>
<td>Radar Antenna Size and Weight (HEO)</td>
<td>182</td>
</tr>
<tr>
<td>3.2-10</td>
<td>Thermal Distortion</td>
<td>182</td>
</tr>
<tr>
<td>4.3-1</td>
<td>Summary of Concept Utilizing Hexagonal Panels and Triangular Truss</td>
<td>221</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>4.3-2</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>4.3-3</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Summary of Concept Utilizing Rectangular Panels and Box Truss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Aspects of Control of the Reflecting Schmidt Antenna</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION

This study addressed design concepts of sensors employing large space apertures with operation at RF and millimeter (MMW) frequencies. Design analysis considered minimal launch vehicle requirements, automated deployment and maximum shape/stability behavior during mission operations (such as attitude control generated disturbances). Weight minimization and sidelobe criteria drove antenna form considerations (f/D ratio, etc). Potential aperture growth mission requirements (greater than 50 meter diameter) drive overall physical volume considerations as well as structural layout, the latter selected in a manner which eases deployment.

Study results have specified preferred design parameters and have given anticipated performance predictions for RF and MMW sensors. These designs are rated as feasible using near term technologies in space type structures and materials.

This technical assessment on aperture sizing will be utilized for Space Based Radar (R1C) and Advance Cruise Missile Surveillance (R2E) efforts.

ROBERT F. OGRODNIK
Project Engineer
1. INTRODUCTION

This report covers the work done on contract No. F30602-79-C-0017, "Adaptive Techniques for Large Space Apertures". The contract covered the period 6 Nov. 1978 - 5 Nov. 1979. The three major tasks on the program were Task 1, Concept Development/Assessment; Task 2, Performance Analysis, Selected Approach; and Task 3, Specific Mission Designs. Much of the work done on Task 1, particularly in the structural concepts tradeoff, had been done by us on an earlier contract sponsored by SAMSO, No. F04701-77-C-0180, "On-Orbit Assembly Concept Study".

Techniques for the deployment in space of very large structures, currently being developed, allow the consideration of a number of space missions utilizing very large aperture antennas. Two surveillance missions of particular interest to the Air Force are the Space-Based Radar (SBR) and the Millimeter Wave Radiometer (MWR). Both of these missions were considered on the program. The principal technical problems associated with these applications are:

- The development of an appropriate structural concept capable of efficient packaging for launch, reliable deployment in space, and the achievement of adequate precision for use as an antenna.
- Accurate and stable attitude and figure control of these large flexible bodies to maintain the required pointing accuracy as well as the RF performance of the antenna with acceptable damping periods following any maneuver.
- An RF antenna system design that will give the desired flexibility, field of view (FOV), resistance to ECM, and beam agility to perform the desired mission.

The adaptive techniques of interest were those that might be required to compensate for surface irregularities in the large, space-deployable reflectors that would be required for these missions. This and other system requirements were considered in selecting an antenna system for each mission.

A number of antenna concepts were traded off against the requirements of the two missions and a concept was selected for each mission. The current program baseline concept for the SBR is a space-fed lens-array using a very large number of active transceiver modules to form the array. The principal weakness of this design is the high cost risk associated with the modules. Our selected approach gives a marked reduction in the required number of modules while still providing the flexibility to do the radar mission. The selected approach uses a large primary reflector 70 meters in diameter to achieve the necessary gain. A smaller field reflector and a phased array feed are used to provide the agility, FOV, and ECCM capability to do the radar mission.

A brief look was also given to a reflectarray as another possible alternate to the baseline lens-array SBR system. Its main advantage over the baseline lens-array system is that a much shorter focal length can be used. This
gives a lighter and stiffer structure.

The concept selected for the MWR mission is a reflective Schmidt telescope with diameter of 100 meters and a length of 300 meters. The reflecting surfaces are made up of metallized honeycomb panels. A linear array of feeds is used. This concept was selected for its wide FOV and relative simplicity.

A design effort was carried out for each mission. The structural concept selected in each case was the deployable box truss. RF performance was analyzed by computation. The structure was sized, weights were estimated and a packaging design for a shuttle launch was made. This included a sizing of the propulsion required to place the vehicle in its operational orbit. A first-cut design was also made for the attitude control and figure control systems.

Work done on the 3 program tasks is presented in chapters 2 through 4. Chapters 5 and 6 present our conclusions and recommendations.
2. TASK 1, CONCEPT DEVELOPMENT/ASSESSMENT

2.1 RF Concept Tradeoff. The two missions being considered have distinct requirements for their antenna systems. The radar mission needs a fairly wide field-of-view (FOV), on the order of 50 beamwidths or more. As a radar, it needs a single, highly agile beam and the capability to transmit high pulsed power as well as to operate as a receiver. Very low sidelobes and adaptive nulling capability are required. The bandwidth requirement is on the order of 200 MHz and the frequency of operation is in the 1-2 GHz region.

The radiometer mission requires a very wide FOV, 1000 beamwidths or more, and needs a large number of simultaneous contiguous beams to form a pushbroom. It is a receive-only system with very wide bandwidth (5 to 10 GHz) and high frequency (90 to 100 GHz) capability. These distinct requirements lead to the selection of a distinct antenna type for each mission. The considerations that entered into the tradeoffs for the two missions are summarized below.

2.1.1 RF Concepts, Space-Based Radar. Only two generic concepts fit this mission easily. These are (1), a full-aperture phased array, and (2), a reflector-based system that allows the use of some kind of electronically agile feed system for beam steering.

2.1.1.1 Phased Arrays. The baseline system being carried forward on the Space-Based Radar program is a space-fed lens-array using dipole elements front and back, with an active transceiver/phase shifter module at each element. Element spacing is not much larger than $1/2 \lambda$, giving a very wide FOV. The only reasonable array alternative to this system is a space-fed reflectarray. The reflectarray could use either active or passive (phase shift only) modules as could the lens-array.

The principal advantage of the lens-array is that it is relatively forgiving for large distortions of the array surface, up to several wavelengths in magnitude, while the reflectarray must meet the surface distortion requirements of a conventional reflector, i.e., around $\lambda/20$ or better. However, if advanced composite design techniques are used with a box truss structure, this advantage disappears, at least for aperture sizes up to around 500 ft. diameter, since the requisite reflector tolerances can be held by the structure. A big disadvantage of the lens/array is that it requires a very large f/D to give reasonable bandwidth performance because of feed-to-array path length differences across the aperture. $f/D = 2.5$ has been used in some designs. This requires a large high-gain feed and a very long feed support tower which adds weight, expense, and deployment uncertainties. More important, it causes the main structural vibration modes to be extremely low frequency, less than 0.01 Hz for a typical design. This has major adverse consequences for attitude control and system damping time. The reflectarray solves this path-length problem by deploying the array on a parabolic surface and feeding it from the focus. This allows the use of a relatively short f/D on the order of 0.5, giving a much stiffer and more compact structure.
We did not spend much time studying this concept since it was not the one selected for in-depth study. However, it does appear to offer some advantages over the baseline concept. A possible configuration is sketched in Figure 2.1-1. It is a passive reflectarray on a parabolic surface 300 ft. in diameter. This diameter gives sufficient additional directivity (2.3 dB) relative to the baseline 230 ft. system to make up for the passive module losses. $f/D = 0.5$ has been selected. A quadripod feed support is used for stiffness and reduced blockage. The feed system is an 8 x 8 Butler matrix, used for time delay compensation and adaptive nulling (similar to the Rotman lens used in the lens-array baseline). This feed array would have a square aperture around 6 ft. across, and would be composed of 64 small (0.8λ), contiguous horns. The spacecraft payload is mounted behind the feed. Each of these feed horns would be driven by a high-power (around 50 watts average) transceiver module to generate the required radiated power since the array modules are passive (phase shift only). A brief investigation of the shuttle packaging of this configuration is given in section 3.2. It was found that the vehicle could be packaged and delivered to a 5000 n.mi orbit using a single shuttle flight.

2.1.1.2 Reflector-Based Concepts. The principal disadvantage of any full-aperture phased array approach to the space-based radar mission is the extremely large number of element modules required. These may be quite expensive and with shielding, could be quite heavy. The virtue of any reflector-based system is that it achieves its large primary aperture and resulting high gain using a relatively simple reflector. The beam steering agility may be achieved in a number of ways, but it will generally be much smaller and simpler than the full-aperture phased array. The penalty for this simplification is generally some loss in the wide FOV given by the full-aperture array.

There are two classes of beam steering systems for reflectors. One class utilizes lateral translation of a single feed or switching between feeds in a cluster to achieve lateral translation. The second class uses a small phased array feed and does beam steering by phase control of the array. This second class is preferable for a radar application because it avoids the problems associated with the switching of high-powered signals. The system selected by us is in this second class.

The system selected by us for detailed analysis is a two-reflector design consisting of a large primary reflector, a smaller field reflector, and a phased array feed that is about the same size as the field reflector. Its performance is analyzed in Chapter 3.1. It has the advantage that surface distortions of the primary reflector can be diagnosed by observing the fields at the phased array feed, a potential advantage for adaptive surface control of the primary reflector. Other, more complex, systems were considered briefly. One of these would replace the field reflector with a reflectarray. This gives a somewhat larger FOV, but it did not appear to be worth the added complexity for a large space-deployable system. The selected system is the simplest one that gives phased array steering for a large reflector.
Figure 2.1-1 REFLECTARRAY SYSTEM
2.1.2 RF Concepts, Millimeter Wave Radiometer. A number of candidate antenna types were considered for the radiometer mission. The Schwartzschild system did not provide an adequate FOV. The torus antenna studied by Draper and others has a good FOV, but requires an extremely complex feed system to compensate for aberrations. There are a number of 3 and 4 reflector systems, analogues of optical telescopes, that would give the desired performance, but they are mechanically complex to deploy and are physically large relative to their effective aperture. Some of these disadvantages also apply to the selected system, a reflective Schmidt telescope. However, it only uses 2 reflectors, and would be simpler to deploy than the 3 and 4-reflector systems, so it was selected. The resulting design is described in Chapter 4.3. It gives a very wide FOV with nearly diffraction-limited performance and it uses only elementary feeds, so it appears to be an optimum system for the mission.
2.2 Structural Concept Tradeoff

2.2.1 Introduction
A structural concept tradeoff study was performed to determine the most promising candidate structure for meeting the requirements of the RF concepts described in Section 2.1. Each structural concept was evaluated with respect to its ability to meet the aperture size requirements, packaging volume, mass of aperture, deployment and/or erection requirements, surface precision, and ability to be integrated into the desired RF configuration (i.e. the two reflector radar). Listed below are the structural concepts that were considered:

<table>
<thead>
<tr>
<th>Concept Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbrella Radial Rib Double Mesh Antenna</td>
<td>Harris</td>
</tr>
<tr>
<td>Wrap Radial Rib Antenna</td>
<td>Lockheed</td>
</tr>
<tr>
<td>Erectable Radial Rib Antenna</td>
<td>General Dynamics</td>
</tr>
<tr>
<td>Curved Astromost Radial Rib Antenna</td>
<td>Harris</td>
</tr>
<tr>
<td>Radial Column Rib Antenna</td>
<td>Harris</td>
</tr>
<tr>
<td>Articulated Radial Rib Antenna</td>
<td>Harris</td>
</tr>
<tr>
<td>Maypole Antenna</td>
<td>Lockheed</td>
</tr>
<tr>
<td>a - Hoop/Column Antenna</td>
<td>Harris</td>
</tr>
<tr>
<td>b - Hoop/Column Radar</td>
<td>Lockheed</td>
</tr>
<tr>
<td>Polyconic Antenna</td>
<td>General Dynamics</td>
</tr>
<tr>
<td>Tetrahedral Truss Antenna</td>
<td>Martin Marietta</td>
</tr>
<tr>
<td>Box Truss Antenna</td>
<td>TRW</td>
</tr>
<tr>
<td>Solid Panel Deployable Antenna</td>
<td>Lockheed</td>
</tr>
<tr>
<td>High Frequency Radial Rib Antenna</td>
<td>Astro Research</td>
</tr>
<tr>
<td>Expandable Module Astro Cell Antenna</td>
<td>JPL</td>
</tr>
<tr>
<td>a - Hex Panel/Truss Antenna</td>
<td>Draper Labs</td>
</tr>
<tr>
<td>b - Hex Panel/Truss Antenna</td>
<td>Martin Marietta</td>
</tr>
<tr>
<td>c - Hex Panel/Truss Antenna</td>
<td>General Research</td>
</tr>
<tr>
<td>Rectangular Panel/Deployable Truss Antenna</td>
<td>MIT</td>
</tr>
<tr>
<td>Electrostatic Membrane/Deployable Truss Antenna</td>
<td></td>
</tr>
<tr>
<td>Thin-Film Controllable Antenna</td>
<td></td>
</tr>
</tbody>
</table>

In general, the candidate structural concepts fall into two operational frequency regimes. Concepts 1 through 11 utilize a mesh type reflector surface which is satisfactory to 20 GHz. Concepts 12 through 18 utilize either rigid metalized panels or a metalized membrane which will operate at frequencies greater than 20 GHz.

Also the candidate structural concepts fall into three generic structural configurations: 1-Radial Rib, 2-Truss and 3-Hoop/Column. The radial rib concepts have the advantage of minimal required structure to support the reflective surface and relatively simple deployment, but have the limitations of low deployed stiffness, difficulty of integration into a multiple reflector system, and inability to support solid panels for high frequency operation. The truss type concepts have the advantage of high deployed stiffness, ease of integration into a multiple reflector system, and ability to support solid panels for high frequency operation, but have the disadvantage of large numbers of structural elements and more complicated deployment. The hoop/column or maypole concepts have the advantage of lowest weight and most efficient packaging, but have the limitations of low deployed reflective surface frequency, difficulty of forming a curved reflective surface, complicat-
Based on the qualitative advantages and disadvantages of the three generic structural configurations, the truss type structure is the most promising candidate for the reflectarray, the two-reflector system, and the millimeter wave radiometer (Schmidt reflector).

2.2.2 Concept Description. The following paragraphs briefly describe each of the concepts that were evaluated.

Umbrella Radial Rib Double Mesh Antenna

Harris Corporation has developed the radial-rib concept for reflector antennas to the point of flight hardware models 16.7 ft in diameter (Figures 2.2-1-2-3) and larger. These models were used to demonstrate mechanical and electrical performance and to verify the analytical models used for design and prediction of performance. The demonstration of this technology clearly qualifies this design concept for flight application of antennas up to 18.3 m (60 ft) in diameter for operation up to K-band. This design capability takes advantage of the latest developments in structural composite materials and analytical tools for detail design and performance prediction. This basic design is currently planned for application on the tracking and data relay spacecraft, which will use two 5-m-diameter antennas on each satellite. The primary limitation of this design is the 80 ft diameter limitation based on packaging in the orbiter.

The basic structure of the antenna includes the ribs, feed support cone, hub, and deployment mechanism, while the RF reflective surface is formed by a dual surface configuration.

The parabolic reflector consists of tubular ribs which support and help shape the metallic mesh. The selection of the number of ribs is based on a tradeoff study considering weight, surface tolerance, and deployed dynamic performance. The dual-surface technique uses two surfaces, which are separated by the rib thickness and connected to one another by a large number of tensioned ties. The second surface, attached to the back of the ribs and tied to the front mesh by a large number of tensioned wires, is used as a drawing surface for contouring the front reflector mesh. By properly tensioning these tie wires, the reflector surface can be contoured to a good approximation to a parabolic shape. This design eliminates surface tolerance dependency on the number of ribs because the second mesh provides support for the RF reflective mesh. This design approach provides the flexibility to meet a wide range of structural and surface tolerance requirements with low weight.

The mechanical deployment system (MDS) provides a controlled deployment of the reflector from the stowed to the fully deployed position. This controlled deployment eliminates impact loading of the rib structures. The MDS is located inside the lower section of the feed support cone assembly and consists of a disk-shaped carriage, mounted to the moving section of a recirculating ball nut on a ball screw shaft. Connected between the carriage and the ribs are links that transmit the required force and motion to deploy the in-
Figure 2.2-1 Harris Corporation Dual-Mesh Configuration

Figure 2.2-2 Feed Support Structure of Harris Corporation Radial-Rib Antenna
Figure 2.2-3 Design Elements of Harris Radial-Rib Antenna

Figure 2.2-4 Typical Lockheed Wrap-Rib Antenna: Deployed Configuration
individual ribs. Rotation of the ball screw moves the carriage and attached links, which in turn produces the simultaneous rotation of each rib about its bearing. Latching in the deployed condition is accomplished by driving the ball-nut carrier and linkages through an over center condition (relative to the pivot arms).

Wrap Radial Rib Antenna

Lockheed has developed the wrap-rib antenna to the point of numerous flight applications for many different size antennas. The best known application is probably on the ATS-6 spacecraft, which uses a 9.1-m (30-ft) parabolic, wrap-rib reflector antenna operating up to and above 8 GHz. The ATS-6 antenna, made with aluminum ribs, and conventional thermal blankets, represents a technology about 10 years old. Recent developments using this concept have resulted in a manufacturing capability for fabricating wrap ribs from structural composite materials with extremely low coefficients of thermal expansion. New materials and processes for manufacturing mesh have been developed recently, and the analytical capability for the detail design of the structure has been recently improved. These developments have made it possible to design, build, and predict antenna performance for wrap-rib structures up to several hundred meters in diameter and perhaps larger for operation up to, and possibly above, X-band. The primary limitation of this design is the low deployed dynamic/frequency of the larger diameter wrap rib designs.

The wrap-rib antenna consists of a hollow, doughnut-shaped hub to which a series of radial ribs, formed to the shape of a parabola, are attached. A lightweight reflective mesh is stretched between these ribs to form the paraboloidal reflecting surface. The feed system is usually located at the prime focus of the paraboloid by one or more deployable support booms. A sketch of the deployed wrap-rib antenna is shown in Figure 2.2-4. To furl the reflector, the ribs are wrapped around the hollow hub with the mesh folded between them. (Figure 2.2-5).

The parabolic surface is formed by a flexible, lightweight reflective mesh supported along each of the radial parabolic ribs. The number of ribs or mesh panels used is dependent upon the desired rms surface accuracy, which in turn determines the gain of the antenna excluding the gain loss due to blockage by the feed support structure.

The hollow, doughnut-shaped support hub has mounting pads to interface the antenna system with a spacecraft or the Shuttle. It provides the support points for each radial rib and stowage area for the radial ribs and the reflective mesh. The hub supports the "in space" deployment and refurl mechanism as well as an "in space" surface-contour evaluation and adjustment system, if such a system is used.

The flexible ribs are wrapped around a power-driven rotating spool that constrains the stored energy of the wrapped ribs and deploys the reflector surface at a controlled rate. The furling mechanism uses a sliding guide to "wipe" the ribs in a rotating manner back into their stowed configuration. The stowed configuration may be as small as one-fortieth of the deployed diameter of very large antennas. The stowed configuration also lends itself...
Figure 2.2-5 Lockheed Wrap-Rib Antenna: Furling Mechanism
to high load-carrying capability.

The feed or feed array used with this concept is dependent upon the reflector size and intended use. It may be a single horn illuminating the total surface; a cluster of horns, each illuminating a portion of the reflector surface, but forming one coherent beam; or a cluster of feeds forming individual spot beams. The cluster of feeds also may be replaced by a phased array used as a feed for either single or multiple beams or to generate specially shaped or steerable beams.

Dependent upon reflector size, the deployable feed support structure could be a simple, powered, folding structural boom; a structurally formed boom that is elastically buckled for storage on powered spools; a modified scissors structural-type boom that is powered for extension and retraction; or some type of telescoping boom. The boom will use conventional thermal control or will be built from materials with low coefficients of thermal expansion to ensure precise positioning of the feeds under varying thermal environments.

Erectable Radial Rib Antenna

General Dynamics Convair Division has performed a design study of an On Orbit Assembly (OOA) spacecraft. The study investigated and defined the new technology required to place large, low-density structures on orbit. The technology was applied to the conceptual design of an orbital assembly flight article. Deployment of the DoD/STS300A Spacecraft module in low earth orbit (LEO) is illustrated in Figure 2.2-6, which depicts the radial arms, lens array, feedmast, and upper stage hub assembly. The separately deployed feedmast assembly is mated to the module at geosynchronous earth orbit (GEO). Figure 2.2-6 shows a typical section of the deployable radial arm. The radial arm and feedmast basic structural elements are tubular graphite-epoxy. Over-center lock hinges and thin metal "carpenter tape" hinges accommodate compact stowage in the Space Transportation System (STS) Orbiter cargo bay. The primary limitation of this concept is the difficulty of attaching the reflector surface and holding the required precision for a reflector application.

Curved Astromast Radial Rib Concept

This Harris design consists of a central hub with multiple Astromast cannisters attached radially around it (see Figure 2.2-7). The feed is also attached to an Astromast located in the center of the hub.

Astromasts are articulating lattice structures that are folded into a small volume when stowed and which extend fully when deployed. Deployment takes place by the individual sections of each Astromast rib being forced out of its respective cannister. Once fully deployed, the ribs form the desired parabolic shape. The reflective mesh is attached and shaped by the same secondary drawing surface technique used for the articulated rib concept.

The stowed size of this concept is very compact and easily compatible
Figure 2.2-6 General Dynamics Radial Rib Concept
Figure 2.2-7 Harris Curved Astromast Radial Rib Concept
with the shuttle's storage bay. There are, however, serious drawbacks to this concept. The actual attachment of the mesh to the ribs would involve an extremely complex mechanism.

When stowed, the entire astromast is contained within its cannister. The mesh cannot be drawn into this cannister, so it must detach from the ribs as they are being stowed, and reattached upon subsequent deployments. The costs associated with the development of a curved astromast are very high and the additional cost of developing a mechanism capable of attaching and detaching the mesh makes the total cost prohibitive.

Radial Column Rib Antenna

The Harris Radial Column concept shown in Figure 2.2-8 employs straight extendable booms which would be either Astromasts or some other type of telescoping members. The reflective mesh is not attached along these ribs, but rather to large standoffs at the rib tips. The mesh shaping technique involves the use of a secondary drawing surface similar to the one described for the Hoop/Column concept. The mesh is supported at its periphery by a series of intercostals which in turn are attached to the tips of the standoffs. Thus, when the ribs stow, there is no mesh interference problem.

The radial ribs are column loaded due to the mesh and secondary drawing surface loads being reacted by stringers called column preload ties. These ties are attached to the standoffs at their lower end such that no net moment results at the tip of the rib. The inboard end of the rib is attached to the hub by a pin joint which has no moment carrying capability.

The primary limitation is the complicated deployment and its potential application near the 100m size and larger diameters appears limited.

Articulated Radial Rib Antenna

This concept (shown in Figure 2.2-9) is a logical extension of Harris ESD's current radial rib design, but has the flexibility to accommodate larger diameters and retain the same packaging efficiency. It consists of a center mast which supports the feed and to which rigid radial ribs are attached by pivots at the base. Because of the antenna diameters under consideration and the constraint of the limited stowed volume available, it is necessary to put an articulation at the midspan of each rib. The ribs approximate a parabolic contour and have adjustable standoffs to which the reflective mesh is attached. The surface is shaped between the ribs by the secondary drawing surface technique. The concept is attractive from experience standpoint, but there are serious packaging size limitations. The shortest stowed length with a single articulation in the ribs is one quarter of the antenna diameter. For a 100 m diameter antenna, this length would become prohibitive. Another articulation for each rib is possible, but the added mechanical complexity and probable mesh handling problems negated the potential advantages.
Maypole Antenna

LMSC developed the maypole concept primarily for self-deployable reflector antennas from 100 m in diameter to 1000 m in diameter (Figure 2.2-10). The intended frequency for the smaller sizes is 8.5 GHz, which decreases to 1.0 GHz for the larger sizes. LMSC developed the concept to the point of a preliminary design for the estimation of parameters such as surface accuracy, thermal distortion, mechanical packaging efficiency, weight, cost, and basic dynamic characteristics. The primary limitation is the complicated deployment and poor surface accuracy.

The deployed maypole antenna resembles a "maypole" or a bicycle wheel. It consists of a long central column and hub, a rigid outer rim, and a system of tension cables (spokes) originating from the rim and terminating at both ends of the column. These tensioned spokes locate the rim with respect to the column and stabilize the basic structure. A reflective, paraboloidal mesh cup is suspended at the center of the wheel to form the reflector. The mesh is attached to the perimeter of the rim and the hub. The parabolic contouring of the RF reflective mesh is made possible by a series of mesh ribs that are attached to the reflector surface along radial seams. The mesh ribs are tapered, with respect to their attachment to the reflective surface, and terminate into a single cable that is attached to the lower portion of the central column. The proper tension in the mesh rib cable and tension field in the RF mesh result in a parabolic contour of the radial lines of intersection of the two mesh systems. Collectively, these lines of contour approximate a parabolic surface. An increase in the number of ribs improves the surface quality.

The structural design is based on the capability of the outer rim member and the column to withstand the compression loads resulting from the tension loads in the spokes. Very large reflectors use very low tension loads in the spoke ties. These loads are held at a stable low value by "load maintainer" mechanisms in series with each spoke. The "sufficiently rigid" outer rim and the center column become feasible because of the low load values in the spokes.

In addition to providing for gravity gradient stabilization of the antenna system against solar pressure, the central column can be used to carry spacecraft control modules, depending on the magnitude of the mass moment-of-inertia ratios. The maypole concept, for very large antennas, is expected to become feasible when near-zero thermal-coefficient-of-expansion materials become available for the mesh, the structural rim, the central column, and the tension tie spokes. Active surface evaluation and control will be required for antennas of this concept when operating in the gigahertz frequency range.

Initial investigation has shown that a 300-m-diameter antenna based on this concept, which operates in the frequency range of 1 to 2 GHz, can be stowed within the cargo volume and weight limits of one Space Shuttle flight.
Lockheed Maypole Parabolic Reflector

Figure 2.2-10
Hoop/Column Reflector

The Harris Corporation hoop and column reflector antenna concept for self-erectable structures is intended for designs up to 100 m in diameter (Figure 2.2-11). This concept has been developed to the point of a preliminary design for sizes up to 45.7 m (150 ft) in diameter and a 1.8-m-diameter conceptual demonstration model. The 1.8-m mechanical model was used to verify the basic conceptual design in addition to leading to solutions of the kinematic problems associated with deployment. The preliminary design has been complemented with the development of analytical techniques for prediction of antenna performance for larger size structures. The primary limitation of this design is the complicated deployment and surface control requirements. The fundamental elements of the support structure include the hoop; upper, lower, and center control stringers; and the telescoping mast. The reflector consists of the mesh, mesh shaping ties, secondary drawing surface, and the mesh tensioning stringers. The basic antenna configuration is a type of "maypole," with a unique technique for contouring the RF reflective mesh.

The hoop's function is to provide a rigid, accurately located structure, to which the reflective surface attaches. It is comprised of 40 rigid sections which articulate at hinges joining adjacent segments. These segments consist of two tubular, graphite fiber members parallel to each other and attached to a long hinge member at each end. These long hinges allow the separation between the tubular members of the hoop segment required by the geometry of the mesh-secondary drawing surface. Torsion springs located in each hinge supply the total energy required to deploy the hoop.

The central column or mast is deployable and contains the microwave components and control mechanisms. It consists of tubular graphite/epoxy shell members that nest inside each other when stowed. Aside from housing various components, the mast provides attachment locations for the reflective surface and the stringers.

Five sets of stringers are used on the hoop/column concept. Three of these sets are used for hoop deployment and its control; the other two sets are used for mesh shaping. The hoop-control stringers are located at the upper end, the center, and the lower end of the extendible mast; they extend radially outward to their attachment positions at the hinges of the hoop. The upper and lower control stringers accurately position the hoop throughout its deployment. The center control stringers are used for rate control during deployment and for moving the hoop joints toward the mast, against their spring forces, during the automated stowing sequence. The remaining two sets of stringers (mesh tensioning stringers) are located just above the lower control stringers and are used to shape the reflective surface into the proper contour. All of these stringers are made of stranded quartz cords for high stiffness and thermal stability.

The reflective surface is produced by properly shaping a knitted mesh fabric. The mesh is made of 1.2-mil-diameter, gold-plated molybdenum wire. The mechanism that permits shaping of the mesh consists of numerous radial quartz stringers to which the mesh is directly attached (mesh surface
stringers) along with a similar set of stringers (secondary drawing surface stringers) positioned beneath them. Short ties (mesh shaping ties) made of fine Invar wire connect the RF mesh surface stringers to the secondary drawing surface stringers as shown (see Figure 2.2-12). When the RF mesh tensioning stringers are tensioned, they in turn tension both the secondary drawing surface stringers and the mesh shaping ties to produce an essentially uniform pressure distribution on the mesh. This pressure distribution allows shaping of the mesh to a good approximation of a parabolic curvature. This configuration for a single gore element is shown in Figure 2.2-12. The surface accuracy is affected by the number and spacing of the mesh shaping ties. The greater the number of ties, the greater the surface accuracy.

Two groups of drive mechanisms are used in the hoop and column concept. One group, used to extend the mast, consists of one basic set of mechanisms for each section of the telescoping mast. The second group of drive mechanisms is used to adjust the control stringers and consists of motor-driven spools to which the stringers are attached. There are five sets of spools, one for each group of stringers. The spools are used to retract and discharge the stringers during the deployment and stowing sequence and are positioned around the mast in the locations described for the stringer attachments. A torque motor drives each set of spools independently, as required by the specific position and velocity of the hoop joint being controlled. The deployment sequence is shown in Figure 2.2-13.

Hoop/Column Radar

The Grumman space-fed phased-array concept for self-deployable antennas is intended for designs up to several hundred meters in diameter for operation at L-band or S-band (Figure 2.2-14). Grumman developed this concept to the point of a preliminary design for a 60-m-diameter antenna and a 1.3-m (4-ft)-diameter mechanical model. The mechanical model was used to demonstrate and evaluate the basic mechanical conceptual design. Detailed design of a 300-m antenna was used in a NASTRAN finite element analysis, static and dynamic, to determine the tolerance-holding properties of the design. It was determined that tolerances can be held well under one-hundredth of a wavelength at L-band. The primary limitation is the complicated deployment and the low frequency of the deployed membrane.

The Grumman antenna concept is a planar-type array whose basic support structure is a "wire-wheel" type configuration. This concept development was centered around the design of 61-m-diameter and 300-m-diameter space-fed, phased-array antennas for operation at L-band.

The basic elements of the support structure include the drum, rim assembly, fore and back stays, and telescoping mast. The phased array itself is composed of 32- to 72-gore panel assemblies and their tensioning devices (Figure 2.2-15). The compression rim assembly is located and supported about the drum by the spring-loaded radial stays that extend from the rim to reels located on the drum assembly. This basic configuration is the "wire-wheel." The antenna drum for the 61-m antenna is 7.1 m long and 1.47 m in diameter, and is fabricated principally of aluminum alloy in frame-reinforced, thin-skin cylindrical configuration. Two support rings, external to and
Figure 2.2-12 Mesh Shaping Configuration of Harris Corporation Hoop and Column Antenna
Figure 2.2-14 Basic Structural Elements of Grumman Phased-Array Concept

Figure 2.2-15 Grumman Phased-Array Planar Configuration
supported by the drum, and a multiplicity of antenna gore edge/batten support studs transfer the deployable hardware launch loads to the primary structure. The compression rim assembly is composed of 32 thin-wall graphite/epoxy tubes, 5.96 m long and 1.08 mm in diameter. The radial stays are graphite/epoxy strips, 0.003 by 2.5 cm (1 in.). The gore panel assemblies are tensioned between the rim and the drum so that they form a plane. Operation of the antenna at L-band requires a rim assembly radial tolerance of the radiating elements of less than 0.8 cm (0.3 in.) and axially less than 4.6 cm (1.8 in.).

A 91.4-m Astromast locates and supports the antenna feed system and power source which consists of two deployable 14.2-m-diameter solar arrays that are based on the same deployable antenna concept. The Astromast canister is located within the drum structure.

Polyconic Antenna

The parabolic surface of the polyconic reflector developed by LMSC is formed by a series of circular conical segments of lightweight reflective mesh as shown in Figure 2.2-16. These conical segments are positioned by mesh ribs and a series of radial booms mounted to a central hub. The radial structural booms and polyconic reflective mesh surfaces are folded in a vertical direction like an umbrella. The length of booms will determine the necessity of intermediate folds of each boom.

The parabolic surface is formed by a lightweight reflective mesh held in place by circular mesh ribs which are anchored to radial stiff booms. The desired surface accuracy is obtained by the use of many circular conic sections joined, one to the other, in the circumferential direction. Each junction of one conic segment to the next is held by circular mesh ribs, the top edge of which forms the circular conic junction desired. The bottom edge is terminated in a catenary member which can be adjusted in length to produce desired reflective surface accuracy. The higher the surface accuracy desired, the larger the number of conical sections required. Like the wrapped rib reflector, the polyconic reflector must be designed to be sufficiently rigid to permit slewing without excessive weight or oscillation decay time.

The hub construction must provide support for the boom deploy and retract mechanism. It must provide the structural base for the hinged booms, it must provide the structural base for the feed mounting central boom and it must provide mounting positions for the automated "in space" surface contour evaluation and adjustment system.

Each radial boom is deployed from a vertical position. If the reflector surface is very large, each boom must be folded onto itself some number of times in order to fit the folded booms into the Space Shuttle cargo bay length. Screw jack controlled leverage will deploy the booms with articulation extension of the booms.

The feed is similar to that described for wrapped rib concept.
Figure 2.2-16 Lockheed Polyconic Reflector Concept
Since the radial booms that support the reflective surface do not wrap around the hub, as in the wrapped rib reflector, but fold into a vertical stowed position, the stowed configuration is limited only by the length of the cargo compartment. Dependent upon antenna diameter, some or all of the feed support boom may be of a fixed construction. The necessary extension beyond the approximate 60 foot fixed boom may be of similar construction to that described for the wrapped rib antenna.

The primary limitation of this concept is the complicated structure configuration and the deployment sequence.

Tetrahedral Truss Antenna

General Dynamics Corporation has developed the parabolic erectable-truss antenna (PETA) concept to the point of a hardware demonstration of a 5.2-m (18-ft)-diameter model (Figure 2.2-17). This model and other smaller models successfully demonstrated the antenna's self-deployment characteristics, provided verification of the mathematical models, and provided measured mechanical and RF performance information. This concept has been under development for more than 10 years; however, the latest version is based on using structural composite materials with low coefficients of thermal expansion. This concept has been developed to the point of flight readiness for antennas up to 15.2 m in diameter and larger. This concept has excellent characteristics to meet the mission requirements.

The PETA concept is a basic building block used in numerous combinations to achieve the desired shape and size of antenna structure. The basic element is a deployable tetrahedral truss that is hinged by spider links at each corner. Each tetrahedron forms one truss bay, which can vary in number from 4 to 10 or more, across the major diameter of the reflector structure. This configuration is the basis of the support structure for the RF reflective mesh and feed support structure. Components of the reflector structure have the same basic configuration design, regardless of the number of bays. Therefore, as the number of bays increases, for a given diameter, the number of mesh support points increases and the reflector surface improves. The selection of the number of bays, for a given antenna size and application, is a function of cost, reliability, weight, and surface tolerance. For example, the minimum weight for the larger size antennas, for a given material, is 6 or 8 bay versions. For this configuration, the basic reflector structure shape is hexagonal rather than circular, so the equivalent reflector diameter is about 10% less than the maximum point-to-point width.

Deployment of the basic tetrahedron is made possible by hinging of the struts at their centers with carpenter tape. This type of hinge provides for zero slop while maintaining with sufficient strain energy to accomplish deployment and an excellent mechanical lock-up in the deployed configuration. Deployment of the composite structure, which consists of a series of tetrahedrons, is essentially equivalent to that of a single bay.

Various materials including aluminum, titanium, and graphite/epoxy have been evaluated for application to the basic truss design. The choice of materials strongly influences the weight, cost, thermal distortion and
Figure 2.2-17 General Dynamics Expandable Truss
mechanical packaging efficiency of the antenna. Aluminum tubes provide the lowest cost material, but result in relatively high weight and thermal distortion. Perforated-wall aluminum tubes reduce thermal distortion and weight at some increase in cost. Perforated-wall titanium tubes produce low thermal distortions with weight slightly in excess of perforated aluminum tubes. Graphite/epoxy tubes produce a very lightweight truss with almost twice the packaging ratio of the perforated aluminum version, because of the smaller tube diameters that can be used with this material.

The RF reflective mesh is supported across each bay by a series of tension ties and a webbing attachment system that interfaces the tension ties with the mesh. The tension ties are attached to standoffs at each spider and span each bay with a simple grid pattern. The webbing system in turn is attached to the tension ties at a number of points to provide a finer grid pattern to which the mesh is attached. The resulting configuration of the mesh is eight flat surface elements, within each bay, that collectively approximate a parabolic surface. For example, in an 8-bay antenna there would be 64 adjustable flat sections across any single diameter of the antenna. However, for antenna high-frequency applications, 13 mesh-to-webbing ties are used along the edge of each bay.

Box Truss Antenna

Under contract to the United States Air Force's Space and Missile Systems Organization, Martin Marietta Aerospace has evolved a deployable box truss, large space structure concept that utilizes the shuttle Orbiter in an extremely efficient manner. Figure 2.2-18 shows the steps in the low earth orbit operations for this concept. An antenna module and an orbital transfer stage are carried to orbit in the cargo bay. The stowed module and its upper stage are being rotated up and out of the cargo bay on an aft-mounted hinge. After the initial steps are taken while attached to the orbiter, the module and stage are detached from the shuttle, after which the bulk of the deployment operation takes place. After the module is fully deployed and checked out, the upper state transfers it to an operational orbit.

The concept is applicable to a wide variety of large aperture sensor systems or platforms. Utilizing state-of-the-art technology in graphite/epoxy structural members combined with the natural efficiency and stability of a deep truss, the concept will provide a combination of high passive precision and low weight. This concept has excellent potential for meeting the mission requirements.

Figure 2.2-19 illustrates the basic concept's operating principle. Vertical members connect the front and back surfaces of the truss and carry support posts upon which the antenna surface is mounted. Surface tubes, hinged in the middle, connect each vertical member to each of its neighbors. Each truss square, composed of surface tubes and vertical members, is stabilized by diagonal tension tapes. For stowage, each surface tube folds about its mid-link hinge and the diagonal tapes form a coil between the stowed mid-link hinges.

Structural deployment is accomplished in low earth orbit (LEO) near the
orbiter in a sequence of controlled steps. Figures 2.2-20 and 2.2-21 give an example of this sequence for a truss that is composed of 24 cubes forming six rows and six columns. In the example, the cube faces forming the innermost row on each side of the centerline are deployed first. Following verification that this step has been completed successfully (a procedure followed between all steps), the outermost rows are deployed. Symmetrical pairs are always deployed simultaneously to balance reaction forces. This preserves the deploying structure’s attitude and center of gravity position. The row deployment step involving the middle rows on each side results in full deployment in the row direction. Figure 2.2-21 illustrates the three column deployment steps, in this case working from the outside to the center, in a sequence that completes truss deployment.

Prototype designs for all structural members and mechanisms have been defined. Electrically controlled, redundant, deployment release latches connect each vertical member’s end fitting to the neighboring stowed verticals’ end fittings. These latches provide the desired controlled release sequence. Redundant coil springs in the mid-link hinges drive the deploying structure. As each surface tube swings out to its deployed condition, a spring-loaded latch in the mid-link hinge locks the tube straight and provides the impulse necessary to tension the diagonal tapes and array surface.

Deployment dynamics analyses have been made for typical cube faces throughout the deploying truss. Since boundary conditions vary from cube face to cube face, e.g., the outboard mass being accelerated by a given cube face’s springs varies, the spring torque profiles are tailored to their locations in the truss. The springs are sized by three requirements: (1) with all springs operating at ten percent over nominal (energy input), the surface tubes are not overstressed; (2) with one spring out of each pair of redundant springs failed, enough energy is still available to deploy each cube face and tension its diagonal tapes and array surface; and (3) with nominal spring performance, all cube faces in a given row or column will deploy at the same rate. Typically, a row or column requires approximately 45 seconds to deploy.

Various types of antenna surfaces have been considered for large aperture spaceborne antennas. These range from simple R.F. reflective meshes to multi-layer phased arrays that include power distribution and subarray electronic modules. The concept for array surface stowage on the deployable box truss involves double-accordion pleating. One set of pleats is parallel to the truss column direction and the second set, at ninety degrees to the first, parallels the rows. As shown in Figure 2.2-22, the small row pleats unfold as the rows are deployed, leaving the larger column pleats still folded. The latter then unfold sequentially as the column deployment steps take place.

This array folding concept, with its orthogonal fold lines, accommodates mesh surfaces easily and, more importantly, allows the surface to contain regularly-spaced, non-foldable objects such as subarray electronic modules. In the case of the planar phased array surface, these modules are located on 30-inch centers throughout the surface. The column fold lines on 60-inch centers and the row fold lines on 6-inch centers are located to avoid all of the modules.
First Columns

Second Columns

Fully Deployed Truss

Third Columns

Figure 2.2-21 Box Truss Step By Step Column Deployment
Solid Deployable Reflector

TRW demonstrated concept feasibility with a 2.1-m (7-ft) mechanical model and developed the preliminary design for a 7.3-m (24-ft)-diameter, precision-deployable antenna reflector capable of operation at frequencies up to 60 GHz (Figure 2.2-23) and above. The antenna design provides RF efficiency of 70%, with a beam pointing error less than 0.04 deg. The estimated 72.5-kg (160-lb) weight for this design includes the subreflector, support structure, and communication beam autotrack feed package. The deployed natural frequency is estimated at 5 Hz. The mechanical design features graphite/epoxy composite hinged-panel construction. The design is capable of withstanding conventional or Shuttle launch loads. The primary limitation of this concept is that the maximum allowable diameter is 50 ft for a Shuttle package launch.

This deployable antenna concept provides a large, lightweight, precision contour parabolic reflector. The concept was developed for a shaped Cassegrain antenna application with a single high-efficiency data beam/multimode autotrack system. The design is applicable to multibeam configurations. Greater than 70% efficiency can be attained at 60 GHz with a beam pointing error of less than 0.04 deg. The reflector is constructed of graphite/epoxy facesheets and aluminum core sandwich to provide an extremely lightweight reflector. The reflector weight is 67.6 kg (149 lb) for a 7.3-m-diameter design, including thermal paint and the stowage release mechanism. The subreflector/support struts weight 1.3 kg (2.8 lb). The feed system weights 2.95 kg (6.5 lb). The total estimated weight is about 72.5 kg without contingency.

The center section is a one-piece honeycomb sandwich construction. The folding panels are rigid honeycomb sandwich. The main panels hinge from a support ring under the center section. The two intermediate panels lie between, and are connected to, the main panels and to each other with two or more hinges. The hinges have adjustable stops to locate the panels accurately in the deployed configuration. Springs are used in the hinges to drive the panels to the deployed position. Adjacent inboard hinges of the main panels are interconnected with a compound universal coupling to ensure synchronization of all panels during deployment. The deployment rate is controlled by either a damping device or a geared motor. The furled reflector is restrained by a pin puller, which is ordnance released, and supported on one of the tiedown fittings. The tiedown fittings extend beyond the edge of the intermediate panels and are connected at a common joint on the reflector axis.

A 4.9-m-diameter reflector was chosen for a "paper" study consisting of a preliminary design, structural analysis, thermal distortion analysis, and a weight estimate. The 1.3-cm (1/2-in.)-thick sandwich construction for the reflector utilized three-ply graphite/epoxy face-sheets 0.2229 mm (0.009 in.) thick, and an aluminum core with a 0.6-cm (1/4-in.) cell size and density of 25.6 kg/m (1.6 lb/ft). The support ring under the fixed center section was a rectangular tube cross-section 5.1 cm x 7.6 cm x 0.76 cm (2 in. x 3 in. x 0.030 in.) thick. The hinges interconnecting the panels were made of aluminum. The main panel inboard hinges that attach to the
Figure 2.2-23
TRW Solid Deployable Reflector
support ring were made of graphite/epoxy composite. Because of weight considerations, no thermal control shroud or insulation was used to reduce temperature gradients. However, thermal insulation could have been used on the back of each panel. Load factors of 12 g lateral and 10 g axial relative to the reflector axis were assumed for the structural analysis.

High Frequency Radial Rib Antenna

LMSC recently developed a concept for a high-efficiency, large-aperture, millimeter-wavelength parabolic reflector antenna. With this concept, an antenna up to 18.3 m (60 ft) in diameter for operation up to 60 GHz can be accommodated by one Shuttle payload (Figure 2.2-24). This concept, which is based on the application of the very latest composite materials technology, is currently being developed into a preliminary design. The primary limitation is the diameter limitation of 60 ft.

The basic structure for this concept consists of a series of radial ribs that fold about their base, which is attached to the antenna hub structure. The RF reflective surface is formed by a series of individual concentric rings that are individually supported by the radial ribs. This series of thin, conical rings, whose edges are accurately aligned with adjacent rings, approximates the desired parabolic shape. The rings themselves are made from very thin strips of graphite/epoxy, 0.25 mm (0.010 in.) thick. The thin rings are similar to carpenter tape in that they can be elastically folded for the stowed configuration and then deployed into a predetermined circular shape made possible by the physical properties of the rings. Each ring is attached to each rib for its support, but not to the adjacent rings. The width and number of rings used determine the surface accuracy.

Deployment is accomplished with an electromechanical mechanism for rotation of the ribs and deployment of the feed support structure. The Space Shuttle payload compartment is expected to accommodate an antenna of this concept up to 18.3 m in diameter.

Expandable Module Astro Cell Antenna

Astro Research Corporation and NASA Langley have developed a modular approach to assembly of large precision reflectors. (See Figure 2.2-25). The individual modules are packaged for launch, so as to utilize the volume of the Shuttle properly, and then expand in orbit.

This concept can be used to construct large platform-truss areas for supporting "payload panels" which may be accurate reflectors, waveguide arrays or solar-power panels. The module's shape and stowed configuration are selected to utilize the Shuttle payload volume efficiently. Note that the "payload" is preattached to the structure at three points which could include means for adjusting the panel position. The assembled surface can be made curved by appropriate precut lengths of the module's structural members.

The structure consists of the upper and lower triangular frames and the diagonals. The curved "longerons" are not part of the primary structure; they are prebuckled and therefore supply the forces necessary to pretension.
Figure 2.2-24 LMSC High-Frequency Radial-Rib Antenna

Figure 2.2-25 Astro Research Expandable Module Assembly Approach
the diagonals. The module is capable of carrying compression with full stiffness. The design of the hinges and other attachments has been carefully thought out so as to achieve maximum compactness. The depth of the packaged module is just the sum of the triangular-frame thicknesses. The deployment motion is quite similar to that of one bay of an Astromast lattice column.

The joints between modules must provide a good structural tie. They must also provide for electrical connections. One attractive concept for meeting these requirements is the probe-and-drogue. The probe-and-drogue arrangement facilitates engagement, and a torqued fastener on the end of the probe precompresses the joint to cement the marriage. Full modularity is enhanced by providing the universal triangular transition piece in which the variations in electrical circuitry can be accommodated.

Hex Panel/Truss Antenna

There are a wide variety of millimeter-wave antennas that utilize rigid honeycomb panels that are assembled to a deployable or erectable tetrahedral truss structure. Three concepts are shown in Figures 2.2-26, 2.2-27 and 2.2-28. These concepts differ from the expandable module Astrocell in that the structure is deployed or erected and then the honeycomb panels are attached to the structure.

Rectangular Panel/Deployable Truss Antenna

Martin Marietta has developed an approach to deploying and assembling a large millimeter wave reflector system. The concept shown in Figure 2.2-29 utilizes an automatically deployable box truss structural platform. The panels which are assembled to the truss after truss deployment are graphite epoxy honeycomb and are rectangular. The rectangular shape was selected to maximize the packaging efficiency in the Orbiter while providing the largest panel segments. The box truss structure is configured with a matching rectangular configuration. This allows each panel to attach to the vertical corners of a box.

Panel adjustment provisions are provided at the three vertical members where the panels are attached to the structure. These adjustment mechanisms allow panel location adjustment to eliminate the effects of thermal deflection of the support structure.

Electrostatic Membrane/Deployable Truss Antenna

The Electrostatically Controlled Membrane Mirror (ECMM) developed by General Research is revolutionary approach to achieving large, very light reflectors for radar, radio astronomy, radiometry, and optical devices. (See Figure 2.2-30). The ECMM is a thin, electrically conducting membrane that is accurately tensioned and positioned by electrostatic (Coulomb) forces. The reflector's shape (figure) is maintained by varying the electrical potential between the membrane and segmented electrodes behind it, using closed-loop control. An important component of this adaptive structure is the figure sensor, which monitors the surface quality to furnish error
Figure 2.2-26 Caltech Configuration of 10-m Millimeter-Wave Antenna

Figure 2.2-27 Rigid Panel Millimeter Wave Radiometer
Figure 2.2-28 A 28 Meter Deployable Truss With Hexagonal Panels
Figure 2.2-29
Martin Marietta Radiometer Concept Using Box Truss
And Solid Panels
signals to the control loop.

Analytical and experimental efforts in the last several years indicate the possibility of employing the ECMM for high-surface-precision reflectors in both ground and space applications. In both situations, design goals are to achieve a ratio of aperture diameter to RMS surface waviness of 10^5 to 10^9. Achieving such precision in light structures is difficult if not impossible without some form of active control. With active control--positioning the membrane to a required figure automatically--surface precision may be achieved despite the presence of various disturbances. In effect, great improvements in surface accuracy over passive reflectors are expected because optical-electrical circuitry can provide long-term positional stability of the membrane.

The ECMM is essentially a charge capacitor with the deformable reflector as one of its electrodes. When a voltage is applied between the unstressed membrane and the back electrodes, the electrostatic attractive force draws the membrane inward. An electrical network is used to generate the required high field strength between the supported back electrodes and the deformable membrane electrode. The pressurized membrane deforms to a doubly curved surface, unlike "draped-mesh" reflectors, which are made up of flat or singly-curved sections. A membrane acted upon by a pressure loading naturally forms a concave surface of the sort required for most antenna reflectors. The fixed back control electrode is segmented into electrically isolated elements, each supplied with a different control voltage and thus exerting a different field strength and pressure on the membrane. Like pneumatic pressure applied to a deformed balloon, the electrostatic force is always normal to the (conducting) membrane; but unlike pneumatic pressure, the electrostatic loading can be rapidly changed and can be different at different points on the membrane, thus forming different reflector geometries.

