CONFIDENCE INTERVALS ON A RATIO OF VARIANCES IN THE TWO-FACTOR -- ETC(U)

MAY 80 F A GRAYBILL, C WANG

UNCLASSIFIED

TR-3

END

(Continued)

5-80
CONFIDENCE INTERVALS ON A RATIO OF VARIANCES
IN THE TWO-FACTOR NESTED COMPONENTS OF VARIANCE MODEL

by

Franklin A. Graybill and Chih-Ming Wang
Department of Statistics
Colorado State University
Fort Collins, Colorado 80523

Technical Report Number 3
May 1, 1980

This document has been approved
for public release and sale; its
distribution is unlimited.

PREPARED UNDER CONTRACT
N00014-78-C-0463 (NR 042-402)
FOR THE OFFICE OF NAVAL RESEARCH
FRANKLIN A. GRAYBILL, PRINCIPAL INVESTIGATOR
ABSTRACT

Consider the two-factor nested components of variance model

\[Y_{ijk} = \mu + A_i + B_{ij} + C_{ijk}, \]

where \(\text{Var}[A_i] = \sigma_A^2, \text{Var}[B_{ij}] = \sigma_B^2, \)

\(\text{Var}[C_{ijk}] = \sigma_C^2. \)

Confidence intervals are derived for \(\frac{\sigma_A^2}{\sigma_C^2}, \frac{\sigma_B^2}{(\sigma_A^2 + \sigma_C^2)} \) and \(\frac{\sigma_C^2}{(\sigma_A^2 + \sigma_C^2)}. \)

KEY WORDS: Confidence intervals on ratios of variances.
1. Introduction

Consider the two-factor nested components-of-variance model given by

\[Y_{ijk} = \mu + A_i + B_{ij} + C_{ijk} \]

for

\[i = 1, 2, \ldots, I > 1; j = 1, 2, \ldots, J > 1; \text{ and } k = 1, 2, \ldots, K > 1; \]

where \(E[A_i] = 0; \) \(\text{Var}[A_i] = \sigma_A^2; \) \(E[B_{ij}] = 0; \) \(\text{Var}[B_{ij}] = \sigma_B^2; \) \(E[C_{ijk}] = 0; \)

and \(\text{Var}[C_{ijk}] = \sigma_C^2. \) The random variables \(Y_{ijk} \) are observable; the random variables \(A_1, \ldots, A_I; B_{11}, \ldots, B_{IJ}; C_{11}, \ldots, C_{IJK} \) are pairwise uncorrelated and unobservable and are jointly normally distributed; \(\mu, \sigma_A^2, \sigma_B^2, \) and \(\sigma_C^2 \) are unobservable parameters. The parameter space \(\Omega \) is defined by

\[\Omega = \{ (\mu, \sigma_A^2, \sigma_B^2, \sigma_C^2): -\infty < \mu < \infty, \sigma_A^2 \geq 0, \sigma_B^2 \geq 0, \sigma_C^2 \geq 0 \}. \]

These specifications define a two-factor nested components-of-variance model with equal numbers in the subclasses and the ANOVA table is displayed in Table 1.

Table 1.

ANOVA table for two-factor nested components-of-variance model with equal numbers in the subclasses

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.</th>
<th>E.M.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>IJK</td>
<td>(\sum Y^2_{ijk})</td>
<td></td>
<td>(\sum Y^2_{ijk})</td>
</tr>
<tr>
<td>Mean</td>
<td>1</td>
<td>(IJK \bar{Y}^2)</td>
<td></td>
<td>(IJK \bar{Y}^2)</td>
</tr>
<tr>
<td>Factor A</td>
<td>(n_1 = I-1)</td>
<td>(\sum (\bar{Y}_{i..} - \bar{Y})^2)</td>
<td>(S^2_1)</td>
<td>(\theta_1 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2)</td>
</tr>
<tr>
<td>B within A</td>
<td>(n_2 = I(J-1))</td>
<td>(\sum (\bar{Y}{ij..} - \bar{Y}{i..})^2)</td>
<td>(S^2_2)</td>
<td>(\theta_2 = \sigma_B^2 + \sigma_C^2)</td>
</tr>
<tr>
<td>Error</td>
<td>(n_3 = IJ(K-1))</td>
<td>(\sum (Y_{ijk} - \bar{Y}_{ij..})^2)</td>
<td>(S^2_3)</td>
<td>(\theta_3 = \sigma_C^2)</td>
</tr>
</tbody>
</table>
In this model there are several functions of the variance components that may be of interest in applied problems. These include
\[\sigma^2_A, \sigma^2_B, \sigma^2_C, \sigma^2_C/(\sigma^2_C + \sigma^2_B), \sigma^2/(\sigma^2_C + \sigma^2_A), \sigma^2/(\sigma^2_A + \sigma^2_B + \sigma^2_C), \sigma^2_B/(\sigma^2_A + \sigma^2_B + \sigma^2_C), \]
and \[\sigma^2_C/(\sigma^2_A + \sigma^2_B + \sigma^2_C). \]
The only functions of \(\sigma^2_A, \sigma^2_B, \sigma^2_C \) given above for which an exact size confidence interval exists is \(\sigma^2_C \) and \(\sigma^2_C/(\sigma^2_C + \sigma^2_B) \).

Approximate size confidence intervals for \(\sigma^2_A \) and \(\sigma^2_B \) have been given by Moriguti (1954), Bulmer (1956) and Howe (1974). Approximate size confidence intervals for \(\sigma^2_A/(\sigma^2_A + \sigma^2_B + \sigma^2_C), \sigma^2_B/(\sigma^2_A + \sigma^2_B + \sigma^2_C) \) and \(\sigma^2_C/(\sigma^2_A + \sigma^2_B + \sigma^2_C) \) have been given by Graybill and Wang (1979). In this paper we give approximate size confidence intervals for \(\sigma^2_C/(\sigma^2_A + \sigma^2_B), \sigma^2_A/(\sigma^2_A + \sigma^2_B), \sigma^2_A/\sigma^2_C \) and \(\sigma^2_C/\sigma^2_A \).

Actually we obtain approximate size confidence intervals for \(\sigma^2_A/\sigma^2_C \) only since \(\sigma^2_A/\sigma^2_C, \sigma^2_A/(\sigma^2_A + \sigma^2_C), \) and \(\sigma^2_C/(\sigma^2_A + \sigma^2_C) \) can be obtained from these.

In Section 2 the lower limit of the upper confidence interval is derived, in Section 3 the upper limit of the lower confidence interval is given, and in Section 4 is a short discussion of other methods that could possibly be used for confidence intervals on \(\sigma^2_A/\sigma^2_C \).
2. **Lower Limit of the Upper Confidence Interval on \(\sigma_A^2 / \sigma_C^2 \)**

Since \(Y \ldots, S_1^2, S_2^2, \) and \(S_3^2 \) are complete sufficient statistics for this problem, we will require the upper confidence interval to be a function of them. Write

\[
g(\bar{Y} \ldots, S_1^2, S_2^2, S_3^2) < \frac{\theta_1 - \theta_2}{\theta_3} < \infty
\]

for the \(1 - \alpha \) upper confidence interval where the function \(g(\bar{Y} \ldots, S_1^2, S_2^2, S_3^2) \), the lower confidence point, is to be determined.

Using the notation in Table 1 observe that \(\frac{\theta_1 - \theta_2}{\theta_3} = \frac{