Thin Film Controllable Antenna

Massachusetts Institute of Technology is currently developing a new and unique antenna concept that seeks to approach the ultimate limit for RF performance (Figure 2.2-31). Antenna beam widths of several arc seconds are sought for mesh or 2- to 10-μ-thick film that is configured to the approximate reflector shape by its basic support structure, and then distended electrostatically into a high-precision surface. This concept has been evaluated analytically for antennas from 20 m to 1000 m in diameter. The construction of a 1-m-diameter conceptual mechanical model that is currently in process at MIT will be used to demonstrate and evaluate this concept. The development of this concept is based upon obtaining high-precision RF reflecting surfaces by using a distributed control system and very lightweight and flexible reflector surface materials whose excellent packaging efficiency is expected to accommodate construction of large antennas.

The antenna configuration consists of a basic reflector support structure, which could be either deployable or erectable; a precision RF reflective surface; and a secondary surface that is located "behind" and almost parallel to the primary surface. The secondary or "command" surface is supported and contoured to the approximate desired reflector shape by the basic support.
Figure 2.2-30 General Research 30 Meter Electrostatic Controlled Radiometer
Figure 2.2-31 MIT Controlled Thin-Film Antenna Concept
structure. The shape of the extremely flexible RF reflective surface is produced by 10^4 to 10^6 discrete electrostatic forces acting between the "controlled" surface and the "command" surface. These forces are made possible by 10^4 to 10^6 electrically insulated elements, which are located on the command surface and controlled by a single electron gun with the capability of changing the electric charge on each element. The magnitude of the electric charge is a few thousand volts. The control system for the electron gun is based on the output of a surface sensing system utilizing a rapidly scanning laser that continuously measures the quality of the RF surface. For flight applications below geostationary Earth orbits, the electrons from the gun may be deflected significantly by the terrestrial magnetic field, so other approaches to charge control might have to be used, especially for larger antennas.

This type of thin-film or mesh support structure is expected to be between 5 and 50 g/m2. If the mechanical packaging efficiency of the support structure is high, then it is conceivable that an antenna of 1 km could be accommodated by one Space Shuttle payload. For an antenna of this size, analyses have shown that the controlled surface and the command surface should be separated by several meters, and the command surface must be within a few meters, peak to peak, of the desired reflector shape. Various configurations of deployable support structures have been investigated for application to the distributed control reflector technique. The basic "maypole"-type deployable antenna support structure seems to be the most promising.

2.2.3 Concept Comparison. An evaluation of the identified candidate structures was performed to determine the concept that meets the operational requirements, has manageable risk, could be launched in equal to or fewer launch vehicles, and was more adaptable to modularization and integration into a multiple reflector system.

Three mission configurations were identified for concept comparison: two reflector radar mission, reflectarray mission, and schmidt reflector mission. Table 2.2-1 presents the results of the comparison for the two reflector mission and the reflectarray mission. The box truss was selected for the two reflector mission primarily because of its efficient packaging and ease of integration into a two reflector system. The box truss was also selected for the reflectarray mission because of its packaging efficiency, low weight, and surface precision.

The schmidt reflector comparison (shown in Table 2.2-2) presents a different set of critical parameters. With respect to packaging and assembly operations the electrostatic membrane is the best. However the ability to achieve an operational S/C in the early 1990's is questionable. The Astrocell concept or the rectangular panel/deployable box truss approaches use technology that can be projected to a 1990 flight, but the systems are not as efficient from a weight or packaging standpoint and are more complicated with respect to orbital operations.
Table 2.2-1 Two Reflector and Reflectarry Concept Comparison

<table>
<thead>
<tr>
<th>Concept</th>
<th>Size Limitation</th>
<th>Mass</th>
<th>Packaging Efficiency</th>
<th>Orbital Operations</th>
<th>Surface Precision</th>
<th>Structural Stiffness</th>
<th>2-Reflector Integration</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbrella Radial Rib</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Wrap Radial Rib</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Erectable Radial Rib</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Curved Astromast Radial Rib</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Radial Column Rib</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Articulated Radial Rib</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Maypole</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Hoop/Column</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Polyconic</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Tetrahedral Truss</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Box Truss</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE: Grading is 0 to 5 where 5 is maximum with respect to the missions.
Table 2.2-2 Schmidt Reflector Concept Comparison

<table>
<thead>
<tr>
<th>Concept</th>
<th>Size Limitations</th>
<th>Mass</th>
<th>Packaging Efficiency</th>
<th>Orbital Operations</th>
<th>Surface Precision</th>
<th>Structural Stiffness</th>
<th>2-Reflector Integration</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Panel Deployable</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>High Frequency Radial Rib</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Expandable Astro Cell</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Hex-Panel & Truss</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Rectangular Panel and Box Truss</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Electrostatic Membrane/Truss</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>Thin Film Controllable</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

NOTE: Grading is 0 to 5 where 5 is maximum with respect to the mission.
2.2.4 Surface Figure Control Actuators. Large antennas in space, that operate at relatively high frequencies, require precision surface control and this in turn requires precision support from the attached space structure. The relationship between surface precision and antennas diameter for the box truss structure is given in Figure 2.2-32. For a 1000 foot diameter reflector, the RMS error is 0.7\". Assuming that a 20:1 ratio of RMS error to wavelength λ is required, then the maximum operating frequency for this 1000 ft. dia. reflector is around 0.8 GHz. It is apparent that active surface control systems will be required for higher frequency large space antennas. This type of control may be used to change the relative dimensions between the reflector and supporting structure or to actually deflect the supporting structure by changing the lengths of selected structural members. Linear actuators are the most suitable for achieving compact integration with the load carrying structure and for achieving the precision adjustments desired. Two classes of linear actuators have been considered; one for fine adjustment and one for coarse adjustment. For initial design of these actuators the coarse adjustment stroke is set as 2.0 inches total range with incremental adjustments of 0.010 inch; the fine adjustment stroke is 0.050 inch total range with incremental adjustments of 0.002 inch.

Figure 2.2-33 shows a box truss deployable structure suitable for supporting either a flat array or a curved reflector. Adjustment techniques for truss structures are two; 1) the mesh position or standoff height relative to the supporting structure is varied or 2) structural member lengths are varied to induce compensating distortions into the total structure.

Adjusting the mesh position offers the advantage of decoupling one adjustment from another at the many points of attachment; one point may be adjusted while the others remain unchanged and unaffected.

For very large antennas (>2000 ft, dia) actuator strokes of greater than 2.0 inches will be required although the incremental requirement will remain unchanged at \pm 0.010 inch.

The technique of producing array surface curvature change by changing the length of truss members on the opposite side of the box structure requires only very small stroke actuators. Changing the length of all members on one side can result in a 100:1 amplification in the peripheral displacement, therefore the total stroke required for one actuator need only be a small part of the total desired displacement.

The actuators depicted in Figures 2.2-34 & 35 are shown as part of tubular structural arrays. These basic mechanisms could be adapted to lines, tapes, and other shape members. All torques are reacted internally and the outward manifestation is a simple change in length.

The driving motor is shown in each case as a gear motor. These require a separate input to stop whenever they have moved a required distance. As an alternative, stepper motors may be employed; steps as small as 1° rotation, may be obtained and when this fineness of control is coupled with threaded and/or mechanical reductions, very small increments of displacement are possible with very good control.
Figure 2.2-32 Surface Precision For Passive Box Truss Structure
20 THREADS PER INCH
90° LONGITUDINAL TRAVEL PER THD (PER)
240 STEPS PER REV (1/4" PER MOTOR STEP)

\[
\frac{90}{240} = 0.00020833 \text{ INCH PER STEP}
\]

RATIO VERTICAL MOVEMENT : 1
HORIZONTAL MOVEMENT = 10

\[
\therefore \text{ VERTICAL MOVEMENT PER MOTOR STEP} = 0.00020833 \text{ INCH}
\]

Figure 2.2-34 Long Stroke 0.010 Inch Incremental Actuator
Figure 2.2-35 Short Stroke - 0.0002 Inch Increment Actuator
The actuator with the 2.0 in. stroke employs a ball screw device for extending or retracting the head piece. The two parts of the barrel which move relative to one another are telescoping and relative rotation is prevented by a removable bushing working through a slot in the opposing barrel. The screw shaft is coupled directly to the motor and the reduction available is first that of the screw pitch and secondly in the control of the motor. If a stepper motor is used very fine control can be achieved.

Warner Electric Brake miniature ball bearing screws are obtainable in 3/16 inch dia with a 20 thread per inch pitch. This gives 0.05 advance or change in length per revolution of the screw. If a stepper motor with $\frac{1}{12}^0$ steps is used then each step is:

$$0.05 \text{ in/rev} - 240 \text{ steps per revolution} = 0.00208 \text{ inch/step}$$

This far exceeds the stated requirement. Fifteen deg steps would be more appropriate and yield:

$$0.05 \text{ inch/rev} - 24 \text{ steps/rev} = 0.00208 \text{ inch/step}$$

A ball bearing screw was chosen for this direct drive application for a number of reasons. The mechanical efficiency is higher than that of a conventional thread; rolling friction vs sliding friction. The motion of the screw is as smooth as the motor permits and very small accurate increments of movement can be obtained with rolling contact which minimize starting friction and eliminates the tendency to stop-start and stutter when a slow smooth linear motion is desired. The high efficiency achieved through rolling contact also permits preloading one ball nut against another to virtually eliminate backlash or end play. The useful wear life is much greater than that of a conventional screw. The ball bearing screw wear life is determined by metal fatigue rather than the ordinary wear characteristic of sliding threads. And finally, ball bearing screw systems are able to return consistently to predetermined locations without the use of positive stops.

The actuator with 0.065 stroke is shown in Figure 2.2-3 with both a gear motor and conventional screw thread drive. A stepper motor with ball bearing drive is preferrable for the reasons just enumerated above.

This small range actuator utilizes the relationship of the "over center mechanism" or that of a pushrod just before reaching 'top dead center'. The rotation of the links through a significant angle produces a relatively small displacement along the axis established by lining up all three pins in the rotating links (stroke axis). An added feature is that the force inducing the rotation is amplified considerably along the stroke axis. The motion to be applied to the structure incorporating this linear actuator comes about by rocking the folding links back and forth with a slide which grips the elbow pin and is driven by the motor and screw. The incremental motion possible with this arrangement gives exceedingly fine control.
The ratio of slide motion normal to the displacement motion is:

\[
\frac{0.63}{0.065} = 9.69:1
\]

Assuming a 20 thread per inch pitch for the screw and 15° steps for the stepper motor:

\[
\frac{0.05 \text{ inch/rev}}{24 \text{ steps/rev}} \times \frac{1}{9.69} = 0.000214 \text{ inch stroke/step}
\]

If finer increments were desired, a 1½° step motor could be used which cuts the increment by a factor of ten, yielding 0.0000214 inch stroke/step. This degree of control should move than suffice for any microwave or millimeter wave antenna application.
2.3 Surface Figure Measurement.

2.3.1 Summary

2.3.1.1 Objective. Large space antennas will require monitoring and control of their surfaces to achieve desired performances. It is the objective of this task to identify and develop the necessary technology base leading to that goal. The fundamental metrological problem involves three parts: (1) the establishment of a master coordinate system against which a distributed set of elements in space can be related; (2) development of the ability to measure accurately the coordinates of those elements within the coordinate systems; and (3) implementation of techniques to drive those elements to desired coordinate positions in order to achieve specified antenna performance. In the material that follows, most of the effort has addressed the second of these three parts.

2.3.1.2 Position Measurement Requirements. Position measurement requirements involve not only RMS accuracy, but also several other critical physical and operational criteria. Some important requirements are listed below. For the two missions treated in this study, the parameters listed represent limiting requirements, derived from the millimeter wave radiometer mission.

Included with surface measurements are related requirements for pointing and stabilization. This is in recognition of the fact that an operational control system must integrate the functions of surface control, attitude control, slewing and pointing to be optimum and effective. The problems of each are not mutually exclusive.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Requirement</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface RMS Accuracy</td>
<td>(\lambda/20) (150 \mu m @ 100 GHz)</td>
<td></td>
</tr>
<tr>
<td>Panel Element Size</td>
<td>15 x 15 ft (Shuttle Compatible)</td>
<td></td>
</tr>
<tr>
<td>Number Control Points</td>
<td>900 (100 m Dia)</td>
<td></td>
</tr>
<tr>
<td>Control Response Time</td>
<td>Minutes</td>
<td></td>
</tr>
<tr>
<td>Pointing And</td>
<td>Accuracy</td>
<td>0.2 Beamwidths (-1 arcsec)</td>
</tr>
<tr>
<td>Stabilization</td>
<td>Slew and Settling Time</td>
<td>1 Hr.</td>
</tr>
</tbody>
</table>

2.3.1.3 System Level Characteristics. In addition to specific surface control requirements, there are a number of system level requirements that should be incorporated. These are listed below and represent design goals. Multiple, precision sensors refer to the need to integrate surface control with slewing and pointing functions. Because of potentially large amounts of raw measurement data, decentralized processing would relieve the data processing burden of a central data system. Real-time outputs in the timeframe of minutes are required to maintain control of very large structure thermal bending modes. Immunity to natural backgrounds, such as the sun, earth, moon, etc., would be an essential operational feature. Other features leading to simplicity of operation and potential cost savings are
also listed.

Table 2.3-2 System Level Characteristics

- Multiple, precision sensors (Celestial, Inertial, Surface)
- Decentralized control (Dedicated Microprocessors)
- Real-time measurement outputs (Minutes)
- Background Immunity (Sun Glints, Earthshine, etc)
- Sensor outputs compatible with on-board processing
- Modular system elements (Simple, Rugged, Inexpensive)
- Maximum reliance on existing technology base

2.3.1.4 Selected Approaches for Precision Surface Control. On the basis of large space structure surface accuracy requirements, the most likely measurement approaches will utilize one or more of the techniques listed in Table 2.3-2. In a general sense, they range from the least to the most stringent control capability, or, alternatively, from the smallest to the largest structures. Nothing will be said about passive control, which refers to the small, low-frequency antennas.

Pulsed LIDAR techniques with retroreflector targets are a technology well in hand, exhibiting ranging accuracies down to the millimeter regime. Multiple target coverage is also well demonstrated by current laser radar systems that scan in angle via internal beam steering. Subsequent discussions will concentrate on the remaining two items on the list, namely, staring angle sensors and the synthetic wavelength interferometer (SWI) concept.

Table 2.3-3 Selected Approaches For Precision Surface Control

- Passive
- Pulsed LIDAR with Retroreflectors
- Staring Angle Sensors with LEDs
- Synthetic Wavelength Interferometer (SWI) with Retroreflectors
- Hybrid (Combination) Systems of the above

2.3.1.5 Operating Regimes for Active Surface Control. In Figure 2.3-1 operating regimes for active surface control are plotted as functions of both frequency and diameter. The millimeter wave radiometer missions has such stringent control requirements that the synthetic wavelength interferometer (SWI) is the only possible control technique.
Figure 2.3-1 Operating Regimes, Surface Figure Sensing
2.3.1.6 Surface Figure Measurement - Conclusions. From the analysis of this task it has become clear that several viable options for surface figure measurement and control are possible. The technology associated with these options is available now; it is current state of the art. Specific sensor concepts, like the synthetic wavelength interferometer, are already in the laboratory breadboard or prototype stage, and do not exhibit any serious limitations. The problems associated with control of surface figure, vehicle attitude and pointing cannot be separated. A single, overall control system must integrate these functions. Finally, while no serious limitations have been found in the concepts for surface figure control, it is important in the near future to evaluate one or more of them in detail for a specific antenna or structural design, putting together the dynamics of the structure and its environment, the physical implementation of the surface measurements, processing algorithms, and control actuators in a complete simulation of the problem.

2.3.2. Detailed Discussion

2.3.2.1 Potential Surface Measurement Approaches. Table 2.3-4 summarizes potential approaches to the problem of surface measurement, demonstrated or proposed. Attitude sensors by themselves do not provide measurements of deflections. Holography and photogrammetry are not real-time. Of those remaining, some exhibit more accuracy, while others are more complex. As will be shown presently, the specific requirements of a system often dictate the most desirable surface measurement approach.

Table 2.3-4 Potential Surface Measurement Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude Sensors</td>
<td>Do not measure deflections.</td>
</tr>
<tr>
<td>Mirror-Prism Configurations</td>
<td></td>
</tr>
<tr>
<td>Polarization Techniques</td>
<td></td>
</tr>
<tr>
<td>Holography</td>
<td>Record on film (not real-time).</td>
</tr>
<tr>
<td>Photogrammetry</td>
<td>Record on film (not real-time).</td>
</tr>
<tr>
<td>Angle Sensors</td>
<td></td>
</tr>
<tr>
<td>Servoed Beam Steering</td>
<td>Complex.</td>
</tr>
<tr>
<td>Image Tube</td>
<td></td>
</tr>
<tr>
<td>CCD Array</td>
<td></td>
</tr>
<tr>
<td>Lateral Effect Silicon Photodiode</td>
<td></td>
</tr>
<tr>
<td>LIDAR (Optical Radar)</td>
<td>Ranging to mm accuracy.</td>
</tr>
<tr>
<td>Synthetic Wavelength Interferometer</td>
<td>Potential sub-millimeter ranging.</td>
</tr>
</tbody>
</table>
Lateral Effect Silicon Photodiode (LESP) - Pictured in Figure 2.3-2 are two versions of the lateral effect silicon photodiode (LESP), the critical detecting element of a staring angle sensor. The word "staring" is used for emphasis, because the sensor is fixed, observing a fixed target. Scanning angle sensors, observing many different targets, are judged to be too complex at the present time. The primary reason for this is that the measurement to be made is a differential angular displacement. Staring sensors observe this directly, while scanning sensors must take a difference between two encoded angles (usually large). Control of angle errors imposes penalties in complex servo control of sensor pointing.

The LESP provides a position readout of the image of a target (a light emitting diode, or LED) by the ratio of current difference out either end of the detector to total photocurrent. This can be obtained in either one or two dimensions, as shown. Existing detectors have demonstrated one part in 10^4 motion sensing ability, or about one micrometer shift of the image in the sensor focal plane.

Other detector options for the sensor include the image tube and two-dimensional CCD arrays. Both could provide 1 in 10^4 sensing accuracy; however, the image tube is relatively complex and can suffer difficult-to-control metrical distortions. The CCD array would have to be fabricated into a 500×500 array to be useful, which taxes the current state-of-the-art.

All angle sensors must contend with a common problem when measuring small displacements at great distances. This dilemma is explored more fully below.

Angle Sensing Dilemma - The problem for angle sensors arises under measurement conditions outlined below in Table 2.3-6, which correspond to very large antennas operating at high frequencies ($\lambda/20$ criterion very small). The penalty occurs in requiring long focal length optics to match the object (target) displacement to the image motion, for the ratio of image to object shift is equal to the ratio of image to object distance. Under the conditions given below, the image distance is 10 meters, leading to a focal length for the optics of 9.8 meters.

Because staring angle sensors and targets proliferate on a one-to-one basis, large structures under precision control cannot tolerate several hundred optical systems of this size. Angle sensors will find utility, therefore, only on structures of modest size and/or operating at lower frequencies for which much greater target displacements are acceptable.

Table 2.3-6 Angle Sensing Dilemma

<table>
<thead>
<tr>
<th>Measurement Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>o RMS target movement - 50μm</td>
</tr>
<tr>
<td>o Target distance - up to 500 m (or more)</td>
</tr>
<tr>
<td>o Target image movement - 1μm (on LESP or CCD array)</td>
</tr>
</tbody>
</table>
SINGLE AXIS
PLANAR DIFFUSE SILICON
(UDT-PIN-3244)

- \(X = (I_1 - I_2)/(I_1 + I_2) \); Y-AXIS TREATED SEPARATELY, BUT SIMILARLY.
- PROVIDES 1 PART IN \(10^4 \) MOTION SENSING (1 \(\mu \)m IN FOCAL PLANE).

Figure 2.3-2 Lateral Effect Silicon Photodiode (LESP)
Optics Penalty

\[
\begin{align*}
X_1 &= S_1 \\
X_0 &= S_0
\end{align*}
\]

where

\[
\begin{align*}
X_1 &= 1\mu m = \text{image movement} \\
X_0 &= 50\mu m = \text{object movement} \\
S_1 &= \text{image distance} \\
S_0 &= 500\, \text{m} = \text{object distance}
\end{align*}
\]

\[S_1 = 10\, \text{m} \quad \text{Image Distance}\]

\[
\frac{1}{S_1} + \frac{1}{S_0} = \frac{1}{F}
\]

\[F = 9.80\, \text{m} \quad \text{Optics Focal Length}\]

Conclusion

Angle sensing imposes requirement for unacceptably long focal length optics.

Synthetic Wavelength Interferometer (SWI) - Illustrated in Figure 2.3-3 is a device concept that will provide precision position (range) measurements, even over large distances. It has been dubbed the Synthetic Wavelength Interferometer (SWI), and simultaneously combines coarse ranging via phase modulation of a laser beam with precision location of target position via a heterodyned Michelson interferometer.

The technology of Michelson interferometers and heterodyne detection is well in hand. Laboratory breadboard models of the SWI incorporating RF phase modulation have been built and tested, and show near theoretical performance.

SWI Measurement Characteristics - The sensor utilizes all techniques (Michelson interferometry, heterodyne interferometry, phase modulation) simultaneously. Coarse range is provided by one or more frequencies of RF phase modulation, the "fringe" distance of the coarsest being comparable with the total distance to the target (retro-reflector). Refinement of the range is provided by the heterodyned interferometry, which interpolates the final, fractional fringe measurement of the RF phase modulated signal to a finer level of precision. Final position determination is provided by the Michelson interferometry, which performs the same function on the fringe measurement of the heterodyne technique. Each level of fringes measurement provides a count of the total integral number of fringes present in the next finer level.

The critical requirement for the concept to work is that the phase (fringe) measurement at each level must be accurate enough so that there is no ambiguity in the total fringe count of the next finer level. This leads to a phase measurement accuracy requirement of the form:
CONVENTIONAL INTERFEROMETER SENSES CHANGES IN PATH DIFFERENCE BETWEEN REFERENCE (SENSOR) AND WORKING (TARGET) MIRRORS.

HETERODYNE FORM PRESERVES ALL AMPLITUDE AND PHASE RELATIONSHIPS, BUT AT AN INTERMEDIATE FREQUENCY (IF) OR OPTICAL DIFFERENCE FREQUENCY, WHERE

\[\lambda_{\text{eff}} = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \]

MULTIPLE IFS ARE GENERATED BY BEATS BETWEEN MULTIPLE LINES IN THE LASER OUTPUT

PHASE MODULATION OF LASER OUTPUT GENERATES EQUIVALENT "SYNTHETIC" WAVELENGTH, ORDERS OR MAGNITUDE LONGER THAN ABOVE WAVELENGTHS.

IN ALL THE ABOVE, PHASE ANGLE IS GIVEN BY

\[\phi = \frac{4\pi R}{\lambda} \]

A MEASUREMENT OF \(\phi \) IS FUNCTIONALLY EQUIVALENT TO A DETERMINATION OF RANGE \(R \).

HETERODYNE FORM OF MICHELSON INTERFEROMETER TRANSFORMING FROM OPTICAL TO ELECTRICAL DOMAIN WHILE PRESERVING WAVE AMPLITUDE AND PHASE RELATIONSHIPS.

Figure 2.3-3 SYNTHETIC WAVELENGTH INTERFEROMETER (SWI)
\[\Delta \theta_i < 2\pi \frac{\lambda_i + 1}{\lambda_i} \]

where \(\lambda_i + 1 \) is the effective wavelength of the \((i + 1)\)st level.

SWI Operating Range Potential — In Table 2.3-7 is given an example of the potential operating range (and precision) of a SWI. For the example, a CO\(_2\) laser with several lines in the 10.6\(\mu\)m range region is used. The lines are:

- R (16) at 10.28\(\mu\)m
- P (18) at 10.57\(\mu\)m
- P (20) at 10.59\(\mu\)m

Heterodyned, optical difference frequencies used are given by:

\[\lambda_{\text{eff}} = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \]

Examples used are:

- R (16) - P (18); \(\lambda_{\text{eff}} = 374.7 \mu\text{m} \)
- P (18) - P (20); \(\lambda_{\text{eff}} = 5.6 \text{ mm} \)

Finally, RF phase modulation at 10,000, 100 and 1 MHz provides coarse range information. Shown in the table are the unambiguous range increments over which the various techniques apply. For each technique, the range increment is limited on the long side by one full fringe in total path difference (twice the range change), and on the short side by an arbitrary criterion of 1/100th of a fringe. Note that as one moves upward through the levels, each one overlaps the next finer level, thus enabling an unambiguous total fringe count in that level to be established.

The important question to be answered is, however: Are the phase measurement accuracies in each level sufficient to ensure no loss in fringe count at handoff, according to the criterion developed earlier? Table 2.3-8 examines this question for our example sensor.

Table 2.3-7 SWI Operating Range Potential

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Example</th>
<th>Unambiguous Range Interval (Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine</td>
<td>CO(_2) laser at 10.6 (\mu)m</td>
<td>5 (\times) 10(^{-6}) to 5 (\times) 10(^{-8})</td>
</tr>
</tbody>
</table>
Table 2.3-7 SWI Operating Range Potential (Continued)

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Example</th>
<th>Unambiguous Range Interval (Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate (Optical Difference Frequency)</td>
<td>CO₂ Heterodyning (R(16) - P(18)) lines (\lambda_{eff} = 374.7\mu m) CO₂ Heterodyning (P(18) - P(20)) lines (\lambda_{eff} = 5.6 \text{ mm})</td>
<td>(2 \times 10^{-4}) to (2 \times 10^{-6}) (3 \times 10^{-3}) to (3 \times 10^{-5}) (10,000 \text{ MHz modulation}) (1.5 \times 10^{-2}) to (1.5 \times 10^{-4})</td>
</tr>
<tr>
<td>Coarse (Phase Modulation)</td>
<td>100 MHz modulation</td>
<td>1.5 to (1.5 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td>1 MHz modulation</td>
<td>(1.5 \times 10^{2}) to 1.5</td>
</tr>
<tr>
<td></td>
<td>Lower Frequency Mod.</td>
<td>Up to (10^{3}) to (10^{4})</td>
</tr>
</tbody>
</table>

SWI Phase Measurement Accuracies (Example) - Tabulated below are the required phase measurement accuracies within each measurement level to ensure an unambiguous fringe count in the next finer level. Note that handoffs from 1 MHz modulation to 100 MHz modulation and from 100 MHz modulation to 10,000 MHz modulation requires a phase measurement accuracy of 3.6 degrees, which is about at the limit according to our criterion of 1/100th fringe. The other steps in the process appear to be easily achievable.

Table 2.3-8 SWI Phase Measurement Accuracies (Example)

<table>
<thead>
<tr>
<th>Level</th>
<th>(\lambda_{i}) ((\text{m}))</th>
<th>(\Delta \phi_{i}) (degrees)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MHz Mod</td>
<td>300</td>
<td>3.6</td>
<td>Marginal Phase Accuracy</td>
</tr>
<tr>
<td>100 MHz Mod</td>
<td>3</td>
<td>3.6</td>
<td>Marginal Phase Accuracy</td>
</tr>
<tr>
<td>10,000 MHz Mod</td>
<td>30</td>
<td>67.2</td>
<td>Achievable</td>
</tr>
<tr>
<td>(P(18) - P(20)) Beat</td>
<td>5.6</td>
<td>22.1</td>
<td>Achievable</td>
</tr>
<tr>
<td>(R(16) - P(18)) Beat</td>
<td>374.7(\mu m)</td>
<td>11.1</td>
<td>Achievable</td>
</tr>
<tr>
<td>CO₂ Direct Interference</td>
<td>10.6(\mu m)</td>
<td>?</td>
<td>Established by Required Position Determination Accuracy</td>
</tr>
</tbody>
</table>

68
2.3.2.2 Operational Regimes for Active Surface Control. In Figure 2.3-1 are plotted approximate regimes of frequency and aperture size wherein specific active surface control sensing techniques are applicable. Boundaries between regimes are "soft" in that different criteria of performance can affect their locations.

At the small aperture end is the region within which active control of antenna surfaces is not required. The boundary to this region is determined by the predicted capabilities of the box truss structure.

Below about 10 GHz, and for larger antenna diameters, pulsed LIDAR ranging can be used to measure the locations of retroreflector targets distributed over the antenna surface. The upper frequency limit is established both by the inherent range accuracy limitation of current LIDAR systems (~1 mm), and by the criterion for target displacement measurement accuracy. For full aperture illumination at a given frequency, the criterion adopted was a measurement accuracy of one-twentieth of a wavelength. The vertical scale on the right of Figure 2.3-1 identifies λ/20 for each frequency.

At intermediate aperture diameters, but higher operating frequencies, staring angle sensors observing LED targets can provide the required λ/20 measurement precision, in combination with (relatively) crude LIDAR range measurements to establish scale. Uncertainties in scale enter into the equations only as second order effects, and need not have comparable precision to the angle measurements. The frequency-aperture boundary for angle sensors was established by the physical size of required optics, focal lengths no greater than 30 cm being the limiting factor.

For the largest apertures and highest operating frequencies, the control technique selected is the synthetic wavelength interferometer operating on retroreflector targets.

Two points are clear from the figure. First, use of the pulsed LIDAR technique, with its well-known technology and potential beam scanning capability, appears to be marginal. It should be pointed out, however, that operations at lower frequencies than 10 GHz could be controlled with this technique. Second, the millimeter wave radiometer mission falls squarely in the high-frequency, large diameter region requiring the synthetic wavelength interferometer control technique. This mission represents a most challenging problem, not only in terms of the complexity of the control problem itself, but also in terms of possible numbers of sensors, control point actuators, and potential weight and power of the control sub-system.

2.3.2.3 Typical Control Sequence for Paraboloidal Antenna. This subsection illustrates how a large, paraboloidal antenna might be controlled under operational conditions in space, and parenthetically, how the control functions for vehicle attitude, pointing, and surface figure are interrelated. At the initiation of a measurement cycle, targets located at surface control points, antenna feed, and vehicle inertial navigation base are sampled by the surface figure monitoring sensors. It is irrelevant what these sensors are for this discussion; they may be any of those discussed in earlier subsections. Depending upon the dynamical idiosyncrasies of the
antenna structure, observations may have to be made from up to three separate locations to fully describe the displacements of the control points with respect to a single reference point.

These measurement data are then processed to determine the best fit to a desired paraboloidal surface, the location of the surface focal point, and, using reference data from the vehicle inertial navigation base, the direction in space of the surface’s pointing axis. Initially, the actual pointing direction of the antenna is compared with the desired pointing direction to determine whether an attitude correction is required. In general, minor pointing errors can be corrected by repositioning the antenna feed. Only if the pointing error exceeds some threshold would the correction be affected by a vehicle maneuver. In such a case, disturbances would be introduced into the structure, abrogating all previous measurements. Thus, the measurement cycle would have to be repeated.

If no attitude correction is required, the system would examine the actual position of the feed with respect to the required focus/fine pointing position. Should a correction be required, the feed would be commanded into the required position. This would require a 3 DOF actuated platform for the feed mount. At this time it is not certain that such a movement would affect the antenna surface figure, thus demanding that the measurements be recycled. In full generality, however, this would be the case.

The final step, once beam direction and antenna feed positioning has been accomplished, would involve determination of the antenna surface target residuals with respect to the best fit paraboloidal surface. If the residuals result in an RMS surface degradation in excess of specifications, control point actuators would be commanded to correct the surface back within specifications. The measurements would then be recycled to verify all elements to be within tolerances.

If no corrections are required, the control system may or may not be placed in a standby mode until the next cycle time. The exact duration of this "cycle" time is not specified, but would be dependent upon the dynamical and thermal characteristics of the particular antenna structure in the space environment. The entire process may be quasi-continuous, with no "rest" periods available to the control system at all. Alternatively, the system may be adaptive, adjusting its cycle times to conform to "learned" conditions.

It is clear that the problems associated with attitude control, vehicle pointing, and surface figure control are highly interrelated, and must be treated as an integrated whole. Basic data for the solution of these control problems come from the inertial reference sensors (navigation base) and from the surface figure control sensors. Finally, a natural sequence of events, or operational hierarchy seems to suggest itself for successful implementation of the control of large structures in space.
2.4 Attitude Control

2.4.1 Purpose of The Attitude Control System. The purpose of an attitude control system is to stabilize and point the antenna. In order to accomplish this the attitude control system must sense attitude, generate error signals, generate corrective commands and provide actuation. The generalized control schematic is shown in Figure 2.4-1. In the case of large orbiting antennas the scope of the attitude control system is broad, encompassing the following functions:

Attitude Sensing and Positional Navigation (Autonomous Navigation) - In the general case of orbiting antennas it is necessary, or desirable, to relate the location of the target on, or near earth, to the location of the antenna itself, and further to know the location of the antenna in a convenient coordinate reference frame. An inertial coordinate system is usually chosen, whose origin is at the center of the earth. Antenna and target locations can be easily expressed in this system and related readily to latitude and longitude; and also the information sensed by inertial reference systems and stellar update systems is essentially in this coordinate system.

To ascertain the location of the antenna and its pointing direction inertial reference units and/or optical sensors viewing a fixed star, earth limb, solar aspect, or lunar limb are usually mounted on the antenna. Landmark sensors are also available and will provide attitude information, and in some cases positional data.

Overcoming Disturbing Torques and Forces - Disturbing torques and forces arise due to aerodynamic effects, solar pressure, gravity gradient and a host of lesser causes. Typical environmental torques are shown in Figure 2.4-2 as a function of altitude. Other disturbing effects also exist due to earth shadowing, season changes, solar activity producing solar winds, earth oblateness and earth reflectance of solar energy, on-board machinery, magnetic effects, outgassing and venting.

In addition to torques, aerodynamic and solar pressure produce forces which tend to alter the orbits and can cause severe stationkeeping problems. Disturbances will be discussed in detail below.

Flexible Body Stability - The analysis used to design the control system must consider the antenna and its appendages as a flexible body. Analysis to date has indicated bending modes of significance exist from below .1 Hz to above 5 Hz including mast modes and mesh modes and that significant cross coupling among axes is present which adversely affects stability.

An analysis of flexible body stability and control is beyond the scope of this program but must be a vital part of any point design.

Slewing - Any mission having a frequent retargeting requirement could require relatively high slewing rates. This imposes a burden on the attitude control system to provide the torques required, required settling time, limit the modal excitation and fine point. These requirements are not generally consistent implying compromises which are dependent on the
Figure 2.4-1 GENERALIZED CONTROL SCHEMATIC
Figure 2.4-2 Relative Magnitudes of the Environmental Torques on an Earth Satellite
particular type of structure and the detailed mission response times and accuracies.

Fine Pointing - Certain missions impose fine pointing requirements on the order of an arc sec or less. This requirement implies that the antennas have highly precise knowledge of its own attitude in inertial space and of its own position as well as possessing the ability to sense attitudes-to-target precisely and to control its attitude with fine precision.

Controllers - To accomplish the pointing and slewing of the antenna, and to overcome the disturbing torques requires that devices be incorporated into the antenna which are capable of producing forces and torques. All these devices involve momentum interaction; either momentum exchange between the antenna and the universe by reaction jets, or momentum transfer within the antenna using large rotating wheels whose speed or direction of rotation can be varied. Usually, combinations of reaction jets and momentum wheels are employed.

2.4.2 The Elements of Attitude Control. The elements of attitude control which are unique to large space structures and particularly to antennas of the missions of interest are their pointing requirements and the sizeable environmental disturbances they experience. Therefore, the discussion below will be devoted to the critical function of these elements, namely, sensing of attitude and position, the disturbing forces and torques and the controllers which must overcome these disturbances while at the same time providing the fine pointing required.

2.4.2.1 Attitude Determination. The pointing accuracy requirements of the antennas along with the desired life of the spacecraft place stringent requirements on the design of the system. Other features such as sensor characteristics (does the sensor provide scanning? Do electronics require shielding? etc.) and the type of control system used also help to define the architecture of the overall system.

Attitude Determination sensors can be characterized in one of two ways. Either the sensor is part of a real-time reference system where attitude information can be obtained directly at any time, or the sensor takes periodic measurements. The first type of sensor is generally an Inertial Reference Unit (IRU), and the second usually consists of a sensor which measures a line of sight to some observable. The most common observables are the stars, planetary limbs, the sun, radars or other electromagnetic emitters.

Automation of the attitude determination system requires onboard processing capabilities. Variation of the mission requirements and configuration place certain demands on the architecture, speed, and processing capabilities of the onboard computer. If the computer is too slow, the system will be data bound, and if the processing capabilities are not adequate to solve the problem, the system will be processor bound. All of these factors must be understood and weighed in order to incorporate automation into the satellite system.

Attitude determination involves solving for the angular offsets between
a coordinate system fixed within the body of the spacecraft and a reference coordinate system established by the mission requirements. The primary reference systems used to determine attitude are described below:

Inertial Reference Frame - The inertial coordinate system most commonly used has its origin fixed at the earth's center. The X axis is oriented along the 1950 epoch vernal equinox; the Z axis lies along the symmetrical earth rotation axis (North Pole); and the Y axis forms a right-hand triplet. This system is usually chosen when a star tracker or other star detection device is used because star catalogs have been established in these coordinates.

Earth Reference Frame - The earth reference frame, like the inertial reference frame, has its origin fixed at the earth's center. The X axis of this frame has its direction fixed along the zero longitudinal plane; the Z axis points through the North Pole as in the inertial reference frame; and the Y axis completes the orthogonal coordinate system. This coordinate system is sometimes used for missions utilizing gravity gradient and other earth sensitive attitude sensors. It is also an important reference frame for geographic correlation because data can eventually be related to the latitude and longitude from which it came. A transformation matrix converts the coordinates of a point in the earth reference frame to coordinates in the inertial reference frame.

Local Vertical Frame - The local vertical reference frame is centered within the spacecraft. The X axis is oriented along a vector pointing from the earth's center to the spacecraft; the Z axis is located normal to the flight path pointing in the direction of the angular momentum vector; the Y axis completes the right-handed system. For a circular orbit the Y axis is in the direction of the velocity vector.

Body Fixed Frame - This coordinate system is centered in the spacecraft and represents the structure of the vehicle. Attitude is determined by resolving two or more vectors in one of the reference coordinate systems relative to the body frame. A transformation of this data is then made to derive pitch, yaw, and roll errors.

Attitude Sensors - Attitude determination systems exist in a variety of configurations of different sensors (Figure 2.4-3). Most of the advanced systems incorporate some sort of Inertial Reference Unit (IRU) and a reference update system. This combination is advantageous because it minimizes the shortcomings of an IRU and a reference update unit. The IRU is used to maintain a reading of the spacecraft attitude. However, due to the properties of gyroscopes, this reading will drift from the actual value. At some limit of attitude uncertainty, the reference unit will then update the gyro by providing a precise input of the attitude. Attitude uncertainty will be a function similar to that shown in Figure 2.4-4.

The two basic types of Inertial Reference Units are the gimbaled platform and the strapped down gyro system. A comparison between these two generic systems was performed under an internal research task based on the system concept, sensor impact, software impact, and calibration impact (K. Yong, et al., 1978). A summary of this tradeoff is provided in Table
Figure 2.4-3 ALTERNATE ATTITUDE DETERMINATION SENSOR CONFIGURATIONS
2.4-1. It was generally concluded that gimbaled platforms are superior for short duration missions due to the limited software and calibration requirement. However, for long term missions where reliability and accuracy become the major driving forces, gimbaled systems should not be considered. The advantages of using a strapdown system over the gimbaled platform in a long life mission are listed below:

1. Eliminates all errors associated with platform stabilization. This increases the long-term reliability.

2. The gimbaled platform has the limitation of working within a defined range for each gimbal. The strapdown system, being free from gimbal lock, allows all attitude motion.

3. Due to the absence of mechanical platform gimbals, the strapdown system is smaller in size, lighter in weight, more rugged in mechanical structure and consumes less power.

Strapdown inertial reference systems were studied extensively under NASA contract OADS (NAS4-23428). The initial study concluded that two degree of freedom (TDF) gyro systems may be considered above single degree of freedom (SDF) gyros. The advantages of using a TDF gyro package are as follows:

1. Provides higher reliability for the same number of gyros used.

2. Less effect of sensor accuracy.

3. Provision for more redundant measurements for better data reduction.
<table>
<thead>
<tr>
<th>Concept</th>
<th>Sensor Impact</th>
<th>Software Impact</th>
<th>Calibration Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gimbaled IMU</td>
<td>Inner Platform remains inertially fixed. Resolver/encoder outputs measure space vehicle attitude (Euler angles) directly. Gyros are operating in a benign environment that is ideal for maximum performance. Drift rates of less than 0.01°/h are obtainable. Minimal compared to strapdown system.</td>
<td>Minimal compared to strapdown system.</td>
<td>IMU calibration is minimal compared to strapdown system.</td>
</tr>
<tr>
<td>Strapdown</td>
<td>Gyro outputs are integrated to estimate spacecraft attitude. Very demanding in areas of scale factor stability, linearity and asymmetry coning motion, alignment, vibration, noise and bandwidth.</td>
<td>Very demanding in computational requirements such as truncation, quantization, roundoff and bandwidth. Sensitive to spacecraft motion.</td>
<td>Requires calibration of gyro scale factor, drift, alignment.</td>
</tr>
</tbody>
</table>

Table 2.4-1 Strapdown/Gimbaled IMU Comparison

Steller Sensors - Steller sensors measure a Line of Sight (LOS) angle to a star whose position is known. Each star sighting yields two components of attitude information which is used to update a current estimate. There have been several approaches to solving the star sighting problem, and the sensors which have evolved can be separated into four classes:

1. Gimbaled star trackers;
2. Electronically scanned star trackers;
3. Star mappers; and
4. CCD star trackers.

Gimbaled Star Tracker - The gimbaled star tracker searches for and acquires known stars using a mechanical gimbal action. The sensor has a relatively small instantaneous field of view (FOV) ($1^\circ \times 1^\circ$) with the gimbal motion providing a much larger effective FOV. Pointing control is usually provided through the use of a null seeker electronics package which causes the gimbals to move so that the star remains centered within the instantaneous FOV. Gimbaled star trackers, such as those used on the Apollo Telescope Mount have achieved accuracies of 30 arc seconds. Other gimbaled star
trackers have accuracies ranging from 1 to 60 arc sec. This type of sensor, however, has several serious disadvantages:

1. Gimbal apparatus reduces long term reliability.
2. Possible to track either the wrong star or particles such as paint chips.
3. Errors in determining star position with respect to null, and gimbal angle readout errors effect the overall accuracy.
4. Increased size and weight due to gimbal mount.

Electronic Star Tracker - This type of star tracker is an electro-optical device which electronically scans a small instantaneous FOV over a larger effective FOV in order to acquire stars brighter than some fixed threshold. The scanning pattern is usually produced by an image dissector tube and associated electronics. During acquisition the scanning pattern is a raster type until a star is detected. At this point, the raster scan is normally halted and the star is tracked using a much smaller scan pattern until the star leaves the effective FOV.

The electronic star tracker has no moving parts so it is usually lighter, smaller in size, and has a longer life time reliability than the gimballed star tracker. In addition, it generally has a higher sensitivity, greater signal to noise ratio, and is relatively more rugged mechanically than the gimballed type tracker. However, it too has disadvantages as discussed below:

1. Subject to errors from stray electronics, magnetic field variation, and temperature variations.
2. Because of the finite acquisition time, a maximum attitude rate limit is imposed to ensure quality output data.
3. Narrow field of view might limit the mission applicability.

Star Mappers - The star mapper generally has a slit type aperture which utilizes the spacecraft rotation to provide a scanning motion for the sensor during steller acquisition. The FOV of the sensor is thus scanned over the celestial sphere. It is limited to use on spinning satellites.

CCD Star Trackers - The CCD Star Tracker uses a charged-couple imaging array as a detector in place of an image dissector. The detector is a buried-channel line-transfer, charge-coupled device (CCD), with vertical and horizontal picture elements. A typical detector contains 488 vertical by 380 horizontal picture elements within an active image area of 8.8 mm by 11.4 mm. The detector is cooled to an operating temperature below 0°C.

The detector array is read out with high speed microprogrammable logic. At those places in the field of view where star energy is detected, the operation is slowed to allow analog to digital conversion of the signal.
charge of each picture element, or "pixel" in the region. A micro-processor is employed to compute the location of the centroid of the star images to an accuracy of about 1/10 of the inter-pixel distance and to provide sequencing and control functions. The CCD unit possesses some distinct advantages over other types of star sensors. Those are: the ability to track multiple stars simultaneously, no sensitivity to magnetic fields, and improved accuracy. At the present time TRW, BBRC, and Honeywell are evaluating the performance of CCDs in the laboratory using experimental breadboard models. The preliminary characteristics of both the BBRC and TRW CCD units are presented in Table 2.4-2.

Horizon Sensors - The combination of a two-axis digital sun sensor and a horizon scanning sensor has often been applied to the problem of attitude determination. The two-axis digital sun sensor will provide the two-axis attitude information and, with the aid of a horizon sensor, can provide three-axis attitude information. It is generally a low cost, reliable sensor system with less software support required. However, because of the low resolution of the sensors and the lack of definition of the targets they sense, the sun/horizon sensor combinations are used only where relatively coarse attitude information is required.

Sun Sensors - Sun sensors can be divided into analog and digital types. However, analog sensors have several disadvantages and will not be treated here. The major component of digital sun sensors consists of a mask which encodes sun angles as digital numbers. Light passing through a slit on the front surface of a fused-silica reticle forms an illuminated image of the slit on the binary-code pattern which is on the rear surface. The image's position is dependent upon the angle of incidence.

Behind each column of the code pattern is a silicon photodetector. If the light falls on a clear portion of the pattern in a particular column, the photocell behind is illuminated producing an output "one"; if it falls on the opaque segment, the photocell is not illuminated and the output is "zero". The outputs of the cells are amplified, stored, and processed as required to furnish suitable output to telemetry or other data processors.

The gray code most commonly used for encoding quantizes the field of view into 128 increments. Therefore, the accuracy obtainable is dependent on the front end optics and the width of the reticle. The accuracies which have been obtained are on the order of .1°.

Space Sextant - The space sextant approach to attitude determination utilizes the angle between several stars and two reference points located on the base of the sextant. The sextant consists of two Cassegrain telescopes, an angle measurement head, gimbals that provide three angular degrees of freedom for the telescopes, and a reference platform consisting of a planar mirror, porro prism assembly, and a gyro package (Figure 2.4-5). The space sextant was primarily designed for autonomous navigation, but the addition of the reference package allows attitude determination as well.

Attitude is determined by first making included angle measurements between two or more stars and a reference mirror fixed at the base of the
trackers have accuracies ranging from 1 to 60 arc sec. This type of sensor, however, has several serious disadvantages:

1. Gimbal apparatus reduces long term reliability.
2. Possible to track either the wrong star or particles such as paint chips.
3. Errors in determining star position with respect to null, and gimbal angle readout errors effect the overall accuracy.
4. Increased size and weight due to gimbal mount.

Electronic Star Tracker - This type of star tracker is an electro-optical device which electronically scans a small instantaneous FOV over a larger effective FOV in order to acquire stars brighter than some fixed threshold. The scanning pattern is usually produced by an image dissector tube and associated electronics. During acquisition the scanning pattern is a raster type until a star is detected. At this point, the raster scan is normally halted and the star is tracked using a much smaller scan pattern until the star leaves the effective FOV.

The electronic star tracker has no moving parts so it is usually lighter, smaller in size, and has a longer life time reliability than the gimballed star tracker. In addition, it generally has a higher sensitivity, greater signal to noise ratio, and is relatively more rugged mechanically than the gimballed type tracker. However, it too has disadvantages as discussed below:

1. Subject to errors from stray electronics, magnetic field variation, and temperature variations.
2. Because of the finite acquisition time, a maximum attitude rate limit is imposed to ensure quality output data.
3. Narrow field of view might limit the mission applicability.

Star Mappers - The star mapper generally has a slit type aperture which utilizes the spacecraft rotation to provide a scanning motion for the sensor during steller acquisition. The FOV of the sensor is thus scanned over the celestial sphere. It is limited to use on spinning satellites.

CCD Star Trackers - The CCD Star Tracker uses a charged-couple imaging array as a detector in place of an image dissector. The detector is a buried-channel line-transfer, charge-coupled device (CCD), with vertical and horizontal picture elements. A typical detector contains 488 vertical by 380 horizontal picture elements within an active image area of 8.8 mm by 11.4 mm. The detector is cooled to an operating temperature below 0°C.

The detector array is read out with high speed microprogrammable logic. At those places in the field of view where star energy is detected, the operation is slowed to allow analog to digital conversion of the signal.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>TRW</th>
<th>BBRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (1 sigma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>arc-s</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>arc-s</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>arc-s</td>
<td>4.75</td>
<td>5.0</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>lb</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Volume</td>
<td>in.</td>
<td>6 x 6 x 12</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>W</td>
<td>9.5 at 28 Vdc</td>
<td>26 at 28 Vdc</td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
<td>Breadboard in Test</td>
<td>Breadboard in Test</td>
</tr>
<tr>
<td>Field of View</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>deg</td>
<td>6.0 x 8.53</td>
<td>7.1 x 9.2</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>arc-min</td>
<td>0.81 x 1.35</td>
<td></td>
</tr>
<tr>
<td>Optical System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal Length</td>
<td>mm</td>
<td>76.0</td>
<td>70.0</td>
</tr>
<tr>
<td>f/No.</td>
<td></td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Fairchild CCD</td>
<td></td>
</tr>
<tr>
<td>Number of Elements</td>
<td></td>
<td>488 x 380</td>
<td>488 x 380</td>
</tr>
<tr>
<td>Image Area</td>
<td>mm</td>
<td>8.8 x 11.4</td>
<td>8.8 x 11.4</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
<td>Front Illuminated, Interline Transfer</td>
<td>Front Illuminated, Interline Transfer</td>
</tr>
<tr>
<td>Electronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergration Time</td>
<td>s</td>
<td>0.100 Max</td>
<td>0.100 Max</td>
</tr>
<tr>
<td>(for +6 M Star)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Rate</td>
<td>s</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>(for +6 M Star)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star Position Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>Digital</td>
<td>12-bit Serial</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Digital</td>
<td>12-bit Serial</td>
<td></td>
</tr>
<tr>
<td>Star Magnitude</td>
<td>Digital</td>
<td>12-bit Serial</td>
<td></td>
</tr>
<tr>
<td>Update Interval</td>
<td>s</td>
<td>0.100 Max</td>
<td>0.100 Max</td>
</tr>
</tbody>
</table>

81
Sextant Collimation Off Mirror - Elevation Measurement

Sextant Collimation Off Porro Prisms - Azimuth Measurement

Figure 2.4-5 Attitude Determination with Space Sextant
sextant. A light source within the telescopes allows it to autocollimate off the mirror, thus providing a reference for one of the telescopes. The included angle relative to the reference mirror fixes the attitude in one direction with respect to inertial space. The other attitude directions are fixed by making included angle measurements between one or more stars and a porro prism assembly mounted on the reference mirror in such a way that the prism is elevated above the plane of the mirror. The two measurements are then processed to yield precise attitude information.

This attitude information is then used by an on-board filter to update the gyro uncertainty. Using this configuration, the three-axis attitude uncertainty can be kept below 1/2 arc sec. The system characteristics are shown in Table 2.4-3.

<table>
<thead>
<tr>
<th>Instantaneous FOV</th>
<th>Accuracy, 3-Axis</th>
<th>Size, in.</th>
<th>Weight, lb</th>
<th>Power, W</th>
<th>Life, yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 arc-min</td>
<td>0.5 arc-s</td>
<td>21.3x20x21.3</td>
<td>60</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2.4-3 Space Sextant Characteristics

Landmark Trackers - Landmark trackers utilize sightings of known earth features to yield attitude information. There are many types of earth features ranging from radar emitters to natural features such as lakes, and the methods used to detect these features differ as greatly. However, all the concepts rely on obtaining the Line of Sight (LOS) angles to some point on the earth whose position is accurately known and stored onboard.

The accuracy which is theoretically obtainable can be as good as 1 arc sec. for some types of Landmark trackers. However, Landmark trackers are not as well suited for attitude determination as other systems relying on sightings of celestial objects. The qualities which led to this conclusion are listed below.

Crosscoupling Between Attitude and Position - There is a severe cross-coupling between the position of the satellite and its attitude when LOS measurements are being made (Figure 2.4-6). A downtrack error can easily be mistaken as an error in pitch. There are proposed methods of obtaining several sightings within the field of view and using this information to derive both position and attitude. However, such a system would be nowhere near real time, and the onboard memory requirements would be tremendous.

Algorithms Too Involved - The algorithms to derive attitude from a Landmark sighting, assuming that position is known, are much more involved than those required by a star tracker or horizon/sun sensor combination. Because of the virtually infinite distance to stars, their coordinates can be stored in an inertial reference frame, and attitude can be derived directly from several sightings. Likewise, horizon/sun sensor systems directly derive the local vertical whereas landmark trackers do not.

Development Required - The technology required to implement a Landmark tracker attitude reference system has not evolved to the degree that star
Figure 2.4-6 Position/Attitude Crosscoupling of the Landmark Tracker
trackers has. Most of the development in these trackers has been directed at solving the autonomous navigation problem, not attitude determination.

Landmark trackers are much better suited for navigation updates than for attitude updates, and so they should possibly be dismissed from this application.

RF Interferometers - Interferometers can be used to derive attitude information by measuring a line of sight angle between the spacecraft axis, defined by an antenna array, and an RF emitter whose position is accurately known. The angle is measured by detecting the phase difference of an RF signal arriving at two pairs of receiving antennas. A very large antenna with a monopulse feed can be used in lieu of an interferometer. This may be useful for missions that require a large antenna.

Complete attitude information can be obtained by knowing the position of at least two transmitters, and the angle of arrival of their signals. There have been two investigations for using an interferometer as an attitude determination sensor. The first, designated as the Interferometric Landmark Tracker (ILT), utilizes ground based radar emitter whose positions can be accurately stored onboard. These emitters include airport radar systems and perhaps tracking stations. Although the ILT differs from optical Landmark trackers in several ways such as the speed involved in measuring the LOS angles, and the memory required to store each landmark, the system is still limited by the crosscoupling errors.

The second approach to using an interferometer is in the conceptual stage only, but the method involved is promising. The Global Positioning System (GPS) is designed to be a navigation aid. However, through the use of an interferometer placed onboard the user spacecraft, attitude information can be derived as well.

Unique determination of three axis attitude information involves measuring relative to the spacecraft axis, two linearly independent vectors to GPS satellites using two independent interferometers. The accuracy obtainable from such a system is between .02° and .6°.

Summary - The attitude sensing requirements of all missions of interest for this program can be met. The basic system envisioned in each case is an IRU, backed up by a horizon sensor-sun sensor set for coarse attitude update or a stellar sensor or Space Sextant for fine satellite update when necessary. The use of landmark is, of course, mission dependent.

2.4.2.2 Position Knowledge (Autonomous Navigation). Autonomous navigation systems can be separated into three groups—position-sensitive angular measurements to celestial objects, Earth-based target reference measurements, and range measurements to known beacons. In systems utilizing angular measurements to celestial objects, the satellite determines the local vertical to the Earth's surface and then measures the angles to three separate known stars. From these measurements, position and attitude information can be derived.
Systems using Earth-based target reference measurements to determine position and attitude depend on Ground Control Points (GCP) or landmarks which can be identified from space. GCPs have many forms—pinpoint light sources, EM emitters, linear features, or specified areas on the ground. Although different systems detect different forms of GCPs, the parameter measured is always the angle to the center of a feature whose coordinates are known. From these measurements and measurements taken from an attitude determination system, complete position and attitude information can be obtained.

Systems relying on known beacons determine range to three or more known points and triangulate to solve for position. Range is determined by acquiring some sort of navigation signal transmitted by the beacons. The signal contains information about the position of the transmitter and time of signal origination. The receiver then solves for the propagation time by knowing the time of signal reception; then assuming a constant propagation velocity, the range is calculated. Several systems are separated in Table 2.4-4 into one of these categories. Table 2.4-5 briefly summarizes the operation for seven autonomous navigation systems, representing the above categories.

It has been estimated that by 1980 the performance of a spaceborne computer will match that of a CDC 6600, operating at just over 10 mega instructions per second (NASA, A forecast of Space Technology 1980-2000, January 1976). With the increased capability of onboard processors, it will be beneficial (in terms of cost and effectiveness) to automate many of the mission activities which currently require extensive ground processing. Automation will not only minimize the amount of ground support equipment and post-flight analysis required to operate a satellite (a major cost factor), but the end-to-end process of data handling could be cut to the point where analysis of the data could be performed on a near real-time basis.

In summarizing autonomous navigation systems, it is necessary to consider the type of mission being flown, the required lifetimes, and accuracies necessary.

Two of the major limitations of earth observation missions are the stationkeeping of the vehicle and the registration of the data being received. It would be most beneficial if an autonomous navigation system could perform both of these functions. The registration of image data can be performed in one of two ways; either a very precise navigation system or a landmark tracker can be used. A satellite in a sun synchronous orbit of 912 km (567 nm) using the SS-ANARS system (highest overall accuracy) whose accuracies are quoted as being 244 meters (800 feet) for position and 1 arc sec for attitude, would have an uncertainty in ground position, as seen by the sensor, of approximately 250 meters (820 feet) assuming no pointing errors for the sensor, (Figure 2.4-7). This uncertainty value may not be acceptable for some feature identification or mapping functions; therefore, a landmark tracker should be used to minimize the ground position error to within acceptable limits (perhaps 30 meters (100 feet)).
Position sensitive angular measurements to celestial objects

LES 8/9 Sun - Local vertical
SS-ANARS Moon - Star
AGN Planet - Star

Earth-based target reference measurements

Natural landmark identification
1) area correlator
2) linear feature detection

Artificial landmark identification
1) Systems using optical emitters (lasers, search lamps)
2) ILT using microwave emitters (radars)

Range Measurements to known beacons

GPS Earth orbital beacons

Table 2.4-4 Autonomous Satellite System Concepts

\[\Delta P = 800 \text{ Ft} \times \frac{1 \text{ Meter}}{3.28 \text{ Ft}} + 912000 \tan(1 \text{ arc sec}) = 250 \text{ Meters} \]

Figure 2.4-7 Ground Position Uncertainty
<table>
<thead>
<tr>
<th>System</th>
<th>Agency/Contractor</th>
<th>Application</th>
</tr>
</thead>
</table>
| Autonomous Guidance and Navigation Mark IIIA
Mark IIIb | NASA HQ, OAST
Contractor: JPL, Pasadena, CA
Manager: Alan R. Klimp
JPL, Ext 679! or 6769(lab) | Designed for interplanetary use on non-lander vehicles
1. Flyby missions
2. Satellite and asteroid exploration |
| Lincoln Experimental Satellite | DOD - Air Force
Contractor: MIT Lincoln Labs
Contact: Dr. S. Srivastava
Lincoln Labs, Ext 5678 | Satellites in synchronous orbit
1. Change of orbit is possible |
| Global Positioning System | DOD - NASA-OAD
Contractor: APL and Magnavox
DADS: Martin Marietta
(onboard attitude determination system)
APL: Eric Hoffman and R. E. Willison
Martin Marietta: John Wilson | Applicable to Earth orbiting satellites below the GPS orbit (10,900 nautical miles) |
| Space Sextant SS-ANARS | DOD - Air Force
Contractor: Martin Marietta,
Denver Division
Manager: Dale Mikelson | Designed for Earth orbiting satellites
1. Independent of orbit
2. Easily modified to include interplanetary vehicles or planetary orbiters |
| Known Landmark Detection (area correlator) | Internal IR&D at Martin Marietta
Project number: D-530
Principal Investigator: Lloyd Gilbert (303)-973-3369 | Designed for Earth orbital satellites
1. Accuracy improves for low Earth orbits
2. Conceived as a final processor for SS-ANARS or GPS to achieve high accuracy position determination |
| Known Landmark Tracker (detection of linear, features) with a star tracker for attitude reference | Internal IR&D at Honeywell Aerospace
Principal Investigator: Peter Kau (813)-531-4611, Ext 3365 | Low Earth orbiting satellites |
| Artificial Landmark Tracker | Agency: Goddard Space Flight Center
Contractor: Charles Stark Draper Laboratories
Manager: Bob White
258-1297
Contact: Robert Var
258-1560 | Low Earth orbiting satellites |
Table 2.4-5 Part 2

<table>
<thead>
<tr>
<th>Status</th>
<th>Level of Autonomy</th>
</tr>
</thead>
</table>
| Sensor development in breadboard stage, Preliminary software design completed | Mark IIIA
Contains AGN sensor
- measurement extraction
- maneuver execution
Relies on Earth
- optical orbit determination
- maneuver determination
Mark IIIB
Complete autonomous navigation with optional override from Earth
Both phases contain extensive onboard processing and ground support. |
| Dedicated costs: approximately 8 man-years | |
| Mark IIIA system to be flown on Jupiter Orbiter with Probe (JOP) 1982 | |
| Mark IIIIB system in development for post-JOP missions | |
| Active contacts: RTOP 506-19-25 and 506-19-21 | |
| Preliminary software design completed | |
| Contains AGNs | |
| Dedicated costs: approximately 8 man-years | |
| Mark IIIB system to be flown on Jupiter Orbiter with Probe (JOP) 1982 | |
| Mark IIIA system in development for post-JOP missions | |
| Active contacts: RTOP 506-19-25 and 506-19-21 | |
| LES 8 and 9 launched in 1975, currently functioning | Fully autonomous in single orbit
Must obtain a command from Earth to change orbit. |
| Development costs: unavailable | |
| Receiver/Processor unit | |
| Development stage breadboarded and tested | |
| OADS. Onboard/Attitude Determination System | |
| Contract number: NASA-23428 | |
| Orbital demonstration scheduled for December 1980 | Fully autonomous |
| Dedicated costs: $110,000 IR&D sources | |
| $9 million sales to USAF | |
| Active contract: PO4701-77-C-0043 | |
| Studies of several correlation algorithms and the initial design concept of the parallel processor were conducted in the fall of 1977 | Position determination shown to be feasible with full autonomy
Attitude determination, using known landmarks, is being investigated
If attitude determination is unfeasible, a star tracker and gyro can be used to obtain this information |
| Current project: IR&D DVD
Demonstration of orbit and attitude determination in a simulated environment to be completed by Dec 1978 | |
| Dedicated costs: 1977 - $15,000
1978 - $40,000 IR&D sources | |
| Sensor in breadboard stage undergoing testing
Several algorithms for linear feature identification are being investigated
Lab demonstration in 1975 using film for video input | Fully autonomous |
| Dedicated costs: $350K - 500K from '71 to present | |
| Advanced Earth Observation System
Instrumentation study completed in 1975
No further contracts issued
Goddard contracts | Relies on ground stations to process the raw data and uplink attitude and orbit corrections
1. Concept could be automated |
| Dedicated costs: $300K (est) | |
Table 2.4-5 Part 3

<table>
<thead>
<tr>
<th>Measured Parameters, Error Sources and Accuracy, 1 sigma</th>
<th>Physical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directions to satellites and planets intensity measurements of starts accuracies</td>
<td>Computer (using the FTSC)</td>
</tr>
<tr>
<td>Direction: 10 deg range targets intensity - 20% accuracy for absolute magnitude 5% for relative magnitudes</td>
<td>Size: 1.3 cu ft</td>
</tr>
<tr>
<td>Measured parameters</td>
<td>Weight: 50 lb</td>
</tr>
<tr>
<td>1. Time of sun transit (sun-Earth, satellite, sun angle of 90 and 270 deg)</td>
<td>Power: 35 W</td>
</tr>
<tr>
<td>2. Angles from the satellite to the two limbs of the Earth's disc</td>
<td>Sensor:</td>
</tr>
<tr>
<td>Accuracy: 0.07 deg in an orbit</td>
<td>Size: no projections</td>
</tr>
<tr>
<td>Measured parameters</td>
<td>Weight: 15 kg</td>
</tr>
<tr>
<td>Distance to each GPS satellite by using transition time of signal, Doppler shift of signal, data obtained from GPS signal time of signal determination, GPS ephemeris, elements of all 24 GPS satellites, Doppler shift of signal</td>
<td>Power: 20 W</td>
</tr>
<tr>
<td>Accuracy time: 9 nanosecond</td>
<td>Subsystems: General purpose computer, sensor, external memory for star catalog and ephemeris data, AD convertor, ground systems, propulsion</td>
</tr>
<tr>
<td>Position: X Y Z (laboratory)</td>
<td>Physical characteristics - excluding 24 sensor</td>
</tr>
<tr>
<td>Velocity: 0.0066 meters per second</td>
<td>Size: 64.6x5 in. sun transit sensor 4 cu in.</td>
</tr>
<tr>
<td>Error sources: Non-ideal atmospheric effects, gravity harmonics, drag</td>
<td>Weight: 6 lb</td>
</tr>
<tr>
<td>Measured parameters included angles between</td>
<td>Power consumption: 6 W</td>
</tr>
<tr>
<td>1. Stars and moon's time</td>
<td>Subsystems: Control, hardwired algorithms, sun sensors, sun transit sensor, earth command, propulsion</td>
</tr>
<tr>
<td>2. Stars and Earth's limb</td>
<td>Physical characteristics of receiver processor assembly</td>
</tr>
<tr>
<td>3. Stars and a plane defined by the sun package</td>
<td>Size: 16 x 20 x 8.4 cu in.</td>
</tr>
<tr>
<td>Accuracy of angle measurement: 1 arc sec</td>
<td>Weight: 38 lb</td>
</tr>
<tr>
<td>Position: 800 ft after 24 hours</td>
<td>Power: dual channel: 45 W</td>
</tr>
<tr>
<td>Accuracy: RMS 3-axis error 1.0 arc sec</td>
<td>Single channel: 32 W</td>
</tr>
<tr>
<td>Error sources: misalignment between prism, electronics offset, non-uniform bearing preload, telescope axis misalignment</td>
<td>Standby mode: 1 W</td>
</tr>
<tr>
<td>Measured parameters include direction to the center of known landmarks area</td>
<td>Power: requires external oscillator for timing signal</td>
</tr>
<tr>
<td>Accuracy: ground position accuracy is good to one tenth of a picture element resolution (4 meters for the landau WxS sensor) under ideal conditions (limited noise)</td>
<td>Subsystems: Electronic interfaces, receiver electronics, dual oscillator, interface unit</td>
</tr>
<tr>
<td>Error sources: Cloud coverage, seasonal effects, pointing errors</td>
<td>Physical characteristics</td>
</tr>
<tr>
<td>Measured parameters</td>
<td>Size: undetermined</td>
</tr>
<tr>
<td>1. Direction to the center of linear features on the earth's surface</td>
<td>Weight: 25 lb excluding the WxS sensor (est)</td>
</tr>
<tr>
<td>2. Direction to known stars</td>
<td>Power: 25 W (est)</td>
</tr>
<tr>
<td>Accuracy: varies as R = altitude</td>
<td>Subsystems: Processing unit, alignment system (WxS), sync logic, GSC system, chip library (external memory)</td>
</tr>
<tr>
<td>where R = pointing error</td>
<td>Physical characteristics</td>
</tr>
<tr>
<td>1/3 = interpolation between pixels</td>
<td>Size: 2400 cu in.</td>
</tr>
<tr>
<td>Error sources: Cloud coverage, pointing errors, minimal errors due to seasonal effects</td>
<td>Weight: 70 lb</td>
</tr>
<tr>
<td>Measured parameters</td>
<td>Power: 100 W average</td>
</tr>
<tr>
<td>1. Ground position of certain artificial landmarks such as search lights</td>
<td>Subsystems: Navigation sensors, processing unit, memory (landmark file), GSC system</td>
</tr>
<tr>
<td>2. Direction to certain known stars</td>
<td>Physical characteristics</td>
</tr>
<tr>
<td>Accuracy: slightly better than one picture element (40 meters for landsat)</td>
<td>Onboard system not studied in contract</td>
</tr>
<tr>
<td>Error sources: Misalignment of sensors, electronics bias, cloud coverage</td>
<td></td>
</tr>
<tr>
<td>Computational Requirements</td>
<td>System Benefits</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SAMBO's Fault Tolerant Spaceborne Computer (FTSC) is being considered</td>
<td>1. Possible use of SAMBO's FTSC (lower development cost)</td>
</tr>
<tr>
<td>Program capacity: approximately 128,000 32-bit words</td>
<td>2. Automatic switch to Earth control if autonomous system is found to be faulty</td>
</tr>
<tr>
<td>External memory: approximately 450,000 32-bit words</td>
<td>3. Autonomous determination of target position and rotation rate</td>
</tr>
<tr>
<td>Reliability: 95% for five years</td>
<td>a. Update knowledge of planetary ephemerides</td>
</tr>
<tr>
<td>Speed: not critical</td>
<td>b. Accurately initialize a lander or orbiter</td>
</tr>
<tr>
<td>Architecture: multiprocessing (probable)</td>
<td></td>
</tr>
<tr>
<td>Interfaces: AOA sensor through a dedicated microprocessor science sensor</td>
<td></td>
</tr>
<tr>
<td>Power: approximately 75 W</td>
<td></td>
</tr>
<tr>
<td>Weight: approximately 50 lb</td>
<td></td>
</tr>
<tr>
<td>FTSC projections</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. General purpose processor onboard</td>
<td>1. Retains ability to be repositioned in any orbit</td>
</tr>
<tr>
<td>Required algorithms with a low duty cycle 2 times a day</td>
<td>2. Because of the small size and low duty cycle, the satellite is free to spend</td>
</tr>
<tr>
<td>Future systems could include a general purpose computer with a small memory requirement</td>
<td>time on scientific endeavors</td>
</tr>
<tr>
<td>and low duty cycle</td>
<td></td>
</tr>
<tr>
<td>Does not require external computations</td>
<td></td>
</tr>
<tr>
<td>Processor contained in receiver unit</td>
<td></td>
</tr>
<tr>
<td>Computer Configuration: Mini-Computer</td>
<td></td>
</tr>
<tr>
<td>Memory Required: Lunar ephemeris data 6K words (16-bit)</td>
<td></td>
</tr>
<tr>
<td>Total memory 26.5K words</td>
<td></td>
</tr>
<tr>
<td>Speed: Input/Output 50K bits/sec</td>
<td></td>
</tr>
<tr>
<td>Interfaces: Roll and yaw gimbals, flight computer (FTSC)</td>
<td></td>
</tr>
<tr>
<td>Computer Configuration: Six parallel microprocessors feeding into three parallel processors</td>
<td></td>
</tr>
<tr>
<td>Memory: Bubble memory 92K bytes</td>
<td></td>
</tr>
<tr>
<td>RAM memory 45K bytes</td>
<td></td>
</tr>
<tr>
<td>Speed: 4 MHz</td>
<td></td>
</tr>
<tr>
<td>Time Required for Location for Best Fit: approximately 27 sec</td>
<td></td>
</tr>
<tr>
<td>Computer Configuration: Microprocessors</td>
<td></td>
</tr>
<tr>
<td>Configuration: undetermined</td>
<td></td>
</tr>
<tr>
<td>Memory: 16K</td>
<td></td>
</tr>
<tr>
<td>*Par. Tel processor being examined</td>
<td></td>
</tr>
<tr>
<td>Computer Configuration</td>
<td></td>
</tr>
<tr>
<td>Onboard system not studied in contract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>System Limitations</td>
<td>Sensor</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Extensive computational requirements</td>
<td>CCD (probable)</td>
</tr>
<tr>
<td>FOV of each element approximately 50 rad</td>
<td>Total FOV approximately 2.3 deg</td>
</tr>
<tr>
<td>A dedicated microprocessor calculates the direction to a certain star or in the center of an extended object</td>
<td></td>
</tr>
<tr>
<td>Limited accuracy; instrumentation pointing limited; corrects for low frequency perturbations in orbit</td>
<td>Sun sensor to scan Earth's disc</td>
</tr>
<tr>
<td>Accuracy deteriorates for low Earth orbits due to atmospheric effects</td>
<td>Sun sensor to detect a sun, satellite, Earth angle of 90 or 270 deg</td>
</tr>
<tr>
<td>No attitude determination in the GPS receiver/processor unit; requires external attitude determination such as a star tracker</td>
<td>Antenna 200 deg resolution cone</td>
</tr>
<tr>
<td>Increased mechanization</td>
<td>Sensor: 8-element silicon detector, the four outer elements provide coarse acquisition (6 arc-min) and the inner array of sensor elements provides fine tracking (1 arc-sec)</td>
</tr>
<tr>
<td>- angular measurement head</td>
<td>Studies carried out using data tapes from Landsat's MSS</td>
</tr>
<tr>
<td>- bearing problems</td>
<td>Sun Sensor</td>
</tr>
<tr>
<td>Cloud coverage limits accuracy</td>
<td>Down Sensor: Array type, perhaps CCD or a linear array</td>
</tr>
<tr>
<td>Seasonal changes limit accuracy</td>
<td>Ground tracking sensor: Multi Spectral Scanner</td>
</tr>
<tr>
<td>- effect can be reduced by updating chip library</td>
<td>Star sensor: Standard Ball Company sensor developed for NASA</td>
</tr>
<tr>
<td>Heavy computational requirements</td>
<td></td>
</tr>
<tr>
<td>Cloud coverage limits accuracy</td>
<td></td>
</tr>
<tr>
<td>Only one component of position information is derived for each landmark sighting</td>
<td></td>
</tr>
<tr>
<td>Requires special landmarks that must be maintained</td>
<td></td>
</tr>
<tr>
<td>Limited accuracy caused by pulse configuration of signal</td>
<td></td>
</tr>
<tr>
<td>- limits scientific pointing</td>
<td></td>
</tr>
</tbody>
</table>
Landmark trackers have the ability to determine the ground position of the sensor's FOV, but it is difficult to differentiate between errors in the position and attitude of the spacecraft. If the satellite were tilted along its pitch axis, the FOV of the sensor would be very similar to the FOV seen if the satellite were translated (maintaining its attitude) along its flight path. Using landmark techniques, it is difficult to determine the position of the satellite without knowing the attitude and vice versa. However, the landmark techniques are ideal for image registration since they determine the absolute ground position of the sensor's FOV.

Benefits and limitations of each approach to landmark identification are shown in Table 2.4-6. From this tradeoff, it is apparent that the area landmark registration approach is superior to other approaches. Although the technique requires significant computational support, processors are currently being developed which could handle the increase load. Also, using a single processor, the registration technique requires an excessive amount of time to provide a position update, however initial studies shows that this time could be drastically reduced by hardwiring the correlation algorithm. The technique of area registration not only provides inputs to a navigation system, but a general purpose image processor allows autonomous annotation of sensor data, inputs to a sensor pointing system, and deterministic data acquisition and transmission.

For our missions the GPS system and Space Sextant are the prime candidates. It is difficult to label one of these systems as being superior due to the difference in concept. GPS will realize a greater position accuracy, but does not have a capability for autonomous attitude determination. In addition, the ground support system is both costly and vulnerable. The space sextant provides both navigation and attitude information, but is limited by its size and weight. The use of either of these systems will depend upon a detailed mission analysis.

2.4.2.3 Disturbing Torques and Forces. The sources of disturbing torques are solar radiation, aerodynamics, gravity gradient, magnetic and internal disturbances.

Solar Radiation Torques and Forces. Solar radiation forces and torques are a function of the exposed surface area projections on a plane perpendicular to the solar vector and surface properties.

When the computations were applied to a large antenna with 300,000 sq ft area, a lever arm of 200 feet, in a synchronous equatorial orbit (characteristic of a possible radar mission), it was determined that the average torque over a 5 year lifetime was .74 ft lbs in pitch and roll. The peak torque was 1.17 ft lb. In addition to producing torque on the vehicle, in the above example, solar pressure produced translational motion away from the sun as shown in Figure 2.4-8. When stationkeeping is a requirement this effect is severe. In the above example 209 lbs of propellant with a specific impulse of 2800 seconds were required to maintain station for 5 years (587, 354 lbs sec of impulse).
Figure 2.4-8 Solar Pressure Effects
<table>
<thead>
<tr>
<th>Landmark Tracking Techniques</th>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial L/M Tracker (Accurately placed optical beacons)</td>
<td>Fast</td>
<td>Requires upkeep of ground based emitters</td>
</tr>
<tr>
<td>Interferometer L/M Tracker (RF emitters)</td>
<td>Fast</td>
<td>Requires upkeep of ground based emitters</td>
</tr>
<tr>
<td>Linear Feature L/M Tracker</td>
<td>Fast</td>
<td>Severely affected by clouds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively small computational support for one L/M sighting</td>
<td>Accuracy limited to pixel resolution</td>
</tr>
<tr>
<td>Relatively small computational support for one L/M sighting</td>
<td>Limited accuracy</td>
</tr>
<tr>
<td>No upkeep of Ground Systems</td>
<td>Does not yield complete positions information for each sighting</td>
</tr>
<tr>
<td></td>
<td>Cross-coupling between crosstrack and downtrack errors</td>
</tr>
</tbody>
</table>

Table 2.4-6 Tradeoff of Landmark Tracking Techniques
Aerodynamic Torques and Forces - A simplified expression used in computing the aerodynamic torque is:

\[L_a = P_a \ell_a A \sin \alpha \]

where:

- \(L_a \) = torque due to aerodynamic pressure; foot-pounds
- \(P_a \) = aerodynamic pressure; pounds/ft\(^2\)
- \(\ell_a \) = distance between center of mass and center of aerodynamic pressure; feet
- \(A \) = surface area exposed to aerodynamic pressure feet\(^2\)
- \(\alpha \) = vehicle angle of attack; radians

Aerodynamic pressure as a function of orbit altitude is given in Figure 2.4-9.

The aerodynamic torque as a function of latitude, exposed area, and lever arm is plotted in Figure 2.4-10.

From Figures 2.4-9 and -10, it can be ascertained that aerodynamic torques will be significant for the low altitude Millimeter Wave Radiometer mission.

Atmospheric drag can impose significant forces and torques on large, low density vehicles in low earth orbit. For long-life, large, low density spacecraft remaining in LEO, the minimum acceptable operational altitude is 400 n.mi. On such a spacecraft, drag makeup thruster vectors should be aligned with the vehicle's center of pressure to minimize attitude disturbances.

The average value of atmospheric drag at discrete altitudes is given in Table 2.4-7. These values are for solid frontal area (area projection perpendicular to orbital velocity vector).

<table>
<thead>
<tr>
<th>Altitude (n.mi)</th>
<th>Drag (lb/ft(^2) Frontal Area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(1.3 \times 10^{-3})</td>
</tr>
<tr>
<td>200</td>
<td>(1.3 \times 10^{-5})</td>
</tr>
<tr>
<td>300</td>
<td>(6 \times 10^{-7})</td>
</tr>
<tr>
<td>400</td>
<td>(4 \times 10^{-8})</td>
</tr>
<tr>
<td>500</td>
<td>(7 \times 10^{-9})</td>
</tr>
</tbody>
</table>

Table 2.4-7 Atmospheric Drag vs. Altitude
Figure 2.4-9 Atmospheric Pressure as a Function of Orbit Altitude (Assuming Circular Orbits)

NOTE: FROM ATOMIC DENSITY BASED UPON EXTENDED ARDC - 1959 MODEL (20)
Figure 2.4-10 Aerodynamic Torque as a Function of Orbit Altitude
An example was analyzed with respect to atmospheric drag and its impact on propellant consumption and atmospheric drag. The example is shown in Figure 2.4-11.

The example is a nadir-point parabolic dish that is in low earth orbit (LEO). Using its projected area and the drag values from Table 2.4-7 yields the drag values shown. Multiplying these drag values by the number of seconds in a five year mission gives the total impulse required for drag makeup during the mission. These impulses were converted to storable propellant \(I = 228 \) pounds and electric propulsion (EP) propellant pounds (and supporting power required) as shown. At 300 n.mi, 70,000 lb. of storable propellant would be required or, with EP, 6000 lb. of propellant and an average of 11,000 watts are required. These values are large although the EP approach is marginally acceptable if one neglects earth shadow cycling of the power supply.

At 400 n.mi, drag is down sufficiently that either storable propellant or EP can be used for drag makeup. Either could be resupplied during the mission and with resupply, the mission could be extended easily beyond five years. Therefore 400 n.mi appears to be an excellent choice for a minimum altitude, long-life, large, low density spacecraft.

<table>
<thead>
<tr>
<th>PROPELLANT PER 5 YR FOR ORBIT MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB @ (I_{sp} = 228)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>(1.4 \times 10^8) LBS</td>
</tr>
<tr>
<td>(1.4 \times 10^6)</td>
</tr>
<tr>
<td>(7 \times 10^4)</td>
</tr>
<tr>
<td>4400</td>
</tr>
<tr>
<td>900</td>
</tr>
</tbody>
</table>

STORABLE PROPELLANT \(I = 228 \) REQUIRES ALTITUDE \(\geq \) 300 n.mi
AND PREFERABLY \(\geq \) 400 n.mi

PLASMA OR LOW PROPULSION, POWERED BY SOLAR ARRAY, REQUIRES ALTITUDE \(\geq 300 \) n.m.i

Figure 2.4-11 Drag Make-Up Examples
Gravity Gradient Torque - The gravity gradient produces a torque about the center of mass of the structure. This torque is a function of the mass distribution and inertias of the structure. A good approximation can be calculated from

\[
L_{cgx} = -L_{gx} = -\frac{3}{R_o^3} \left(I_{zz} - I_{yy} \right) \sin 2\theta \cos^2 \theta
\]

\[
L_{cgy} = -L_{gy} = -\frac{3}{R_o^3} \left(I_{zz} - I_{xx} \right) \sin 2\theta \cos \phi
\]

\[
L_{cgz} = -L_{gz} = -\frac{3}{R_o^3} \left(I_{xx} - I_{yy} \right) \sin 2\theta \sin \phi
\]

where

\[
u = GMe
\]

\[G = \text{universal gravitational constants}\]

\[M_e = \text{mass of earth}\]

\[R_o = \text{orbital radius from center of the earth}\]

\[I_{xx}, I_{yy}, I_{zz} = \text{principal axes inertias}\]

\[\theta = \text{pitch angle}\]

\[\phi = \text{roll angle}\]

A vehicle with substantially different moments of inertia along its principal axes will be significantly affected by gravity gradient torques. Calculations were run for a 170,000 lbm vehicle with

\[I_{xx} = I_{yy} = 267.6 \times 10^6 \text{ SF}^2\]

\[I_{zz} = 63 \times 10^6 \text{ SF}^2\]

The vehicle was essentially a large antenna of 160,000 lbm with a 1500 foot mast with mass of 3000 lbm on the tip of the mast.

The torque about nadir was:

\[L = 16.7 \text{ ft-}\theta/\text{deg around nadir}\]

Gravity Gradient Torques are therefore an effect which must be taken into account when designing an antenna to slew or to fine point.

Magnetic and Eddy Current Torques - The magnetic torques on the vehicle are due to eddy current induced in the S/C, electrical currents in the S/C, and magnetic dipole from residual magnetism in "hard" magnetic materials and residual magnetism and induced magnetism in "soft" magnetic material in
the S/C. A hard magnetic material means a material in which the magnetic moment is essentially unchanged by small changes in the field around it. Conversely, the magnetic state of a "soft" material is predominately determined by the ambient field.

The eddy current torques are due to induced eddy currents in the S/C and its interaction with the Earth's magnetic field. Since most of any large antenna would be made of graphite-epoxy tubes, guy wires, and hinge and latch mechanisms, which are conductive, there will be eddy current torques induced in the S/C. Modelling eddy current torques in this type of configuration is complex. Previously the eddy current torques have been modeled in a vehicle where the currents are induced into a cylindrical skin. The eddy current torques can be minimized by eliminating conducting loops or opening the loops by using non-conductive materials. The epoxy surrounding the graphite fibers in the composite tubes and guy wires will prevent the formation of conductive loops from the truss members.

The magnetic dipole moment is produced by residual magnetism in the "hard" and "soft" magnetic materials in the S/C and induced magnetism in the "soft" magnetic materials. There is an uncertainty in induced magnetism in "soft" magnetic materials. The residual magnetism in soft magnetic materials will change from the Earth-based measurement and cannot be predicted when the vehicle is in orbit. The dipole moment changes considerably from the prior-to-launch measurement. The difference between the prior-to-launch measurement and the on-orbit measurement is probably due to induced eddy currents and induced magnetism in soft magnetic materials. If the Earth's and the S/C magnetic field can be approximated by magnetic dipoles, the magnetic torques can be calculated by the following equation:

$$
\vec{T} = \vec{M} \times \vec{B}
$$

- \(\vec{M}\) = spacecraft magnetic dipole (A\(\cdot\)m\(^2\))
- \(\vec{B}\) = Earth magnetic field (Tesla)
- \(\vec{T}\) = S/C torque (N\(\cdot\)m)

A pessimistic estimate of the S/C dipole moment used for small spacecraft is 1000 pole-cm (1 A\(\cdot\)m\(^2\)). Now, our missions vehicles are on the order of 100 times longer. A previous study made with a vehicle of this longer class assumed a dipole moment of 100 A\(\cdot\)m\(^2\). The torque produced by this dipole moment and the earth's magnetic field is negligible given that three orders of magnitude larger torques exist from other sources and will be compensated by the control system.

Torques due to High Current Flow in the S/C - The torque on the S/C due to current flow within the vehicle would tend to align the current along the Earth magnetic field. These torques can be eliminated by using a twisted pair or using ac current.

Other internal sources of forces and moments include thermal inputs and moving and deploying mechanical equipment within the spacecraft. The moving
mechanical equipment (e.g., masts, booms, gimbals, actuators, and wheels) primarily produce orientation disturbances.

Secondary spacecraft subsystems can produce orbit perturbations as well as orientation disturbances. These secondary sources include outgassing and venting.

2.4.2.4 Controllers.

Types of Controllers - The means to generate control torques can be classified into three broad categories. All involve momentum interaction: momentum exchange between the spacecraft and the universe by reaction jets, between the spacecraft and moving parts in the vehicle (momentum exchange devices), and finally, interaction with the environmental field.

Jets of conventional type are particularly appropriate for stopping initial tumbling, execution of large-angle maneuvers, and for compensating for large disturbance torques. They have the disadvantage of eventually running out of fuel, limiting the lifetime of the spacecraft. This can be alleviated somewhat by using them in a constant thrust, pulsed mode, and permitting the spacecraft attitude to drift within given dead bands (limit cycle operation). This limits the pointing accuracy. Even when a secondary control system is used to point an antenna segment accurately on a separate, hinged compartment the sudden onset of angular acceleration due to the pulse firing is a substantial disturbance to the secondary control, which is of no little significance when high pointing requirements are needed. On the other hand, electrical propulsion systems are, in principle, suitable for long life operation if the electric energy is available. Their main disadvantage is the low thrust limitation, requiring another actuating system for maneuvering and for coping with large disturbance torques.

Momentum exchange devices are capable of long term operation and high accuracy when properly designed. Also, they are capable of delivering large torques. However, they have a limited angular momentum absorption capability; they saturate.

To avoid the saturation condition (which results in at least partial loss of control), a secondary means to generate torque is required. (Desaturation or momentum management system). Torques generated by interaction with the ambient fields are due to four main sources: the magnetic field of the earth at lower altitudes and up to an altitude of about 10 earth radii; the atmosphere; and the radiation field from the sun.

The magnetic method is based on sending currents through three orthogonal coils attached to the vehicle or through a single coil double-hinged on the spacecraft. The current in any coil produces a magnetic moment which tends to align itself with the local magnetic field vector, thereby producing a torque on the vehicle. This method has certain drawbacks, such as the effect on vehicle instrumentation of the fields generated within the vehicle. Also, at any instant, torque can be produced only along components normal to the
local magnetic field vector. Practical limitation in the power supply and
the coil size makes the generation of large torques unfeasible.

Aerodynamic forces, in principle, can be used to provide control torques
about orientations which deviate slightly from a velocity vector oriented
attitude. Satellite lifetime considerations will limit the areas of the aero-
dynamic panels used and hence also the torque magnitudes.

Selection of Momentum Exchange Controllers - For long lifetime space
missions, it would be desirable to forego the use of active controllers
since these devices impose penalties in terms of reliability and the weight
of the propellant (required to provide primary control or to desaturate
momentum exchange devices). Passive control is possible in systems where
accurate pointing is not a requirement and which do not require slewing.
Gravity gradient in antennas with long masts by itself will produce simple
harmonic motion about the local vertical. The oscillation however is un-
damped and some method such as the reaction booms, simple active controllers
or any of several spring mass systems mentioned in the literature must be
incorporated to damp out the oscillation.

For our missions, with their pointing accuracies and slewing require-
ments, we will be forced to use some form of active control, at least for
those portions of the mission when data are being taken. Due to the size of
the antennas and the associated disturbing torques and forces, the use of
momentum exchange devices, either reaction wheels or CMGs, backed up by re-
action jets for momentum desaturation and stationkeeping is indicated.

Classification - The three basic elements, reaction wheel, single gim-
balled CMG, and double gimbaled CMG are part of or assembled to a set of six
functional units of which all configurations are composed:

1. Reaction wheel (RW)
2. Gimballed reaction wheel (GRW), single or double gimballed.
4. Scissoring single gimballed CMGs.
5. Double gimballed CMG (DGCMG).
6. Mechanically synchronized double gimballed CMGs.

All configurations built up from those six units may be ordered into the
following ten groups:

1. Arrays of RWs.
2. Sets of RW arrays.
3. Arrays of gimballed RWs.
4. Sets of scissoring SGCMGs (V-pairs).
5. Arrays of SGCMGs.
7. Pair of DGCMBs.
8. Arrays of DGCMBs.
9. Sets of mechanically synchronized DGCMBs.
10. Hybrid sets.

Examples – A large number of practical configurations have been proposed. The most important ones will be discussed here in some detail in order to facilitate a comparative evaluation.

Arrays of Reaction Wheels – At least three RWs are required to satisfy control torque requirements.

N Skewed Reaction Wheels – Any number of RWs can be arranged to form skewed arrays, but only 3, 4, 6, and 10 can be arranged completely symmetrical. The advantages of using more than four lies in the larger degree of redundancy, an enhanced possibility for energy exchange (to minimize power requirements), and a more efficient momentum envelope. The disadvantages mainly are increasingly complex control laws and an increase in total weight.

Six Reaction Wheels Arranged in Two Orthogonal Sets – These may be operated either independently in two sets with one set serving as a backup used only during peak control torque requirements or with all six operating simultaneously using the energy interchange mode (or power transfer minimization). Alternately, each pair of parallel RWs may be operated in an energy interchange mode without cross feed to the other two pairs, resulting in a simpler control law.

Three Single Gimballed RWs with Orthogonal Gimbal Axes – This is the simplest configuration to combine two control systems into one unit; namely, a fine pointing control using the gimbal rates as the control variables while maintaining constant rotor speeds (CMG mode), and a coarse control for large maneuvers using the rotor speeds as the control variables and locking the gimbals (RW mode). The simultaneous use of all six control variables requires a much more complex control law which may not be competitive with other configurations.

Sets of Three Scissoring Single Gimballed CMGs – A scissoring pair of single gimballed CMGs consists of two SGCMG with parallel gimbal axes initially oriented such that the moment a oppose each other and gimbals are mechanically or electrically slaved to rotate by the same angles in opposite directions (scissoring). The vector sum of the momentum vectors lies always along one axis, the output axis. Three of these "V-pairs" of SGCMGs orthogonally arranged make up a 3-axis control system. All axes are independent,
free of cross coupling. The required control law is extremely simple, featuring only a gain inversely proportional to the cosine of the gimbal angle about each axis. This simplicity of operation is the reason why this system is one of the earliest investigated. Since six CMGs are required to produce a modest momentum envelope of the shape of a cube, the overall system tends to be relatively heavy. Adequate redundancy is achievable with the heavy cost of providing a complex control law used only for failed CMG operation.

Array of Three Orthogonal Single Gimbaled CMGs - This is the simplest SGCMG configuration possible. The momentum envelope is reasonable if one can live with the many singular relative attitudes of these SGCMGs (conditions which produce no torque component along one axis with finite gimbal rates) in connection with another type of control system (a reaction jet attitude control system for coarse control, for instance), fine pointing control can be maintained. A momentum envelope without any singularities inside exists with zero bias momentum. The corresponding control laws are reasonably simple. But, the lack of redundancy and the singularities mentioned above render this system impractical when used by itself.

Array of Four Skewed Single Gimbaled CMGs - The gimbal axes are mounted tilted from one reference direction about equal angles in a symmetric fashion. When this angle corresponds to arc tan 2, the gimbal axes are parallel to the body diagonals of a cube. Various momentum storage envelopes can be accommodated by choice of the tilt angle. An elongated momentum ellipsoid can be inscribed in the momentum envelope of a skewed configuration with a large tilt or skew angle. An oblate ellipsoid fits in the envelope of the configuration with a small skew angle. These configurations are single redundant and are not free of singularities.

N Skewed Single Gimbal CMGs - Better redundancy and better momentum storage envelopes can be achieved if more than four SGCMGs are arranged in a skewed configuration. The complexity increases with the number of the CMGs. An improvement in the momentum envelope will be partially offset by the weight increase of the more numerous smaller CMGs. The weight optimal configuration for a given minimum spherical envelope is expected to consist of 4, 5, or 6 SGCMGs, depending on the design requirements. A previous study contains the results of a selection study for a large spacecraft application; naming the 4-CMG configuration the lightest in weight, and the 5-CMG configuration the best in overall performance.

Two Sets of Orthogonal Single Gimbaled CMG Arrays - Three pairs of parallel SGCMGs are arranged with parallel pairs of gimbal axes orthogonal to each other. The configuration corresponds to the set of six scissoring SGCMGs with the synchronizing mechanism removed. The effect is to substantially increase the momentum storage capacity while requiring comparatively more complex control laws. The arrangement is triple redundant and suitable for a standby-mode operation; one set of three SGCMGs would be operating to maintain accurate pointing within a small momentum envelope, while the other set is inactive but also activated for large angle maneuvering.
Pair of Double Gimballed CMGs - This is the simplest DGCMG configuration. As with all DGCMG configurations, the gimbal actuators must carry the full CMG torques and are sensitive to forcing functions at the nutation frequency caused by inner and outer gimbal inertial cross coupling. The pair of DGCMGs has four degrees of freedom. One, the rotation of the CMG momenta about the momentum vector sum, does not produce any net torque and can be used to avoid gimbal stops. The condition where the spin vectors of the CMGs are antiparallel (zero momentum condition for equal CMG momenta) is singular in the sense that no control torque can be generated along the spin axis. The momentum envelope is spherical outside the gimbal stop wedges and slightly smaller within.

Array of Three Orthogonal Double Gimballed CMGs - The outer gimbals are mounted orthogonal to each other. This configuration has adequate redundancy. The loss of a complete CMG still allows 2-CMG operation reverting in configuration to the previous example. The major drawback, apart from the problems associated with DGCMGs, is the complexity of a satisfactory control law. This configuration was used on Skylab, and a great deal of literature on this configuration is available. The principal difficulty stems from problems involved in avoiding reaching the gimbal stops. When the total momentum magnitude is large enough (57% of saturation), then there are maneuvers where hitting the gimbal stops cannot be avoided without introducing other control torques or producing attitude errors.

A large number of hybrid configurations are possible. The scope of this work does not allow the discussion of all the reasonable possibilities. The simpler configurations combine a two axis CMG element like a DGCMG; a pair of two parallel SGCMMGs, or a pair of synchronized two degree of freedom CMGs with a uniaxial device like a SGCMMG or a scissoring pair of SGCMMGs.

Characteristics of Certain Configurations - The weight of a reaction wheel system for three axis control consists of the weight of three momentum packages plus the weight of wiring and miscellaneous hardware. The power required by the system is the motor power plus the dissipated power. Reaction wheel weight and power for a single axis are shown in Figures 2.4-12 and 2.4-13, respectively. Our larger antennas would fall in the upper portion of the curves.

The weight of a CMG system is obtained by adding the weight of the electronics to the weight of the control packages. However, the weight is not proportionate to CMG size. Typical weights of 3 CMG, 4 CMG and 6 CMG system versus angular momentum are shown in Figure 2.4-14; power requirements are shown in Figure 2.4-15.

Reliability of the systems drops as their complexity increases. A reliability comparison versus cost plot, Figure 2.4-16 (Vendor Supplies Data), indicates that high reliability, for 5 years, is significantly more cheaply obtainable with a 4 reaction wheel system than a 6 CMG system.

Reaction Jet System - In order to desaturate the momentum exchange devices and to provide the force necessary for stationkeeping or orbit maintenance (when required), systems of reaction jet must be used in con-
Figure 2.4-12 Reaction Wheel System Weight (Single Axis) as a Function of Momentum Capability
Figure 2.4-13 Reaction Wheel Peak Power Requirements (Single Axis) as a Function of Momentum Capability
Figure 2.4-14 CMG Control System Weight as a Function of System Momenta Capability

CMC Control System Weight (lb-
System Momenta Capability (ft-lb-sec)

10^4

10^3

100

10^2

1

10

10^1

10^0

1

CMC Control System Weight (lb)

CMC Controller

N = 6,000 rpm

N = 12,000 rpm

N = 24,000 rpm

109
Figure 2.4-15 Continuous CMG Power as a Function of System Momentum Capability
Figure 2.4-16 Reliability vs Cost

DC - Dual Channel Electronics
SC - Single Channel Electronics

5 Yr. \(R_{NW} (3/4) = 0.997 \)
5 Yr. \(R_{SGCMG} (4/6) = 0.986 \)
Specified reaction control system designs are dependent upon the boost phase of flight as well as the useful on-orbit phase. A reaction control system designed for a recent SAMSO-sponsored design for a synchronous orbit radar antenna of 600 foot diameter employed a combination of a bipropellant system and a mercury ion system. The actual process of selecting a momentum exchange/reaction jet attitude control system is dependent upon a detailed mission analysis, control function analysis and the structural characteristics of the particular antenna. The process should begin as soon as the mission is understood as it, itself, impacts the design of the structure as well as performance of the antenna and packaging of the structure in the Orbiter's Cargo Bay.

2.4.3 Conclusions & Limitations. Attitude control can be achieved to satisfy the requirements of each of the missions.

- Subsystems exist to satisfy the attitude determination requirements sensing with respect to the fixed stars, lunar limb or landmarks.
- Subsystems exist to satisfy the requirement of certain missions to possess accurate knowledge of the location of the antennas in space and/or with respect to landmarks.
- Disturbing torques can be overcome by any of several types of controllers.
- Slew requirements can be met.

Disturbing forces exist which will drive the antenna off station or alter the orbit. To overcome this effect would require substantial propellant.

Extended operational orbital lifetimes (over about 5 years) will require either an improvement in the state of the art of controllers or an unusually high degree of redundancy with its associated penalties.
3. TASK 2, PERFORMANCE ANALYSIS, SELECTED APPROACH, RADAR SYSTEM

3.1 RF Performance Analysis

3.1.1 Introduction. Adaptive antennas have received considerable attention in recent years. [1,2] Emphasis has been placed on receiving systems which utilize the received energy from one or more sources in the field of view in conjunction with a feedback processing system to produce a prescribed radiation pattern. The two most common radiation patterns are a maximum gain pattern in the direction of the sources and a pattern with minimum in the direction of some of the sources (adaptive nulling) for anti-jamming applications. This class of systems requires little a-priori information on the location or characteristics of the source (other than the frequency range) to perform properly.

A second class of systems which can be referred to as feedforward systems, requires a-priori knowledge in order to provide a prescribed radiation pattern. This a-priori knowledge is usually in the form of stored information in a computer. For example, steering phases provided to a phased array to scan the beam where a one-to-one relationship exists between the steering phases and the beam pointing angle. The use of a-priori information allows the adaptivity to be obtained either by electrical or mechanical means, or a combination of both. A hybrid system, commonly used in phased arrays, utilizes feedforward phase control to point the main beam and then uses feedback loops to adaptively generate nulls in the sidelobe region.

Another class of adaptivity of particular interest to this program is adaptive figure control for very large space-deployable antennas. This can also be achieved by either electrical or mechanical means. It is a two-part problem. The first part is the sensing of the figure errors and the second part is the correction of these errors.

One very useful class of antenna systems for this application is a two-reflector system consisting of a large primary reflector, a smaller field reflector, and a phased array feed system that is substantially smaller than the primary reflector. The field reflector is designed such that the image surface of the primary reflector lies on the surface of the phased array feed. This system has the advantages of a phased array in electronic beam steering and adaptive nulling, but it has the increased directivity given by the much larger primary reflector. Further, the imaging property of the field reflector provides a method of determining the distortions on the main reflector from observations of the fields of the phased array feed. This system has been investigated under RADG sponsorship [3-8] on a number of study contracts.

We have continued this investigation in our program.

Of primary concern with respect to physically large reflector antennas is the effect of distortions in the reflector shape on the gain and the radiation patterns. A reflector that departs significantly from its nominal parabolic shape could direct much of the energy it collects to regions outside the feed cluster. This problem can be corrected by a mechanically adaptable reflector surface. If the distortions are minor, a phased array located along the image surface of the primary reflector can be used to measure the distortions and also to compensate for them electrically. For larger distortions the phased array can relay information to the mechanical actuators to perform mechanical corrections on the primary reflector surface. An antenna having both electrical and mechanical adaptivity can always optimize its gain better than one having only electrical adaptivity. To detect distortions, individual elements in the phased array are monitored for phase and amplitude. This information is compared against stored data for an undistorted primary reflector to infer the mechanical corrections required in the reflector surface or electrical corrections needed by the phased array.

In this study adaptive techniques were applied to the analysis of a two-reflector phased-array fed antenna system. The primary reflector and the field reflector are both of parabolic shape and are confocal. The phased array follows a stepped-parabolic contour that represents the image surface of the primary reflector. The primary reflector is assumed to be made up of N equal arc length parabolic segments that can undergo displacements and rotations independent from one another. Each segment's orientation can be controlled by mechanical actuators placed behind the primary reflector. The mechanical model used is the deployable box truss discussed elsewhere in this report, with the box diameter typically 20-25 ft. Mechanical actuators for the adaptive surface control are placed at the corners of the boxes. The reflecting surface is supported at these points. The surface would be a continuous reflecting mesh for microwave frequencies. It could be composed of separate rigid panels for millimeter wave frequencies. In either case, the local distortions of the supporting truss will be small compared to the spacing between control points. Under these circumstances, the surface segments between control points can be modeled as a perfect parabola to good accuracy, with the distortions modeled as displacements and rotations of these segments.

The basic offset-fed antenna system is shown in Figure 3.1-1. The offset-fed system is desirable for reducing blockage effects. The field ref-
Figure 3.1-1 Two-reflector system with phased array feed.
The focus and phased array are assumed to be small enough so that they can be built with materials to maintain a precision surface.

In Section 3.1.2 ray tracing is applied to the analysis of two-reflector phased array fed systems. The effect of primary reflector distortions is included in the analysis. The detailed derivations of important equations are given in Appendix A and B. In Section 3.1.3 the analysis is applied to the offset and symmetric planes of two-reflector systems. Beam scanning characteristics and adaptive nulling results are presented. It is demonstrated that phase compensation by the array improves the antenna gain significantly when a distortion is present.

3.1.2 Theory For Analyzing Two-Reflector Phased Array Fed Systems

3.1.2.1 Introduction. The objectives of this study of the two reflector phased array-fed system were to:

1. Determine whether distortions in the primary reflector can be detected and defined by the phased array.
2. Determine the effects of distortions on the far-field patterns and the ability of the array to improve performance by phase compensation.
3. Determine beam scanning losses and the effect of beam scanning on sidelobe levels.
4. Investigate adaptive nulling.

The usefulness of a two-reflector system in monitoring distortions is that the field reflector provides an image of the primary reflector surface. This is equivalent to using a Fourier-transform matrix network, e.g. the Butler matrix [9]. For beam scanning purposes the two reflector system is useful in reducing the number of phased array elements required. The number of phased array elements in a two-dimensional system is reduced proportionally by the square of the magnification M of the system, where

$$M = \frac{D_1}{D_2}$$

$D_1 = $ Diameter of the primary reflector
$D_2 = $ Diameter of the field reflector

This relation is shown for the two-reflector conformal parabolic system in Figure 3.1-2. The offset system is used in order to reduce blockage effects.

Figure 3.1-2 Two-reflector confocal system.

\[M = \frac{D_1}{D_2} \]
Part 3.1.2.2 of this section provides the theory for analyzing two reflector phased array fed systems. A simple ray tracing technique is used which is easily implemented on a computer.

3.1.2.2 Theory. In this section the theory used in analyzing the two reflector phased-array fed system (see Fig. 3.1-1) is discussed. Ray tracing is used to detect distortions in the primary reflector surface as well as to determine the proper phase distribution that is required on the phased array to achieve beam steering. The secondary far-field pattern due to some field distribution on the phased array is found by using Huygens point sources and superposition. The analysis is simplified by taking a planar cut of the antenna and restricting rays to this plane.

In order to detect distorted segments in the primary reflector, it is assumed that a cooperating source illuminates the primary reflector as a plane wave along boresight. This signal is received by elements of the array and the amplitude and phase is then compared against the undistorted case. The phased array surface is chosen to be the image of the primary reflector such that a one-to-one mapping exists between the two surfaces. This relation is shown qualitatively by shaded regions in Fig. 3.1-3. Ideally, there should be many (ten to twenty) apertures per primary reflector segment in order to determine the precise orientation of each segment.

In the undistorted receiving case the incident plane wave is sampled on the primary reflector at equally spaced points in the x dimension such that at least five rays are received by each waveguide in the phased array. This is done to ensure convergence in the array field distribution. The total electric field received by any one of the matched waveguide-fed apertures is, by superposition, the sum of the electric field contributions of each ray that strikes the aperture. The signal at the element output is a weighted sum of each ray contribution. The weighting is dependent on the ray's angle-of-arrival and is fixed by the far-field pattern of the array element. A typical ray path is shown in Fig. 3.1-4. The incident ray strikes the primary reflector at the point \((x_1, z_1)\) whereby it is reflected to the sub-reflector at the point \((x_2, z_2)\) and then to the phased array at the point \((x_3, z_3)\). In Appendix A and B two fourth order polynomial equations are derived which describe the ray path to the phased array surface (see Equations (A-34) and (B-13)). The equations were found by enforcing the condition that the angle of incidence be equal to the angle of reflection at the surface of the primary and secondary reflectors. Equation (B-13) finds the incident point on the ideal parabolic image surface. This information is then used to determine which array element of the stepped parabolic surface receives this ray. The four roots in Equations (A-34) and (B-13) are solved for by the Newton-Raphson iterative technique. [10] A listing of the computer program that implements this technique is given in Appendix C.

For the incident wave shown in Fig. 3.1-4 the electric field at any point on the primary reflector is given by

Figure 3.1-3 One-to-one mapping between primary reflector and phased array.
Figure 3.1-4 Two Reflector Confocal System with Distorted Primary Reflector
\[\mathbf{E} = \hat{z} e^{-j \beta (z'_1 \cos \theta + x'_1 \sin \theta)} \]
(3.1-2)

where \(\theta \) is the angle of incidence. Note that \(z'_1 \) includes the effect of distortion (see Equation A-24). In terms of the path lengths \(l_{21} \) and \(l_{32} \) in Figure (3.1-4) the electric field received by the \(n \)th array element is

\[\mathbf{E}_n = \mathbf{E}_n^0 e^{-j \beta (l_{21} + l_{32})} \cdot P(\theta_3) \]
(3.1-3)

where \(P(\theta_3) \) is the pattern function of the array element and \(\theta_3 \) is the angle of incidence at the array element. In general, the element pattern is given by

\[P(\theta_3) = \cos^m \theta_3 \]

where \(m \) is chosen according to the element aperture size.

Of interest is a "self-correcting" property of two-reflector confocal parabolic systems. By "self-correcting" is meant that for small distortions the one-to-one mapping between a region of the primary reflector and phased array surface is maintained. This property is demonstrated by two examples as follows: In case I consider two rays \(u \) and \(d \) as shown in Fig. 3.1-5. Ray \(u \) represents an incoming ray parallel to the antenna axis that is reflected by the undistorted primary at the point \((x'_1, z'_1)\) and passes through the focal point. It then strikes the field reflector at the point \((x_{2u}, z_{2u})\). The slopes of the primary reflector and field reflector at the points \((x'_{1u}, z'_{1u})\) and \((x_{2u}, z_{2u})\) are denoted by \(m_{1u} \) and \(m_{2u} \), respectively. Ray \(u \) then travels parallel to the axis until it reaches the array at the point \((x_{3u}, z_{3u})\). Ray \(d \) represents the same incoming ray but is reflected by a distorted segment. In this case the distortion is a segment that is rotated counterclockwise. Ray \(d \) is incident on the primary reflector at the point \((x'_1, z'_1)\). The slope at this point, denoted by \(m_{1d} \), is greater than \(m_{1u} \) so the reflected ray will strike the field reflector at the point \((x_{2d}, z_{2d})\) above the undistorted location \((x_{2u}, z_{2u})\). Since the slope at the point \((x_{2d}, z_{2d})\) denoted by \(m_{2d} \), is greater than \(m_{2u} \) (which represents a counterclockwise rotation) the ray will be directed (compensated) down towards the point \((x_{3d}, z_{3d})\). The ray arrives at the array at the point \((x_{3d}, z_{3d})\) which will be close to but different than \((x_{3u}, z_{3u})\). Since the array is quantized, the two rays will generally arrive at the same aperture or occasionally the adjacent aperture. In case II the distortion now consists of a clockwise rotation of a segment. As shown in Fig. 3.1-6 the path of ray \(u \) (undistorted) is the same as in case I. Since the slope at the point where ray \(d \) (distorted) strikes the primary reflector is less than \(m_{1d} \), the ray will intersect the field reflector at the point \((x_{2d}, z_{2d})\) below the undistorted location \((x_{2u}, z_{2u})\). Since the slope at the point \((x_{2d}, z_{2d})\) is greater than \(m_{2u} \) (which represents a clockwise rotation) the ray will be directed (compensated) up towards the point \((x_{3u}, z_{3u})\). As in case I the ray will very often arrive in the same aperture or sometimes the adjacent aperture.
Figure 3.1-5 Ray path self correcting property of confocal parabolic system for a small distortion (counterclockwise rotation)
Figure 3.1-6 RAY PATH SELF CORRECTING PROPERTY OF CONFOCAL PARABOLIC SYSTEM FOR A SMALL DISTORTION (CLOCKWISE ROTATION OF SEGMENT)
Suppose now that the region occupied by, for example, ten apertures represents the mapping of the corresponding segment on the undistorted primary reflector. From the above two examples, the tube of rays which is incident upon a segment that has a small distortion will arrive at the same ten apertures. When every segment of the primary has some small distortion there will be very little overlap between tubes of rays received at the array. This means that for small distortions each group of array elements will provide phase and amplitude information only for its corresponding primary reflector segment.

Although the rays due to distortion strike at approximately the same location and with approximately the same amplitude as an undistorted ray, the phase will be significantly different. This is due to a change in path length equal to approximately twice the amount of distortion. Thus, if the phase received at the array due to the distorted primary are compared (by taking the difference) against the phases of the undistorted primary it should be clear what type of distortion is present (rotation and/or displacement).

Suppose that the phase and amplitude received by elements of the array have been determined for some incident wave on the primary reflector (distorted or undistorted). The far-field pattern due to this distribution can be found in the following manner: The phased array is replaced by Huygens point sources located at the center of each aperture whose field distribution is the conjugate of that which is received. Denote the location of point source \(n \) of the array by \((x_3^n, z_3^n)\) and let \((x_2^n, z_2^n)\) be an observation point on the field reflector, as shown in Fig. 3.1-7. Further, let \(\theta \) be the angle measured from the normal to array element \(n \) and let \(\ell_{23n} \) be the distance between points \((x_3^n, z_3^n)\) and \((x_2^n, z_2^n)\). If there are \(N \) number of array elements, the electric field at any point \(m \) on the field reflector is given by superposition as

\[
E_m(x_2, z_2) = \sum_{n=1}^{N} E_n^*P(\theta_n) \frac{e^{-j \beta \ell_{23n}}}{\ell_{23n}}
\]

(3.1-4)

where \(P(\theta_n) \) is the pattern function of the array element, \(E_n \) is given by equation (3.1-3) and \(^* \) denotes conjugate. Similarly, with \(\ell_{23m} \) representing the distance between a point on the field reflector and a point on the primary reflector, the field at any point on the primary is given by

\[
E(x_1, z_1) = \sum_{m=1}^{M} E_m(x_2, z_2) \frac{e^{-j \beta \ell_{12m}}}{\ell_{12m}}
\]

(3.1-5)

where \(M \) is the number of sample points on the field reflector. Combining equations (3.1-4) and (3.1-5) and transforming to the aperture shown in Fig. 3.1-7 the aperture distribution is given by

\[
F_a(x_1) = \sum_{m=1}^{M} \sum_{n=1}^{N} E_n^*P(\theta_n) \frac{e^{-j \beta (\ell_{12m} + \ell_{23n} + \ell_a)}}{\ell_{12m} + \ell_{23n}}
\]

(3.1-6)

124
Figure 3.1-7 GEOMETRY FOR RAY TRACING ANALYSIS
where \(l \) is the distance from the primary reflector surface to the aperture. Note that equation (3.1-5) includes the effects of reflector distortion if some is present.

The far-field pattern can now be expressed as
\[
F(\theta) = \sum_{k=1}^{K} E_{ak} e^{j\beta x_k \sin \theta}
\]

(3.1-7)

where \(K \) is the number of sample points in the aperture, \(\theta \) is the observation angle measured from the antenna axis, \(x_k \) is the sample point location, and \(E_{ak} \) is determined from equation (3.1-6)

Equation (3.1-7) is simply the field radiated by a linear array of point sources. The aperture efficiency is defined by
\[
\eta_S = \frac{\sum_{k=0}^{K} |E_{ak}|^2}{\sum_{k=0}^{K} |E_k|^2}
\]

(3.1-8)

where \(\theta_s \) is the beam scanning angle. The loss in gain is given by \(10 \log_{10} \eta_S \), which includes the effects of spillover and distortion.

It is also possible to taper the illumination of the reflector for sidelobe control by an appropriate amplitude taper on the excitation of the array elements, \(E_{ak} \). \(\eta_S \) also includes loss due to illumination tapering.

3.1.3 Two-Reflector Phased Array-Fed System Results

3.1.3.1 Introduction

A set of Fortran computer programs were written to analyze two-reflector confocal parabolic systems using the theory in Section 3.1.2. The set consists of five programs. There is one pair each for the offset and symmetric planes. Each pair consists of a program to compute the received array aperture distribution for some incident plane wave. The angle of incidence, \(\theta \), is a program input. The second program of each pair uses the conjugate of the received array aperture distribution (adjusted for amplitude tapering if desired) to compute the secondary far-field pattern and aperture illumination efficiency.

There are two separate pairs of programs because blockage and spillover computations are different in the offset and symmetric planes. A fifth program is used specifically for adaptive nulling pattern computation. These programs are listed in Appendix C.

3.1.3.2 Observation and Effects of Primary Reflector Distortions

The system shown in Fig. 3.1-8 was chosen as a representative case for determining the effects of primary surface distortions. It is assumed that the primary reflector is divided up into six equal arc length parabolic segments. Each segment, in general, can undergo displacement and rotation. The positions of the actuator control points for adaptive control of the shape
Figure 3.1-8 Two reflector phased array fed system.
of the primary reflector are indicated by circles. It is assumed that some cooperating source illuminates the primary reflector in order to monitor distortions by means of the received amplitude and phase at the phased array surface. The system is described by the following parameters.

\[D_1 = 300\lambda \]
\[D_2 = 60\lambda \]
\[D_3 = 60\lambda \]
\[f_1 = 30\lambda \]
\[f_2 = 60\lambda \]
\[f = 27.27\lambda \]
\[d = \lambda \]
\[a \]

(note that \(f_3 \) is determined from \(f_1 \) and \(f_2 \) by equation (B-2)).

The array elements were assumed to be one-wavelength aperture horns, thus, there are sixty elements in one dimension of the array. The amount of distortion can be determined by taking the difference between the distorted and undistorted array aperture distributions. Segment number three \((105\lambda < x < 155\lambda)\) of the primary reflector was chosen as a representative example. The corresponding region on the array is \((-21\lambda < x < -31\lambda)\). An edge of this segment was then distorted by 0.1\(\lambda\) for four cases. The first case is for the top edge of segment tilted back 0.1\(\lambda\) (away from the field reflector). Very little can be determined from the amplitude difference in Fig. 3.1-9 because of the self-correcting property mentioned in Chapter II. The phase difference, however, describes very clearly the position of segment number three. Since 0.1\(\lambda\) corresponds to 36 electrical degrees, the expected phase delay at \(x = -31\lambda\) on the array should be twice that or 72 degrees. The actual calculated value at \(x = -31\lambda\) is shown to be -68 degrees in Fig. 3.1-9. The phase is then linear towards zero degrees at \(x = -21\lambda\) corresponding to no distortion at the bottom edge of segment number three (as is the case). Similarly, Fig. 3.1-10 shows the expected phase difference for the top edge tilted forward (phase advanced). Figures 3.1-11 and 3.1-12 show the expected phase difference for the segment displaced back (phase delayed) and forward (phase advanced), respectively. Thus, it is clear that the orientation of a distorted segment can be determined from the received signal phase alone. To do this it is required to have a sufficient number of array elements per primary reflector segment. In the above examples ten were used.

Once a distortion has been detected it is possible to correct the surface by using mechanical actuators. For small distortions it is not necessary to do this because phase compensation by the array can be used. The effect of distortions on the far-field pattern and aperture illumination efficiency for the system shown in Fig. 3.1-8 are discussed next.

The secondary far-field pattern for an undistorted primary reflector is shown in Fig. 3.1-13. The aperture illumination considered is a uniform amplitude and phase distribution (boresight). The aperture illumination efficiency for this case is -0.36 dB. Now consider the case where segment number three is displaced back (phase delayed) 0.1\(\lambda\) which corresponds to Fig. 3.1-11. The secondary far-field pattern is shown in Fig. 3.1-14. The
Figure 3.1-9 COMPARISON BETWEEN A DISTORTED (SEGMENT #3 TOP EDGE TILTED BACK 0.1\lambda) AND UNDISTORTED PRIMARY REFLECTOR IN AMPLITUDE AND PHASE AT THE ARRAY.
Figure 3.1-10 Comparison between a distorted (segment #3 top edge tilted forward 0.1λ) and undistorted primary reflector in amplitude and phase at the array.
Figure 3.1-11 Comparison between a distorted (segment #3 displaced back 0.1λ) and undistorted primary reflector in amplitude and phase at the array.
Figure 3.1-12 Comparison between a distorted (segment #3 displaced forward 0.1λ) and undistorted primary reflector in amplitude and phase at the primary.
Figure 3.1-13 Far-field pattern for undistorted primary reflector, boresight.
Figure 3.1-14 Far-field pattern for distorted-uncompensated primary reflector (segment #3 displaced back 0.1λ)
main beam is seen to be unaffected but the sidelobe level has been raised by about 4dB. The aperture illumination efficiency has degraded to -1.07dB. In this case the array illumination is the original distribution received in the undistorted case. This distribution is then allowed to transmit in the presence of the distorted primary reflector. This case may be referred to as distorted-uncompensated. Figure 3.1-15 shows the far-field pattern obtained when the array provides phase compensation. The sidelobe level has now returned to within about 0.5dB of the undistorted case. The aperture illumination efficiency is now -0.43dB which is very close (within a tenth of a dB) to the undistorted case. In the next case consider segment number three to be displaced back (phase delayed) 0.25X. The far-field pattern shown in Fig. 3.1-16 is significantly degraded. The sidelobe level is -2.5 dB as opposed to -14.5 dB in the undistorted case. The aperture illumination efficiency is -4.3dB which is nearly 4dB below the undistorted case. As shown in Figure 3.1-17 the sidelobe level can be improved to -12.5dB and the efficiency to -0.66dB by providing phase compensation by the array.

In the above two examples it is important to note that both sidelobe level and aperture illumination efficiency are significantly improved when array phase compensation is used to correct for distortions.

3.1.3.3 Beam Scanning Characteristics. A parametric study was performed on the symmetric two-reflector phased array fed system. The primary reflector had a fixed diameter \(D_1 = 600\lambda\). The array elements used are one wavelength horns. The loss in gain as a function of beamwidths scanned from boresight was calculated for various magnifications, \(f/D\) ratios, oversized feed arrays, and oversized subreflectors. The effect of feed element aperture diameter and spacing was also investigated. Some representative examples are presented below.

Figure 3.1-18 shows the loss in gain for a system with \(f/D = 0.5\). The aperture illumination used was uniform. The two curves shown are for a magnification of 5 and 10. It is clear that a lower magnification decreases the loss in gain with beam scanning. This is attributed primarily to a decrease in spillover losses. Figure 3.1-19 shows the loss in gain for \(D_1 = 600\lambda\) and \(D_2 = 120\lambda\) (M=5) with \(f/D = 0.5, 0.7, \) and 1.0. The cases where \(f/D = 0.5\) and 0.7 are about a one dB improvement over \(f/D = 1.0\). Figure 3.1-20 shows that the loss in gain can be reduced by increasing the size of the subreflector to reduce subreflector spillover. For this particular case where \(D_1 = 600\lambda\) and \(f/D = 0.5\) a twenty percent larger subreflector improves the gain by about one dB. In general, a larger subreflector will reduce the spillover losses. However, it was found that if the subreflector is too large, some unwanted effects occur which cause poor sidelobe performance. Some typical beam scanning far-field patterns are shown in Figures 3.1-22 to 3.1-26. This system has \(D_1 = 600\lambda, D_2 = 120\lambda,\) and \(f/D = 0.5\). The array elements are one-wavelength horns. The pattern is good until thirty-six beamwidths when the sidelobes begin to degrade. In this case one beamwidth is equal to approximately 0.084 degrees (uniform distribution) with boresight as the reference.

All of the data presented so far assumed a uniform amplitude aperture distribution. One of the goals of this research was to achieve beam scanning
Figure 3.1-15 Far-Field pattern for distorted-compensated primary reflector (segment #3 displaced back 0.1λ)
Figure 3.1-16 Far-field pattern for distorted-uncompensated reflector (segment #3 displaced back 0.25\(\lambda\)), boresight.
Figure 3.1-17 Far-field pattern for distorted primary reflector (segment #3 displaced back 0.25λ) with phase compensation at the array, boresight.
Figure 3.1-18 Beam scanning performance for two-reflector system with magnifications of 5 and 10.
Figure 3.1-19 Beam scanning performance of two-reflector system for
f/D = 0.5, 0.7, and 1.0
Figure 3.1-20 Beam scanning performance of two-reflector system for various oversized subreflectors.

Parameters:
- $F_1 = 300\lambda$, $F_2 = 60\lambda$ (M = 5)
- $D_1 = 600\lambda$
- $D_2 = 120\lambda$
- $F/D = 0.5$
- Uniform illumination
- 10% Larger Field Reflector ($D_2 = 132\lambda$)
- 20% Larger Field Reflector ($D_2 = 144\lambda$)
Figure 3.1-22 Far-field pattern of two-reflector system, boresight.
12 BEAMWIDTHS

FAR-FIELD PATTERN

Figure 3.1-23 Far-field pattern of two-reflector system, twelve-beamwidths off-axis.
Figure 3.1-24 Far-field pattern of two-reflector system, twenty-four beamwidths off-axis.
Figure 3.1-25 Far-field pattern of two-reflector system, thirty-six beamwidths off axis.
Figure 3.1-26 Far-field pattern of two-reflector system, 48 beamwidths off-axis.
patterns with sidelobes that fall off very rapidly to about 60 dB. The uniform distribution is inadequate for this performance. In order to lower the sidelobes a tapered distribution must be used. A distribution that will reduce the sidelobes by about twenty dB (as compared to uniform) is the cosine-squared distribution. The effect of tapering the aperture distribution is to widen the main beam and thus, reduce the antenna gain. As compared to uniform illumination the cosine-squared distribution increases the beamwidth by about sixty-five percent and reduces the gain by about 1.7 dB. Thus, to achieve low sidelobes the beam scanning range (measured in beamwidths) will be reduced. The effective beam scanning range is defined in terms of gain as 3 dB below the boresight value. The location of the maximum of the cosine-squared distribution on the phased array is a function of the beam scan angle. This location is found in the computer program by choosing the center point of the region in which signal is intercepted by the array in the receiving case. Also, the breadth of the distribution is adjusted with beam scanning to exclude shadowed areas where blockage occurs. This avoids sharp steps in the illumination which would cause high sidelobes. The aperture efficiency computation includes the losses due to this selective illumination. Note that for a radar application this adaptive (with scan) amplitude control would only be required on the receive beam since sidelobe control is for antijamming purposes and need not be done on the transmit beam.

The cosine-squared illumination was applied to a two-reflector system with the following parameters:

\[
\begin{align*}
D_1 &= 300\lambda \\
D_2 &= 120\lambda \\
D_3 &= 120\lambda \\
f/D &= 1.0 \\
M &= 2.5
\end{align*}
\]

array elements are 0.6λ horns. These parameters were selected to maximize the steering range and to prevent the formation of grating lobes by the phased array feed. Starting with this system the subreflector and phased array diameters were increased (in ten percent increments) until spillover was minimized. This was done by trial and error using the computer programs for this system. The optimum diameters found were \(D_s = 168\lambda\) and \(D_p = 156\lambda\). These correspond to a forty percent larger subreflector and a thirty percent larger phased array. This new system is shown in Figure 3.1-27 for the symmetric plane and Figure 3.1-28 for the offset plane. Note that the phased array is stepped and follows the parabolic contour shown. The location of the control points that adjust the primary reflector profile are shown as circles. A practical implementation of this system would look like that shown in Fig. 3.1-29. The beam scanning performance of this system in terms of loss in gain is shown in Figure 3.1-30. The results show that the scanning range is approximately ±37 beamwidths in the symmetric plane. Here the half-power beamwidth is 0.28 degrees referred to boresight. In the offset plane the beam scanning range is limited to -20 to +16 beamwidths. This is about one-

Figure 3.1-27 Symmetric plane of two-reflector phased array fed system.
Figure 3.1-28 Offset plane of two-reflector phased array-fed system.
Figure 3.1-29 Rear view of a two reflector phased array-fed system.
ON-Axis Beamwidth, 0.28°

Gain Loss, DB

Symmetric Plane
Offset Plane

Beamwidths Scanned

Degrees Scanned

Figure 3.1-30 Beam Scanning Performance, Two-Reflector Antenna
half the range in the symmetric plane. The beam scanning results for the far-field pattern in the symmetric plane are given in Figures 3.1-31 to 3.1-33. The boresight case shows that the 60 dB level is reached by the fifth sidelobe. For the cases of the beam scanned to 21 and 36 beamwidths the sidelobe level is raised to around the 40 to 50 dB level. Similar results are seen in Figures 3.1-34 to 3.1-39 for the offset plane.

3.1.3.4 Adaptive Nulling. In this section the procedure used for adaptive nulling is discussed and an example is given. Adaptive nulling is a method for placing a null at a desired location on any given antenna pattern. This is of particular interest in anti-jamming applications.

The basic adaptive nulling procedure is to combine two antenna patterns, via superposition, in such a way as to produce a null at some desired observation angle. One of the patterns is the desired pattern, with its main beam pointed in the desired direction, except that it does not have a null at the angle θ_n. The other pattern will be referred to as the sidelobe cancellation pattern and has its main beam peak located at the angle θ_n. By setting the amplitudes of the two patterns at the angle θ_n equal and the phases to be 180 degrees apart and adding them together a null is created. This is accomplished by adjusting and superimposing the amplitude and phase of the elements of the array. The factor by which the amplitude of the sidelobe cancellation excitation is multiplied by is expressed as

$$A = \frac{A_d}{A_{s.c.}}$$

(3.1-9)

where A_d is the amplitude of the desired pattern at $\theta = \theta_n$

$A_{s.c.}$ is the amplitude of the sidelobe cancellation pattern at $\theta = \theta_n$

The phase shift that is added to the sidelobe cancellation excitation is given by

$$\phi = (\phi_{s.c.} - \phi_d) - 180^\circ$$

(3.1-10)

where ϕ_d is the phase in degrees of the desired pattern at $\theta = \theta_n$

$\phi_{s.c.}$ is the phase in degrees of the sidelobe cancellation pattern at $\theta = \theta_n$.

Equations 3.1-9 and 3.1-10 are the required relations for generating a null. These equations will now be applied to an example.

Consider the 21 and 36 beamwidth patterns of the previous section shown in Figures 3.1-32 and 3.1-33, respectively. The 21 beamwidth pattern is taken to be the desired pattern. Suppose a null is required at the peak of the 36 beamwidth patterns ($\theta = 10^\circ$). The computed pattern amplitude of the 21 beamwidth pattern at the angle is

$$A_d = 0.00006099873.$$

The corresponding pattern phase is

$$\phi_d = 168.1398^\circ.$$
Figure 3.1-31 Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, On-Axis
Figure 3.1-32 Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, Scanned 21 Beamwidths
FAR-FIELD PATTERN

$D_1 = 300\lambda$
$D_2 = 168\lambda$
$D_3 = 156\lambda$

Figure 3.1-33 Radiation Pattern, Symmetric Plane, Two-Reflector Antenna, Tapered Illumination, Scanned 36 Beamwidths.
Figure 3.1-34 Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, On-Axis.
Figure 3.1-35 Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned + 7 Beamwidths.

\[D_1 = 300\lambda \]
\[D_2 = 168\lambda \]
\[D_3 = 156\lambda \]
Figure 3.1-36 Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned +14 Beamwidths.
Figures 3.1-37 Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned -7 Beamwidths.
Figure 3.1-38 Radiation Pattern, Offset Plane, Two-Reflector Antenna, Tapered Illumination, Scanned -14 Beamwidths.

\[D_1 = 300\lambda \]
\[D_2 = 168\lambda \]
\[D_3 = 156\lambda \]
Now take the 36 beamwidth pattern to be the sidelobe cancellation pattern. At $\theta = \theta_n$ the amplitude and phase are

\[
\begin{align*}
A_{s.c} &= 0.0099379280 \\
\phi_{s.c} &= 271.3642^\circ
\end{align*}
\]

From Equation 3.1-9 the required amplitude excitation factor is

\[
A = 0.006137972624
\]

and from Equation 3.1-10 the required phase excitation factor is

\[
\phi = -76.7756^\circ.
\]

Using this information in the adaptive nulling computer program (listed in Appendix C) a 106 dB null is generated at $\theta = 10^\circ$ as shown in Figure 3.1-40. Note that the pattern shape away from the null is unchanged. The magnitude of the null that can be achieved is constrained by the accuracy with which the amplitude and phase of the array elements can be controlled. In practice, adaptive nulling is usually achieved iteratively, using a closed loop nulling system. This computation demonstrates that any of the techniques used for adaptive nulling in conventional phased arrays [2] can be applied to the two-reflector system.
Figure 3.1-40 Radiation Pattern, Symmetric Plane, Scanned 21 Beamwidths, Adaptive Null Formed at +10°.
3.2 Structural Systems Performance Analysis

Three mission configurations were evaluated for STS Orbiter packaging, orbit transfer, mass, stiffness, thermal, and operational scenario. The first system is a low earth orbit (5000 n.mi.) two reflector space based radar. The main reflector is 70m. (227.5 ft) diameter and the field reflector and phased array are 28 m (91 ft) in diameter. The second system is a low earth orbit (5000 n.mi.) reflectarray. The reflector diameter is 91m. (300 ft) and the feed is located at an F/D = 0.5. The third system is a synchronous orbit two reflector space based radar. The main reflector is 305m (1000 ft) diameter and the field reflector and phased array are 30.5 (100 ft) in diameter.

3.2.1 Packaging in Orbiter. The objective of this task was to define a packaging and restraint system which will minimize the impact of the Orbiter-induced loads. A reuseable cradle approach that was developed on the SAMS0 On-Orbit Assembly program is proposed.

The antenna & S/C is carried aloft, supported in a restraining cradle. This cradle interfaces with the shuttle cargo bay structure. The loads induced in the structural array by flight are transmitted through the cradle into the shuttle in a determinant manner and the cradle isolates the structure from the shuttle cargo bay deflections.

The cradle that supports the structure from Earth to orbit must meet the following requirements:

1. Load transfer interfaces with the shuttle must be limited in location and number so that all load paths are determinant. (Shuttle Payload Users Guide Volume 14.)

2. The cradle must capture and restrain the folded structure in a manner that prevents damage by straining and allows for induced deflections.

3. The cradle will also support the stage adapter which is attached to the rear of the structure.

4. The cradle will release all restraints on the structure and stage adapter, on remote command. The restraining mechanisms retract to a position that will permit the structure and stage adapter to rotate up and out of the cradle and shuttle cargo bay.

5. All extended restraining devices on the cradle will be capable of reclosing and relocking, for return to Earth aboard the shuttle.

6. The cradle will be refurbishable for additional subsequent flight operations.

7. The cradle will be made the lightest weight possible that is consistent with the functions to be performed.
Typical Linear Actuator Pin Puller

Adapter Support Points

$Z_0 = 414.0$

$X_0 = 935.27$

Figure 3.2-1 Cradle Support Structure In Orbiter
8. All axial (longitudinal) loads from the structure will be taken out at the stage adapter end of the cradle. No axial loads will be taken out anywhere else between the structure and cradle.

The cradle is a semicylindrical, thick walled, semi monocoque structure, with three segments semicircular rings that, together, form a circular enclosure around the structural array. The two side beams and the bottom keel beam extend out to pick up and support the stage adapter (See Figure 3.2-1).

The loads at the cradle adapter end, are introduced through trunnion and keel fittings directly to the shuttle spacecraft. The loads at the forward (opposite) end of the cradle are first passed to a hydraulic load leveling system mounted on the cradle or an auxiliary cradle ring. This auxiliary ring then interfaces with the shuttle spacecraft through trunnion and keel fittings thru which the loads are reacted.

The encircling rings are hinged at the side beams and at the top center. At the junction with the other side beam there is a releasable/reengageable joint for each ring half. This arrangement permits the two ring quadrants to be swung out, clear of the structural array deployment path, on the cargo bay side opposite the manipulator arm. The folding and unfolding of the ring quadrants are powered by small linear actuators. Locking is also accomplished by linear actuators.

Inside each encircling ring (full circle) are expandable pneumatic tubes which thrust spacer blocks against a series of interlocking end and/or hinge fittings on the structure. This retains the structure in a rattle-free configuration for flight. Changes in axial length of the array (due to flexing or thermal gradients) are accommodated at the three encircling rings by rolling the pneumatic tube.

The cradle is reusable and refurbishable. The expanding tubes compensate for small manufacturing differences and tolerance buildups between assembled structural arrays. The hydraulic load leveling system keeps the load path relationship to the shuttle spacecraft determinant. All the cradle release mechanisms and movable parts are capable of restoring themselves to a landing configuration. The cradle weight will be minimized by using materials with a high strength to weight ratio such as aluminum, titanium, and high heat treat steels. All the design and manufacturing techniques are 'state of the art' with air-frames industries.

3.2.2 Orbit Transfer. During this task, the ability of three orbit transfer vehicles to meet the three mission requirements was evaluated; IUS, low thrust liquid (LTL) and solar electric propulsion (SEP). IUS is not acceptable due to its high thrust-to-weight ratio and low ISP. The storable propellant stage can be tailored to the desired thrust-to-weight (see Figure 3.2-2) but with the relatively low ISP (≈ 305), the allowable payloads are too low (See Table 3.2-1). The optimum chemical stage is a cryogenic low thrust as shown in Figure 3.2-3. The stage that has the maximum payload to orbit is SEP. However the trip times to geosynchronous are much longer (months) than cryognics (hours). Typical SEP trip times are
Table 3.2-1 Payloads For Various OTV Configurations

<table>
<thead>
<tr>
<th>CASE</th>
<th>ORBITER 1</th>
<th>ORBITER 2</th>
<th>STAGE 1</th>
<th>STAGE 2</th>
<th>MAX g's</th>
<th>STAGE CODES:</th>
<th>FUEL</th>
<th>I<sub>SP</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>LENGTH</td>
<td>TYPE</td>
<td>STAGE</td>
<td>LENGTH</td>
<td>TYPE</td>
<td>MAX g's</td>
<td>FUEL</td>
<td>I<sub>SP</sub></td>
</tr>
<tr>
<td>10,000</td>
<td>32 FT</td>
<td>CR-RD-TOR</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>CR = CRYOGENIC</td>
<td>400 SEC</td>
<td></td>
</tr>
<tr>
<td>13,000</td>
<td>31</td>
<td>CR-CEN-TOR</td>
<td>-</td>
<td>-</td>
<td>0.70</td>
<td>STO = STORABLE</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>29,200</td>
<td>35</td>
<td>CR-RD-TOR</td>
<td>CR-RD-CON</td>
<td><0.03</td>
<td>EP = ELECTRIC PROPULSION</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,000</td>
<td>36</td>
<td>CR-RD-TOR</td>
<td>CR-CEN-CON</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33,700</td>
<td>34</td>
<td>CR-CEN-TOR</td>
<td>CR-CEN-CON</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,200</td>
<td>50</td>
<td>-</td>
<td>CR-RD-CON</td>
<td><0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,100</td>
<td>50</td>
<td>-</td>
<td>CR-CEN-CON</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,400</td>
<td>38</td>
<td>STO-MX-CL</td>
<td>-</td>
<td>0.18</td>
<td></td>
<td>CEN = CENTAUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>50</td>
<td>STO-MX-CL</td>
<td>STO-MX-CL</td>
<td>0.16</td>
<td></td>
<td>RD = ROCKETDYNE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,900</td>
<td>39</td>
<td>STO-MX-CL</td>
<td>STO-MX-CL</td>
<td>0.11</td>
<td></td>
<td>MX = AXIAL PRESSURE FED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,000*</td>
<td>24</td>
<td>EP</td>
<td>-</td>
<td>0</td>
<td></td>
<td>CON = CONVENTIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37,000*</td>
<td>39</td>
<td>-</td>
<td>EP</td>
<td>0</td>
<td></td>
<td>TOR = TOROIDAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50,000**</td>
<td>50</td>
<td>-</td>
<td>EP</td>
<td>0</td>
<td></td>
<td>CL = CLUSTERED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: 65000 LBM ORBITER PAYLOAD
PAYLOAD IS TO GEOSYNCHRONOUS EQUATORIAL.
PAYLOAD CRADLE WT (LARGE STAGE OR PAYLOAD = 5000 LBM, SMALL STAGE = 3000 LBM
STAGE AND S/C ADAPTER = 3000 LBM
ALLOWABLE PAYLOAD LENGTH = 50 FT (4 FT EVA CLEARANCE, 1 FT AFT CLEARANCE,
5 FT STAGE & S/C ADAPTER)
Figure 3.2-2 Impact Of OTV Thrust Load On Truss Structure

Figure 3.2-3 Cryogenic Low Thrust Liquid OTV
- $I_{sp} = 3000$
- Stage weights are for 700 day trips. For shorter trips with smaller payloads, deduct 4% from stage weight for each 10% payload reduction.
- Dry stage weight increases linearly with power.
- Shorter trips at higher power and lower I_{sp} are possible (but stage gets heavier).

Figure 3.2-4 Electric Propulsion OTV
Figure 3.2.5 Effect Of Truss Depth On Antenna Weight
shown in Figure 3.2-4.

Three configurations were analyzed to determine the maximum payload for each upper stage. The first configuration has the antenna packaged with its upper stage in the orbiter bay. For this configuration, the antenna plus upper stage occupies the total orbiter bay. The optimum antenna depth/upper stage length is determined, based on achieving the maximum diameter within the orbiter payload and envelope constraints. When the antenna and upper stage are transported to LEO in one Shuttle, the maximum truss depth is determined by the stage, truss/stage adapter, mesh lengths, and EVA and aft clearances. The mesh stowed length was assumed to be 0.15 times the truss depth.

In addition to affecting antenna size, the truss depth affects the number of cubes and weight required for a given diameter (See Figure 3.2-5). This is a reliability consideration because the number of cubes relates directly to the number of parts and deployment steps. Minimizing both parts, and steps will lead to maximum reliability. Therefore, maximizing truss depth is a design goal.

The second configuration has the antenna packaged in the total orbiter bay. This allows a truss depth of approximately 50 ft. For this configuration, the upper stage is brought up in a separate orbiter and docked to the antenna in LEO. The allowable antenna system weight is defined as the payload capability of the upper stage that can be carried in one separate orbiter.

To determine the maximum size that can be transported to geosynchronous orbit on each upper stage, two parameters are determined—the allowable weight of the antenna, and the allowable package envelope of the antenna. These were determined from orbiter constraints (orbiter payload, volume, and cg) and upper stage constraints (upper stage performance). Within these constraints, an optimum upper stage size was selected.

The maximum weight of the upper stage payload was specified to be 57,000 lb (8000 lb were specified for orbiter attachment and deployment structure). The maximum length of the payload was specified to be 55 ft. A 4-ft EVA clearance was allocated at the front of the orbiter bay and a 1-ft clearance was assumed at the rear. The antenna is packaged in a 13.5-ft-diameter envelope leaving space for support structure.

The third configuration is a two stage vehicle which has a small stage packaged with the S/C in Orbiter 1 and a large 60,000 lbs stage in Orbiter 2 that is docked to the small stage to produce a two stage orbit transfer vehicle. As can be seen in Table 3.2-1, large payload increases can be achieved. The technique for attaching the payload to the upper stage is shown in Figure 3.2-6. The stage is hard mounted to a structural hard point on the truss and reaction straps are deployed to provide pitch-yaw-roll stabilization.

In addition to the geosynchronous orbit transfer vehicle comparison,
cryogenic stage to 5000 n.mi. x 65° inclination was evaluated. Three modes were evaluated (See Table 3.2-2).

Table 3.2-2 Transfer Modes To 5000 n.mi x 65°

<table>
<thead>
<tr>
<th>Mode</th>
<th>Launch Site</th>
<th>Max. Allowable Wt.</th>
<th>Plane Ch Incl.</th>
<th>Clo</th>
<th>Plane Ch P.C.</th>
<th>ΔV_a Circ</th>
<th>Total ΔV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KSC</td>
<td>65,000</td>
<td>28.5°</td>
<td>36.5</td>
<td>4600</td>
<td>3700</td>
<td>5700</td>
</tr>
<tr>
<td>2</td>
<td>KSC</td>
<td>55,000</td>
<td>55°</td>
<td>10</td>
<td>4600</td>
<td>3700</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>VAFB</td>
<td>48,000</td>
<td>65°</td>
<td>9</td>
<td>4600</td>
<td>3700</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Toroidal LO_2 tank, clustered APS Thrusters
MF = .87
I_sp = 400

The results show that Mode 1 capability is 14750 lbs, Mode 2 is 19300 lbs, and Mode 3 is 18000 lbs.

3.2.3 Two Reflector LEO Radar Mission. The two reflector LEO radar configuration is shown in Figure 3.2-7. The 70m (227.5 ft) main reflector has a graphite epoxy box truss structure which supports a gold plated molybdenum wire tricot mesh. The box truss provides a stiff and thermally stable reflector structure. The platform that provides the attachments for the Astromasts, solar arrays, feed, S/C, and gravity gradient boom is a continuous extension of the reflector truss structure. The field reflector and phased array are also fabricated using a graphite epoxy box truss. The four Astromast which provide the separation between reflectors and array are stabilized in bending and torsion with graphite/epoxy tapes. The gravity gradient boom is an Astromast without guilane stabilizers. The antenna axes and orientation are shown in Figure 3.2-8. The gravity gradient boom is located along the yaw axis.

Table 3.2-3 presents a summary of the radar antenna size and weight. The total is 11500 lbs and the total stowed length is 36 ft.

The packaged configuration in the Orbiter consists of the trusses stowed, stacked and supported in a cradle similar to that shown in Figure 3.2-1. Each stowed box truss reflector has three jointed clamping rings to support and restrain the S/C. The cradle will then have a total of 9 rings. The stage is independently supported in its own cradle to provide a determinant attachment to the Orbiter. After a achieving shutter orbit, the attachments between the S/C and stage (See Figure 3.2-6) are made and the total system rotated out of the cargo bay.

The stage for transport from Shuttle orbit to 5000 n.mi. is a short cryogenic LTL stage (Figure 3.2-3) which has a thrust of 400 lbs. The stage
Figure 3.2-7 LEO RADAR ANTENNA CONFIGURATION
Figure 3.2-8 RADAR ANTENNA AXES AND ORIENTATION

175
Table 3.2-3 Radar Antenna Size and Weight (LEO)

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Reflector</td>
<td>70M (227.5 ft.)</td>
<td>16.2 ft.</td>
<td>2850 lbs.</td>
</tr>
<tr>
<td>Structural Platform Weight</td>
<td></td>
<td></td>
<td>600 lbs.</td>
</tr>
<tr>
<td>Feed Weight</td>
<td></td>
<td></td>
<td>100 lbs.</td>
</tr>
<tr>
<td>S/C Weight</td>
<td></td>
<td></td>
<td>3000 lbs.</td>
</tr>
<tr>
<td>Phased Array</td>
<td>28M (91 ft.)</td>
<td>7.6 ft.</td>
<td>1150 lbs.</td>
</tr>
<tr>
<td>Field Reflector</td>
<td>28M (91 ft.)</td>
<td>6.6 ft.</td>
<td>900 lbs.</td>
</tr>
<tr>
<td>Astromast and Cannister (4)</td>
<td>Length 350 ft.</td>
<td>Diameter 2.0 ft.</td>
<td>Weight (4) = 1050 lbs.</td>
</tr>
<tr>
<td>Solar Array (500 ft.²)</td>
<td>Weight = 500 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity Gradient Boom</td>
<td>Weight = 1350 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary: Total Weight</td>
<td>11500 lbs.</td>
<td>Stowed Length = 36 ft.</td>
<td></td>
</tr>
<tr>
<td>Single Orbiter</td>
<td></td>
<td></td>
<td>176 lbs.</td>
</tr>
</tbody>
</table>
length is 14 ft which can be packaged with the 36 ft long S/C plus 5 ft long S/C and adapter for a total package length of 55 ft. The stage performances are shown in Table 3.2-2 for three modes of transport to 5000 n.mi. The combined manufacturing and orbital thermal distortion is summarized in Table 3.2-4.

Table 3.2-4 Thermal Distortion

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Reflector RMS</td>
<td>0.1 inch</td>
</tr>
<tr>
<td>Phased Array RMS</td>
<td>0.06 inch</td>
</tr>
<tr>
<td>Field Reflector RMS</td>
<td>0.06 inch</td>
</tr>
<tr>
<td>(\Delta L) Between Field & Main</td>
<td>0.12 inch</td>
</tr>
<tr>
<td>(\Delta H) Between Field & Main</td>
<td>0.17 inch</td>
</tr>
<tr>
<td>(\Delta \theta_1) Between Field & Main</td>
<td>0.0020</td>
</tr>
<tr>
<td>(\Delta \theta_2) Between Field & Main</td>
<td>0.0170</td>
</tr>
<tr>
<td>(\Delta L) Between Phased Array & Main</td>
<td>0.09 inch</td>
</tr>
<tr>
<td>(\Delta H) Between Phased Array & Main</td>
<td>0.14 inch</td>
</tr>
<tr>
<td>(\Delta \theta_1) Between Phased Array & Main</td>
<td>0.0010</td>
</tr>
<tr>
<td>(\Delta \theta_2) Between Phased Array & Main</td>
<td>0.0130</td>
</tr>
</tbody>
</table>

NOTE: \(\Delta L\) = Distance Change Between Reflectors
\(\Delta \theta_1\) = Torsion Rotation of Reflectors
\(\Delta \theta_2\) = Canting Rotation of Reflectors
\(\Delta H\) = Lateral Shift of Reflectors

3.2.4 Reflectarray LEO Radar Mission. The reflectarray LEO radar configuration is shown in Figure 3.2-9. The 91.4 m (300 ft) reflector has a graphite epoxy box truss structure which supports a reflectarray surface. The structure is thermally stable such that the required surface accuracy can be achieved without active control. The feed and S/C are supported utilizing four 2 ft. diameter graphite epoxy continuous longeron Astromasts. The two 6.25 KW solar arrays are located on the opposite ends of two of the feed support booms. However, they also could be attached to the S/C depending on the shadowing effects. The S/C body is assumed to be an 8 ft. diameter octagon structure by 5 ft. long weighing 3,000 lbs.

Table 3.2-5 presents a summary of the radar antenna size and weight. The total weight is 15370 lbs. and total length is 34.75 ft.

The packaged configuration in the Orbiter consisted of the truss and S/C stowed and supported in a cradle similar to that shown in Figure 3.2-1. The stage is independently supported in its own cradle to provide a determinant attachment to the orbiter.

The stage for transport to 5000 n.mi. is a short cryogenic stage utilized in mode 2 or 3 (see Table 3.2-2). Mode 1 is not acceptable since its payload capability is only 14750 lbs. The stage length is 14 ft. which can be packaged with the 34.75 ft. in the allowable 55 ft. of orbiter cargo bay.
Figure 3.2-9 REFLECTARRAY LEO RADAR MISSION
Table 3.2-5 Reflectarray Size and Weight (LEO)

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 ft. Diameter - 16 bay (truss 18.75 ft. + 5 ft. surface)</td>
<td>5000 lbs.</td>
</tr>
<tr>
<td>Structure (0.07 lbs/ft²)</td>
<td>5000 lbs.</td>
</tr>
<tr>
<td>Phased Array (0.07 lbs/ft²)</td>
<td>5000 lbs.</td>
</tr>
<tr>
<td>Astromast (4) (220 ft. long x 1 ft. dia.)</td>
<td>440 lbs.</td>
</tr>
<tr>
<td>Mast (0.5 lbs/ft)</td>
<td>440 lbs.</td>
</tr>
<tr>
<td>Canister (50 lbs/each)</td>
<td>200 lbs.</td>
</tr>
<tr>
<td>Feed</td>
<td>200 lbs.</td>
</tr>
<tr>
<td>S/C</td>
<td>3000 lbs.</td>
</tr>
<tr>
<td>Solar Array 25 KW (2500 ft.²)</td>
<td>850 lbs.</td>
</tr>
<tr>
<td>Weight (30 watts/lb.)</td>
<td>850 lbs.</td>
</tr>
<tr>
<td>Cabling</td>
<td>880 lbs.</td>
</tr>
<tr>
<td>Total S/C Weight</td>
<td>15,370 lbs.</td>
</tr>
<tr>
<td>Total S/C Length</td>
<td>34.75 ft.</td>
</tr>
<tr>
<td>Stage Length</td>
<td>14.0 ft.</td>
</tr>
</tbody>
</table>

The combined manufacturing and orbital thermal distortion is summarized in Table 3.2-6.

Table 3.2-6 Thermal Distortion

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Reflector RMS</td>
<td>0.14 inch</td>
</tr>
<tr>
<td>Lateral Feed Shift</td>
<td>0.08 inch</td>
</tr>
<tr>
<td>Feed Defocus</td>
<td>0.10 inch</td>
</tr>
</tbody>
</table>

3.2.5 Two Reflector HEO Radar Mission. The two reflector HEO radar configuration is shown in Figure 3.2-10. The 305 m. (1000 ft.) diameter main reflector has a graphite epoxy box truss structure which supports a gold plated molybdenum wire tricot knit mesh. The mast, which is 350 m. (1150 ft.) long, must be both dynamically and thermally stable. Two mast designs were evaluated. The first was scaled up version of a continuous longeron Astromast which was 8 ft. in diameter. The properties of the mast are summarized in Table 3.2-7.

The second mast that was evaluated was a 50 ft. square deployable box truss beam. The primary advantage of a box truss beam is that the allowable diameter is 50 ft. while the Astromast is limited to the diameter of the
Figure 3.2-10 TWO REFLECTOR HEO RADAR MISSION
180
Orbiter cargo bay. The properties of the box truss mast are summarized in Table 3.2-8.

Table 3.2-7 Deployable Astromast Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stowed Envelope</td>
<td>94 in. dia. by 110 in. long</td>
</tr>
<tr>
<td>Weight, lb.</td>
<td>1875</td>
</tr>
<tr>
<td>Length, ft.</td>
<td>1150 (125:1 expansion)</td>
</tr>
<tr>
<td>Radius, in.</td>
<td>47</td>
</tr>
<tr>
<td>Stiffness - EI, lb-in.²</td>
<td>2.3 x 10¹⁰</td>
</tr>
<tr>
<td>Deployment Precision - Lateral, in.</td>
<td>± 3.2</td>
</tr>
</tbody>
</table>

Table 3.2-8 Deployable Box Truss Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stowed Envelope</td>
<td>1.5 ft. x 9 ft. x 50 ft. long</td>
</tr>
<tr>
<td>Weight, lb.</td>
<td>2875</td>
</tr>
<tr>
<td>Length, ft.</td>
<td>1150</td>
</tr>
<tr>
<td>Section Dimensions, ft.</td>
<td>50 x 50</td>
</tr>
<tr>
<td>Stiffness = EI, lb-in.²</td>
<td>9.0 x 10¹¹</td>
</tr>
<tr>
<td>Deployment Precision - Lateral, in.</td>
<td>± 12</td>
</tr>
<tr>
<td>Deployed Operational Precision - Lateral, in.</td>
<td>± 2.9</td>
</tr>
</tbody>
</table>

A comparison of the deployed stiffness shows that the box truss mast is 40 times stiffer than the Astromast while weighing only 1000 lbs. more. If the box truss was reduced in weight equivalent to the Astromast, the stiffness of the box truss beam would be 3.2 x 10¹¹ lb-in.² or 14 times as stiff.

The phased array and field reflector are both 100 ft. diameter six bay 16.5 ft. deep truss structures. They are attached to the beam at their edge and stabilized by four guylines. The S/C and feed are supported from a boom that is attached to the mast and stabilized by guylines. The size and weight summary is shown in Table 3.2-9.

The upper stage candidates are limited due to the large mass of this system. The only realistic transfer vehicle is a SEP stage which has the capability of payloads greater than 50000 lbs. (see Table 3.2-1). Referring to Figure 3.2-4, a 150 KW, 36000 lb. stage will transport to geosynchronous orbit in 425 days; while a 100 KW, 24000 lb. stage will transport to geosynchronous orbit in 575 days.
Table 3.2-9 Radar Antenna Size and Weight (HEO)

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>Truss Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Reflector</td>
<td>1000 ft.</td>
<td>50 ft.</td>
<td>31400 lbs.</td>
</tr>
<tr>
<td>Structural Platform</td>
<td></td>
<td></td>
<td>2000 lbs.</td>
</tr>
<tr>
<td>Feed</td>
<td></td>
<td></td>
<td>400 lbs.</td>
</tr>
<tr>
<td>S/C</td>
<td></td>
<td></td>
<td>5000 lbs.</td>
</tr>
<tr>
<td>Phased Array</td>
<td>100 ft.</td>
<td>16.5 ft.</td>
<td>500 lbs.</td>
</tr>
<tr>
<td>Field Reflector</td>
<td>100 ft.</td>
<td>16.5 ft.</td>
<td>400 lbs.</td>
</tr>
<tr>
<td>Box Truss Mast</td>
<td>1150 ft.</td>
<td>50 ft.</td>
<td>2875 lbs.</td>
</tr>
<tr>
<td>Gravity Gradient</td>
<td></td>
<td></td>
<td>5425 lbs.</td>
</tr>
</tbody>
</table>

Summary: Total Weight = 50,000 lbs.

First Orbiter = Main Reflector
Second Orbiter = Remainder of S/C
Third Orbiter = SEPS Stage

The combined manufacturing and orbital thermal distortion is summarized in Table 3.2-10.

Table 3.2-10 Thermal Distortion

<table>
<thead>
<tr>
<th>Component</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Reflector</td>
<td>0.70 inch</td>
</tr>
<tr>
<td>Phased Array</td>
<td>0.06 inch</td>
</tr>
<tr>
<td>Field Reflector</td>
<td>0.06 inch</td>
</tr>
<tr>
<td>L Between Field and Main</td>
<td>0.3 inch</td>
</tr>
<tr>
<td>H Between Field and Main</td>
<td>14.9 inch*</td>
</tr>
</tbody>
</table>

L = Distance Change between Refectors
H = Lateral Shift of Refectors
* 12.0 inch Deployment Repeatability
4. TASK 3, SPECIFIC MISSION DESIGNS

4.1 Space-Based Radar, 5000 N.Mi. Orbit

4.1.1 RF System Design. The two-reflector system described in section 3.1 and sketched in Figures 3.1-27 and 28 is used for the radar antenna system, with some modifications. We have assumed a 70 meter primary reflector, which makes the field reflector and phased array feeds 28 meters in diameter or slightly larger. This means that all three components (primary reflector, field reflector, and array feed) must be spaced-deployable. The stepped-parabolic contour for the array feed shown in Figure 3.1-28 is more appropriate for an array of horns on a fixed substructure, and could not readily be space-deployed. We have changed the feed to a planar phased array with 0.6λ element spacing (dipole elements) for the radar mission. This can be done while still maintaining the basic properties of the system for beam scanning by changing the contour of the field reflector from a parabola to a contour that images the planar array onto the primary reflector surface. This contour can be computed. It is very close to a sphere (see Reference [5]). A space-fed lens-array was assumed for the feed. Its design would be essentially identical to the full-aperture array now being carried as the baseline system for the space-based radar mission. A cross-section of the antenna layout is shown in Figure 4.1-1. Figure 4.1-2 shows a perspective drawing of the antenna as realized using box truss structures for the elements of the antenna system.

The pattern data and steering range data presented in section 3.1 (Figures 3.1-30 through 39) were calculated under the assumption that the primary reflector diameter was 300λ. Applying this to our 70 meter reflector gives an operating frequency of 1.286 GHz. We have assumed this operating frequency, which is within the band of interest for the program, so the figures cited above apply directly to the mission design. The steering range curve (Figure 3.1-30) is repeated here as Figure 4.1-3 for convenience. The total number of active modules required for this array feed is approximately 30,000 or less than 1/4 the number required for the full-aperture phased array. Following the baseline design, the total radiated power should be around 4 kw average. This implies that each module must deliver around 130mw average RF power. We assume that uniform illumination would be used in the transmit mode for maximum efficiency and tapered illumination would be used in the receive mode for sidelobe control.

The scan range shown in Figure 4.1-3 is 20° in the symmetric plane and 1° in the offset plane. This is not adequate for instantaneous full-earth visibility at a 5000 n.mi. orbit altitude, which has been taken as a mission requirement. This requires a scan range of around 40°. However, it is possible to define the mission so that the area of interest for surveillance on any given orbital pass is confined to a much smaller region than the whole visible earth. For example, a radar fence mission can be defined in this way. With this type of mission definition it is possible to orient the satellite attitude to boresight the center of the region of interest and then use the agile scan range shown in Figure 4.1-3 to do the radar mission. Our structural and attitude control concept will allow a reorientation of the boresight with only a few minutes lost time for vibrational damping of the structure.
Figure 4.1-1 Radar Antenna Layout
ON-AXIS BEAMWIDTH, 0.28°

GAIN LOSS, DB

SYMMETRIC PLANE
OFFSET PLANE

BEAMWIDTHS SCANNED

-10 -8 -6 -4 -2 0 2 4 6 8 10

DEGREES SCANNED

Figure 4.1-3 Scanning Range, Radar Antenna
Figure 4.1-4 Coverage Plot, Space-Based Radar, 5000 n.mi. Orbit
down to levels acceptable for its use as an antenna.

Our coverage approach can be explained by referring to figure 4.1-4. The MTI radar has a nadir blind spot of around 14° diameter. This blind spot exists for any MTI radar regardless of the type of antenna it uses, so there is nothing to be gained by providing coverage in this region. Our 11° x 20° agile beam steering zone is squinted away from nadir by 12.5° so that it falls wholly outside the blind spot. It can be moved to anywhere in the annular region bounded by the 14° and 36° circles centered on nadir by rotating the vehicle about the nadir axis. This gives coverage of the complete area of interest by a combination of electronic and mechanical steering. The 12.5° squint away from nadir places the antenna structure in an attitude that is very close to its natural gravity-gradient orientation. This is used to advantage in the attitude control system, described in section 4.1.3.

The anticipated manufacturing and thermal distortions for the antenna structure are quite small relative to an RF wavelength. This is discussed in section 2.2.4. There should be no need for an adaptive figure control system. It would be desirable to make an initial post-deployment check of the system as a receiver using a cooperating ground-based emitter for illumination of the antenna. It would be possible to adjust for distortions if necessary by adjusting the phase settings at the individual modules as discussed in Section 3.1.32.

4.1.2 Truss Blockage. One major concern associated with the use of a truss structure for a space-fed lens-array is blockage of the feed radiation falling on the back array by the truss structure. This assumes that a single membrane is used, containing both the back and the front array and mounted on the front surface of the truss. This blockage occurs for a full-aperture array and would also occur in the space-fed feed array used in our two-reflector design.

A typical truss design uses a 25 ft. deep truss, with the array on standoffs 2.5 ft. in front of the truss. The tubular truss members are 2.5 inches in diameter and are composed of graphite-epoxy. We have found from measurements that for the purpose of direct blockage loss, graphite-epoxy is essentially the same as metal. We have used this assumption in our calculations.

An example calculation was made assuming the full-aperture space-fed array shown in figure 4.1-5 which has an aperture diameter of 225 ft. and a focal length 577.5 ft. Results would be nearly the same for the radar antenna shown in figure 4.1-2, which uses a space-fed array feed.

The elements of the top plane of the truss cast one set of shadows on the array back surface and those on the bottom plane cast another set of shadows which don't exactly coincide with the shadow from the top plane. The shadows were computed assuming a wavelength of 1 ft. An example for one of the top plane elements is shown in figure 4.1-6. It is around 15" wide and the field strength at its center only 1.5% below the unperturbed level. The shadow from the bottom plane are similar to this. This is the shadow for parallel (to the truss member) polarization. The shadow for cross-
Figure 4.1-5 Space-Fed Array With Truss Blockage Of Array Back Surface
WORST-CASE GRATING LOBES DUE TO SHADOWING, -64 dB.

Figure 4.1-6 Truss Blockage Effects On Array Performance
polarization is much weaker.

These shadows are very nearly equi-spaced so they would form grating lobes rather than random lobes. If no corrections were made for them, the grating lobes would be around 20 dB below the antenna main lobe, which is unacceptably high. Our approach would be to determine the location and depth of these shadows on the back array and adjust the gain of the affected modules to compensate for the lower illumination of the back elements. The resulting distribution on the array front face would ideally be free of distortion. The errors in this correction would occur due to distortions in the feed support tower due to thermal effects and deployment errors. This would move the shadows away from their nominal location and cause the adjusted module gains to be incorrect. This effect is sketched in figure 4.1-6. A very conservative worst-case estimate for the feed location error in the configuration sketched in figure 4.1-5 is 2 ft. This will move the shadows due to the top plane members by 1.2". Movement of the shadows due to the bottom plane elements would be negligibly small. As shown in figure 4.1-6, 1 or 2 modules on the side of the nominal shadow center in the direction of the shadow movement will have reduced signal while those on the other side will have increased signal. This gives a plus/minus doublet relative to the nominal illumination, which generates a difference pattern having a null on axis and peaks around +45° off-axis as sketched in figure 4.1-6. This is the element pattern of the shadow array which is multiplied by the array grating lobe pattern to get the composite radiation pattern of the shadow array. The resulting lobes will be vanishingly small close to the antenna boresight and will rise to their peak levels at the element peak gain region ±45° from boresight. The peak value of these lobes for the 1.2" shadow shift was computed to be 64 db below the antenna main beam gain. This is a negligible value, so the shadowing problem can be solved by our proposed approach.

4.1.3 Stability, Pointing and Control. The radar antenna will employ a system consisting of sensors, controllers and on-board processing to stabilize the antenna as a flexible body while pointing its boresight axis in the direction of the target area in the presence of disturbing torques.

The requirements which the assumed mission imposes upon the Stability Pointing and Control System are as follows.

4.1.3.1 Requirements:

Lifetime: 5 years

Weight and Power: Not Critical

Knowledge of Position In Space: ± 0.1 nm

Knowledge of Boresight Direction: ±0.02°, 1σ

Slew Rate: ±10° to 15°, cross-track
Surface Control: Not required

Feed Position Control: Not required

The operational orbit is assumed to be 5000 nm altitude, circular, inclined 70°. In the nominal case the antenna will fly with it's yaw axis along the nadir, as depicted in figure 4.1-7, and it's bore sight direction (which lies in the plane formed by the yaw roll axis) squinted ahead of the yaw axis in the orbital plane by 12.5°. The antenna could be called upon to slew it's bore sight direction out of the orbital plane by as much as 15° in order to cover the required target search area.

4.1.3.2 Sensors. To achieve the required pointing accuracy of .02° necessitates the use of a star tracker mounted on rigid structure of the radar antenna. Other types of attitude sensing instrumentation are not applicable, either due to accuracy considerations, (horizon sensors and solar aspect angle sensors) or lack of sufficient radar antenna motion to support a scanning operation (star scanners).

Although the star tracker itself can be expected to be accurate enough to achieve the requirement (for instance, the NASA Standard Tracker made by BBRC is accurate to within 10 sec of arc, 10 in each axis) there will be other large errors. These errors will be due to: (1) incertanties in the mounting of the tracker to the antenna structure; (2) uncertanties in the attitude of that particular piece of structure with respect to the theoretical boresight direction of the antenna; (3) differences between the actual and theoretical boresight direction. These errors could be expected to accrue to a magnitude of one degree or so, and will vary under changing thermal conditions. They can be eliminated thru an inflight calibration procedure wherein the radar antenna is locked to a known target from a known position in space while a stellar fix is performed. Beam pointing would then be corrected electronically using the capabilities of the phased array feed.

The star tracker must be augmented by a 3 axis attitude reference system for short term attitude memory between stellar fixes. This requirement can be satisfied by employing the gyro package associated with the IRU (Inertial Reference Unit) which can be assumed to be on board by virtue of the fact that it's use was necessary to provide the navigational data for the boost phase of the mission; i.e. the orbital transfer from the Orbiter's low earth orbit to the radar antenna's 5000 NM orbit.

The radar antenna's mission requirement of knowledge of it's own position in inertial space to within .1 NM can be achieved by incorporating the DOD version of the GPS receiver into the radar antenna's compliment of airborne equipment. This will provide position information accurate to within 12 meters.

4.1.3.3 Controllers. Stabilization and pointing along the Nadir can be achieved by the gravity gradient method augmented by momentum wheels. The principal axis along which the satellite would stabilize (i.e., the axis of greatest moment of inertia) could be fixed by adjusting the location
of masses such as the central spacecraft body so that it gives the desired 12.5° forward squint to the antenna boresight. However, due to the low ratios of the moments of inertia about the 3 principal axes, gravity gradient stabilization will be marginal with the present antenna configuration. This situation can be alleviated by moving the solar arrays from the location shown in figure 4.1-2 to a location where they constitute the tip weight on the end of a gimballed boom several hundred feet long extended out the yaw axis of the antenna.

Since gravity gradient stabilization alone will not provide the pointing accuracy required, due to the undamped nature of the oscillation about the vertical, characteristic of gg oriented space vehicles, the system must be augmented by semi passive control moment gyros, active control moment gyro's or reaction wheels. The long boom with it's tip mass, mentioned above, is also a part of the gg stabilization system. In fact, by using the gimballed boom, momentum wheel combination in what is called the gravity anchor configuration we may be able to greatly reduce if not eliminated the need for attitude control reaction jets to keep the momentum wheels from saturating. In this configuration the boom is suspended as an attitude anchor in the gravity field. The boom is gimballed about two axis and torqueable enabling the antenna to torque against the boom. Pitch and roll momentum wheels effectively damp out the libration (gg oscillation). Other disturbing torques (e.g. solar pressure) will be present and can also be eliminated by torquing against the gravitational field as described above. This controller system will be relatively reliable and long lived, requiring little if any attitude control propellant. However, to expect .02° pointing accuracy from it is pushing the state of the art. Considerable analysis and design, concentrating on the selection of the type of momentum wheels and their mechanical and electrical characteristics must be undertaken to achieve it. A preferable approach would be to relax the physical pointing accuracy requirement (but not the pointing knowledge), and make the boresight corrections electronically, using the phased array feed.

Additional problems exists due to the requirement to slew the antenna away from nadir. However, since the boresight direction of the antenna is offset from the yaw axis of the antenna by about 12.5° the slewing requirement can be met by rotating the antenna about it's yaw axis which is the nadir direction. In this case the controller system described above will suffice.

4.1.4 Structural Design. The structural design of the 5000 n.mi. orbit radar system (see Figure 4.1-2) consists of two box truss/gold plated molybdenum wire tricot knit mesh reflectors and a box truss/phased array lens connected by Astromasts and guyline stabilizers. A box truss support platform is provided which is an integral part of the main reflector and supports the feed, spacecraft, solar arrays, and provides the attachment points for the Astromasts.

The main reflector is 227.5 ft diameter and is constructed of 19 ft box trusses twelve across the diameter. The platform also has 28-19 ft box trusses. The total weight of the main reflector and platform is 3450 lbs. The truss structure is fabricated utilizing graphite epoxy tubular and tape
material. Graphite epoxy was selected to minimize the weight and operational thermal distortions while maximizing the stiffness of the deployed structure. Typical tubular members are 2.0 inch diameter by 0.020 inch thick and typical diagonal tape truss members are 1" wide by 0.030 inch thick.

The phased array lens is 91 ft diameter and is constructed of 7.6 ft box trusses, twelve across the diameter. It was assumed that the phased array surface weighed 0.05 lbs/ft for a total weight of 330 lbs. The truss structure has a weight of 0.12 lbs/ft for a total weight of 820 lbs. The phased array lens also utilizes graphite epoxy.

The field reflector is a 91 ft diameter deployable box truss with a gold plated tricot knit mesh. The field reflector truss structure is identical to the phased array structure except the truss is formed into a curved reflector. The structure weight is 820 lbs while the mesh weight is 80 lbs. The field reflector also utilizes graphite epoxy.

The Astromasts are 2.0 ft diameter continuous longeron lattice masts. These masts are automatically deployable utilizing the strain energy of the coiled longerons. Because the masts are extremely flexible in bending, guyline stabilizers are provided to increase both the torsional and bending structural modes of the overall system. The combination of the Astromasts and the guyline stabilizers provide a stiff and thermally stable structure for connecting the reflectors and phased array.

The steps of deployment after achieving the shuttle orbit are:

1 - Deploy Astromasts Simultaneously
 (The masts are sufficiently strong and stiff to resist any forces produced by subsequent truss deployments).

2 - Deploy the three box structures simultaneously in the pitch axis box direction.

3 - Deploy the three box structure simultaneously in the roll axis direction (See Figure 4.1-7)

4 - Tension guyline stabilizers.
4.2 Space-Based Radar, Synchronous Orbit

4.2.1 System Design. The basic antenna system is similar to that used in the 5000 mi. orbit system and shown in Figures 4.1-1 and -2 except that the primary reflector is scaled in size by a factor of 4.35, giving a primary reflector diameter of 1000 ft. The system would be designed to give a beam scanning range of approximately $4^\circ \times 7^\circ$. The attitude control system would also be similar to that described for the 5000 mi. orbit system, with the boresight squinted away from nadir by gravity-gradient stabilization to miss the MTI dead zone and the vehicle slewed about nadir to cover the annular region surrounding the MTI dead zone. The coverage plot is shown in Figure 4.2-1. The outer scan limits just cover the 17° earth disc. This requires a boresight squint of 6.5° rather than the 12.5° squint used for the 5000 mi orbit vehicle. This can be accomplished by suitable rearrangement of the vehicle masses to place the principal axis 6.5° away from the antenna boresight.

We estimate that, for this limited scan angle requirement, the antenna magnification factor M could be increased to 10, giving the configuration shown in Figure 4.2-2. The total number of array active modules and the total radiated RF power requirement would remain approximately the same as in the 5000 mi. design.

The system design for the synchronous orbit mission was given a relatively low priority in the expenditure of the limited program funds, so no patterns were computed for the $M = 10$ case. The sidelobe performance near the scan limits should be about the same as shown for the $M = 2.5$ case near its scan limit.

The worst-case RMS surface distortion of the 1000 ft. primary reflector is estimated to be on the order of 0.7" or around $\lambda/15$. (See the discussion in section 2.2.4) This level of distortion can readily be corrected electronically or could even be neglected. Another concern is the deployment and thermal errors in the truss mast that is used to position the feed and field reflector relative to the primary reflector. Lateral displacement of this assembly from its nominal location in deployment is estimated to be 12" worst case. Thermal distortion is estimated at 3" maximum. Axial (length) distortion is very small, 0.5" or less. The lateral displacement will cause a worst-case beam pointing error of 0.08°. This may be an acceptable error for the mission. If not, it could be calibrated out or adjusted mechanically by using some kind of an optical surveying system to measure the angular departure of the feed from the primary reflector principal axis. This could be a one-time correction, just to remove the initial deployment errors.

4.2.2 Structural Design. The geosynchronous orbit radar configuration (shown in Figure 3.2-10) consists of a large 1000 ft. diameter main reflector, 100 ft diameter field reflector, 100 ft diameter phased array, gravity gradient boom, feed spacecraft and a 1150 ft long boom connecting the major subsystems. The total system weight is 50,000 lbs.

The main reflector consists of a deployable box truss structure with a gold plated molybdenum wire tricot knit reflective mesh. The box truss structure is 20 bay 50 ft deep and fabricated from graphite epoxy for high
Figure 4.2-1 Coverage Plot, Space-Based Radar, Synchronous Orbit
Figure 4.2-2. Two-Reflector Antenna, Space-Based Radar, Synchronous Orbit
stiffness, low weight and low thermal distortion. The structural platform which is the attachment support for the mast is an integral part of the main reflector box truss structure. The stowed main reflector and platform occupy the total volume of one orbiter and weigh 33,000 lbs. The remaining subsystems (mast, S/C, feed, phased array, field reflector) are brought up in a second orbiter.

The phased array and field reflector are both 100 ft diameter systems with a box truss graphite epoxy structure. They are attached to the support mast and stabilized by guylines. The box truss structures are a 6 bay 16.5 ft deep truss. The feed and S/C are supported from the mast in a similar manner (see Figure 3.2-10).

The mast system requires a light weight, high stiffness, thermally stable structure that packages very efficiently. Two systems are potential candidates, Astromast and box truss beam. The Astromast was not selected due to the fact that the Astromast is orbiter packaging limited to 15 ft diameter while the box truss goes to 50 ft. Maximum diameter is required to achieve maximum deployed stiffness. The gravity gradient boom is also a box truss mast of approximately 3000 ft long.

A third orbiter is required to bring up the propulsion stage required for transfer to geosynchronous orbit. A SEPS stage has been selected to minimize propellant weight and to provide the low thrust required by the very large deployed structure.

The assembly process consists of:

1 - Deploy the main reflector.
2 - Rendezvous and dock second orbiter and attach stowed mass.
3 - Initiate deployment of mast while attached to orbiter.
4 - At appropriate bay, deploy field reflector and attach to mast.
5 - Continue deploying mast and at appropriate bay, deploy phased array and attach to mast.
6 - Continue deploying mast and at appropriate bay, attach S/C and feed.
7 - Complete mast deployment.
8 - Attach gravity gradient boom and deploy.
9 - Bring up and attach SEPS stage.
10 - Transfer to geosynchronous orbit.
4.3 Millimeter Wave Mapping Radiometer (MWR) Mission

4.3.1 Summary. The primary objective of the MWR mission is to map land areas with sufficient detail to detect construction activity, aircraft on the ground, and military vehicles such as tanks and trucks. Secondary missions include the location of ships and aircraft in flight. A bonus mission would be the detection of any emitters in the frequency band being used by the radiometer. The MWR is capable of penetrating cloud cover, and this is its principal advantage over visible and IR mappers. Compared to radar mappers it derives some advantages (both political and operational) from being passive and it has some anti-jamming advantage over typical radars because of its large bandwidth.

This is a very difficult mission to realize. The resolution requirements force a large aperture size (much larger than that of a SAR) even at low orbit. Minimum orbit height is fixed by atmospheric drag considerations. The high operating frequency imposes a severe surface figure requirement on the reflector. This in turn imposes the requirement for a high-quality adaptive figure control system for the reflectors. The mesh reflectors used at microwave frequencies cannot be used. Continuous panel or membrane reflectors must be used. Another major problem is the achievement of a very wide field-of-view (FOV) for the reflector system in order to do the mapping in an efficient manner. The large diameter/high surface figure requirement is the driving technology requirement for this mission. However, it is considered to be a feasible (though expensive) mission using current and near-term technology.

4.3.2 Mission Constraints. The sensitivity requirement for the mission is fixed by the requirement to detect military vehicles such as tanks. Other targets of interest require less sensitivity. The three system variables that impact the sensitivity are operating frequency, aperture size, and orbit altitude. Frequency selection options are confined to the atmospheric windows centered on 35 GHz, 95 GHz, 140 GHz, and higher bands. The 95 GHz band is the preferred choice. It is a relatively wide window and is less sensitive to clouds and weather effects than the higher bands. It allows the use of a substantially smaller antenna than would be required at 35 GHz. The minimum orbit altitude is fixed by atmospheric drag considerations at around 400 n.mi.

The FOV specification for the mission is impacted by the desire to map a relatively wide swath with one pass. This is bounded mainly by system complexity constraints such as number of receivers and downlink data rates.

There are two general ways to carry out a mapping mission. The simplest of these is the "pushbroom" mode, in which the mapping antenna is pointed to nadir and sweeps out a swath along the orbit track. The antenna provides a linear array of contiguous beams normal to the orbit track across the swath. In the "spotlight" mode, the vehicle is tasked to map certain specific areas that are not necessarily in the orbit track, though they cannot be too far away from it because of the footprint-spreading effect given by an oblique look angle. This gives it considerably more flexibility than the pushbroom mode. In the pushbroom mode, dwell time is fixed by the footprint size and
the orbit velocity. The spotlight mode does not have this limitation and can control dwell time by nodding the antenna. The antenna design is similar for both systems but the pushbroom mode maintains a fixed nadir pointing of the antenna while the spotlight mode requires capability for frequent antenna attitude changes. We have assumed the pushbroom mode for our design. The spotlight mode would take considerably more attitude control and slew rate capability. It also raises the question of the damping time of the vibrational modes introduced by the frequent attitude changes. This could be a major concern for the very large structure required for the antenna system.

4.3.3 Antenna Design. The three performance factors that drive the antenna design for the mm wave mission are sensitivity, resolution, and field of view (FOV). Sensitivity requirements determine the effective aperture area and resolution determines the dimensions of the antenna system. These two are of course tied together if the primary aperture is a single reflector. A sparse array can be considered if the resolution requirement dictates a larger aperture than the sensitivity requirement. However, there are ways to trade excess sensitivity for resolution, which will be discussed below. If these techniques are used, a filled aperture becomes more attractive for this mission than an unfilled or sparse aperture.

Several possible multiple-reflector antenna systems were considered for wide FOV performance. The best performance, by a wide margin, was given by a reflective Schmidt telescope. This system, diagrammed in Figure 4.3-1, consists of a spherical primary reflector and a spherical feed cluster at the focus. In front of this, at twice the focal length from the primary, is the corrector plate. This is nominally flat, with undulations designed to remove the aberrations from the spherical system.

A spot design was made for a 100 meter primary with a F/D of 1.5 operating at a wavelength of 3 mm. The classic corrector plate design described in handbooks only corrects aberrations out to the 3rd order. This design was refined for higher-order aberrations (up to 11th order) until the RMS wavefront error at 3 mm was less than \(\lambda/60 \). This gives essentially the diffraction-limited gain for the aperture. Scanning performance was then investigated. Figure 4.3-2 shows scanning loss out to beyond 5000 beamwidths off-axis and Figures 4.3-3 through 6 show typical radiation patterns. FOV is a function of F/D. This relationship is shown in Figure 4.3-7. These results are all for uniform illumination of the primary aperture since this was the only way to exercise the computer program used to make the design. Scanning performance would be somewhat better, and sidelobes would be lower, if a tapered illumination were used. This would be investigated in a more detailed system design, but it need not be done for this first look at the system.

The selection of F/D of around 1.5 appears close to optimum. Longer systems would be harder to deploy, and a scan range of \(\pm 5000 \) beamwidths appears to be as large as could reasonably be handled due to the complexity of the electronics required to utilize it. If employed in a conventional "pushbroom" mode, for example, it would require 10,000 receivers. The design could be scaled upward to a larger diameter for improved resolution and sensitivity. The FOV measured in beamwidths would remain the same but it
Figure 4.3-2 BEAM STEERING LOSS, SCHMIDT TELESCOPE

DIAETER = 100 METERS
WAVELENGTH = 3 MM
E/D = 1.5

DISTANCE OFF AXIS

0 1 2 3 4 5 6 7 8 9

BEAMWIDTHS

DEGREES

Loss

dB
FIGURE 4.3-3 ON-AXIS RADIATION PATTERN, SCHMIDT TELESCOPE
Diameter = 100 meters
Wavelength = 3 mm
f/d = 1.5
Beamwidths scanned = ±3.54°
Scanning Loss = 0.65 db

Figure 4.3.4: Radiation Pattern, Schmidt Telescope, Beam Scanned 6.2°
DIA METER, 100 METERS
WAVELENGTH, 3MM
f/D = 1.5
BEAM WIDTHS SCANNED = 0.914
SCANNING LOSS = 6.82 dB

FIGURE 4.5-6 RADIATION PATTERN, SCHMIDT TELESCOPE, BEAM SCANNED 10.37°
FIGURE 4.3-7 FIELD OF VIEW, SCHMIDT TELESCOPE
would scale inversely with primary reflector diameter if measured in spatial angles. The FOV in our example design (18°) sweeps out a 125 n.mi. swath from a 400 n.mi. orbit.

The 3 dB beamwidth for a 100 meter aperture and a 3 mm wavelength is 0.00175°. This gives a 74' footprint on the ground from an orbit altitude of 400 n.mi. If the footprint diameter is taken as the resolution then it is clear that an enormous aperture would be required for a resolution of a few feet. Fortunately, there are techniques to improve the resolution to much better than that given by the footprint diameter. The original high-resolution scene can in principle be reconstructed by deconvolving the antenna beam shape out of the scene recorded by the antenna as the pushbroom scans the surface being mapped. The accuracy of this deconvolution is limited by SNR effects and also by the rather smooth shape of the beam pattern. Considerable improvement in resolving power can be realized by using sum-difference monopulse patterns and processing the data to take advantage of the sharp null provided by the difference pattern. Resolution as high as 1/50 beamwidth can be realized if the SNR is +30 dB. 1/10 beamwidth can be realized with a SNR of 16 dB. Assuming that targets of interest will have a SNR of 16 dB or greater, the resolution of the system described above will be on the order of 7.4 feet or better, which should be adequate for sensing and defining targets down to the size of tanks and trucks.

The resolution given by the pattern deconvolution operation is only realized along the track of the pushbroom scan unless some method is devised to create the effect of a scan that also dithers the patterns back and forth in the cross-track direction. This could be done with mechanical or electronic scanning. Alternately, multiple rows of feeds staggered in position in the cross-track direction could be used. Scanning gives fewer receivers but it reduces the effective dwell time somewhat. Assuming a two-axis monopulse (cross-track and along track), three receivers per resolution cell would be required. The 10,000 beam FOV system described above would require 30,000 receivers. While this might appear prohibitive, the additional receiver costs incurred by going to a monopulse system would be much less expensive than trying to get the resolution by making the antenna dimensions larger.

A 400 n.mi. orbit altitude has been selected. This was selected as a result of a tradeoff of atmospheric drag vs. image resolution. An example calculation of the sensitivity of this system for the detection of a military tank is given below.

The SNR for detectability against receiver noise is given by

\[\text{SNR} = \frac{\Delta T_T}{\sqrt{\gamma T_R}} \left(\frac{\Omega_A}{\Omega_T} \alpha_{\text{ATM}} \sqrt{\frac{g}{T}} \right) \text{POST} \]

where

\(\Delta T_T \) = Target temperature contrast against its background
\(T_{\text{AT}} \) = Beam filling factor, equal to \((\text{Target area})/(\text{Antenna foot print area})\)

\(\alpha_{\text{ATM}} \) = Atmospheric absorption factor

\(\beta \) = Receiver predetection bandwidth

\(\tau_{\text{POST}} \) = Post detection integration time

\(\gamma \) = Receiver duty cycle factor

\(T_R \) = Receiver front end noise temperature.

\(\Delta T_T \) can ideally be as much as 290 K with a clean metal target on a clear day. However, a military tank is covered with paint and possibly some dirt, and clear weather is not guaranteed. A conservative value to use for \(\Delta T_T \) is 200 K.

Assuming a 74 ft diameter circular footprint and a typical tank size of 30' x 12', the beam fill factor is 0.083.

\(\alpha_{\text{ATM}} \) with heavy clouds but no rain can be taken as 0.5.

\(\tau_{\text{POST}} \) depends on the mode of operation. Assuming a pushbroom scan, it cannot be larger than the time it takes the 74' footprint to sweep across a point target. This is dictated by the velocity of the subsatellite point which is fixed by the orbital period. This is computed to be \(3.34 \times 10^{-3} \) sec. for a 400 n.mi. orbit and a 74' footprint.

\(\beta \) depends on the state-of-the-art (SOA) in receiver design. Typically, in a superhetrodyne receiver used for radiometry, both the upper and lower mixing sidebands can be retained. This gives an effective \(\beta \) that is twice the actual receiver IF bandwidth. If this is done, \(\beta = 10 \) GHz should be possible in the near future. There is little reason to expand it beyond this value since the width of the 90-100 GHz window is not much greater than 10 GHz.

The classic Dicke-switch radiometer switches between a calibrated temperature reference and its antenna with a duty cycle \(\gamma = 0.5 \). However, for a mapping mission absolute temperature is not as important as contrast, so calibration could be relatively infrequent. We will assume \(\gamma = 1.0 \).

The predicted near-term SOA receiver noise temperature for a mixer cooled to 1000 K in the 90-100 GHz band is 5000 K.

Combining all of these numbers gives \(\text{SNR} \approx 20 \text{ dB} \). This does not include the effects of background clutter or variability in the temperature of the background. A good value to assume for this clutter is difficult to estimate since insufficient measurement data exists. However, assuming
spectral filtering and other advanced processing techniques, it should not degrade the SNR very much under most circumstances. The conclusion is that tanks could be mapped with good reliability and reasonably good resolution (≈7 ft) under all but the most adverse weather conditions. Heavy rain would drop the SNR by 10 dB or more. This would give marginal or no detectability. Larger targets such as aircraft and ships would be easily detected in the absence of rain and would usually be detectable even with rain.

The downlink data rate can be estimated as follows. The post-detection integration time \(T_{\text{POST}} \), defined above, was found to be \(3.34 \times 10^{-3} \) sec. Each receiver delivers a pixel once each \(T_{\text{POST}} \) in a classic radiometer, but about 5 times this number would be required for the beam deconvolution operation. 12-bit quantization will be required for high-resolution mapping data. There will be 30,000 receivers. The downlink data rate is therefore equal to \(3.34 \times 10^{-3} \times 5 \times 12 \times 30,000 = 540 \) megabits/sec. This is not an impossibly high rate by today's standards, but it is much too high for a store-and-dump mode. This means that the vehicle must continuously transmit data to a ground station during the operational part of its orbit. Since it is in a low orbit, this is most easily done by relaying through a synchronous-orbit comsat.

4.3.4 Grating Lobes Due To Reflector Panel Edges. The preferred reflector deployment approach uses solid graphite-epoxy honeycomb panels of a size that can be stowed in the Shuttle bay, mounted on a backup truss. The mounting will include mechanical actuators for adjustment of the reflector surface figure. The mechanical concept is described in the following sections. In this section we address the problem of possible sidelobe and grating lobe effects that might arise from the discontinuities or gaps in the reflector surface at the panel edges.

Since the panels are all nominally of the same size, the spacing between edges has some regularity, which leads to the formation of relatively strong grating lobes rather than random lobes. This would be true if the panels were deployed on a flat surface. The fact that they are deployed on a curved surface mitigates the grating lobe effect. Computations were made to determine the magnitude of this effect. The configuration sketched in Figure 4.3-8 was used. This is a 260 ft reflector composed of 10' x 10' panels. A parabolic surface, \(f/D = .46 \), with uniform illumination, was assumed. The assumed frequency was 95 GHz. Figure 4.3-9 shows the main axial lobe of the gap array. This will coincide with the desired main lobe of the antenna, but will be of opposite sense and many dB below the main antenna lobe. It accounts for the loss in gain of the antenna due to the presence of the gaps.

The magnitude of this lobe can be estimated as follows. The loss in gain is approximately proportional to the area occupied by the gaps relative to the total area of the reflector. There are some secondary effects for very narrow gaps. Figure 4.3-10 shows the total scattering crosssection for thin metal strips as a function of width and polarization. This is the dual of gaps in a metal sheet (the reflector). As shown, for a strip (or gap) width greater than \(\lambda/2 \), the effective electrical width of the strip is essentially equal to its actual width, and essentially independent of polarization. So for gaps larger than around 1/16" at the frequency of interest,
10' X 10' SEGMENTS

Figure 4.3-8 SEGMENTED REFLECTOR
Figure 4.3-9 MAIN LOBE, SEGMENT GAP ARRAY
REF: MEI AND VAN BLABEL, IEEE TRANSACTIONS AP-11, PG 188
MARCH, 1963

Figure 4.3-10 TOTAL SCATTERING CROSSSECTION, METALLIC STRIPS
the relative physical area lost to the gaps is a good measure of the gain of
the gap array main lobe relative to the gain of the ideal antenna main lobe. For example, 10 ft panels with a 1/8" gap gives a gap lobe down 27.8 dB from the antenna main lobe. It seems unlikely that the gaps could be made much smaller than this without excessively complicating the fabrication of the reflector.

The first and second grating lobes were then computed. They are shown in Figures 4.3-11 and -12. As shown, the first lobe dropped 12 dB and the second lobe 17 dB relative to the gap array main lobe. This is due to the curvature of the reflector surface. The computer program used to compute these patterns, entitled GRATE2, is listed in Appendix C.

These computations were made early in the program, before the Schmidt reflector concept was selected. The gaps in the Schmidt primary mirror will generate a set of grating lobe pointing generally upward, which can be ignored. The gaps in the corrector plate will also generate a set of grating lobes which will point downward. Since this plate is nearly flat the height of these grating lobes will not fall off very fast, and the first several lobes will be at about the same level as the gap array main lobe, i.e., around 28 dB below the main antenna lobe providing the gap breadth can be held to around 1/8". Lobes of this level are probably acceptable for the radiometer mission, but they should not be allowed to go much higher than this. This poses a mechanical design problem for the fabrication of the reflector. It could be mitigated by using somewhat randomized dimensions for the panels.

4.3.5 Structural Approaches For The Schmidt Reflector. The Schmidt reflector places a unique requirement on the design of the spacecraft structure. Due to the high operating frequency, a deployable mesh reflector system is not adequate. The reflecting surface must be a continuous surface (i.e. aluminized Kapton or mylar sheets or aluminized honeycomb panels.

Four structural approaches were identified for the Schmidt reflector. The first two concepts utilize rigid honeycomb panels that are supported by a truss structure. The third concept is the Electrostatic Controlled Membrane Mirror (ECMM) approach of General Research Corporation. The fourth approach utilizes expandable air mats that are rigidized after deployment. Both the ECMM and the air mat approach utilize a deployable truss structure for support. All four of the approaches would require some degree of adaptive surface contouring capability to control the reflector surface figure.

Each of the four approaches have limitations and concerns that require substantially more investigation. The rigid honeycomb panels supported by a truss structure (deployable or erectable) require substantial assembly in low earth orbit. Such things as dexterity requirements placed on the remote manipulator system (RMS) or assembly aid, required assembly time, electrical and RF connections, mechanical attachment design, ground validation of both the assembly technique and the deployed precision, and lighting and power requirements must be investigated in order to show concept feasibility.

The feasibility of the ECMM approach rests on the successful demonstra-
Figure 4.3-11 FIRST GRATING LOBE, SEGMENT CAP ARRAY
Figure 4.3-12 SECOND GRATING LOBE, SEGMENT GAP ARRAY
tion of the closed loop control of the electrostatic membrane. General Research is in the process of demonstrating the feasibility of the ECMM. Since the reflective surface is a membrane, it can be stowed on a deployable truss, thereby minimizing the required orbital operations. However, as in all deployable structures, failure identification, isolation, and repair must be investigated.

The air mat concept, being studied at Draper Labs, is an old approach being applied to a new requirement (high precision); therein lies the problem with the air mat. The ultra-tight tolerances place a severe constraint on the air mat design. Also, the dimensional stability with time is a question. Like the previous three concepts, significant work needs to be performed to demonstrate feasibility. It appears to be the least promising of the approaches studied.

4.3.5.1 Rigid Panels and Astro-Cell Structure* Approach. This approach consists of individual modules that are stowed in the Orbiter bay similar to a stack of records in a juke box, individually deployed, and then assembled into a reflector platform (See Figure 4.3-13).

*Astro-Cell concept Jointly developed by Dr. John Hedgepeth (Astro Research Corp) and Martin Mikulus (NASA Langley)
the structure and cable connections are automatically made when the modules are connected.

The support truss on each module is similar to the articulated astromast.

A module of the Astrocell structure with the payload panel removed is shown in Figure 4.3-14. Note that the structure consists of the upper and lower triangular frames and the diagonals. The curved "longerons" are not part of the primary structure; they are prebuckled and therefore supply the forces necessary to pretension the diagonals. The module is capable of carry-

\[\begin{align*}
\text{Figure 4.3-14} & \quad \text{Deployable Truss Structure} \\
\end{align*} \]

ing compression with full stiffness. The design of the hinges and other attachments has been carefully thought out so as to achieve maximum compactness. The depth of the packaged module is just the sum of the triangular-frame thicknesses. The deployment motion is quite similar to that of one bay of an Astromast lattice column.

The joints between modules must provide a good structural tie. They must also provide for electrical connections. One attractive concept, de-
The probe-and-drogue arrangement facilitates engagement, and a torqued fastener on the end of the probe precompresses the joint to cement the mating. Full modularity is enhanced by providing the universal triangular transition piece in which the variations in electrical circuitry can be accommodated.

Figure 4.3-15 Attachment Method*

The fully assembled system is shown in Figure 4.3-16. An analysis was performed to determine the number of Orbiters required to assemble a reflector system which has 300 ft diameter reflectors and an overall length between reflectors of 900 ft. Table 4.3-1 summarizes these results. Analysis showed that one Orbiter is required to transport each 300 ft diameter reflector to earth orbit. The reflector requires 470 modules at 14 ft diameter each. The total weight of the system is 44650 lb. However, this violates the weight and cg envelope of the Orbiter. To bring the cg within the envelope, the 15000 lb cradle has its cg biased aft.

After the two reflector systems are assembled, a third orbiter transports the feed, spacecraft, and deployable masts and guylines to orbit. The feed and masts are attached to the two reflectors and deployment is initiated.

*Developed by Astro Research
NUMBER OF ORBITERS: THREE (1 FOR SPHERICAL REFL., 1 FOR FLAT REFL.,
1 FOR S/C, MASTS, FEED, ETC.)

NUMBER OF CELLS: 470 @ 14 FT DIA.

TRUSS DEPTH: 13 FT

CELL PACKAGING: 470 @ 1.43 IN. = 56 FT

<table>
<thead>
<tr>
<th>PANEL DESIGN</th>
<th>WEIGHT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACE SHEETS (0.020 GR/E)</td>
<td>51.9</td>
</tr>
<tr>
<td>HONEYCOMB (3 LBS/FT^3, 0.3 IN THICK)</td>
<td>11.2</td>
</tr>
<tr>
<td>REFLECTING SKIN (0.001 IN AL)</td>
<td>2.2</td>
</tr>
<tr>
<td>BOND LINES (0.002 IN EPOXY)</td>
<td>5.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>70.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRUSS DESIGN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBES (0.5 IN. DIA. X 0.1 IN. THICK)</td>
<td>4.6 lbm</td>
</tr>
<tr>
<td>END FITTINGS (TITANIUM - 0.2 lbm EACH)</td>
<td>1.2</td>
</tr>
<tr>
<td>DIAGONALS (GR/E - 0.2 lbm EACH)</td>
<td>1.8</td>
</tr>
<tr>
<td>ACTUATORS (2 lbm EACH)</td>
<td>6.0</td>
</tr>
<tr>
<td>CABLELING (.04 lbm/FT)</td>
<td>1.5</td>
</tr>
<tr>
<td>CONNECTORS (.33 lbm EACH)</td>
<td>1.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.1 lbm</td>
</tr>
<tr>
<td>CONTINGENCY</td>
<td>8.4 lbm</td>
</tr>
<tr>
<td>TOTAL CELL WT. 95</td>
<td>95 lbm</td>
</tr>
<tr>
<td>TOTAL PAY-LOAD WT. 44650</td>
<td>44650 lbm (FOR ONE 300 FT. REFLECTOR)</td>
</tr>
</tbody>
</table>

Table 4.3-1 SUMMARY OF CONCEPT UTILIZING HEXAGONAL PANELS AND TRIANGULAR TRUSS
4.3.5.2 Rigid Panels and Box Truss Structure Approach. This approach consists of individual rectangular panels that are stowed in approximately half the length of the Orbiter bay. A deployable box truss structure is stowed in the rest of the cargo bay. The stowed configuration is shown in Figure 4.3-17.

The heavier panels are stowed in the aft end of the cargo bay to bias the cg aft. No support cradle bias is required. 248 panels are required. This reduces the amount of assembly required. The assembly sequence is as follows:

1. The box truss structure is removed from the Orbiter bay with the RMS.
2. Deployment of the truss is initiated.
3. The panels are individually attached to the rectangular boxes of the box truss.

For this concept the panel adjustment actuators are incorporated into the box truss (as well as the electrical and RF cabling). Only mechanical attachments are required between the panels and the structures.

A plan view of the assembled reflector is shown in Figure 4.3-18. The panels are rectangular in shape with a constant length of 25.83 ft and varying width from 7 ft to 13.5 ft. This facilitates packaging the panels in the Orbiter. The assembly sequence after the reflectors are completed is identical to the Astro Cell concept. The completed S/C is shown in Figure 4.3-19. The box truss configuration also must have a varying shape compatible with the panel sizes. This is accomplished by varying the surface tube lengths of the truss. Table 4.3-2 summarizes the results of the design. It can be seen that this approach allows thicker reflector panels and a deeper truss. The thicker panels and deeper truss provide improved dynamic performance and also improved deployed precision. It is assumed for both of the rigid panel approaches that the surface figure of the individual panels remains essentially perfect with temperature cycling. The requirement for adaptive surface control arises from distortions in the supporting truss.

4.3.5.3 ECMM Approach. The ECMM approach differs significantly from the previous two approaches. Because the reflective surface is a membrane, the total reflector system can be deployed without on-orbit assembly. In fact, the total S/C can be launched in only one Orbiter. The stowed configuration is shown in Figure 4.3-20. Two 20 ft deep box trusses are packaged in the Orbiter. The support mast canisters are packaged outside the periphery of the truss. The cannisters actually are part of the truss structure and replace the typical vertical member in the structure. A cradle is utilized to support the trusses, feed and S/C. No structural attachments are required after release from the Orbiter. The deployment sequence is as follows:

1. Release from Orbiter
Figure 4.3-17 STOWED CONFIGURATION, RIGID PANELS
Figure 4.3-18 DEPLOYED REFLECTOR, 300 FT DIA.
Figure 4.3-19 SCHMIDT REFLECTOR UTILIZING RECTANGULAR PANELS
NUMBER OF ORBITERS: THREE (1 FOR SPHERICAL REFLE., 1 FOR FLAT REFLE., 1 FOR S/C, MASTS, FEED, ETC.)

NUMBER OF PANELS: 248
TRUSS DEPTH: 25.83 FT
CELL PACKAGING: PANELS ARE 25.83 FT LONG BY 7—14 FT BY 0.6 INCH

<table>
<thead>
<tr>
<th>PANEL DESIGN</th>
<th>WEIGHT (1 bm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACE SHEETS (0.020 GR/E)</td>
<td>25000</td>
</tr>
<tr>
<td>HONEYCOMB (3 lbm/ft³, 0.375 IN. THICK)</td>
<td>6700</td>
</tr>
<tr>
<td>REFLECTING SKIN (0.001 IN AL)</td>
<td>1000</td>
</tr>
<tr>
<td>BOND LINES (0.002 EPOXY)</td>
<td>2500</td>
</tr>
<tr>
<td>TOTAL</td>
<td>35200 lbm</td>
</tr>
</tbody>
</table>

TRUSS DESIGN (0.10 lbm/ft²)	7200 lbm
TUBES (2.0 IN X 0.030 IN)	
END FITTINGS (TITANIUM)	
DIAGONALS (GR/E)	
CABLEN (0.04 lbm/ft)	2200 lbm
ACTUATORS (2 lbm EACH)	1500 lbm
TOTAL PAYLOAD WT (FOR ONE 300 FT REFLECTOR)	**46100 lbm**

Table 4.3-2 SUMMARY OF CONCEPT UTILIZING RECTANGULAR PANELS AND BOX TRUSS
2. Simultaneously deploy the two reflectors row by row, column by column.

3. Deploy the masts.

The unique features of the ECM integrated with a box truss allow the total S/C package to be launched in one Orbiter with no required orbital assembly. Details of the packaging support method and subsequent deployment dynamics need to be addressed in a future study.

One major concern is the deployment of high voltage cabling to the electrostatic control points on the membrane. The number of distinct control points (and cables) required for a 300 ft reflector is estimated by GRC to be a minimum of 2000.

Figure 4.3-20 STOWED CONFIGURATION, ECM ANTENNA

4.3.6 Stability, Pointing and Control. The purpose of the Stability, Pointing, and Control System is to point the antenna in the desired direction, to stabilize it as a flexible body, and to coordinate the control the motions of the various parts of the antenna so that the geometric properties of the structure and primary reflector surface are held to within the tolerances necessary for it's successful operation as a millimeter-wave radiometer.

The GN&C system requirements are:

Lifetime: 5-10 years; WT & Power: Low, but not critical; Navigation Accuracy: Position knowledge not required on board; Attitude Accuracy: Knowledge of direction of principal axis of antenna required to $\pm 1^\circ$ (i.e. knowledge of bore sight direction with respect to nadir required to $\pm 1^\circ$); geopositioning accuracy of the radiometer image map will be refined by
landmark map matching); Slewing: Required at initialization only; none
during operation. Command Direction: Nadir pointing only; Surface Control:
± 1 mm to "best fit"; Feed Control: ± 1 mm to focal point.

The following discussion sets forth a stability pointing and control
concept which is applicable to the reflecting Schmidt antenna for low earth
orbit use. The control required is:

1. Control of direction of principal axis of antenna in space.
2. Flexible Body Stability & Mode Suppression
3. Figure control of reflector surface (see section 2.3)
4. Control of location of feed

These control loops are coupled which can create the potential for an un-
stable situation between loops. Hence the control problem must be treated
in an integrated manner. A strawman concept for such an integrated control
system for the Schmidt antenna is shown in Figure 4.3-21. The sensors,
controllers and significant disturbances are broken out in Table 4.3-3.

4.3.6.1 Sensors. The concept involves mounting the primary sensing
package consisting of a 3 axis strapdown gyro package, horizon sensor(s)
sun sensor and local microprocessor below the lower structure in such a man-
ner that the earth disk is not occulted. A laser beam then would run from
the feed thru the lower structure to the attitude sensing package; consti-
tuting a columnated light source, defining the focal direction and, tying
gether the feed and the attitude sensing package. The gyro package acts
as a mechanical attitude memory between Horizon Sensor-Sun Sensor optical
updates and also as a sensor providing data on the attitude and attitude
rates necessary for the stabilization loop which maintain rigid and flexible
body control.

Systems of sensors to detect flexible body motion are also required on
the upper structure and each of the support beams.

4.3.6.2 Controllers. The antenna principal axis is offset by a small
angle from the boresight of the antenna due to a tilt in the corrector plate
to avoid blockage by the primary reflector. This angle is approximately 19°
for the selected design (f/D = 1.5). Gravity-gradient stabilization can be
used if the antenna boresight is allowed to shift away from nadir by this
angle. Gravity gradient stabilization is highly desirable since it results
in a marked simplification and weight reduction of the ACS. The penalty
for this small shift in boresight direction is an increased antenna foot-
print diameter in the shifted axis. The increase is only 12%, so it is
acceptable.

While gravity-gradient is recommended for the primary ACS, there will
be disturbing torques that can best be controlled by an auxiliary system of
momentum wheels (Control Moment Gyros or Reaction Wheels) and reaction jets.
The momentum wheels provide fine pointing control, modal suppression and com-
Figure 4.3-21 Integrated Control System For Schmidt Reflector Antenna
TABLE 4.3-3 Principal Aspects Of Control Of The Reflecting Schmidt Antenna

<table>
<thead>
<tr>
<th>Control Factors</th>
<th>Sensors</th>
<th>Controllers</th>
<th>Disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Axis Pointing</td>
<td>Hor Sensor, Primary Sun Sensor, Gyro Pkg, Rate Gyros, Strain Gauges</td>
<td>CMG & RCS, RCS Firings</td>
<td>Solar torques (Induced Thermal), Aero torques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Body Control</td>
<td>Gyro Pkg, Rate Gyros, Strain Gauges</td>
<td>CMG's</td>
<td>Desaturation RCS Firings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Control</td>
<td>Laser & Corner Cubes</td>
<td>Local Surface Actuators</td>
<td>(Induced Thermal) Desaturation Firings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed Location Control</td>
<td>Laser & Corner Cubes, Collimated Laser Source</td>
<td>3 DOF Actuators, On Feed Support Beams</td>
<td>g.g. effects, RCS Firings, Solar Torques</td>
</tr>
</tbody>
</table>

231
pensation for most disturbing torques. The reaction jets are used for the initial slewing, to overcome large disturbing torques, compensate for drag and non-cyclic solar pressure, and to desaturate the momentum wheels. The reaction jets will be mercury ion thrusters with ISP of 3000 and thrust of .025 lbs. Due to the nature of the structure of the Schmidt reflector the system of momentum exchange devices should probably be split between the collector plate and the primary reflector. Also since the mission lifetime is 5 to 10 years the system of momentum exchange devices must be redundant. One of the most difficult control problems is the control of the location of the feed to within 1 mm of the "best fit" focus to the reflective surface. This can be achieved by adjusting the position of the feed via actuators between the feed and its support beams using the laser mentioned above as the sensing element.

4.3.6.3 Disturbing Torques and Forces. Significant disturbing torques will arise from two sources: aerodynamic pressure and solar pressure. Aerodynamic pressure is on the order of 10^{-7} lbs per sq. ft. of solid surface, producing adverse effects at 400 nm altitude. Solar pressure results in disturbance of the same order of magnitude.

Solar pressure and aerodynamic drag are also disturbing forces, producing translational effects which alter the orbit parameters. By careful choice of the location of the reaction jets on the antenna structure it is possible to ameliorate the adverse effects of these disturbing forces while eliminating totally the attitude error caused by the disturbing torques.
5. CONCLUSIONS

5.1 Conclusions, Space-Based Radar Mission. The principal option to the baseline full-aperture space-fed array studied by us was the two-reflector system using a phased array feed. This concept has four primary disadvantages relative to the baseline system. These are listed below.

- Its electronic scanning range is smaller, though this disadvantage can be mitigated by a mission design using some mechanical scanning via attitude control of the spacecraft.
- It is heavier and more complex structurally, and more difficult to deploy, though the 5000 n.mi. orbit vehicle can be packaged in a single shuttle.
- The modules require electronically variable gain control in the receive mode to optimize the sidelobe performance with beam scanning.
- The sidelobe control with beam scanning appears to be inherently poorer than that of the baseline system, though sidelobes of -45 to -50 dB can be achieved.

The two-reflector system has one very big advantage over the baseline system. The total number of electronic modules required can be reduced by a factor of 4 to 6. However, since the total transmitted RF power must remain the same, each module must deliver proportionately more power in the transmit mode. This is not a major concern for the module design or for the module cost, since the module RF power outputs are not high, around 0.1 watts average. The per module cost represents the largest cost risk in the space-based radar program. The two-reflector system offers the possibility of a marked reduction in this cost risk. Therefore, it is our recommendation that it be carried on the program as an option to be used in the event that the module cost cannot be held to the target value.

Another option, the full-aperture reflectarray, was not studied to any depth on this program, but it does have some attractive features. Its primary advantage over the baseline lens-array is that it can use a much shorter focal length for the same bandwidth constraints if it is deployed on a parabolic surface. This gives a lighter and stiffer structure. We also recommend that further study be done on this concept.

5.2 Conclusions, Millimeter Wave Radiometer Mission. The antenna size and surface precision requirements of this mission would make it an extremely difficult and costly mission to carry out. While it may have some advantages over a synthetic aperture mapping radar (SAR) in terms of jamming, a radar giving equivalent resolution has a much smaller and simpler antenna, and could operate in the microwave frequency band. It appears that, at least for present-generation technology, the SAR is the better choice.

However, in the event that the millimeter wave radiometer mission is carried forward at some future date, we believe that the antenna system selected by us, the reflective Schmidt telescope, is the best choice for
the mission because of its very wide FOV and the simplicity of its feed system.
6. RECOMMENDATIONS, CRITICAL TECHNOLOGIES

Our general mission-related conclusions and recommendations are presented in Section 5. This section addresses specific technology areas where additional work should be done, assuming that the program recommended in section 5 is carried forward.

6.1 Antenna Performance Analysis. The analysis done on this program was not carried to great depth, primarily because of the limited funding of the program. All of the computed performance data was based on a two-dimensional analysis. This should be expanded to a full 3-dimensional analysis. The tradeoff of the various antenna parameters vs. performance should be carried to greater depth. The parameters include magnification (M), primary reflector f/D, feed array element spacing, field reflector oversizing factor, and illumination taper. Also, the configuration using a planar phased array feed should be modelled. It would also be desirable to carry out a scale model build and test program.

6.2 Deployable Structures. The development of the deployable box truss concept is proceeding, mainly under an in-house IR&D program. The work could of course be accelerated with some contract support. The next phase of the effort will be a detailed mechanical design followed by a feasibility model build and ground verification program. This should be followed by a flight experiment to demonstrate the space deployment and determine the tolerances achieved.

6.3 Attitude and Figure Control of Flexible Bodies. It is recommended that a flexible body stability analysis be performed on either a selected antenna or an artificial design, combining structural bending, mast dynamics, mesh dynamics and figure control so that the problems associated with an integrated control system can be surfaced. It is further recommended that the problem of achieving reasonable reliability for lifetimes over 5 years be attacked.

Adaptive figure control does not appear to be necessary for the radar mission. However, if further work is to be done in this area, the technology of the various laser surveying systems described in Section 2.3 would have to be developed to the operational level.
APPENDIX A
RAY TRACING: DISTORTED PRIMARY REFLECTOR TO SUBREFLECTOR

In this appendix a fourth order polynomial is derived which locates points of incidence on the subreflector due to some incident ray on the distorted primary reflector. The two-reflector confocal parabolic system is shown in Figure A-1. The polynomial is found by setting the angle of incidence equal to the angle of reflection at the surface of the primary reflector. First, the unit normal for an undistorted parabola is derived. Then it is modified to include distortions by introducing a rotation factor. The reason that the equation will be a fourth order polynomial (with four roots) is that, geometrically, setting the angle of incidence equal to the angle of reflection corresponds to two lines intersecting with the equation of the subreflector. Each line has two solutions with the parabolic subreflector. The primary reflector is made up of N equal arc length segments supported at 2N points (one support at each segment edge). Individual segments are assumed to be free of distortion (i.e. they always remain parabolic) however, the supports can undergo a displacement Δz (forward or backward). Thus, any distortion may consist of displacement and/or rotation of a segment. The distortions are represented mathematically as a rotation in unit normal and a displacement Δz at the desired reflection point on the primary reflector. The equation for a parabola (no distortion) is given by

\[z = a \frac{x^2}{4f} + z_0 \]

(A-1)

where \(a = \pm 1 \) (concave or convex)
\(f \) is the focal point
\(z_0 \) is the shift from the origin.

The rectangular coordinate system used is shown in Figure A-1. The normal to the parabola can be found by using a parametric representation of Equation (1). This is done as follows [13]:

Let \(\bar{R} = \hat{x}x + \hat{z}z \) (A-2) be a position vector and choose \(x = t \), then

\[z = a \frac{t^2}{4f} + z_0. \]

Equation (2) then becomes

\[\bar{R}(t) = \hat{x}t + \hat{z}\left(\frac{at^2}{4f} + z_0\right). \]

(A-3)

The unit tangent vector is defined by

\[\hat{t}(t) = \frac{d\bar{R}(t)}{dt} \left/ \left| \frac{d\bar{R}(t)}{dt} \right| \right. \]

(A-4)
Figure A-1 Two reflector confocal parabolic system.
From Equation (3) it follows that
\[t(t) = \frac{\hat{x} + \hat{z} \frac{at}{2f}}{\sqrt{1 + \left(\frac{at}{2f}\right)^2}} \]
(A-5)

The curvature is defined as
\[\kappa = \frac{d^2 \bar{t}}{dt^2} \left/ \left| \frac{d\bar{R}}{dt} \right| \right. \]
(A-6)

Differentiating Equations (A-5) and (A-6) yields
\[\frac{d\hat{t}}{dt} = -xc^2 t(1 + (ct)^2)^{-3/2} + \hat{z}c(1 + (ct)^2)^{-3/2} \]
(A-7)

\[\left| \frac{d\bar{R}}{dt} \right| = (1 + (ct)^2)^{1/4} \]
(A-8)

where \(c = \frac{a}{2f} \)
(A-9)

Thus \(\kappa = c(1 + (ct)^2)^{-2} (-\hat{xt} + \hat{z}) \)
(A-10)

The unit normal is now defined as
\[\hat{n} = \frac{\kappa}{|\kappa|} \]
(A-11)

From Equation (A-10) it is clear that
\[\hat{n}(t) = \frac{c}{|c|} (\frac{-\hat{xt} + \hat{z}}{\sqrt{1 + (ct)^2}}) \]
(A-12)

Note that
\[\frac{c}{|c|} = \begin{cases} +1 & \text{a=1} \\ -1 & \text{a=-1} \end{cases} \]

and since \(x=\hat{t} \) and \(c= \frac{a}{2f} \) then
\[\hat{n}(x) = \begin{cases} \frac{-\hat{xx} + \hat{z}2f}{\sqrt{4f^2 + x^2}} & \text{a= +1} \\ \frac{-\hat{xx} - \hat{z}2f}{\sqrt{4f^2 + x^2}} & \text{a= -1} \end{cases} \]
(A-13)
The equation that describes the undistorted primary reflector is given by
\[z_1 = \frac{x_1^2}{4f_1} - \frac{f_1}{x_1} \quad (A-14) \]
where \(f \) is the focal distance of the primary reflector. From Equation (13) with \(a = +1 \) the unit normal to the primary reflector at the point \(x_1 \) is
\[\hat{n}_1(x_1) = \frac{-x_1 + z_2 f_1}{\sqrt{4f_1^2 + x_1^2}} \quad (A-15) \]
The determination of the new unit normal and the displacement due to a distortion is facilitated by use of two lines as follows: Let \((x^a, z^a) \) and \((x^b, z^b) \) be the coordinates of the two edges of any segment of the undistorted primary and let \((x^a', z^a') \) and \((x^b', z^b') \) be the coordinates of the same segment when it is distorted. Each set of points defines a line, \(l_{ab} \) and \(l_{ab}' \), as shown in Figure A-2. The unit normal to each line is given by
\[\hat{n}_{ab} = \frac{-x_b - z_a}{\sqrt{(z_b - z_a)^2 + (x_b - x_a)^2}} \quad (A-16) \]
\[\hat{n}_{ab}' = \frac{-x_b' - z_a'}{\sqrt{(z_b' - z_a')^2 + (x_b' - x_a')^2}} \quad (A-17) \]
The angle between \(n_{ab} \) and \(n_{ab}' \) designated as \(\Theta_3 \) gives the amount of rotation required to model the distortion. The undistorted unit normal vector \(\hat{n}_1 \) makes an angle designated \(\Theta_1 \) with respect to the \(z \) axis. When the segment is distorted the new unit normal vector \(\hat{n}_1' \) makes an angle designated \(\Theta_2 \) with respect to the \(z \) axis. From Figure A-3 it is clear that
\[\Theta_2 = \Theta_1 + \Theta_3 \quad (A-18) \]
Taking the dot product of Equation (A-15) with \(\hat{z} \) yields
\[\hat{n}_1 \cdot \hat{z} = \frac{2f_1}{\sqrt{4f_1^2 + x_1^2}} = \cos \Theta_1 \quad (A-19) \]
so
\[\Theta_1 = \cos^{-1}\left(\frac{2f_1}{\sqrt{4f_1^2 + x_1^2}} \right) \quad (A-20) \]
The sign of \(\Theta_1 \) is chosen positive (negative) if \(\hat{z} \times \hat{n}_1 \) yields +\(\hat{y} \) (-\(\hat{y} \)).
Figure A-2 Geometry relating distorted and undistorted segment.
Figure A-3 Angles relating distorted and undistorted segment.
By taking the dot product of Equations (A-16) and (A17) it follows that

\[\theta_3 = \cos^{-1} \left(\frac{(z-b)(z' - z') + (x-b)(x' - x')}{\sqrt{(z-b)^2 + (x-b)^2 + (z' - z')^2}} \right) \]

(A-21)

The sign of \(\theta_3 \) is chosen positive (negative) if \(\hat{n}_1 \times \hat{n}'_1 \) yields \(+ \hat{y} \) (-\(\hat{y} \)).

The new unit normal is expressed in terms of \(\theta_2 \) as

\[\hat{n}'_1 = -\hat{x} \sin\theta_2 + \hat{z} \cos\theta_2 \]

(A-22)

Note that for the case where \(\theta_3 = 0 \) (no distortion) Equation (A-22) reduces to Equation (A-15) as it should.

The required displacement in the z direction due to a distortion can be determined from Figure A-3. At any point \(x_i \) in the range \((x_a, x_b) \) the z displacement between the distorted and undistorted segment is closely approximated by the z displacement between the lines \(\hat{z}_{ab} \) and \(\hat{z}'_{ab} \). The equation for this displacement can be shown to be

\[\Delta z_1 = \left(\frac{x_i - x'_i}{m_n} \right) - \left(\frac{x_i - x}{m_0} \right) + \left(z'_b - z_b \right) \]

(A-23)

where

\[m_n = \frac{(x'_b - x'_a)}{(z'_b - z'_a)} \] is the slope of line \(\hat{z}_{ab} \) and

\[m_0 = \frac{(x_b - x_a)}{(z_b - z_a)} \] is the slope of line \(\hat{z}_{ab} \).

At any point \(x \) the location of the distorted primary is given by

\[z'_1 = z_1 + \Delta z_1 \]

(A-24)

where \(z_1 \) is given by Equation (A-14)

Now that \(\hat{n}'_1 \) and \(z'_1 \) have been specified, the condition that the angle of incidence equals the angle of reflection can be enforced.

Consider a ray incident at an angle \(\theta \) from the axis of the two-reflector system as shown in Figure A-4. The direction of the incident ray is given by the unit vector

\[\hat{s}_1 = -\hat{x} \sin\theta - \hat{z} \cos\theta \]

(A-25)
Figure A-4 Incident ray path from distorted primary segment to subreflector.
The direction of the reflected ray at the point \((x_1, z')\) in terms of \((x_2, z_2)\) is given by
\[
\frac{s}{2} = \frac{\hat{x}(x_2-x_1) + \hat{z}(z_2-z')}{\sqrt{(x-x_1)^2 + (z-z')^2}}
\] (A-26)

The law of reflection requires that
\[
\hat{n}' \cdot \hat{s} = \frac{\hat{n}' \cdot \hat{s}}{1}
\] (A-27)
be satisfied at the point \((x_1, z')\). From Equations (A-22 and (A-25) the left side of the above equality is
\[
-\hat{n}' \cdot \hat{s} = -\sin\theta_2 \sin \theta + \cos \theta_2 \cos \theta = A_2
\] (A-28)

The equation of the subreflector is given by
\[
z_2 = f_2 - \frac{x_2^2}{4f_2}
\] (A-29)

where \(f_2\) is the focal distance of the subreflector. Using Equations (A-14), (A-24) and (A-29) Equation (A-26) becomes
\[
\frac{s_2}{2} = \frac{\hat{x}(x_2-x_1) + \hat{z} \left(A_1 - \frac{x_2^2}{4f_2} \right)}{\sqrt{(x_2-x_1)^2 + \left(A_1 - \frac{x_2^2}{4f_2} \right)^2}}
\] (A-30)

where
\[
A_1 = f_1 + f_2 - \frac{x_1^2}{4f_1} - \Delta z
\] (A-31)

The right side of Equation (A-27) is now found to be
\[
\hat{n}' \cdot \hat{s} = \frac{x_2 (\sin \theta_2 + \frac{x_2}{4f_2} \cos \theta_2) + A_3}{\sqrt{(x_2-x_1)^2 + \left(A_1 - \frac{x_2^2}{4f_2} \right)^2}}
\] (A-32)

where
\[
A_3 = x_1 \sin \theta_2 + A_1 \cos \theta_2
\] (A-33)

Setting Equations (A-28) and (A-33) equal yields the following fourth order polynomial in the variable \(x_2\)
\[
B_4 x_2^4 + B_3 x_2^3 + B_2 x_2^2 + B_1 x_2 + B_0 = 0
\] (A-34)

244
where

\[
B_0 = A^2 - A_2 \left(A + x \right)_1^2 \tag{A-34},
\]
\[
B_1 = 2A_x - 2A_3 S_2,
\]
\[
B_2 = S_2^2 - \frac{C_2A_3}{2f_2} - A_2 \left(1 - \frac{A_1}{2f_2} \right),
\]
\[
B_3 = \frac{S_2C_2}{2f_2^2},
\]
\[
B_4 = \frac{C_2 - A_2}{16f_2},
\]
\[
C_2 = \cos \theta_2, \text{ and } S_2 = \sin \theta_2.
\]

The four roots in Equation (A-34) are found by using the Newton-Raphson iterative techniques. The computer program that does this is listed in Appendix C. The one correct root is chosen by comparing them against the range of possible values on the subreflector.
APPENDIX B
RAY TRACING: SUBREFLECTOR TO PRIMARY REFLECTOR IMAGE SURFACE

In Appendix A a fourth order polynomial was found that locates points of incidence on the subreflector for a ray reflected from the primary reflector. In this appendix another fourth order polynomial is found that traces the ray from the subreflector to the phased array surface. This is done by enforcing the law of reflection at the subreflector surface. For a two-reflector confocal-parabolic system the primary image contour (eyepiece) is a parabola whose equation is [14]

\[z = -\frac{f_2 - x_3}{\frac{f_1}{4f_3}} \quad (B-1) \]

where
\[f_3 = f_2 \left(\frac{2 + f_2}{f_1}\right) \quad (B-2) \]

This configuration is shown in Figure B-1. In a practical antenna system the phased array will follow the ideal parabolic surface defined by Equation (B-1) in steps. This configuration is shown in Figure 3.1-1. The fourth-order polynomial found in this appendix finds the solution on the ideal parabolic surface. In the computer program given in Appendix C this solution \((x_3, z_3)\) (ideal) is referred to the stepped-parabolic surface to obtain the desired solution \((x_3, z_3)\) stepped. The normal to the subreflector is determined from Equations (A-13) and (A-29) to be

\[\hat{n}_2(x_2) = \frac{-xx_2 - 2zf_2}{\sqrt{4f_2^2 + x_2^2}} \quad (B-3) \]

In Figure (B-1) the incident and reflected directions are given by

\[\hat{s}_2 = \frac{\hat{x}(x_2 - x_1) + \hat{z}(z_2 - z')}{\sqrt{(x_2 - x_1)^2 + (z_2 - z')^2}} \quad (B-4) \]

\[\hat{s}_3 = \frac{\hat{x}(x_3 - x_2) + \hat{z}(z_3 - z_2)}{\sqrt{(x_3 - x_2)^2 + (z_3 - z_2)^2}} \quad (B-5) \]
Figure B-1 Ray Path From Subreflector To Primary Reflector Image Surface.
Substituting Equations (A-29) and (B-1) into Equation (B-5) yields

\[s_3 = \frac{x(x_2 - x_2) + z \left(D_1 - \frac{x_3}{4f_3} \right)}{\sqrt{(x - x_2)^2 + \left(D - \frac{x_3}{4f_3} \right)^2}} \]

(B-6)

where

\[D_1 = \frac{-f^2_2 - f_2^2 + x_2^2}{f_1} \]

(B-7)

The law of reflection requires that

\[-s_2 \cdot \hat{n}_2 = s_3 \cdot \hat{n}_2 \]

(B-8)

be satisfied at the desired point \((x_2, z_2)\). Using Equations (B-3) and (B-4) the left-hand side of Equation (B-8) is evaluated as

\[-s_2 \cdot \hat{n}_2 = \frac{F}{\sqrt{4f_2^2 + x_2^2}} \]

(B-9)

where

\[F = \frac{x_2(x_2 - x_1) + 2f_2(z_2 - z_1)}{\sqrt{(x_2 - x_1)^2 + (z_2 - z_1)^2}} \]

(B-10)

The right-hand side of Equation (B-8) is evaluated using Equations (B-3) and (B-6) to be

\[s_3 \cdot \hat{n}_2 = \frac{-x_3(x_2 - \frac{x_2}{2f_3}) + D_2}{\sqrt{(x_3 - x_2)^2 + \left(D_1 - \frac{x_3^2}{4f_3} \right)^2}} \]

(B-11)

where

\[D_2 = -2f_2D_1 + x_2^2 \]

(B-12)

Setting Equations (B-9) and (B-11) equal yields the following fourth order polynomial involving the variable \(x_3\)

\[B_4x_3^4 + B_3x_3^3 + B_2x_3^2 + B_1x_3 + B_0 = 0 \]

(B-13)

where

\[B_0 = F^2(x_2^2 + D_1^2) - D_2^2 \]

\[B_1 = -2x_2F^2 + 2D_2x_2 \]
\[B_2 + F^2 \left(1 - \frac{D}{2f_3}\right) = x^2 - \frac{D f_2}{f_3}, \quad (B-13) \]

\[B_3 = \frac{x f_3^2}{f_3}, \quad \text{and} \]

\[B_4 = \frac{F^2}{16f_3^2} - \left(\frac{f_2}{2f_3}\right)^2 \]

The four roots in Equation (B-13) are found by using the Newton-Raphson iterative technique. The one correct root is chosen by comparing them against the range of possible values on the array.
APPENDIX C

Computer Program Listings
C.1 Program TRPPBB
PROGRAM TRPBTE(INPUT,TAPE5,OUTPUT,TAPE6=OUTPUT,TAPE1,FRBO) 000100
C**THIS PROGRAM CALCULATES THE AREA APERTURE DISTRIBUTION OF AN 000110
C**CONJUGATE TWO REFLECTOR (PARABOLIC-PARABOLIC CONFOCAL) SYSTEM 000120
C**PROGRAM WRITTEN BY ALAN FENN (MARTIN-ZARIEV) 000130
C**EDIFIED TO RUN BATCH 000140
COMPLEX ESA(4000),ESI(500),EA 000150
COMPLEX ZAPP(20),ZBPP(20),T(21),XS3(4000),SA3(500),INUMRY(500) 000160
DIMENSION EHAQ(500),EPHAO(500) 000170
LOGICAL DPR 000180
C CALL COMPUTE INPUT 000190
C**ESA AND XS3 DIMENSIONS ARE PROPORTIONAL TO THE NUMBER OF SAMPLES NPS. 000200
ITIRES=0 000210
NSEGN=1 000220
READ(5,*)F1,F2 000230
READ(5,*)X1L,X1U,X2L,X2U 000240
READ(5,*)X3L,X3U 000250
READ(5,*)NMDNDS 000260
NMDNDS=NMDNDS-1 000270
READ(5,*)DPR 000280
IF(DPR).EQ.111 000290
811 DO 23 I=1,NMDNDS1 000300
ZBPP(I)=0.0 000310
ZAPP(I)=0.0 000320
CONTINUE 000230
GO TO 24 000330
711 DO 23 I=1,NMDNDS 000350
C WRITE(5,7)I 000360
WRITE(5,'(5,*,SECTION#,13,2X,*INCREMENTAL DISTORTION FOR ZB**)') 000370
READ(5,*)ZBPP(I) 000380
C WRITE(5,G) 000390
WRITE(5,'(5,6)ZAPP(I)') 000400
CONTINUE 000240
23 CONTINUE 000410
24 READ(5,*)TD 000420
READ(5,*)SN 000430
READ(5,*)NMDNDS 000440
DO 32 KTI=1,NMDNDS 000450
READ(5,*)NPS 000460
CALL SECO(D(ACPUA1)) 000470
ITIRES=ITIRES+1 000480
F3=F2/(2.+F2/F1) 000490
ISPILS=0 000500
ISPILA=0 000510
IR=0 000520
IV=0 000530
IJK=0 000540
IST=0 000550
IN=0 000560
CALL SEC0(D(ACPU1)) 000570
CALL PAR0IV(X1L,X1U,NMDNDS,F1,ST,T) 000580
CONTINUE 000340
32 CONTINUE 000590
T(NMDNDS)=X1U 000600
A1U+AX=0.001 000610
A1UP+AX=0.001 000620
ISKIP=0 000630
ICT=0 000640
T2=0.0 000650
DELX=(X1U-X1L)/(NPS-1) 000660
LU=.40 I=1,NMDNDS 000670
IP1=I+1 000680
XN=T(I) 000690
XN+=T(IP1) 000700
ZAX+XAX/(4.*F1)-F1 000710
ZB+XB/(4.*F1)-F1 000720
252
IF(ISI(IP.EQ.1)GO TO 912
CALL PRILC2(ICT,DELK,T1,T2)
X1=T1
IF(X1.GT.X1UM1.AND.X1.LT.X1UP1)X1=X1UM1
912 IF(X1.LE.XB)ZBP=ZBP+ZBPP(I)
IF(X1.LE.XB)ZAP=ZA+ZAPP(I)
IF(X1.GT.XB)ISKP=1
IF(X1.GT.XB)GO TO 40
ISKP=0
CALL SUBF0(TD,X1F1,XA,XB,ZA,ZB,ZAP,ZBP,X2L,X2U,X1,X2,IRTFS)
IF(IRTFS.EQ.0)ISPILS=ISPILS+1
IF(IRTFS.EQ.2)IBLCSB=IBLCSB+1
IF(IRTFS.EQ.0.AND.TD.LT.0.0)X3BGN=3
WRITE(6,7576)IRTFS,X3BGN
7576 FORMAT(1X,*IRTFS=*)&F12.5)
IF(IRTFS.EQ.1)GO TO 99
Z2=F2-X2*X2/ (4.*F2)
CALL PARRAY(X1,Z1,X2,F1,F2,X3L,X3U,X3,IRTFA)
I3=X3/SN-1
X3MIN=I3+SN
X3MAX=X3MIN+SN
X3L=(X3MAX+X3MIN)/2.
Z3=F2-F2/F1-X3L+X3L/(4.*F3)
RL21=SORT((X2-X1)**2+(Z2-Z1)**2)
RL32=SORT((X3-X2)**2+(Z3-Z2)**2)
IF(IRTFA.EQ.0)ISPIFA=ISPIFA+1
IF(IRTFA.EQ.2)IBLCP=1BLCP+1
IF(IRTFA.NE.1)GO TO 99
CONTINUE
7196 CONTINUE
9871 CALL PROCS(F1,F2,F3,X2,X3,P)
CALL ETARY(TD,SN,X1,Z1,X2,X3,EA)
COD=256256(EA)
EAPHAD=ATA2(AITAG(EA),REAL(EA))*160./3.14159265
WRITE(6,5765)X1,X2,X3,EA,RL21,RL32,EAPAG,EAPHAD
5765 FORMAT(1X,*X1=*)&F12.5,*X2=*)&F12.5,*X3=*)&F12.5,*EA=*)&F9.4,*RL21=*)&F9.4,*RL32=*)&F9.4,*EAPAG=*)&F9.4,*EAPHAD=*)&F9.4)
Cod TO 99
40 CONTINUE
CALL SECONO(ACPUE2)
ACPUE2=ACPUE2-ACPUE1
WRITE(6,1794)ACPUE2
1794 FORMAT(1X,*CPU FOR FIELD CONTRIBUTIONS=*)&F14.3)
NCND=1NUM
IAT=0
CALL SECONO(ACPU1)
CC 41 I=1,500
IAT=IAT+1
X3MY=-SN*(I-1)
X3MN=-SN*I
WRITE(6,1515)X3MX,X3MN
1515 FORMAT(1X,*X3MX=*)&F12.5,2X,*X3MN=*)&F12.5)
IF(X3MN.LT.X3L)GO TO 33
SA3(IAT)=-(X3MX*X3MN)/2.
CALL SORTEA(IAT,X3NN,X3MX,NCND,X3,ES3,ESI,INUMRY)
CONTINUE
41 CONTINUE
33 IAT=IAT-1
CALL SECONO(ACPU2
ACPU21=ACPUB2-ACPUB1 WRITE(6,1321)ACPUB21
1321 FORMAT(1X,CP FOR SORTING FIELD CONTRIBUTIONS=,F14.3)
FAC=1.
RNSBGN=NSBGN
RNPS=NPS
IF(TIMES.GT.1)FAC=RNSBGN/RNPS
6767 FORMAT(1X,ITIM**=15,2X,NPS**,15,2X,FAC**,F12.5)
WRITE(6,71)F1,F2,F3
71 FORMAT(1X,*F1**,F12.3,2X,*F2**,F12.3,2X,*F3**,F12.5)
WRITE(6,72)X1L,X1U,X2L,X2U
2F12.3)
WRITE(6,9364)X3L,X3U
8364 FORMAT(1X,*,F12.5,2X,X3U**,F12.5)
WRITE(6,73)TD,SN,NPS,FAC
73 FORMAT(1X,*,F10.4,2X,SN**,F12.4,2X,NPS**,17.2X,FAC**,F12.4)
WRITE(6,700)NAP,NCON
700 FORMAT(1X,*,NAP**,15.2X,NCON**,IS)
BIGE=V.0.
DO 199 IE=1,NAP
EMAG=EMAG(EI(I))
199 CONTINUE
DO 42 I=1,NAP
EMAG(I)=EMAG(EI(I))-FAC
IF(EMAG(I).EQ.0.)GO TO 9000
EPHAD(I)=ATAN2(AMAG(EI(I)),REAL(EI(I)))*180./3.14159265
WRITE(6,500)I,SA3(I),EMAG(I),EPHAD(I),INUMY(I)
50 CONTINUE
WRITE(6,74)ISPILA,ISPLS,IBLCPS
74 FORMAT(1X,*,ISPILA**,ISPLS**,15.2X,ISPLS**,15,2X,IBLCPS**,15)
WRITE(6,9515)IBLCPS
9515 FORMAT(1X,*,IBLCPS**,15)
DO 101 I=1,NMSAI
WRITE(6,75)I,ZAPP(I),ZBPP(I)
101 CONTINUE
CALL PLOTE(X3L,SA3,EMAG,EMAX,EAPHAD,NAP)
CALL EXIT
END
SUBROUTINE PARDIV(XMIN,XMAX,NMDS,Fi.STT)
C CALL PLOTE(X3L,SA3,EMAG,EMAX,EAPHAD,NAP)
WRITE(1)(NSBGN=NSBGN)
EMAX=EMAG
WRITE(1)(INUMY=INUMY)
C CALL SECONO(ACPU2)
ACPU21=ACPUB2-ACPUB1
WRITE(6,52)ACPU21
52 FORMAT(1X,CP FOR THIS RUN**,F14.3)
CALL EXIT
END
THIS SUBROUTINE DIVIDES A PARABOLA INTO \((\text{NMDS}-1)\) EQUAL ARC LENGTH

C****SEGMENTS
C****PROGRAM BY ALAN FENN

DIMENSION T(21),IT(21)

222 T=MIN(1X,2F15.5,17.F15.5)
C=2.*F1
CS=C*C
Q1=1./(2.*C)
T1=XMIN
T2=XMAX
T1=Q1*T1
T2=T2*T2
Q2=T2*SQRT(CS+T2S)
ARG2=T2+SQRT(CS+T2S)
Q3=CS+ALOG(ARG2)
Q4=T1*SQRT(CS+T1S)
ARG1=T1+SQRT(CS+T1S)
CS=CS+ALOG(ARG1)
ST=Q1*(Q2+Q3)-Q1*(Q4+Q5)
S=ST/(NMDS-1)
T(1)=XMIN
IT(1)=0
DO 1 I=2,NMDS
IT(I)=0
IM1=I-1
IM2=I-2
T(I)=T(IM1)+S
IF(1.GE.3) T(I)=T(IM1)+(T(IM1)-T(IM2))
T1=T(IM1)
T2=T(IM2)
CONTINUE
1 T(I)=IT(I)+1
12 T1=T(I)
T2=T2*T2
Q2=Q1*(Q2+Q3)
Q1=Q1*(Q4+Q5)
SP=Q2-Q1
C WRITE(6,47)I,S,SP
47 FORMAT(6,47)I,S,SP
FORMAT(1X,2H1=,13.2X,2HS=,F15.7,2X,3HS=,F15.7)
IF(ABS(SP)=0.0001) GO TO 1
IF(SP.LT.-S) T(I)=T(I)-(SP-S)
GO TO 7
CONTINUE
1 WRITE(6,12)I,T(I)
12 FORMAT(1X,3HIT(,12.2H)=,1X,17.2X,*T(I)=,F15.5)
CONTINUE
9 RETURN
END
SUBROUTINE PRLC2(ICT,DELX,T1,T2)
ICT=ICT+1
T1=T2
T2=DELX*ICT
RETURN
END
SUBROUTINE SUBLFD(TD,X1,F1,F2,XA,XB,ZA,ZB,ZBP,ZBP,X2L,X2U,Z1,Z2.

255
C*THIS SUBROUTINE LOCATES POINTS OF REFLECTION ON THE SUB-REFLECTOR.
DIMENSION B(5),COF(5),ROOTR(4),ROOTI(4)
TR=TD*3.14159265/180.
F1S=F1+F1
F2S=F2+F2
X1S=X1*X1
XAP=XA
XBP=XB
XBA=XB-XA
XBP=XB-PAP
ZBA=ZB-ZA
ZBP=ZB-PAP
P=P/XB+ZBA*XBA
PEN=P/SQRT(4.*F1S+X1S)
T2R=ACOS(P2S/SQRT(2.*PEN))
T2R=T2R-T3R
ZDI1=Z1-SZB(Z2S-Z2)
ZDI2=Z1-SZB(Z2S-Z2)
IF(ZDI1.GT.ZDI2)T2R=T2R+T3R
C=COS(T2R) S2=SIN(T2R)
A2=C2*C2/S2+1.-A1/(2.*F2)
B4=(5.*F2)*A2/S2
B5=A1*S2+B2*S2/S2
A3=2.*A2*B4/S2/B5
A3S=A3*A3
A3S-A2S*~(A1S+A1S)
\(e(2)\)=2.*A2S*X1-2.*A3S*S2
\(e(3)\)=S2*S2-C2*A3/(2.*F2)-A2S*(1.-A1/(2.*F2))
\(e(4)\)=G2*C2/(2.*F2)
\(b(5)\)=C2*C2/(16.*F2*F2)
C=WRITE(6,76)A1,A2,A3,C2,S2
76 IF(2.*A2S*X1.SQRT(2.*PEN))=0.0 THEN 78
78 \(f(3)\)=S2*S2-C2*A3/S2/(2.*F2)-A2S*(1.-A1/(2.*F2))
79 CALL POLRT(6,COF,MA,ROOTR,ROOTI,IER)
7A \(X2=1.0\) IRF=0 END \(Q 1 1=1,M=3\)
C=WRITE(6,3)I,ROOTR(1),ROOTI(1),IER
3 IF(\(X1<11.\))=0. F15.5,3X,F15.5,1X,* J*,* IER**,12) THEN 79
3A IF(\(J=\)) GO TO 1
3B IF(\(X2=0.0\)) GO TO 1
3C IF(\(X2<\) ROOTR(1),GE.X2L.AND.ROOTR(1),LE.X2U)X2=ROOTR(1)
3D IF(\(X2<\) ROOTI(1),GE.X2L.AND.ROOTI(1),LE.X2U)IRF=IRF+1
1 CONTINUE \(X2=1.0\) IRF=IRF+1
29 RETURN
END

256
SUBROUTINE EARRAY(TD,SH,X1,Z1,R21,R32,P,EA) 002250
C**THIS SUBROUTINE CALCULATES THE E FIELD INCIDENT ON THE ARRAY 002260
COMPLEX U,EA,SP21,SP32,EA 002270
FN=1.4155265 002280
G=2.*PI 002290
TR=TR/100. 002300
NDUM=1. 002310
EO=EXP(j*(1+5*INT(TR)+Z1*COS(TR))) 002320
SP21=EO*EXP(-j*E+RL21) 002330
SP32=EO*EXP(-j*E+RL32) 002340
ET6=0. 002350
IF(SH.LT.0.8)PTR=P 002360
EA=10.*SP21+SP32+PTR 002370
RETURN 002380
END 002390

SUBROUTINE SORTEA(ICT,X3L,X3U,NCON,XS3,ESA,EI,INURY) 002400
COMPLEX ESA(I),EI(I) 002410
DIMENSION XS3(I),INURY(I) 002420
EI(I)=0,0. 002430
INURY(I)=0 002440
DO 77 ICT=1,NCON 002450
IF(EI(ICT).LE.X3U.AND.XS3(1).GE.X3L)EI(ICT)=EI(ICT)+ESA(I) 002460
IF(EI(ICT).LE.X3U.AND.XS3(1).GE.X3L)INURY(ICT)=INURY(ICT)+1 002470
CONTINUE 002480
RETURN 002490
END 002500

SUBROUTINE POLRT(XCOF,COF,M,ROOTR,ROOTI,IER) 002510
DIMENSION XCOF(1),COF(1),ROOTR(1),ROOTI(1) 002520
DOUBLE PRECISION XO,YO,X,Y,XPR,YPR,UX,Y,YT,XT,UXT2,YT2,SUMX,SUMY 002530
200000 TEMP,ALPHA 002540
ITM=0 002550
IF(I=0 002560
M=0 002570
N=0 002580
IF(YINIT(N+1))=10,25,10 002590
IF(YINIT(1))=15,15.32 002600
RETURN 002610
DO 20 I=1,9 002620
GOTO 20 002630
RETURN 002640
DO 30 I=2 002650
GOTO 30 002660
RETURN 002670
DO 32 I=1,5,35.35,30 002680
N=1 002690
NXX=N+1 002700
NXX=N+1 002710
NXX=N+1 002720
DO 40 L=1,KJ1 002730
AT=KJ1-L+1 002740
40 COF(L)+XCOF(L) 002750
45 X0=0.0500101 002760
Y0=0.01000101 002770
50 X+X0 002780
X0=10.6*Y0 002790
Y0=10.6*X 002800
X0=X 002810
Y0=Y 002820
IN=IN+1 002830
GO TO 50 002840
IF(I=1 002850
X0=X 002860
Y0=Y 002870
257
YPR=Y
ICT=0
Ux=0.0
UY=0.0
V=0.0
YT=0.0
XT=1.0
U=COF(N+1)
IF(U)<=0.5,120,65

65
DO 70 I=1,N
L=N+1+1
TEMP=COF(L)
XT2=x+XT-Y*YT
YT2=x+YT-Y*XT
L:=U=TEMP*XI2
V:=V=TEMP*YI2
FI=I
UX=UX+FI*XT*TEMPS
UY=UY-FI*YT*TEMPS
XT=XT2
70
SUMSQ=UX+UY
IF(SUMSQ)<75.110,75
75
DX=(V-UY-UX)/SUM5Q
X=X+DX
DY=(U+UY+UX)/SUMSQ
Y=Y+DY
78
IF(DABS(DY)+DABS(DX)<1.00-05)100,80,80
80
ICT=ICT+1
IF(ICT<500)60,85,85
85
IF(IFIT)<0.80,80,100
90
IF(IN<5)50,95,95
95
IER=3
GO TO 20
100
DO 105 L=1,NX
MT=UX=L+1
TEMP=COF(MT)
X=COF(L)*TEMPS
105
COF(L)+TEMP
ITEMP=N
N=NX
IX=ITEMP
IF(IFIT)<0.25,55,120
110
IF(IFIT)<0.55,115,50,115
115
X=A+X
Y=Y+Y
120
IFIT=0
122
IF(DABS(Y)<1.00-4*DABS(X))135,125,125
125
ALPHA=X
SUMSQ=X+Y
N=N-2
130
GO TO 140
135
X=0.0
UX=NX+1
NXX=NXX-1
140
COF(I+1)+COF(I+2)+ALPHA+COF(1)
145
DD 150 L=2,N
150
COF(L+1)+COF(L+2)+ALPHA+COF(L)-SUMSQ+COF(L-1)
155
ROOT1(N2)=Y
ROOTR(N2)=X
N2=N2+1
IF(SUMSQ)160,165,160
Y=Y
SUMSQ=0.0
GO TO 155
ENDIF20,20,45
END

SUBROUTINE PLOTE(X3L,S3,EMAG,EMAX,EHPAD,NPNTS)
DIMENSION S3(1),EMAG(1),EHPAD(1)
LOGICAL PLOT,HARDC,WPLOTA
XMX=ABS(X3L)
WRITE(5,22)
WRITE(5,*) *WANT TO PLOT? T OR F*
READ(5,*) PLOT
IF(PLOT)7,8,8
CALL TEKTRN(960)
9 CALL BGNPL(1)
10 CALL PHYSOR(2.5,1.0)
CALL TITLE(10,PHASE OF E,10,17,LOCATION ON ARRAY,17,
215,PHASE (DEGREES),15,4,3.)
CALL XTICKS(4)
CALL YTICKS(2)
CALL GRACH(0.,SCALE*,XMX,-180.,90.,180.)
CALL GRID(1,1)
CALL MARKER(10)
CALL CURVE(S3,EHPAD,NPNTS,-1)
CALL ENDOG(1)
CALL BGNPL(2)
CALL OREL(0.,4.)
CALL TITLE(14,MAGNITUDE OF E,14,17,LOCATION ON ARRAY,17,
211,MAGNITUDE E,11,4,3.)
CALL XTICKS(4)
CALL YTICKS(2)
CALL GRACH(0.,SCALE*,XMX,0.,SCALE*,EMAX)
CALL GRID(1,1)
CALL MARKER(10)
CALL CURVE(S3,EMAG,NPNTS,-1)
CALL ENDOG(2)
RETURN
C** THIS SUBROUTINE CALCULATES POINTS OF INCIDENCE ON THE PHASED
C***ARRAY WHICH WAS PARABOLIC BUT REPLACED BY STRAIGHT LINE SEGMENTS
SUBROUTINE PARPST(X1,Z1,X2,F1,F2,F3,X3MIN,X3MAX,Z3,X3,IRTF,RL21)
DIMENSION X3R(2)
X2S=X2*X2
Z2S=F2-A2S/(4.*F2)
Z1S=Z3I-Z2S
X23=X2S*X2
X24=X23*X2
F2S=F2*F2
2
RETURN
C
END
\[Z_0 = \frac{-F_2 S}{F_i} \]
\[D_1 = Z_0 - F_2 x X_2/(4 \cdot F_2) \]
\[F_{NUM} = X_2^2 - (X_2 - X_1 - 0.2 \cdot F_2^2)^2 \]
\[F_{DEN} = \text{SORT}((X_2 - X_1 - 0.2 \cdot F_2^2 + 2 \cdot (Z_2 - Z_1)) \cdot 2) \]
\[I(F(X_1, 0.0, \text{AND}, X_2, 0.0)) X_3 > 0.0 \]
\[I(F(X_1, 0.0, \text{AND}, X_2, 0.0)) \text{IRTF} = 1 \]
\[I(F(X_1, 0.0, \text{AND}, X_2, 0.0)) \text{GO TO 75} \]
\[F = \text{FNUM} / \text{FDEN} \]
\[F_S = F \cdot F \]
\[A = X_S - X_1 \]
\[B = 0.2 \cdot X_2^3 + F_2^2 \cdot X_2^2 - B1 \cdot 2 \cdot F_2^2 \]
\[C = F_S \cdot (X_2^2 + B1 - 2 \cdot F_2^2 \cdot X_2^2 + B1 - 4 \cdot F_2^2 \cdot X_2^2) \]
\[B_S = B \cdot B \]
\[\text{DIS} = 4 \cdot A \cdot C \]
\[\text{IF} (\text{DIS} \leq 0.0) \text{GO TO 55} \]
\[X_{3R}(1) = -B + \sqrt{\text{DIS}} / (2 \cdot A) \]
\[X_{3R}(2) = -B - \sqrt{\text{DIS}} / (2 \cdot A) \]
\[\text{IF} (X_{3R}(1) \leq 0.0 \text{ AND } X_{3R}(2) \leq 0.0) \text{IRTF} = 2 \]
\[\text{IF} (X_{3R}(1) \leq 0.0 \text{ AND } X_{3R}(2) \leq 0.0) \text{GO TO 88} \]
\[\text{IRTF} = 0 \]
\[\text{DO 1 I = 1, 2} \]
\[\text{IF} (X_{3R}(I) \geq X_{3MAX} \text{ AND } X_{3R}(I) \leq X_{3MIN}) \text{X3 = X3R(I)} \]
\[\text{IF} (X_{3R}(I) \leq X_{3MIN} \text{ AND } X_{3R}(I) \geq X_{3MAX}) \text{IRTF = IRTF + 1} \]
\[\text{CONTINUE} \]
\[\text{WRITE}(6, 12) \]
\[\text{END} \]

\text{SUBROUTINE PROJC(F1, F2, F3, X2, X3, P)}

\text{C**THIS SUBROUTINE CALCULATES THE PROJECTION ON THE NORMAL TO THE PHASED ARRAY SURFACE}

\text{X3S = X3 + X3}
\text{D1 = F2 \cdot F2 - F2 \cdot X2 \cdot X2 / (4 \cdot F2)}
\text{FNUM = X3S / (4 \cdot F3 - D1)}
\text{DEN = \text{SORT}((X3 - X2) \cdot 2 + (X3S / (4 \cdot F3 - D1)) \cdot 2)}
\text{P = FNUM / FDEN}
\text{IF (P >= 1.0 AND P LT 1.0) P = 1.0}
\text{RETURN}
\text{END}

\text{SUBROUTINE PARRAY(X1, Z1, X2, F1, F2, X3L, X3U, X3R, IRTF)}

\text{C**THIS PROGRAM CALCULATES INCIDENT POINTS ON THE PHASED ARRAY SURFACE}

\text{B(5), C(5), R8(4), R8T(4)}
\text{F3 = F2 \cdot F2 \cdot F1}
\text{Z2 = Z1 - F2 \cdot F2 \cdot F2}
\text{X2S = X2 + X2}
\text{D1 = Z2 - F2 \cdot X2S / (4 \cdot F2)}
\text{D2 = F2 \cdot X2S / (4 \cdot F2)}
\text{FNUM = X2S \cdot X2S \cdot X2S \cdot X2S \cdot X2S \cdot X2S \cdot X2S}
\text{FDEN = \text{SORT}((X2 - X1) \cdot 2 + (Z2 - Z1) \cdot 2)}
\text{IF (X1, 0.0, \text{AND}, X2, 0.0) X3 > 0.0}
\text{IF (X1, 0.0, \text{AND}, X2, 0.0) \text{IRTF} = 1}
\text{IF (X1, 0.0, \text{AND}, X2, 0.0) \text{GO TO 75} \}
\text{F = FNUM / FDEN}
\text{FS = FS \cdot 2}
\text{D2 = -2 \cdot F2 \cdot D1 + X2S}
\text{B(1) = FS \cdot (X2S - D1) \cdot D2 \cdot D2}
\text{B(2) = -2 \cdot F2 \cdot FS \cdot D2 \cdot D2}
\text{B(3) = FS \cdot D1 / (2 \cdot F3) - X2S - D2 \cdot D2}
\text{B(4) = X2 \cdot F2 / F3}
B(5)=5/(16.*F3*F3)-(F2/(2.*F3)**2
WRITE(5,76)B(1),B(2),B(3),B(4),B(5)
76 FORMAT(1X,5E12.3,*CUEFS IN PAR*)
M=0
IF(B(5).LT.0.0E-10)M=3
CALL PDRT(B,COF,M,ROOTR,ROOT,I,IER)
X3=0.0
IRTF=0
DO 1 I=1,M
1 CONTINUE
WRITE(5,3)I,ROOTR(I),ROOT(I),IER
3 FORMAT(1X,*X3(*,11,*),*E15.5,3X,E15.5,1X,*U*,2X,*IER**,12)
IF(ROOT(I).NE.0.) GO TO 1
IF(ROOT(I).GE.X3L.AND.ROOT(I).LE.X3U) X3=ROOTR(I)
IF(ROOTR(I).GE.X3L.AND.ROOTR(I).LE.X3U) IRTF=IRTF+1
RETURN
END
C.2 Program FFPTBB
C***PROGRAM BY ALAN FENN (MARTIN MARIETTA)
C***THIS PROGRAM COMPUTES THE APERTURE DISTRIBUTION AND FAR-FIELD
C***PATTERN OF AN OFFSET TWO REFLECTOR ARRAY CLUSTER FEED SYSTEM.
C***MODIFIED TO RUN BATCH (HAS FPPT4,CP=2)
PROGRAM FPPTBO(INPUT,TAPES,OUTPUT,TAPES=OUTPUT,TAPE1,FBO)
DIMENSION T(21),ZAPP(20),ZBPP(20),ENDRM(500),THETAD(500)
DIMENSION EMDF(120),EPDF(120)
LOGICAL WPLFF,WIPS,WPLAPR,WCLFF
C CALL CONNECT(SINPUT)
RECORD 1
READ(1)SA3,ESI
READ(1)ZAPP,ZBPP
READ(1)F1,F2,F3
READ(1)X1L,X1U,X2L,X2U
READ(1)TS,SN,NAP,NCON
READ(1)X3L,X3U
READ(1)X3BGN,X3FINL
READ(2)N0DSM1,T
READ(2)SA3,ESI
IF(TD.EQ.-6.0)X3BGN=-50.0
IF(TD.EQ.-4.0)X3BGN=-30.0
IF(TD.EQ.-2.0)X3BGN=-10.0
WRITE(5,10)
READ(5,10)NSAMPL
WRITE(5,10)FDPMAT"OF PRIMARY SAMPLES="
READ(5,10)NSAMPL
WRITE(5,10)NSAMPL
READ(5,10)NSAMPL
CALL SECOND(ACPUI)
X301F=X3FINL-X3BGN
X3AVE=(X3FINL+X3BGN)/2.
PS=2.*PI
RDA=TD*PS
DO 4242 I=1,NAP
A3=COS(PI*(-SA3(I)-X3AVE)/(X301F-2.*SN))**2
IF(-SA3(I).GT.X3BGN.OR.-SA3(I).LT.X3FINL)A3=0.0
IF(CA3S(ESI(I)).EQ.0.0)GO TO 4242
EPHR=ATAN2(AIMAG(ESI(I)).REAL(ESI(I)))
END
ESI(I) = A3*CEXP(J*EPHR) 000730
C 1000 FORMAT(1X,*I**,13.2X,*ESI**,2E12.5,2X,*SA3**,F12.5) 000750
4242 CONTINUE 000760
5555 CONTINUE 000770
ESI(I) = (0.,0.) 000780
ESI(2) = (0.,0.) 000790
ESI(NAP) = (0.,0.) 000800
NAP1 = NAP - 1 000810
ESI(NAP1) = (0.,0.) 000820
WRITE(5,4646) 000830
4646 FORMAT(1X,WANT TO PLOT ARRAY FIELD DISTRIBUTION? T.OR.F*) 000840
READ(5,*)WPLAPR 000850
IF(WPLAPR)33,34 000860
33 EMAX=0.0 000870
GO TO 34 000880
34 1913 CONTINUE 000890
NAP=1 000900
CALL WRITE(X2L,X2U,SA3,EMAX,EPDIFF,EMAX,ECON,NAP,NDF) 001000
C 2112 IF(I0LOCK.EQ.1)IBLCPA=IBLCPA+1 001020
C IF(IS0LOCK.EQ.1)GO TO 100 001030
RL23=SQRT((X2-X3)**2+(Z2-Z3)**2) 001230
P=(Z2-Z3)/RL23 001240
SHR=P*(X2-X3)**2+(Z2-Z3)**2 001250
P=2*(X2-X3)**2+(Z2-Z3)**2 001260
C CJ=CNG(ESI(J)*CEXP(-J*EPRL23)*PTR/(B*RL23) 001270
C WRITE(6,4499)X3,Z3,X2,Z2,ECON 001280
4499 FORMAT(1X,4F12.5,2X,*ECON=*,2E10.3) 001290
ESUB(J) = ESUB(J)*ECON 001300
CONTINUE 001310
44 CONTINUE 001320
DO 1199 I=1,NSAMS 001330
ESUBSF4CA=ESUB(I) 001340
X2DELXS=(X1I) 001350
264
WRITE(6,7487)X3L,X3U
7487 FORMAT(1X,*X3L=*,F12.5,2X,*X3U=*,F12.5)
WRITE(6,7488)X3BN,X3FINL,X3AVE,X3D1F
7488 FORMAT(1X,*X3BN=*,X3FINL=*,X3AVE=*,X3D1F=*,F12.5)
WRITE(6,731)SN,NSAMP,FAC,NSAMS
73 FORMAT(1X,*TD=*,F10.4,2X,*SN=*,F12.4,2X,*NSAMP=*,I7,2X,*FAC=*,
2F12.4,2X,*NSAMS=*,I7)
WRITE(6,700)NAP,NCON
700 FORMAT(1X,*NAP=*,I5,2X,*NCON=*,I5)
DO 333 I=1,NMOS
WRITE(6,222)I,T(I)
222 FORMAT(1X,*T(*,I3,*)=*,F15.5)
CONTINUE
151 I=1,NR0DSM1
WRITE(6,75)I,ZAPP(I).ZBPP(I)
75 FORMAT(1X,*SECTION=*,I3,2X,*ZAPP(I)=*,F15.7,2X,*ZBPP(I)=*,F15.7)
CONTINUE
109 SIGEST=0.0
42 I=1,NSAMP
DO 42 I4L=1,NSAMP
EL4MAG(I)=CABS(EL4(I))*FAC
42 CONTINUE
IF(EL4MAG(I).EQ.0.)GO TO 5000
ELPHAD(I)=ATAN2(AIMAG(EL4(I)).REAL(EL4(I)))*150./PI
WRITE(6,50)I,X4L(I),EL4MAG(I).ELPHAD(I)
50 FORMAT(1X,*X4L(*,I3,*)=*,F15.4,2X,*EL4MAG=*,F15.5,2X,
2*ELPHAD=*,F14.5)
IF(EL4MAG(I).GT.BIGEST)BIGEST=EL4MAG(I)
5000 IF(EL4MAG(I).EQ.0.)WRITE(6,5000)X4L(I)
5000 FORMAT(1X,*X4L(*,I3,*)=*,F15.5,2X,*EL4MAG=*)
CONTINUE
CALL PLOTE(XIL,X1U,X4L.EL4MAG.BIGESTELPHAD,NSAMP,0)
C WRITE(5,360)
360 FORMAT(1X,*WANT TO CACULATE FAR-FIELD.PATTERN? T.OR.F*)
READ(5,*)WCL FF
IF(WCLFF)209 .32
C***THIS PART COMPUTES THE FAR-FIELD PATTERN
209 READ(5,*)TMIN,TMAX
READ(5,*)NPNTS
BICE=0.0
420 DO 42 K=1,NPNTS
DINC=(TMAX-TMIN)/(NPNTS-1)
DO 49 K=1,NPNTS
THETAD(K)=TMIN+DINC*(K-1)
49 CONTINUE
THETAR=THETAD(K)*PI/180.
STH=SIN(THETAR)
420 CONTINUE
E0FARF=EL4(1)*CEXPCJ*B*(X4L(I)-DXCENT)*STH)
SUME=SUME+EFARF
CONTINUE
49 E0FARF=SUME
IF(CABS(E0FARF).GT.BIGE)BIGE=CABS(E0FARF)
49 CONTINUE
SIGEST=0.0
42 I=1,NSAMP
DO 42 I4L=1,NSAMP
EL4MAG(I)=CABS(EL4(I))*FAC
42 CONTINUE
IF(EL4MAG(I).EQ.0.)GO TO 5000
ELPHAD(I)=ATAN2(AIMAG(EL4(I)).REAL(EL4(I)))*150./PI
WRITE(6,50)I,X4L(I),EL4MAG(I).ELPHAD(I)
50 FORMAT(1X,*X4L(*,I3,*)=*,F15.4,2X,*EL4MAG=*,F15.5,2X,
2*ELPHAD=*,F14.5)
IF(EL4MAG(I).GT.BIGEST)BIGEST=EL4MAG(I)
5000 IF(EL4MAG(I).EQ.0.)WRITE(6,5000)X4L(I)
5000 FORMAT(1X,*X4L(*,I3,*)=*,F15.5,2X,*EL4MAG=*)
CONTINUE
CALL PLOTE(XIL,X1U,X4L.EL4MAG.BIGESTELPHAD,NSAMP,0)
C WRITE(5,360)
360 FORMAT(1X,*WANT TO CACULATE FAR-FIELD.PATTERN? T.OR.F*)
READ(5,*)WCL FF
IF(WCLFF)209 .32
C***THIS PART COMPUTES THE FAR-FIELD PATTERN
209 READ(5,*)TMIN,TMAX
READ(5,*)NPNTS
BICE=0.0
420 DO 42 K=1,NPNTS
DINC=(TMAX-TMIN)/(NPNTS-1)
DO 49 K=1,NPNTS
THETAD(K)=TMIN+DINC*(K-1)
49 CONTINUE
THETAR=THETAD(K)*PI/180.
STH=SIN(THETAR)
420 CONTINUE
E0FARF=EL4(1)*CEXPCJ*B*(X4L(I)-DXCENT)*STH)
SUME=SUME+EFARF
CONTINUE
49 E0FARF=SUME
IF(CABS(E0FARF).GT.BIGE)BIGE=CABS(E0FARF)
49 CONTINUE
SIGEST=0.0
42 I=1,NSAMP
DO 42 I4L=1,NSAMP
EL4MAG(I)=CABS(EL4(I))*FAC
42 CONTINUE
IF(EL4MAG(I).EQ.0.)GO TO 5000
ELPHAD(I)=ATAN2(AIMAG(EL4(I)).REAL(EL4(I)))*150./PI
WRITE(6,50)I,X4L(I),EL4MAG(I).ELPHAD(I)
50 FORMAT(1X,*X4L(*,I3,*)=*,F15.4,2X,*EL4MAG=*,F15.5,2X,
2*ELPHAD=*,F14.5)
IF(EL4MAG(I).GT.BIGEST)BIGEST=EL4MAG(I)
5000 IF(EL4MAG(I).EQ.0.)WRITE(6,5000)X4L(I)
5000 FORMAT(1X,*X4L(*,I3,*)=*,F15.5,2X,*EL4MAG=*)
CONTINUE
CALL PLOTE(XIL,X1U,X4L.EL4MAG.BIGESTELPHAD,NSAMP,0)
C WRITE(5,360)
360 FORMAT(1X,*WANT TO CACULATE FAR-FIELD.PATTERN? T.OR.F*)
READ(5,*)WCL FF
IF(WCLFF)209 .32
C***THIS PART COMPUTES THE FAR-FIELD PATTERN
209 READ(5,*)TMIN,TMAX
READ(5,*)NPNTS
BICE=0.0
420 DO 42 K=1,NPNTS
DINC=(TMAX-TMIN)/(NPNTS-1)
DO 49 K=1,NPNTS
THETAD(K)=TMIN+DINC*(K-1)
49 CONTINUE
THETAR=THETAD(K)*PI/180.
STH=SIN(THETAR)
420 CONTINUE
E0FARF=EL4(1)*CEXPCJ*B*(X4L(I)-DXCENT)*STH)
SUME=SUME+EFARF
CONTINUE
49 E0FARF=SUME
IF(CABS(E0FARF).GT.BIGE)BIGE=CABS(E0FARF)
49 CONTINUE
DO 111 K=1,NPNTS
ENDM(K)=20.*ALOG10(CABS(EFF(K))/BIGE)
EPHD=ATAN2(AIMAG(EFF(K)),REAL(EFF(K)))*180./PI
WRITE(6,'(1X,14.5F3.2,1X,5.2F3.2,1X,5.2F1.3)')THETAD(K),ENDM(K),EPHD
CONTINUE
C WRITE(5,'(1X,14.5F1.3)')ACPU2
READ(5,'(1X,F7.*')WPL
IF(WPL.LT.3)THEN
WRITE(6,25)AEF
FORMAT(I2,5X,2F14.5)
CONTINUE
CALL SECOND(ACPU2)
FNUM=X2*(X2-X3)+2.*F2.*X2*(Z2-Z3)
FDEN=SQRT((X2-X3)**2+(Z2-Z3)**2)
F=FNUM/FDEN
X25=X2*X2
FS=F*F
A1=ZO-Z2
A2=A2S-2.*F2*A1
A=FS-X2S
F1=2.*X2*(A2-FS)
C=FS*(A1*A1+X2S-A2*A2)
DIS=S*B-4.*A*C
IF(0IS.LT.0)THEN
WRITE(6,1)FORTRAN(US,9,5)
X51=(-B+SQRT(DIS))/(2.*A)
X52=(-B-SQRT(DIS))/(2.*A)
IF(X3.LT.0.AND.X52.LT.0.)IBLOCK=1
RETURN
END
SUBROUTINE PLOTFF(EMAG,THETAD,TMIN,TMAX,NPNTS)
DIMENSION EMAG(1),THETAD(I)
LOGICAL PLOT,HAADC,WPLOTA
C WRITE(5,22)
22 FORMAT(1X,15.2F1.3)IF(PLT)WRITE(17,88)
CALL TRN(960)
CALL BGNPL('STANDARD')
CALL PAGE(10,24,14,103)
CALL GRACE(0.0)
CALL TITLE(17,FAR-FIELD PATTERN,17,11H(Q) DEGREES,11.
224HRELATIVE AMPLITUDE IN DB,24,5,5.)
CALL XTICKS(2)
CALL YTICKS(2)
CALL GRAF(TMIN,‘SCALE’.,TMAX,‘-100.,10.,0.)
CALL GRID(1,1)
END
SUBROUTINE BLOCK(X2,X3,ZO,Z2,Z3,F2,X51,X52,IBLOCK)
C**.THIS SUBROUTINE DETERMINES IF THERE IS BLOCKAGE BY THE ARRAY
IBLOCK=0
FNUM=X2*(X2-X3)+2.*F2.*X2*(Z2-Z3)
FDEN=SQRT((X2-X3)**2+(Z2-Z3)**2)
F=FNUM/FDEN
X25=X2*X2
FS=F*F
A1=ZO-Z2
A2=A2S-2.*F2*A1
A=FS-X2S
F1=2.*X2*(A2-FS)
C=FS*(A1*A1+X2S-A2*A2)
DIS=S*B-4.*A*C
IF(0IS.LT.0)THEN
WRITE(6,1)FORTRAN(US,9,5)
X51=(-B+SQRT(DIS))/(2.*A)
X52=(-B-SQRT(DIS))/(2.*A)
IF(X3.LT.0.AND.X52.LT.0.)IBLOCK=1
RETURN
END
CALL MARKER(10)
CALL CURVE(THETA, EMAG, NPNTS, 0)
CALL ENDPL(1)

SUBROUTINE APEREF(N, E, TRX, EFF)
C***THIS SUBROUTINE CALCULATES THE APERTURE ILLUMINATION EFFICIENCY

COMPLEX E(I), SUINC, J
DIMENSION X(I)
6 = 2.*3.14159265
J = (0., 1.)
SUNC = 0.0
SUMR = 0.0
DO 1 I = 1, N
SUM = SUM + C = SUMC(E(I))**2
CONTINUE
EFF = CABS(SUMC)**2/(N*SUMR)
RETURN
END

SUBROUTINE PLOTE(XL, XU, S3, EMAG, EPHAD, NPNTS, NDIF)

LOGICAL PLOT, HARDC, WPLOTA
XMX = ABS(XL)
DO 1 I = 1, NPNTS
WRITE(6, 71) I, S3(I), EMAG(I), EPHAD(I)
CONTINUE
C WRITE(22)
22 FORMAT(1X,*WANT TO PLOT? T.OR.F*)
READ(5,*)PLOT
IF(PLOT)7, 88
7 CALL TXTKRM(960)
CALL BGNPL(1)
CALL PAGE(10.097, 14.103)
CALL GRACE(0.0)
CALL PHYSOR(2.5, 1.0)
IF(NDIF.EQ.0.0) GO TO 61
CALL TITLE(10)*PHASE DIFFERENCE, 16, 17 LOCATION ON ARRAY, 17,
215PHASE (DEGREES), 15, 4, 3.
GO TO 64
61 CALL TITLE(10)*PHASE OF E, 10, 20 LOCATION ON APERTURE, 20,
215PHASE (DEGREES), 15, 4, 3.
64 CALL XTICKS(4)
CALL YTICKS(2)
CALL GR(1, SCALE, 11U, -180., 90., 180.)
CALL GRID(1, 1)
CALL MARKER(10)
CALL SCPLC(0.5)
CALL CURVE(S3, EPHAD, NPNTS, 0)
CALL ENDG(1)
CALL GCNP(2)
CALL GRACE(0.0)

END
CALL ORELI(0.,4.)
IF(NDF.EQ.0)GO TO 62
CALL TITLE(20,AMPLITUDE DIFFERENCE,20,17,LOCATION ON ARRAY,17,
21,AMPLITUDE,9,4,.3.)
GO TO 65
62 CALL TITLE(14,AMPLITUDE OF E,14,20,LOCATION ON APERTURE,20,
21,AMPLITUDE E,11,4,.3.)
65 CALL XTICKS(4)
CALL YTICKS(2)
IF(NDF.EQ.0)GO TO 66
EMAXCS=-EMAX
CALL GRAF(-X3U,"SCALE",XMX,EMAXCS,"SCALE",EMAX)
GO TO 67
66 CALL GRAF(X1L,"SCALE",X1U,0.,"SCALE",EMAX)
67 CALL GRID(1,1)
CALL MARKER(10)
CALL SCLPIC(0.5)
CALL CURVE(S3,EMAG,NPNTS,0)
CALL ENDPL(2)
C88 WRITE(5,23)
23 FORMAT(1X,*WANT HARD COPY? T.OR.F*)
B6 READ(5,*)HARDC
IF(HARDC)12,77
12 CALL FRBO(3)
GO TO 99
C77 WRITE(5,24)
24 FORMAT(1X,*WANT TO PLOT AGAIN? T.OR.F*)
77 READ(5,*)WPL0TA
IF(WPL0TA)7,42
42 RETURN
END
C.3 Program TGBATCH
ADAPTIVE TECHNIQUES FOR LARGE SPACE APERTURES. (U)
MAR 80 R J RICHARDSON, J COYNE, A FENN
RADC-TR-80-52
PROGRAM TGSATCH(INPUT:TAPE5,OUTPUT:TAPE6=OUTPUT,TAPE1,FRB0)
C**THIS PROGRAM CALCULATES THE ARRAY APERTURE DISTRIBUTION OF A
C**SYMMETRIC TWO REFLECTOR (PARABOLIC-PARABOLIC CONFOCAL) SYSTEM
C**PROGRAM WRITTEN BY ALAN FENN (MAHTRIN-MARIETTA)
CMPLEX ESA(4000),ESI(500),EA
DIMENSION ZAPP(20),ZAPP20,T(21),XS3(4000),SA3(500),INUMR(500)
COMPLEX EMAG(500),EPHAD(500)
LOGICAL DPR
C CALL CO+NEC(SINPUT)

C**ESA AND XS3 DIMENSIONS ARE PROPORTIONAL TO THE NUMBER OF SAMPLES NPS.

ITIMES=0
NSEGN=1
READ(S,*F1,F2)
WRITE(6,6664)F1,F2

6664 FORMAT(1X,*F1**,F12.5,2X,*F2**,F12.5)
READ(S,*X1L,X1U,X2L,X2U)
WRITE(6,6663)X1L,X1U,X2L,X2U

6663 FORMAT(1X,*X1L,X1U,X2L,X2U**,4F12.5)
READ(S,*)X3L,X3U
WRITE(6,6662)X3L,X3U

6662 FORMAT(1X,*X3L**,F12.5,2X,*X3U**,F12.5)
READ(S,*)NMDS
WRITE(6,6661)NMDS

6661 FORMAT(1X,*NMDS**,14)
NMDSNMDS0=NMDS=1
READ(S,*)DPR
IF(DPR)711,811

711 DO 200 I=1,NMDSM1
ZAPP(I)=0.0
ZAPP(I)=0.0
200 CONTINUE
GO TO 24

711 DO 23 I=1,NMDSM1
WRITE(5,7)I
7 FORMAT(1X,*SECTION#,I3,2X,*INCREMENTAL DISTORTION FOR ZB**)
READ(S,ZAPP(I))
C WRITE(5,8)
8 FORMAT(1X,*INCREMENTAL DISTORTION FOR ZA**)
READ(S,ZAPP(I))

23 CONTINUE
C24 WRITE(5,4)
4 FORMAT(1X,*ANGLE OF INCIDENCE**)
READ(S,*ID)
IR=3.14159265
TR+ID/180.
C WRITE(5,9)
9 FORMAT(1X,*ARRAY ELEMENT LENGTH**)
READ(S,*SN)
SNH1.0
C WRITE(5,10)
10 FORMAT(1X,*# OF DATA SETS**)
READ(S,*NOS)
DO 321 KTIM=1,NDS
C WRITE(5,12)
12 FORMAT(1X,*# OF PRIMARY SAMPLES**)
READ(S,*NPS)
CALL SECOND(ACPUA1)
TIMES=TIMES+1
F3=F2/(2.+F2/F1)
ISPILS=0
ISPILA=0
18LCP=0
1NU=0
NPS
TIMES
CALL SECONDC (ACPU1)
CALL PARDIV (X1L,X1U,NMDS,F1,ST,T)
CONTINUE
T(NMDS)=X1U
X1UM1=X1U-.001
X1UP1=X1U+.001
ISKIP=0
ICT=0
DELX=(X1U-X1L)/(NPS-1)
GO 40 I=1,NMDS+1
IP1=1
X=A*T(I)
XB=A*X/(4.+F1)-F1
ZB=XB*X/(4.+F1)-F1
IF(ISKIP.EQ.1)GO TO 912
ICT=ICT+1
X1=DELX*(ICT-1)-X1U
IF(X1.GT.X1UP1.AND.X1.LT.X1UM1)X1=X1UM1
IF(X1.GT.X1UM1.AND.X1.LT.X1UP1)X1=X1UP1
912
IF(X1.LE.XB)ZB=ZB+ZAPP(I)
IF(X1.GT.XB)ISKIP=1
IT(X1.GT.XB)GO TO 40
ISKIP=0
C***APPROXIMATE Z1 (EXACT FOR NO DISTORTION)
Z1=X1+X1/(4.+F1)-F1
CALL LGCXX1(X1,Z1,F1,F2,F3,X2L,X2U,X2I)
CALL SUPERF0(TR,X1,F1,F2,X2*Z2,Z2,2P,Z2B,Z2P,X2L,X2U,Z1,X2,IRTFS,X2I)
2X2I)
IF(IRTFS.EQ.0).ISPILSL=ISPILS+1
IF(IRTFS.NE.1)GO TO 99
X3L=X2L
X3U=X2U
Z3=-F2*F2/F1-X31*X31/(4.*F3)
C CALL ACUHP(X1,Z1,X2,Z3,F1,F2,F3,X3L,X3U,X3I)
C WRITE(6,1000)XI,X2,X3,IRTFA
1000
IF(IRTFA.EQ.0).ISPILLA=ISPILLA+1
C IF(IRTFA.EQ.1).ISPILLA=ISPILLA+1
GO TO 99
INUM=INUM+1
GO TO 9871
GO TO 9730
001730
000740
000750
000760
000770
000780
000820
000830
000840
000850
000860
000870
000880
000890
000900
000910
000920
000930
000940
000950
000960
000970
000980
000990
001000
001010
001020
001030
001040
001050
001060
001070
001080
001090
001100
001110
001120
001130
001140
001150
001160
001170
001180
001190
001200
001210
001220
001230
001240
001250
001260
001270
001280
001290
001300
001310
001320
001330
001340
001350
272
CONTINUE
I3=X3
X3MAX=13
X3MIN=13-1
IF(X3.GT.0.) X3MIN=I3
IF(X3.GT.0.) X3MAX=X3MIN+I3+1
X3=L(X3MAX+X3MIN)/2.
Z3I=-2*F2/F1-X3I*X3I/(4.*F3)
CALL PARPST(X1,Z1,X2,F1,F2,F3,X3MIN,X3MAX,Z3I,X3,IRTFA,RL21,RL32)
IF(IRTFA.EQ.1) GO TO 1111
X3MAX=13-1
X3MIN=13-2
IF(X3.GT.0.) X3MIN=I3+1
IF(X3.GT.0.) X3MAX=X3MIN+2
X3=L(X3MAX+X3MIN)/2.
Z3I=-2*F2/F1-X3I*X3I/(4.*F3)
CALL PARPST(X1,Z1,X2,F1,F2,F3,X3MIN,X3MAX,Z3I,X3,IRTFA,RL21,RL32)
IF(IRTFA.EQ.1) GO TO 1111
X3MAX=13+1
X3MIN=13
IF(X3.GT.0.) X3MIN=I3-1
IF(X3.GT.0.) X3MAX=X3MIN+1
X3=L(X3MAX+X3MIN)/2.
Z3I=-2*F2/F1-X3I*X3I/(4.*F3)
CALL PARPST(X1,Z1,X2,F1,F2,F3,X3MIN,X3MAX,Z3I,X3,IRTFA,RL21,RL32)
IF(IRTFA.EQ.1) GO TO 1111
IF(IRTFA.NE.1) WRITE(6,2222)
2222 FORMAT(1X,*THERE IS A PROBLEM IN FINDING A SOLUTION*)
1111 INUM=INUM+1
IF(IRTFA.EQ.1) Z3=Z3I
C CALL ACUCHA(X1,Z1,Z2,X3,Z3,F1,F2,F3,TDIF)
9871 CALL PROUCS(F1,F2,F3,X2,X3,P)
CALL EARRAY(TR,X1,Z1,SN,RL21,RL32,P,EA)
EAMAG=CABS(EA)
EAPHAD=ATAN2(IMAG(EA),REAL(EA))E180./PI
WRITE(6,5765) X1,X2,X3,EA,RL21,RL32,EAMAG,EAPHAD
C WRITE(6,3399) TDIF
3399 FORMAT(1X,*ANGLE REF - ANGLE INC =.,2X,E14.5,2X,*DEGREES*)
ESA(INUM)=EA
X3(INUM)=X3
X3RANG=X3
GO TO 99
40 CONTINUE
WRITE(6,7416)X3RANG
7416 FORMAT(1X,*CPU FOR FIELD CONTRIBUTIONS=.,F14.3)
NCON=INUM
IAT=0
CALL SECOND(ACPUA2)
ACPU21=ACPUA2-ACPUA1
WRITE(6,1794)ACPU21
1794 FORMAT(1X,*CPU FOR FIELD CONTRIBUTIONS=.,F14.3)
NCON=INUM
IAT=0
CALL SECOND(ACPU21)
DO 41 I=I,500
IAT=IAT+1
X3MAX=SN*(I-1)+X3U
X3MIN=SN*I+X3U
WRITE(6,1515)X3MX,X3MN
1515 FORMAT(1X,*X3MX=.,F12.5,2X,*X3MN=.,F12.5)
IF(X3MN.LT.X3L)GO TO 33
41 CONTINUE
SA3(IAT)=(X3MX+X3MN)/k.

CALL SORTEA(IAT,X3MN,X3MX,NCON,XS3,ESA,ESI,INUMRY)

CONTINUE

33 NAP=IAT-1

CALL SECOND(ACPU2)

ACPU21=ACPU2-ACPU1

WRITE(6,121)ACPU21

1321 FORMAT(1X,*CPU FOR SORTING FIELD CONTRIBUTIONS**,F14.3)

FAC=1.

RNSBGN=NSBGN

RNPS=NPSS

IF(TIMES.GT.1)FAC=RNSBGN/RNPS

WRITE(5,6767)TIMES,NSBGN,FAC

WRITE(6,71)F1,F2,F3

WRITE(6,72)X1L,X1U,X2L,X2U,X3L,X3U

WRITE(6,73)TD,SN,NAP,FAC

WRITE(6,700)NAP,NCON

WRITE(6,700)NAP,NCON

BIGE=0

DO 199 IE=1,NAP

EMG=CABS(ESI(IE))

IF(EMG.GT.a81GE)BIGE=EMG

CONTINUE

DO 42 I=1,NAP

EMAG(I)=CABS(ESI(I))

TO,SN,NAP,NCON

EMAG(I)=CABS(ESI(I))

WRITE(5,7000)I,SA3(I)

WRITE(5,7000)I,SA3(I)

WRITE(1)SA3,ESI

WRITE(1)ZAPP,ZBPP

WRITE(1)FI,F2,F3

WRITE(1)X1L,X1U,X2L,X2U

WRITE(1)TD,SN,NAP,NCON

WRITE(1)X3L,X3U,X3RANG

CONTINUE

CALL SECOND(ACPU2)

ACPU21=ACPU2-ACPU1

WRITE(6,52)ACPU21

52 FORMAT(1X,*CPU FOR THIS RUN**,F14.3)

CALL EXIT

END

SUBROUTINE PARDIV(XMIN,XMAX,NMDS,F1,ST,T)
C**** THIS SUBROUTINE DIVIDES A PARABOLA INTO (NMDS-1) EQUAL ARC LENGTH
C**** SEGMENTS
C**** PROGRAM BY ALAN FENN
DIMENSION T(21), IT(21)
C=2.*F1
CS=C+C
Q1=1./(2.*C)
T1=XMIN
T2=XMAX
T1S=T1-T1
T2S=T2*T2
Q2=T2*SQRT(CS+T2S)
ARG2=T2*SQRT(CS+T2S)
Q3=CS+ALOG(ARG2)
Q4=1.*SQRT(CS+T1S)
ARG1=T1*SQRT(CS+T1S)
Q5=CS+ALOC(ARG1)
ST=Q1*(Q2+Q3)-Q1*(Q4+Q5)
S=ST/(NMDS-1)
T(1)=XMIN
IT(1)=0
DO 1 I=2,NMDS
IM2=I-2
T(I)=T(IM1)+S
IF(I.GE.3) T(I)=T(IM1)+(T(IM1)-T(IM2))
T1=T(IM1)
T1S=T1*T1
Q2=T2*SQRT(CS+T2S)
ARG2=T2*SQRT(CS+T2S)
Q3=CS+ALOG(ARG2)
Q4=1.*SQRT(CS+T1S)
ARG1=T1*SQRT(CS+T1S)
Q5=CS+ALOC(ARG1)
Q2=Q1-(Q2+Q3)
G1=Q1*(Q4+Q5)
SP=Q2-G1
WRITE(6,47)I.,SP
47 FORIAT (1X,2H1=.,13,2X,2HS=.,F15.7,2X,3HSP=.,F15.7)
IF(ABS(SP-S) .LT.0.0001) GO TO 1
IF(SP.GT.S) T(I)=T(I)-(SP-S)
IF(SP.LT.S) T(I)=T(I)+(S-SP)
GO TO 7
1 CONTINUE
DO 9 I=1,NMDS
WRITE(6,12)I.,IT(I),T(I)
12 FORMAT (1X,3HIT(1),12.2H1=,1X,17,2X,*T(I)=,F15.5)
9 CONTINUE
RETURN
END
SUBROUTINE PRILC2(ICT, DELX,T1,T2)
ICT=ICT+1
T1=DELX*ICT
RETURN
END
SUBROUTINE SUBRFD(TR,X1,F1,F2, XA,XB,ZA,ZAP,ZBP,X2L,X2U,Z1,Z2)
RETURN
END
C**THIS SUBROUTINE LOCATES POINTS OF REFLECTION ON THE SUB-REFLECTOR.

DIMENSION B(5),COF(5),ROOTR(4),ROOTI(4)

C IF(XI.GT.-210)WRITE(6,4232)TR,XI,X2I

4232 FORMAT (1X,*TR,X1,X2I**,3F12.5)

X2IM=X2I-.01
X2IP=X2I+.01
IF(A3S(TR).LE..009)GO TO 75
X2IM=X2I-.1
X2IP=X2I+.1

75 F1S=F1+F1
F2S=F2+F2
XIS=X1+X1
XAP=XA
XBP=XB
XBA=XB-XA
XBP=XBP-XAP
ZBA=ZB-ZA
ZBP=ZBP-ZAP
FNUM=ZBA*ZBA+XBA*XBA
PDEN=SQRT(ZBA*ZBA+XBA*XBA)
FABP=F1*S1*XIS
FDEN1=SQRT(ZBAP*ZBAP+XBA*XBAP)
PDEN2=SQRT(ZBAP*ZBAP+XBA*XBAP)
IF((FABP+G.T.1.0.AND.PABP.LT.1.01)PABP=1.0
T3R=ACOS(PABP)
ARG1=2.*F1/SQRT(4.*FIS+XIS)
TIR=ACOS(ARG1)
IF(XI.LT.0.0)TIR=-TIR
T2R=T1R-TZR
ZDIFF=ZBP-ZA
ZDIFF2=ZAP-ZA
ZBAP=X6P-XAP
ZBA=ZB-ZA
ZBP=ZBP-ZAP
FDEN=SORT(ZBA*ZBA+XBA*XBA)
PDEN=SORT(ZBAP*ZBAP+XBA*XBAP)
FABP=FNUM/PDEN/PDEN
IF((PABP.GT.1.0.AND.PABP.LT.1.01)PABP=1.0
T3R=ACOS(PABP)
ARG1=2.*F1/SQRT(4.*FIS+XIS)
TIR=ACOS(ARG1)
IF(XI.LT.0.0)TIR=-TIR
T2R=T1R-TZR
ZDIFF=ZBP-ZA
ZDIFF2=ZAP-ZA
IF(ZDIFF.GT.ZDIFF2)T2R=TIR+T3R
C COEFS IN SUBRFD.

M=4
IF(B(5).LT.1.0E-12)M=3
IF(TR.EQ.0.AND.X1.EQ.0.AND.T3R.EQ.0.)X2=0,
IF(TR.EQ.0.AND.X1.EQ.0.AND.T3R.EQ.0.)IRT=1
IF(TR.EQ.0.AND.X1.EQ.0.AND.T3R.EQ.0.)GO TO 29
CALL POLRT(B,COF,M,ROOTR,ROOTI,IER)
X2=1.0
IRT=0
DO 1 I=1,M
C WRITE(6,3)ROOTR(I),ROOTI(I),IER

276
SUBROUTINE E1ARRAY(TR,X1,Z1,SN,RL21,RL32,P,EA)

C**THIS SUBROUTINE CALCULATES THE E FIELD INCIDENT ON THE ARRAY**

```fortran
C***COMMON 0(X1,X2,X3L,X3U,NCON,XS3,ESA,EI,INUMRY)**
COMPLEX Z,E0,SP21,SP32,EA
DIMENSION XS3(1),INUMRY(1)
EI(ICT)=(0.,0.)
INUMRY(ICT)=0
DO 77 I=1,NCON
IF(XS3(I).LE.X3U.AND.XS3(I).GE.X3L)EI(ICT)=EI(ICT)+ESA(I)
IF(XS3(I).LE.X3U.AND.XS3(I).GE.X3L)INUMRY(ICT)=INUMRY(ICT)+1
77 CONTINUE
```

SUBROUTINE SORTEAII,X3L,X3U,NCON,XS3,ESA,EI,INUMRY)

C**THIS SUBROUTINE CALCULATES E FIELD CONTRIBUTIONS TO EACH APERTURE**

COMPLEX ESA(1),EI(1)
DIMENSION XS3(1),INUMRY(1)
EI(ICT)=(0.,0.)
INUMRY(ICT)=0
DO 77 I=1,NCON
IF(XS3(I).LE.X3U.AND.XS3(I).GE.X3L)EI(ICT)=EI(ICT)+ESA(I)
IF(XS3(I).LE.X3U.AND.XS3(I).GE.X3L)INUMRY(ICT)=INUMRY(ICT)+1
77 CONTINUE

SUBROUTINE POLRT(XCOF,CQF,M,ROOTR,ROOTI,IER)

DIMENSION XCOP(1),CQF(1),ROOTR(1),ROOTI(1)
DOUBLE PRECISION X0,Y0,X,Y,XPR,YPR,X,Y,V,YT,XT,U,X2,T2,SUMSQ,
 2DX,DY,TEMP,ALPHA
ITWO=2
IFIT=0
N=M
IER=0
IF(XCOF(N+1))=10,25,10
IF(N)=15,15,32
IER=1
RETURN
25 IER=4
GO TO 20
30 IER=2
GO TO 20
32 IF(N=36)35,35,30
35 NX=N
NX=N+1
N2=1
KJ1=N+1
DD 40 L=1,KJ1
MT=KJ1-L+1
40 COF(MT)+XCOF(L)
45 AU=.0500101
YO=0.01000101
IN=0
50 X=XO
XO=-10.0*YO
YO=-10.0*X
X=XO
Y=YO
IN=IN+1
GO TO 59
55 IFIT=I
XPR=X
YPR=Y
59 ICT=0
60 UX=0.0
UY=0.0
V=0.0
YT=0.0
XT=1.0
U=COF(N+1)
IT:U05:32,65
70 DO 70 I=1,N
L=N-I+1
TEMP=COF(L)
XT2=X*X-XT*YT
YT2=XT*YT+Y*XT
V=V+TEMP*YT2
FI=1
UX=UX+FI*XT*TEMP
UY=UY-FI*YT*TEMP
YT=YT2
SUMSQ=UX*UX+UY*UY
75 IF(SUMSQ)75,110,75
75 DX=(UX*UX+UY*UY)/SUMSQ
X=X+DX
DY=(UX*UY+UY*UX)/SUMSQ
Y=Y+DY
78 IF(DABS(DY)+DABS(DX))=1.0D-05)100,80,80
80 ICT=ICT+1
85 IF(ICT=500)60,85,85
90 IF(IFIT)100,90,100
95 IF(IN=5)50,95,95
99 IER=3
GO TO 20
100 DO 105 L=1,NX
MX=KJ1-L+1
TEMP=XCOF(MT)
XCOF(MT)=COF(L)
105 COF(L)=TEMP
ITEMP=0
N=NK
NX=ITEMP
110 IF(IFIT)120,55,120
110 IF(IFIT)115,50,115
115 X=XPR
Y=YPR
120 IFIT=0
004510
004520
004530
004540
004550
004560
004570
004580
004590
004600
004610
004620
004630
004640
004650
004660
004670
004680
004690
004700
004710
004720
004730
004740
004750
004760
004770
004780
004790
004800
004810
004820
004830
004840
004850
004860
004870
004880
004890
004900
004910
004920
004930
004940
004950
004960
004970
004980
004990
005000
005010
005020
005030
005040
005050
005060
005070
005080
005090
005100
005110
005120
005130
278
IF(DABS(Y)-1.0D-4+DABS(X))155,125,125
125 ALPHA=X+X
125 SUMSQ*X*X+Y*Y
130 N=N-2
130 X=0.0
130 NX=NX-1
135 Y=0.0
135 SUMSQ=0.0
140 ALPHA=X
140 N=N-1
140 COF(ITWO)=COF(ITWO)+ALPHA*COF(1)
145 DO 150 L=2,N
150 COF(L+1)=COF(L+1)+ALPHA*COF(L)+SUMSQ*COF(L-1)
153 ROOT(N2)=Y
153 ROOTR(N2)=X
153 N2=N2+1
160 Y=-Y
160 SUMSQ=0.0
165 IF(N)20,20,45
165 END
SUBROUTINE PLOTE(X3L,33,EMAG,EMAX,EPHAD,NPNTS)
DIMENSION 53(1),EMAG(1),EPHAD(1)
LOGICAL PLOT
WRITE(5,22)
22 FORMATT(1X,*WANT TO PLOT? T.OR.F*)
22 READ(5,*)PLOT
7 CALL TEKTRN(960)
7 CALL BGNPL(1)
7 CALL PHYSOR(2.5,1.0)
7 CALL TITLE('10PHASE OF E,10,1PHASE LOCATION ON ARRAY,17,
21PHASE (DEGREES),15,4.,3.)
7 CALL XTICKS(4)
7 CALL YTICKS(2)
7 CALL GRAF(0.,"SCALE",XMX,-180.,90.,180.)
7 CALL GRID(1,1)
7 CALL MARKER(10)
7 CALL CURVE(33,EPHAD,NPNTS,-1)
7 CALL ENDR(1)
7 CALL BGNPL(2)
7 CALL GREL(0.,.4.)
7 CALL TITLE('14MAGNITUDE OF E,14,1PHASE LOCATION ON ARRAY,17,
21MAGNITUDE E,11,4.,3.)
7 CALL XTICKS(4)
7 CALL YTICKS(2)
7 CALL GRAF(0.,"SCALE",XMX,.0.,"SCALE",EMAX)
7 CALL GRID(1,1)
7 CALL MARKER(10)
7 CALL CURVE(33,EMAG,NPNTS,-1)
7 CALL ENDR(2)
C WRITE(5,23)
23 FORMATT(1X,*WANT HARD COPY? T.OR.F*)
88 READ(5,*)HARDC
88 IF(HARDC)12,77
12 CALL FRBO(3)
12 GO TO 99
C77 WRITE(5,24)
24 FORMATT(1X,*WANT TO PLOT AGAIN? T.OR.F*)
READ(5,*) WPLOTA
 IF(WPLOTA)7,42
 RETURN
 END

C*** THIS SUBROUTINE CALCULATES POINTS OF INCIDENCE ON THE PHASED ARRAY WHICH WAS PARABOLIC BUT REPLACED BY STRAIGHT LINE SEGMENTS

SUBROUTINE PARPST(X1,Z1,X2,F1,F2,F3,X3MIN,X3MAX,Z3I,Z3R,IRTF,RL21,RL32)

DIMENSION X3R(2)
X2S=X2*X2
Z2=F2-X2S/(4.*F2)
BIZ=Z3I-Z2
BIS=B1*BI
X3=X2S*X2
X3R(2)=(-B+SQRT(DIS))/(2.*A)
CWRITE(6,41)X3R(1),X3R(2)
IRTF=0
DO 1=1,2
IF(X3R(I).LE.X3MAX.AND.X3R(I).GE.X3MIN)IRTF=IRTF+1
CWRITE(6,9988)X3,Z3I,X3R(I),X3MAX,X3MIN,IRTF=*,5F10.3,2X,14
1 CONTINUE
RETURN
END

SUBROUTINE PROUCS(F1,F2,F3,X2,X3,P)

C*** THIS SUBROUTINE CALCULATES THE PROJECTION ON THE NORMAL TO THE PHASED ARRAY

X3S=X3*X3
O1S=F2*F2/FI -F2+X2*X2/(4.F)
RNUM'X3S/(4. 'P3)-ol
DEN=SQRT((X3-X2)**2+(Z3-Z2)**2)
P=RNUM/DEN
IF(P.GT.1 .0. ANO.P. LT.1 .01)Ps1 .0
CONTINUE
RETURN
END
SUBROUTINE PARRAY(X1,Z1,X2,F1,F2,X3,X3L,X3U,X3I,X3,IRT)
C***THIS SUBROUTINE CALCULATES INCIDENT POINTS ON THE PHASED ARRAY SURFACE
DIMENSION B(5),COF(5),ROOTR(4),ROOTI(4)
C WRITE(6,5)X1,X2,X3
5 FORMAT(1X,*X1,X2,X3I=,3F12.5,2X,*INSIDE ARRAY*)
X3IM1=X3I-.01
X3IP1=X3I+.01
F3=F2/(2.*F2/F1)
Z0=-F2**2/F1
X2S=X2*X2
D1=D0-F2*X2S/ (4.*F2)
Z2=F2-X2S/(4.*F2)
Ft4NMX2*(X2-X1)+2.*F2*(Z2-Z1)
FDEN=SQRT((X2-X1)**2+(Z2-Z1)**2)
IF(X. EQ.0.AND.X2. EQ.0.)IRTF=1
IF(X1.EQ.0.AND.X2.EQ.0.)GO TO 75
F=FDEN,
FS=FS**2
D2=-2.*F2*D1 +X2S
8(I)=FS*(X2S+D1**2)-02*02
812)=2.*X2*FS+2.*D2*X2
E(3)=FS-FS*D1/(2.*F3)-X2S-02*F2/F3
P(4)=X2*F2/F3
B(5)=FS/(16.*F3SF3)-(F2/(2.*F3)**2
C WRITE(6,76)B(1),B(2),B(3),B(4),B(5)
76 FORMAT(1X,5E12.3,2X,*COEFs IN PARRAY*)
M=4
IF(B(5) .LT. 1.OE-10)M=3
CALL FORT(R,BCOF,M,ROOTR,ROnTI IFR)
X3=0.0
IRTF=0
GO 1 I=1,M
1 C WRITE(6,3)J,ROOTR(I),ROOTI(I),IER
3 FORMAT(1X,*X1,*X2,*Z1,*Z2,*F1,*F2,F3,*X3MINX3MAX,X3I=,3F12.5,2X,*INSIDE ARRAY*)
IF(RODTR(I).NE.0.) GO TO 1
IF(RODT(I).GE.X3L.AND.X3U.LE.X3I)X3=ROOTR(I)
IF(X3.EQ.ROOTR(I))IRTF=1
1 CONTINUE
IF(IRTF.EQ.0.QR.IRTF.EQ.1)GO TO 75
DO 49 J=IM
49 TIMES=ROOTR(I)*X3
IF(TIMES.LE.0.AND.ROOTR(I).GE.X3L.AND.ROOTR(I).LE.X3U)X3=ROOTR(I)
IF(X3.EQ.ROOTR(I))IRTF=1
CONTINUE
RETURN
75 CONTINUE
RETURN
END
SUBROUTINE LOCX3I(X1,Z1,X2,Z2,F1,F2,F3,X3MIN,X3MAX,X3I)
C***THIS SUBROUTINE CALCULATES POINTS OF INCIDENCE ON THE ARRAY
DIMENSION X3R(2)
C WRITE(6,429)X1,Z1,X2,Z2,F1,F2,F3,X3MIN,X3MAX
429 FORMAT(1X,*X1,*X2,*Z1,*Z2,*F1,*F2,F3,*X3MIN,X3MAX=,9F10.3)
Z0=-F2+F2/F1
RM=(X3-Z3)/(Z1-Z2)
IF(RM. EQ.0.)X3I=X1
IF(RM. EQ.0.)GO TO 2
A=RMI/(4.*F3)
C-=(X1+RM*(Z0-Z1))
C WRITE(6,576)A,C
576 FORMAT(1X,'A,C',2F12.5,2X,'INSIDE LOCX3I') 007030
577 DIS=1.-A+C 007040
578 IF(DIS.LT.0)WRITE(6,1) 007050
1 FORMAT(1X,'THE ROOTS IN LOCX3I ARE IMAGINARY') 007060
579 IF(DIS.LT.0)X3I=1.0E10 007070
580 IF(DIS.LT.0)GO TO 2 007080
581 X3R(1)=(-1.+SQRT(DIS))/(2.*A) 007090
582 X3R(2)=(-1.-SQRT(DIS))/(2.*A) 007100
C WRITE(6,333)X3R(1),X3R(2) 007110
333 FORMAT(1X,'X3R(1),X3R(2)=,2F12.5') 007120
3 CONTINUE 007130
2 RETURN 007140
END 007150
UBRCUIHNE(L0CX21(X,Z1,F1,F2,TR,X2MIN,X2MAX,X2I)) 007160
COOOTHIS 6LBROUTINE LOCATES POINTS OF INCIDENCE ON SUBREFLECTOR 007170
DIMENSION X2R(2) 007180
IRTF=0 007190
IF(QR0.EQ.0.)X21=XI 007200
IF(RR,.EQ.0.)GO TO 2 007210
A=Q!/(4.*F2) 007220
C=RP~1*(Z1-F2)-X1 007230
DIS=1.-A+C 007240
IF(DIS.LT.0)WRITE(6,1) 007250
I FORMAT(*THE ROOTS IN LOCX3I ARE IMAGINARY') 007260
IR(DIS.LT.0)GO TO 2 007270
X2R(1)=(-1.+SQRT(DIS))/(2.*A) 007280
X2R(2)=(-1.-SQRT(DIS))/(2.*A) 007290
3 CONTINUE 007300
2 IF(IRTF.EQ.0)X2I=0.0 007310
2 END 007320
C***THIS SUBROUTINE LOCATES POINTS OF INCIDENCE ON SUBREFLECTOR 007330
DIMENSION X2R(2) 007340
IRTF=0 007350
IF(QR0.EQ.0.)X21=XI 007360
IF(RR,.EQ.0.)GO TO 2 007370
A=Q!/(4.*F2) 007380
C=RP~1*(Z1-F2)-X1 007390
DIS=1.-A+C 007400
IF(DIS.LT.0)WRITE(6,1) 007410
I FORMAT(*THE ROOTS IN LOCX3I ARE IMAGINARY') 007420
IR(DIS.LT.0)GO TO 2 007430
X2R(1)=(-1.+SQRT(DIS))/(2.*A) 007440
X2R(2)=(-1.-SQRT(DIS))/(2.*A) 007450
3 CONTINUE 007460
2 IF(IRTF.EQ.0)X2I=0.0 007470
2 END 007480
SUBROUTINE ACUCHA(X1,Z1,X2,Z2,X3,Z3,F1,F2,F3,TDIF) 007490
C***THIS SUBROUTINE CHECKS THE ACCURACY OF XI,X2,X3 IN TERMS OF THE 007500
C***DIFFERENCE BETWEEN THE ANGLE OF INCIDENCE AND ANGLE OF REFLECTION 007510
C Z3=-X3*X3/(4.*F3)-F2*F2/F1 007520
RNUM1=X2*(X2-XI)+2*F2*(Z2-Z1) 007530
RNUM2=-Y2*(X3-X2)-2.*F2*(Z3-Z2) 007540
DEN1=SQRT(4.*F2*F2+X2*X2) 007550
DEN2=SQRT((X2-X1)**2+(Z2-Z1)**2) 007560
DEN3=SQRT((X3-X2)**2+(Z3-Z2)**2) 007570
PROJ2=RNUM2/DEN1/DEN2 007580
PROJ3=RNUM3/DEN1/DEN3 007590
IF(PROJ2.GT.1.0.AND.PROJ2.LT.1.01)PROJ2=1.0 007600
IF(PROJ3.GT.1.0.AND.PROJ3.LT.1.01)PROJ3=1.0 007610
TDIF=ACOS(PROJ2)*180./3.14159265 007620
T3D=ACOS(PROJ3)*180./3.14159265 007630
TDIF=T3D-TDIF 007640
C WRITE(6,1)XI,ZI,X2,Z2,X3,Z3 007650
1 FORMAT(1X,'XI,ZI,X2,Z2,X3,Z3=,6F9.3) 007660
C WRITE(6,2)F1,F2,F3,T2D,T3D,TDIF 007670
2 FORMAT(1X,'F1,F2,F3,T2D,T3D,TDIF=,6F9.3) 007680
RETURN 007690
C***DIFFERENCE BETWEEN THE ANGLE OF INCIDENCE AND ANGLE OF REFLECTION 007700
282
C*** AT THE PRIMARY.

RNUM1 = -X1*SIN(TR) + 2.*F1*COS(TR)
RNUM3 = -X1*(X3-X1) + 2.*F1*(Z3-Z1)
DEN1 = SQRT(4.*F1*F1 + X1*X1)
DEN3 = SQRT((X3-X1)**2 + (Z3-Z1)**2)
PROJ1 = RNUM1/DEN1
PROJ2 = RNUM3/DEN1/DEN3
IF (PROJ1.GT.1.0 AND PROJ1.LT.1.01) PROJ1 = 1.0
IF (PROJ2.GT.1.0 AND PROJ2.LT.1.01) PROJ2 = 1.0
T1D = ACOS(PROJ1)*180./3.14159265
T2D = ACOS(PROJ2)*180./3.14159265
TDIF = T2D - T1D
RETURN
END
C.4 Program PTBATCH
C***PROGRAM BY ALAN FENN (MARTIN MARIETTA)
C***THIS PROGRAM COMPUTES THE APERTURE DISTRIBUTION AND FAR-FIELD
C***PATTERN OF A SYMMETRIC TWO REFLECTOR ARRAY CLUSTER FEED SYSTEM.
C***THE PROGRAM HAS BEEN MODIFIED TO RUN BATCH
C***THE ARRAY USES A SHIFTED COSINE-SQUARED DISTRIBUTION
C***COMPLEX dESI(500),ESUB(700),EL4(2000),ECON,EPRI
C***COMPLEX EFAF,EFF(300),SUME
DIMENSION T(21),ZAPP(20),ZBP(20),ENORM(300),THETAD(300)
LOGICAL WPLFF,WIOISWPLAPR
C CALL CONNEC(5LINPUT)
REaddir 1
REWIND 5
READ(1)NMDSM1 .T.
READ(1)SA3,ESI
READ(1)ZAPP, ZBP
READ(1)FI,F2,JF3
READ(1)XUL,XU,X2L,X2U
READ(1)TD,SN,NAP,NCON
READ(1)X3L,X3U,X3RANG
NSDGN=1
C WRITE(5.1)
1 FORMAT(1X,*# OF DATA SETS*)
READ(5.*,1)
DO 321 IT=1,NDS
C WRITE(5,12)
12 FORMAT(1X, *WANT TO INPUT NEW DISTORTIONS? T.OR.F*)
READ(5,12)
IF(WIDIS)17, 18
17 DO 101 I=1,NMDSM1
C WRITE(5,7)
7 FORMAT(1X, *SECTION#,13,2x, *INCREMENTAL DISTORTION FOR ZB*)
READ(5,7)
C WRITE(5,2)
2 FORMAT(1X, *# OF SUBREFLECTOR SAMPLES*)
READ(5,2)
C WRITE(5,3)
3 FORMAT(1X, *# OF PRIMARY SAMPLES*)
READ(5,3)
C CALL SECOND(ACPU1)
IBLCPA=0
RMAG=F1/F2
X3LIM=X1U/RMAG
Z1U=X1U*X1U/(4.*F1)-F1
P=3.14159265
J.(0.,1.)
X3AVE=(X3L+X3RANG)/2.
IF(TD.LT.0.)X3AVE=(X3L+X3RANG)/2.
IF(TD.EQ.0.)X3AVE=0.0
DO 4242 I1,NAP
C A3=C35*(PI*SA3(I)/(2.+(X3U-2.*SN)))**2
A3=COS(P1*(SA3(I)-X3AVE)/(2.*X3RANG-2.*SN)))**2
IF(TD.EQ.0.)A3=COS(P1*SA3(I)/(2.*X3LIM-2.*SN)))**2
IF(TD.EQ.0.)AND.SA3(I).GT.X3LIM)A3=0.0
IF(SA3(I).LT.X3RANG)A3=0.0
IF(IA2+1)SGN=0.0
IF(CLAMSES(I).EQ.0.)GO TO 4242
EPH=ATAN2(IMAG(ESI(I)),REAL(ESI(I)))
ESI(I)=A3*EXP(J*EPH)
285
C WRITE(5,2765)A3,EPH 000730
2765 FORMAT(1X,*A3,EPH**,2E12.5) 000740
C WRITE(5,1000)I,ESI(I),SA3(I) 000750
1000 FORMAT(I,X,*,I3,2X,ESI=.*,2E12.5,2X,SA3=.*,F12.5) 000760
C3933 IF(CABS(ESI(I)).EQ.0.)WRITE(5,3333)I 000770
3333 FORMAT(I,X,*,I4,2X,ESI(I)=0.0*) 000780
4242 CONTINUE 000790
5555 CONTINUE 000800
ESI(1)=0.0. 000810
ESI(2)=0.0. 000820
ESI(NAP)=0.0. 000830
NAPM=I-1 000840
ESI(NAPM+1)=(.0,0.0) 000850
B=2.+F1 000860
TR=+D1/180. 000870
NMDS=NMDSTM+1 000880
Z0=-F2+F2/F1 000890
DELKS=(X2U-X2L)/(NSAMS-1) 000900
DQ=4.4=1.1,NSAMS 000910
X2=X2U-DELKS**(1.1) 000920
Z2=F2-X22/(4.*F2) 000930
ESUBM=(0.,0.0) 000940
DO 100 JUI=1,NAP 000950
3333 FORMAT(1X,A3,ESUBM) 000960
100 CONTINUE 000970
CONTINUE 000980
D0 7474 I=1,NSAMS 000990
X2=X2U-DELKS**(1-1) 001000
ESUBM=CABSM(ESUBM) 001010
WRITE(5,5272)X3,Z3,X2,Z2,ESUBM 001020
5272 FORMAT(1X,*I4,*,X2s*,F12.5,2X,*ESUBMs*,E12.5) 001030
7474 CONTINUE 001040
X1UM+XIU=0.0 001050
X1UP+XIU+.001 001060
ISKIP=0 001070
ICT=0 001080
DELPX=(XIU-XIL)/(NSAMP-1) 001090
DCLNT=(XIU+XIL)/2. 001100
DQ=1=1,NMDSTM 001110
IP=1+1 001120
X2=TI(T) 001130
X2T=IT(IP) 001140
Z4=X4+X4/(4.*F1) 001150
ZB=XB/XB/(4.*F1) 001160
DQ(ISKIP,EQ.1)GO TO 912 001170
912 ICT=ICT+1 001180

EL4(ICT) = (0.0.)
X1 = DELXP(ICT-1) * X1L
IF(X1.GT.X1UM1.AND.X1.LT.X1UP1) X1 = X1UM1
912 IF(X1.LE.XB) ZBP = ZB + ZBP(I)
IF(X1.LE.XB) ZAP = ZA + ZAPP(I)
IF(X1.GT.XB) ISKIP = 1
IF(X1.GT.XB) GO TO 40
ISKIP = 0
XAP = XA
XBP = XB
XBA = XB - XA
XBP = XBP - XAP
ZBA = ZB - ZA
ZBP = ZBP - ZBA
RM0 = XBA/ZBA
RMN = XBP/ZBP
DEL1 = (X1 - XBP) / RMN - (X1 - ZBP) / RM0
Z1 = X1 / (X1 + F1) - F1 + DEL1
ZDIF = X1 - Z1
X4L(ICT) = X1
D0 101 JJ = INSAMS
101 CONTINUE
GO TO 99
M6 40 CONTINUE
FAC = 1.0
RNSBGN = NSBGN
RNSAMS = NSAMS
IF(IT.GT.1) FAC = RNSBGN / RNSAMS
WRITE (5,6767) IT, NSBGN, FAC
WRITE (6,71) F1, F2, F3
71 FORMAT (1X, F1 =*, F12.3, 2X, F2 =*, F12.3, 2X, F3 =*, F12.5)
WRITE (6,72) X1L, X1U, X2L, X2U, X3L, X3U
72 FORMAT (1X, X1L =*, F12.3, 2X, X1U =*, F12.3, 2X, X2L =*, F12.3, 2X,
WRITE (6,73) TD, SN, NSAMP, FAC, NSAMS
73 FORMAT (1X, TD =*, F10.4, 2X, SN =*, F12.4, 2X, NSAMP =*, 17, 2X, *FAC =*,
2*F12.4, 2X, *NSAMS =*, 17)
WRITE (6,700) NAP, MCON
700 FORMAT (1X, NAP =*, 15, 2X, *MCON =*, 15)
WRITE (6,8354) XRANG, XSAVE
8354 FORMAT (1X, XRANG =*, F12.5, 2X, XSAVE =*, F12.5)
DO 333 I = 1, NMUS
WRITE (6,222) I, T(I)
222 FORMAT (1X, T(I) =*, F15.5)
333 CONTINUE
DO 151 I = 1, NAP
EMG = CABS(ESI(I))
IF(EMG.EQ.0.) GO TO 3681
EPH = ATAN2(AIMAG(ESI(I)), REAL(ESI(I))) * 180. / PI
WRITE (6,159) SA3(I), EMG, EPH
3681 IF(EMG.EQ.0.) WRITE (6,4927) SA3(I)
4927 FORMAT (1X, SA3 =*, F14.4, 2X, *EMG =0*)
151 CONTINUE

DO 109 I=1,NMDSM1
WRITE(6,7511)ZAPP(I),ZBPP(I)
75 FORMAT(I*,SECTION**,I3,2X,ZAPP(I)**,F15.7,2X,ZAPP(I)**,F15.7)
109 CONTINUE
BIGEST=0.0
DO 42 I=1,NSAMP
EL4MAG(I)=CABS(EL4(I))*FAC
IF(EL4MAG(I).EQ.0.)GO TO 420
ELPHAD(I)=ATAN2(AIMAG(EL4(I)),REAL(EL4(I)))*180./PI
WRITE(6,50)X4L(I),EL4MAG(I),ELPHAD(I)
4200 IF(EL4MAG(I).EQ.0.)WRITE(6,5000)X4L(I)
5000 FORMAT(1X,*X4L=*,F15.5,2X,*EL4MAG=0*)
IF(EL4MAG(I).GT.BIGEST)BIGEST=EL4MAG(I)
42 CONTINUE
WRITE(6,74)1,ZAPP(I)
74 FORMAT(*SECTION#*,I3,2X,*ZAPP(I),*,F15.7,2X,*ZIPP(I),*,F15.7)
IF(IT.EQ.I)NSBGN=NSAMS
C WRITE(5,3131)
3131 FORMAT(1X,*WANT TO CALL APERTURE PLOTTING ROUTINE? T.OR.F*)
READ(5,)WPL APR
IF(WPLAPR)9787 9788 ELSE
9787 CALL PLOTE(XILXIUX4L,EL4MAG,BIGEST,ELPHAD,NSAMP,0)
C***THIS PART COMPUTES THE FAR-FIELD PATTERN
9788 WRITE(5,4121 3)
4121 FORMAT(1X,*PATTERN RANGE...TMIN...TMAX*)
READ(5,*)TMIN,TMAX
C WRITE(5,4836)
4836 FORMAT(1X,*NUMBER OF POINTS=)
READ(5,*)NPNTS
SIGE=0.0
OINC=(TMAX-TMIN)/(NPNTS-1)
THETAO(K)=TMIN+OINC*(K-1)
THETAR=THETAO(K)*PI/180.
STH=SIN(THETAR)
SUME=(0.0.)
DO 49 I=INSAMP
EFARF=EL4(I)*CEXP(J*B*(X4L(I)-DXCENT)*STH)
SUWE=SUME+EFARF
49 CONTINUE
EFF(K)=SUME
IF(CABS(EFF(K)).GT.BIGE)BIGE=CABS(EFF(K))
59 CONTINUE
D0 111 Kz1,NPNTS
ENORM(K)=20.*ALOGIO(CABS(EFF(K))/BIGE)
EPHD=ArAN2(AIMAG(EFF(K)),REAL(EFF(K)))*180./PI
WRITE(6,223)THETAD(K),ENORM(K),EPHD
223 FORMAT(1X,*THETAO=*,F14.5,2X,*ENORM=*,F15.5,2X,*EPHAD=*,F10.3)
11 CONTINUE
C WRITE(5,37)
37 FORMAT(*SECTION**
READ(5,)WPLL FF
IF(WPLFF)31 .32 ELSE
31 CALL PLOTFF(ENORM,THETAD,TMIN,TMAX,NPNTS)
32 CALL APEREF(NSAMP,EL4,TR,X4L,AEF)
C WRITE(5,25)AEF
25 FORMAT(*APERTURE ILLUMINATION EFFICIENCY=*
321 CONTINUE
C WRITE(5,37)
C*THIS SUBROUTINE DETERMINES IF THERE IS BLOCKAGE BY THE ARRAY

```fortran
IBLOCK=0
FNUM=X2*(X2-X3)+2.*F2*(Z2-Z3)
FDEN=SORT((X2-X3)**2+(Z2-Z3)**2)
F=FNUM/FDEN
X2S=X2*X2
FS=F*F
AI=ZO-Z2
A2=X2S-2.*F2*A1
A=FS-X2S
8=2.*X2*(A2-FS)
C=FS*(AI*AI+X2S)-A2*A2
DIS=B*8-4.*A*C
IF(DIS.LT.0.)WRITE(5,1)
1 FORMAT(IX,*ROOTS ARE COMPLEX*)
X51=(-B+SQRT(DIS))/(2.*A)
X52=(-B-SQRT(DIS))/(2.*A)
IF(X51.LT.0.AND.X52.LT.0.)IBLOCK=1
RETURN
END
```

C*THIS SUBROUTINE PLOTS THE FAR-FIELD PATTERN OF THE TWO REFLECTOR ARRAY CLUSTER SYSTEM.

```fortran
C***REFLECTOR ARRAY CLUSTER SYSTEM.
DIMENSION EMAG(),THETAD(1)
LOGICAL PLOT,HARDC
C WRITE(5,22)
22 FORMAT(1X,*WANT TO PLOT? T.OR.F*)
READ(5,*)PLOT
IF(PLOT)7,88
7 CALL TEEKRN(960)
99 CALL BGNPL(t)
CALL BASALF("STANDARD")
CALL MIXALF("L/CGREEK")
CALL PAGE(10.89,11.0)
CALL GRACE(O.0)
CALL TITLE(17GFAR-FIELD PATTERN,17,11H(Q)
224HRELATIVE AMPLITUDE IN DB,24,5.,5.)
CALL XTICKS(2)
CALL YTICKS(2)
CALL GRAP(TMIN,"SCALE",TMAX,-100.,100.)
CALL GRID(1,1)
CALL MARKER(IO)
CALL CURVE(THETAD,EMAG,NPNTS,0)
CALL ENDPL(1)
C WRITE(5,23)
23 FORMAT(1X,*WANT HARD COPY? T.OR.F*)
88 READ(5,*)HARDC
IF(HARDC)12,77
12 CALL FR80(3)
GO TO 99
C77 WRITE(5,24)
24 FORMAT(1X,*WANT TO PLOT AGAIN? T.OR.F*)
77 READ(5,*)WPLOTA
IF(WPLOTA)7.42
RETURN
END
```

C*THIS SUBROUTINE CALCULATES THE APERTURE ILLUMINATION EFFICIENCY

```fortran
C***THE APERTURE ILLUMINATION EFFICIENCY
```

289
COMPLEX E(I), SUMC, J, F(600)

DIMENSION X(1)
B=2.+3.14159265
J=(0., 1.)
SUMR=0.0
SUMC=(0., 0.)
DO I=1,N
F(I)=E(I)*CEXP(J*B*X(I)*SIN(TR))
SUMC=SUMC+E(I)*CEXP(J*B*X(I)*SIN(TR))
SUMR=SUMR+CABS(E(I))**2
C
WRITE(6,74) I, F(I), SUMC, SUMR
74 FORMAT(1X,*I, F(I), SUMC, SUMR)
1 CONTINUE
EFF=CABS(SUMC)**2/(N*SUMR)
RETURN
END

SUBROUTINE PLOTE(XI L, XIU, S3, EMAG, EMAX, EPHAO, T4PNTS, NOJF)

DIMENSION S3(1), EMAG(1), EPHA(I)
LOGICAL PLOT, HARDC, WPLOTA
XMX=ABS(XI L)
DO
I=1,NPNTS
WRITE(6,1) I, S3(1), EMAG(I), EPHA(I)
1 CONTINUE
C
WRITE(5,22)
22 FORMAT(1X,*WANT TO PLOT? T.OR.F*)
READ(S,*) PLOT
IF(PLOT)7,88
7 CALL TEKTRN(960)
99 CALL BGNPL(1)
CALL PAGE(10.897, 14.103)
CALL GRACE(0.0)
CALL PHYSOR(2.5, 1.0)
IF(NDIF.EQ.0) GO TO 61
CALL TITLE(16PHASE DIFFERENCE, 16, 17LOCATION ON ARRAY, 17, 21SHPHASE (DEGREES), 15.4, 3.)
GO TO 64
61 CALL TITLE(16PHASE OF E, 10, 20LOCATION ON APERTURE, 20, 21SHPHASE (DEGREES), 15.4, 3.)
64 CALL XTICKS(4)
CALL YTICKS(2)
CALL GRAF(XL,*SCALE*, XIU,-180., 90., 180.)
CALL GRID(1.1)
CALL MARKER(10)
CALL SCLPIC(0.5)
CALL CURVE(3, EPHA, NPNTS, 0)
CALL ENDGR(1)
CALL BGNPL(2)
CALL GRACE(0.0)
CALL OREL(0., 0.4)
IF(NDIF.EQ.0) GO TO 62
CALL TITLE(20HAMPLITUDE DIFFERENCE, 20, 17LOCATION ON ARRAY, 17, 29HAMPLITUDE, 9.4, 3.)
GO TO 65
62 CALL TITLE(14HMAGNITUDE OF E, 14, 20LOCATION ON APERTURE, 20, 21HMAGNITUDE E, 11, 4, 3.)
65 CALL XTICKS(4)
CALL YTICKS(2)
IF(NDIF.EQ.0) GO TO 66
EMAXCS=EMAX
CALL GRAF(-XI L,*SCALE*, XIX, EMAXCS,*SCALE*, EMAX)
GO TO 67
68 CALL GRAF(XXI L,*SCALE*, X1U, 0., *SCALE*, EMAX)
CALL GRID(1,1)
CALL MARKER(10)
CALL SCLPIC(0.5)
CALL CURVE(53.EMAG,NPNTS,0)
CALL ENDPi(2)
C86 WRITE(5,23)
23 FORMAT(1X,"WANT HARD COPY? T.OR.F")
88 READ(5,*)HARDC
IF(HARDC)12,77
12 CALL FRBO(3)
GO TO 99
C77 WRITE(5,24)
24 FORMAT(1X,"WANT TO PLOT AGAIN? T.OR.F")
77 READ(5,*)WPLOTA
IF(WPLOTA)7,42
42 RETURN
END
C.5 Program PTNUL2
C***PROGRAM BY ALAN FENN (MARTIN MARIETTA)

C***THIS PROGRAM COMPUTES THE APERTURE DISTRIBUTION AND FAR-FIELD

C***PATTERN OF A SYMMETRIC TWO REFLECTOR ARRAY CLUSTER FEED SYSTEM.

PROGRAM PTNUL2(INPUTTAPE 5, OUTPUTTAPE 6 = OUTPUT, TAPE 1, FRBO, 2TAPE 2)

C***THIS PROGRAM HAS BEEN MODIFIED TO RUN BATCH

C***THE ARRAY USES A SHIFTED COSINE-SQUARED DISTRIBUTION

C***ADAPTIVE NULLING HAS BEEN ADDED TO THIS PROGRAM

COMPLEX EFRI, EFF (300), SUME, ES12 (500), FACNUL

DIMENSION SA3 (500), X3L (1000), ES3 (700), EL4 (1000), ECON, EPRI

DIMENSION T (2ILZAPP (20), ZBPP (20), ENORM (300), THETAD (300))

DIMENSION TT (21), X3L (1000), X3RANG

LOGICAL WPLF F, WIDIS, WPLAPR

CALL CONNECT (5LINPUT)

REWIND 1

REWIND 2

REWIND 5

READ (1) NMDSM1, T

READ (1) SA3, EI

READ (1) ZAPP, ZBPP

READ (1) F, F2, F3

READ (I) XIL, XIU, X2L, X2U

READ (I) TD, SN, NAP, NCON

READ (1) X3L, X3U, X3RANG

READ (2) KNDSM1, TT

READ (2) SA32, ES12

NSBGN = 1

WRITE (5, 1)

1 FORMAT (1X, **# OF DATA SETS**)

READ (5, *) NDS

DO 31 T = 1, NDS

C WRITE (5, 12)

12 FORMAT (1X, **WANT TO INPUT NEW DISTORTIONS? T.OR.F**)

READ (5, *) WIDIS

IF (WIDIS) 17, 1

READ (5, 7)

7 FORMAT (1X, **SECTION**, I3, 2X, **INCREMENTAL DISTORTION FOR ZB**)

READ (5, *) ZBPP (I)

C WRITE (5, 12)

12 FORMAT (1X, **INCREMENTAL DISTORTION FOR ZA**)

READ (5, *) ZAPP (I)

C CONTINUE

19 CONTINUE

C WRITE (5, 2)

1 FORMAT (1X, **# OF SUBREFLECTOR SAMPLES**)

READ (5, *) NSAMS

C WRITE (5, 3)

3 FORMAT (1X, **# OF PRIMARY SAMPLES**)

READ (5, *) NSAMP

CALL SECOND (ACPUI)

ILCPA = 0

RMAG = F1 / F2

X3L = X1U / RMAG

Z1U = X1U + X1U / (4. * F1) - F1

PI = 3.14159265

U = (0., 1.)

X3AVE = (X3U + X3RANG) / 2.

IF (TD.LT.0.) X3AVE = (X3L + X3RANG) / 2.

IF (TD.EQ.0.0) X3AVE = 0.0

FACNUL = 0.0060375 * CEXP (-U / 1.27409)

FACNUL = 0.006137972624 * CEXP (-U / 1.339987)

X350RN = -18.71215
X350AV=29.71215
DO 4343 I=1,NAP
A3=COS(P1*(SA3(I)-X350AV)/(X3U-X350RN-2.*SN))**2
IF(SA3(I).LT.X350AV)A3=0.0
EPI=ATAN2(AIMAG(E12(I)),REAL(E12(I)))
ES12(I)=A3*CEXP(J*EPH)*FACNUL
CONTINUE
DO 4242 I=1,NAP
C A3=COS(P1*(SA3(I)/(2.*(X3U-2.*SN))))**2
A3=COS(P1*(SA3(I)/X3U-X3RANG-2.*SN))**2
C IF(TD.EQ.0.0)A3=COS(P1*(SA3(I)/X3LIM-2.*SN))**2
A3=COS(P1*(SA3(I)/X3U-X3RANG-2.*SN))**2
C IF(TD.EQ.0.0 AND SA3(I).LT.X3RANG)A3=0.0
C IF(CABS(ES12(I)).EQ.0.0)GO TO 4242
C EPH=ATAN2(AIMAG(ES12(I)),REAL(ES12(I)))
C ES12(I)=A3*CEXP(J*EPH)
CONTINUE
D0 4242 I=1,NAP
C A3=COS(P1*(SA3(I)/(2.*(X3U-2.*SN))))**2
A3=COS(P1*(SA3(I)/X3U-X3RANG-2.*SN))**2
IF(TD.EQ.0.0)A3=COS(P1*(SA3(I)/X3LIM-2.*SN))**2
C IF(SA3(I).LT.X3RANG)A3=0.0
C IF(CASESI(I)).EQ.0.)GO TO 4242
C EPH=ATAN2(AIMAG(ES12(I)),REAL(ES12(I)))
C ES12(I)=A3*CEXP(J*EPH)
CONTINUE
D0 7673 I=1,NAP
ES1(I)=ES1(I)+ES12(I)
7673 CONTINUE
DO 100 J=1,NAP
X3=SA3(J)
Z3=Z0-X3-X3/(4.*F3)
IF(X2U.NE.0.)GO TO 87
CALL BLOCK(X2,X3,Z0,Z2,Z3,F2,X51,X52,IBLOCK)
IF(ISLOCK.EQ.0.0)180LCPA=IBLCPA+I
IF(IBLOCK.EQ.1)GO TO 100
A7 RL23=SQRT((X2-X3)**2+(Z2-Z3)**2)
PZ=Z2-Z3/RL23
PTR=PZ
IF(SN.LT.0.8)PTR=PZ
C EPH=ATAN2(AIMAG(ES1(JJ)),REAL(ES1(JJ)))
C ES1(JJ)=A3*CEXP(J*EPH)
C WRITE(5,9181)JJ,A3,EPH
9181 FORMAT(1X,*JJ,A3,EPH=*,2X,14,2X,2FI2.5)
C ECIN=CONJG(ES1(JJ))*CEXP(-J*P*RL23)*PTR/(P*RL23)
C WRITE(6,4499)X3,2C,X2,2Z,ECON
4499 FORMAT(1X,4F12.5,2X,2E10.3)
CONTINUE
DO 100 J=1,NAP
ES1(I)=ESUB(I)+ESUB(1)*ECON
100 CONTINUE
CONTINUE
44 CONTINUE
DO 7474 I=1, NSAMS
X2=X2U-DELX5*(I-1)
ESUBM=CABS(ESUB(I))
WRITE(6,5272)I,X2,ESUBM
5272 FORMAT(1X,*I***,4,2X,*X2**,F:2.5,2X,*ESUBM**,E12.5)
7474 CONTINUE
X1UM1=X1P-.001
X1UP1=X1U+.001
ISKIP=0
ICT=0
DELXP=(X1U-XIL)/(NSAMP-1)
DXCENT=(X1U+XIL)/2.
DO 40 I=1, NMDSM1
1P11I+1
XA=T(I)
XB=T(IP1)
ZA=XA*XA/(4.*F1)-F1
ZB=XB*XB/(4.*F1)-F1
IF(ISKIP.EQ.1)GO TO 912
ICT=ICT+1
EL4(ICT)=(0.,0.)
X1=DELXP-(ICT-I)+XIL
IF(X1.GT.X1UM1.AND.X1.LT.X1UP1)X1=X1UM1
IF(XI.LE.XB)ZBP=ZB+ZBP(I)
IF(XI.LE.XC)ZAP=ZA+ZAPP(I)
IF(XI.GT.XB)ISKIP=1
IF(XI.GT.XB)GO TO 70
ISKIP=0
XAP=XA
XBP=XB
XBA=XB-XA
XBP=XB-XA
ZABP=ZAP-ZAP
Z4=(X1-XB)**2+(Z1-Z2)**2
ZDIF=Z1U-Z1
X4L(ICT)=X1
DO 101 JJ=1, NSAMS
X2=X2U-DELX5*(JJ-1)
Z2=Z2U-2*Z2/(4.*F2)
RL12=SQRT((X1-X2)**2+(Z1-Z2)**2)
IF(I.EQ.JJ)+CEXP(-X2*(RL12+ZDIF))/(B*RL12)
EL4(ICT)=EL4(ICT)+EPRI
C WRITE(6,8877)X2,Z2,XI,ZI,EL4(ICT),ESUB(JJ)
8877 FORMAT(1X,*X2,Z2,XI,ZI,*,4F12.5,2X,*EL4(ICT)=,2E12.5,2X)
101 CONTINUE
GO TO 99
70 CONTINUE
FAC=1.0
NSBGN=NS5GN
RNSAMS=NSAMS
IF(I.EQ.GT.1)FAC=RNSBGN/RNSAMS
C WRITE(5,6767)IT,NSBGN,FAC
6767 FORMAT(1X,*IT=,15,2X,*NSBGN=,15,2X,*FAC=,F12.5)
WRITE(6,71)F1,F2,F3
71 FORMAT(1X,*F1=,**F12.3,2X,*F2=,**F12.3,2X,*F3=,**F12.5)
WRITE(6,72)X1,X1U,X2L.X2U,X3L,X3U
72 FORMAT(1X,*X1=,**F12.3,2X,*X1U=,**F12.3,2X,*X2L=,**F12.3,2X,*X2U=,**F12.3,2X,*X3L=,**F12.3,2X,*X3U=,**F12.3)
295
WRITE(6,73)TD,SN,NSAMP,FAC,NSAMS
73 FORMAT(1X,*TD=*,F10.4,*SN=*,F12.4,2X,*NSAMP=*,17,2X,*FAC=*
2F12.4,2X,*NSAMS=*,17)
WRITE(6,700)NAP,NCON
700 FORMAT(1X,*NAP*,15,2X,*NCON=*,15)
WRITE(6,8354)X3RANG,X3AVE
8354 FORMAT(1X,*X3RANG=i.,F12.5,2X,*X3AVE=*,F12.5)
D0 333 L=I,NMOS
333 CONTINUE
DO 109 I=1,NSAMP
109 CONTINUE
I=1,NSAMP
WRITE(6,74)1,ZAPP(I),ZBPP(I)
74 FORMAT(1X,*SECTION#,13,2X,*ZAPP(I)=*,F15.7,2X,*ZBPP(I)=*,F15.7)
BIGEST=0.0
D0 42 I=1,NSAMP
42 FORMAT(1X,*EL4MAG=*,F15.5)
IF(EL4MAG(I).EQ.0.)GO TO 4200
EL4MAG(I)=EL4MAG(I)*FAC
ELPHAD(I)=EL4MAG(I)*REAL(EL4(I))*/PI
WRITE(6,50)I,X4L(I),EL4MAG(I),ELPHAD(I)
50 FORMAT(1X,*X4L=*,F15.5,2X,*EL4MAG=*,E15.5,2X,*ELPHAD=*,F15.5)
4200 IF(EL4MAG(I).EQ.0.)WRITE(6,5000)X4L(I)
5000 FORMAT(1X,*X4L=*,F15.5,2X,*EL4MAG=0.0)
BIGEST=MAX(BIGEST,EL4MAG(I))
WRITE(6,74)1,BIGEST
74 FORMAT(1X,*BIGEST=*,F15.7)
WRITE(6,75)1,ZAPP(I),ZBPP(I)
75 FORMAT(1X,*ZAPP(I)=*,F15.7,2X,*ZBPP(I)=*,F15.7)
WRITE(6,74)1,BIGEST
74 FORMAT(1X,*BIGEST=*,F15.7)
WRITE(6,75)1,ZAPP(I),ZBPP(I)
75 FORMAT(1X,*ZAPP(I)=*,F15.7,2X,*ZBPP(I)=*,F15.7)
C WRITE(5,3131)
3131 FORMAT(-X4L=*,15)
C WRITE(5,3131)
3131 FORMAT(-X4L=*)
IF(CABS(EFF(K)).GT.BIGE)BIGE=CABS(EFF(K))
CONTINUE
DO 5890 K=1,NPNTS
EFFMAG=CABS(EFF(K))
EPHD=ATAN2(IMAG(EFF(K)),REAL(EFF(K)))*180./PI
WRITE(6,5117)THETAD(K),EFFMAG,EPHD
5117 FORMAT(1X,*THETAD=*,F12.4,1X,EFMAG=*,F17.7,1X,EPHD=*,F12.4)
CONTINUE
DO 5891 K=1,NPNTS
ENORM(K)=20.*ALOG10(CABS(EFF(K))/BIGE)
EPHD=ATAN2(IMAG(EFF(K)),REAL(EFF(K)))*180./PI
WRITE(6,223)THETA0(K),ENORM(K),EPHD
223 FORMAT(1X,*THETAD=*,F14.5,2X,*ENORM=*,F15.5,2X,*EPHD0*,F12.4)
CONTINUE
CALL SECOND(ACPUI2)
ACPU21=ACPUI2-ACPUI
WRITE(6,52)ACPU21
52 FORMAT(1X,*CPU FOR THIS RUN=*,F14.3)
CALL EXIT
SUBROUTINE BLOCK(X2,X3,Z0,Z2,Z3,F2,X51,X52,IBLOCK)
C***THIS SUBROUTINE DETERMINES IF THERE IS BLOCKAGE
IBLOCK=0
FNUM=X2*(X2-X3)+2.*F2*(Z2-Z3)
FDEN=SQRT((X2-X3)**2+(Z2-Z3)**2)
F=FNUM/FDEN
FS=F*F
Al=Z0-Z2
A2=X2S-2.*F2*Al
A=FS-X2S
B=2.*F2*(A2-F2)
C=FS*(A1+2)-A2*A2
D=B*B-4.*A+C
IF(DIS.LT.0.)WRITE(5,1)
1 FORMAT(1X,*ROOTS ARE COMPLEX*)
RETURN
END
SUBROUTINE PLOTFF(EMAG,THETAD,TMIN,TMAX,NPNTS)
C***THIS SUBROUTINE PLOTS THE FAR FIELD PATTERN OF THE TWO
DIMENSION EMAG(1),THETAD(1)
LOGICAL PLOT,HAROC,WPLOTA
C
WRITE(5,22)
22 FORMAT(1X,*WANT TO PLOT? T.OR.F*)
READ(5,*)PLOT
IF(PLOT)7 .88
7 CALL TEKTRN(960)
88 CALL BGNPL(1)
C***REFER TO THE TWO REFLECTOR ARRAY CLUSTER SYSTEM.
CALL SECOND(ACPUI2)
ACPU21=ACPUI2-ACPUI
WRITE(6,52)ACPU21
52 FORMAT(1X,*CPU FOR THIS RUN=*,F14.3)
CALL EXIT
SUBROUTINE BGNPL(1)
C***REFERENCE TO THE TWO REFLECTOR ARRAY CLUSTER SYSTEM.
CALL SECOND(ACPUI2)
ACPU21=ACPUI2-ACPUI
WRITE(6,52)ACPU21
52 FORMAT(1X,*CPU FOR THIS RUN=*,F14.3)
CALL EXIT
SUBROUTINE TEKTRN(960)
C***REFERENCE TO THE TWO REFLECTOR ARRAY CLUSTER SYSTEM.
CALL SECOND(ACPUI2)
ACPU21=ACPUI2-ACPUI
WRITE(6,52)ACPU21
52 FORMAT(1X,*CPU FOR THIS RUN=*,F14.3)
CALL EXIT
CALL MIXALF("L/CGREEK")
CALL PAGE(10.89,11.0)
CALL GRACE(0.0)
CALL TITLE(17HFar-Field Pattern,17,11H(Q) DEGREES,11.
224Hrelative Amplitude in Db,24.5.,5.)
CALL XTICKS(2)
CALL YTICKS(2)
CALL GRAPH(MIN,"SCALE",TMAX,-120,20,0)
CALL GRID(1,1)
CALL MARKER(10)
CALL CURVE(THETAD,EMAG,NPNTS,0)
CALL ENDFP(1)
C 88 WRITE(5,23) 003290
23 FORMAT(1X,*WANT HARD COPY? T.OR.F*)
003297
88 READ(S.+)HARDC
IF(HARDC)12. 77 003308
12 CALL FR8O(3) 003315
GO TO 99 003323
C77 WRITE(5,24) 003330
24 FORMAT(1X,*WANT TO PLOT AGAIN? T.OR.F*)
77 READ(S.+)WPLOTA 003341
IF(WPLOTA)7. 42 003349
42 RETURN 003356
END
SUBROUTINE APEREF(N,E,TR,X,EFF) 003363
C***THIS SUBROUTINE CALCULATES THE APERTURE ILLUMINATION EFFICIENCY
COMPLEX E(1),SUMC,J,F(600)
DIMENSION X(1)
B=2.*3.14159265 003377
1J=(0.,1.) 003384
SUMR=0.0 003392
SUMC=(0.,0.) 003400
DO 1 I=1,N 003408
F(I)=E(I)*CEXP(J*B*X(I))*SIN(TR)) 003416
SUMC=SUMAC+E(I)*CEXP(d*B*X(I)*SIN(TR)) 003424
SUMR=SUMR+CABS(E(I))**2 003432
C WRITE(6,74)I.F(I),SUMC,SUMR=*,15,2X.5F17.7 003440
1 CONTINUE 003447
EFF=CABS(SUMC)**2/(N*SUMR) 003454
RETURN 003461
END
SUBROUTINE PLOTE(X1L,XIU,S3,EMAG,EMAX,EPHAD,NPNTS,NDIF) 003468
DIMENSION S3(1),EMAG(1),EPHAD(1)
LOGICAL PLOT,HARDC,WPLOTA 003476
AXMX=ABS(X1L) 003483
00 1
1=1,NPNTS 003491
WRITE(6,7)I .S3(I) ,EMAG(I),EPHAD(I)
1 CONTINUE 003508
C WRITE(5,22) 003515
22 FORMAT(1X,*WANT TO PLOT? T.OR.F*)
READ(S.+)PLOT 003522
IF(PLOT)7,88 003530
7 CALL TEKTRN(960) 003537
96 CALL BGNPL(1) 003544
CALL PAGE(10.897,14.103) 003551
CALL GRACE(0.0) 003558
CALL PHYSOR(2.5,1.0) 003566
IF(NDIF.EQ.0)GO TO 61 003573
CALL TITLE(16HPHASE DIFFERENCE,16,17HLOCATION ON ARRAY,17,
23HPHASE (DEGREES),15,4..3.) 003580
GO TO 64 003587
C 74 FORMAT(1X,+1,F(I),SUMC,SUMR=*,15,2X.5F17.7) 003622
1 CONTINUE 003629
EFF=CABS(SUMC)**2/(N*SUMR) 003636
RETURN 003643
END 003650
C.6 Program GRATE 2
PROGRAM GRATE2 (OUTPUT, TAPE 6=OUTPUT, FR80)
DIMENSION THM(41), VLE(41)
DIMENSION VP(15, 15), XP(15, 15), ZP(15, 15)
C COMPUTATION OF GRATING LOBES DUE TO SEGMENTED PARABOLIC REFLECTOR
F1=3.1415927
R0=666.666
F1=63.43432
C VAX RADIUS RD AND FOCAL LENGTH F1 IN RADIANS AT RF
VA=0.
DX=R0/12.
DO 1 I=1,15
 AL=I
 DO 2 J=1,15
 AJ=J
 X=DX*(.5+AJ)
 Y=DX*(.5+AJ)
 RP=SQRT(X**2+Y**2)
 TP=TAN(Y/RP)
 CALL ARC(RP, F1, AL0)
 RP1=2.*RP-ALO
 CALL ARC(RP1, F1, AL1)
 SARC=(R-RP1)/(AL0-AL1)
 RP2=SARC*R+RP1
 CALL ARC(RP2, F1, AL2)
 SARC=(R-RP2)/(AL1-AL2)
 RP2=SARC*R+RP2
 IF(RD-RP,<3,4
 V(I,J)=3.*60.4*COS((PI*R0)/(2.*RP))
 4 VP(I,J)=3.*60.4*COS((PI*R0)/(2.*RP))
 2 CONTINUE
V=V0+VP(I,J)
GO TO 2
3 VP(I,J)=0.
2 CONTINUE
1 CONTINUE
TH=.001
C TH IS FAR-FIELD ANGLE IN RADIANS
THM(1)=LOG2.*TH
VDB(1)=0.
DO 5 K=2,41
 TH=TH+.00001
 VR=0.
 VI=0.
 DO 6 I=1,15
 DO 7 J=1,15
 VER=COS(ZP(I,J)*(TH**2)/2.)
 VEI=SIN(ZP(I,J)*(TH**2)/2.)
 VEC=COS(XP(I,J)*TH)*VP(I,J)
 VER=VER+VEC
 VEI=VEI+VEC
 VR=VR+VER
 VI=VI+VEI
 7 CONTINUE
 6 CONTINUE
 V=SQRT(VR**2+VI**2)/VA
 VDB(K)=20.*ALOG10(V)
 IF(VDB(K),LT,-40.)VDB(K)=-40.
C VDB IS LOBE AMPLITUDE IN DB RELATIVE TO
C LOBE GIVEN BY A PLANAR ARRAY
THM(K)=TH*.100.
C THM IS FAR-FIELD ANGLE IN MILLIRADIANS.
SUBROUTINE ARC(XMAX,F1,AL)
COMPUTES ARC LENGTH OF A PARABOLA FROM X=0 TO XMAX
F1=FOCAL LENGTH
PARABOLA EQUATION IS Z=X**2/(4.*F1)
R=SQRT(XMAX**2+(2.*F1)**2)
A=XMAX*R/2.
B=(2.*(F1**2))*(ALOG((XMAX+R)/(2.*F1))
AL=(.5/F1)*(A+B)
RETURN
END
APPENDIX D

Executive Summary
1. INTRODUCTION

This report covers the work done on contract No. F30602-79-C-0017, "Adaptive Techniques for Large Space Apertures". The contract covered the period 6 Nov. 1978 - 5 Nov. 1979. The three major tasks on the program were Task 1, Concept Development/Assessment; Task 2, Performance Analysis, Selected Approach; and Task 3, Specific Mission Designs. Much of the work done on Task 1, particularly in the structural concepts tradeoff, had been done by us on an earlier contract sponsored by SAMS0, No. F04701-77-C-0180, "On-Orbit Assembly Concept Study". Our preferred structural approach for large space-deployable antennas is a deployable box truss.

Two missions which utilize large space apertures were considered on the program. These were the space-based radar mission and the space-based millimeter-wave radiometer mission. The greater part of the effort was spent on the radar mission. The intent of the program was to investigate reflector-based alternates to the space-fed phased array system that is the current baseline for the space-based radar program.

The adaptive techniques of interest were those that might be required to compensate for surface irregularities in the large, space-deployable reflectors that would be required for these missions. This and other system requirements were considered in selecting an antenna system for each mission.

Work done on the program is presented in detail in the Final Technical Report (Report No. MCR-79-644, dated 5 Nov. 1979). It is summarized briefly below.

2. THE TECHNICAL PROBLEM

Techniques for the deployment in space of very large structures, currently being developed, allow the consideration of a number of space missions utilizing very large aperture antennas. Two surveillance missions of particular interest to the Air Force are the Space-Based Radar (SBR) and the Millimeter Wave Radiometer (MWR). Both of these missions were considered on the program. The principal technical problems associated with these applications are:

- The development of an appropriate structural concept capable of efficient packaging for launch, reliable deployment in space, and the achievement of adequate precision for use as an antenna.

- Accurate and stable attitude and figure control of these large flexible bodies to maintain the required pointing accuracy as well as the RF performance of the antenna with acceptable damping periods following any maneuver.

- An RF antenna system design that will give the desired flexibility, field of view (FOV), resistance to ECM, and beam agility to perform the desired mission.
3. PROGRAM APPROACH

A number of antenna concepts were traded off against the requirements of the two missions and a concept was selected for each mission. The current program baseline concept for the SBR is a space-fed lens-array using a very large number of active transceiver module, to form the array. The principal weakness of this design is the high cost risk associated with the modules. Our selected approach gives a marked reduction in the required number of modules while still providing the flexibility to do the radar mission. Our approach is shown in Figure 1. It uses a large primary reflector 70 meters in diameter to achieve the necessary gain. A smaller field reflector and a phased array feed are used to provide the agility, FOV, and ECCM capability to do the radar mission.

A brief look was also given to a reflectarray as another possible alternative to the baseline lens-array SBR system. This is sketched in Figure 2. Its main advantage over the baseline lens-array system is that a much shorter focal length can be used. This gives a lighter and stiffer structure.

The concept selected for the M4TR mission is a reflective Schmidt telescope with diameter of 100 meters and a length of 300 meters. The reflecting surfaces are made up of metallized honeycomb panels. A linear array of feeds is used. This concept was selected for its wide FOV and relative simplicity. This system is shown in Figure 3.

Once these concepts were selected, a more detailed design effort was carried out. RF performance was analyzed by computation. The structure was sized, weights were estimated and a packaging design for a shuttle launch was made. This included a sizing of the propulsion required to place the vehicle in its operational orbit. A first-cut design was also made for the attitude control and figure control systems.

4. STUDY RESULTS

The selected design for the SBR uses a 70 meter primary reflector with an f/D of 1. The smaller field reflector is 28 meters in diameter and the planar phased array feed is also 28 meters in diameter. The total number of active modules is reduced by a factor of 4.3 from that used in the lens-array concept. The orbit altitude was selected as 5000 n.mi. The FOV for agile beam scanning is 20° x 11°, which is not sufficient for full-earth coverage. An attitude control concept was selected which uses gravity-gradient stabilization and rotation about the gravity-gradient axis to provide full-earth coverage using a combination of electronic and mechanical steering. The system was packaged for launch in a single shuttle, including the propulsion stage required to reach the operational orbit. Deployment is fully automatic and is done in the shuttle orbit under the control of the orbiter crew. It is then boosted to its operational orbit using a low-thrust liquid stage.

A similar design was made for a synchronous-orbit version of the SBR. It uses a primary reflector 300m. in diameter. It requires three shuttle flights to reach synchronous orbit using electric propulsion for orbit
Figure 1
Radar Antenna

- Field Reflector
- Phased Array
- Astromasts
- Feed
- Solar Panels
- Guyline Stabilizers
- Main Reflector
Figure 2: REFLECTARRAY RADAR
Figure 3 Reflective Schmidt Antenna For Millimeter-Wave Radiometry
transfer. Deployment and assembly is done in the shuttle orbit. The antenna system is designed for a smaller scan range than the 5000 mile orbit vehicle. This allows the field reflects and phased array feed to be smaller relative to the main reflector. They are 30 m. in diameter or only 1/10 that at the primary reflector. The spacecraft configuration is shown in Figure 4.

The reflectarray was sized at 91 m. with an f/D of 0.5 for the 500 n. mi. orbit. It uses passive (phase shift only) reflectarray modules. It can be packaged in a single shuttle vehicle.

A 400 n.mi. orbit was selected for the MWR mission. This was selected as the minimum altitude giving an acceptable level of atmospheric drag. It is gravity-gradient stabilized and nadir-pointing, operating in a pushbroom mode. Operating frequency was selected at the 95 GHz atmospheric window. The FOV is quite wide, 10,000 beamwidths. The pushbroom swath width on the ground is 125 n.mi. Sensitivity is sufficient to detect a military tank in most weather conditions except heavy rain. The resolution based on the individual beamwidths is 74 ft. but a data processing technique based on using monopulse sum and difference patterns can be used to improve this by a factor of 10 or more.
Figure 4 RADAR ANTENNA, SYNCHRONOUS ORBIT
MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.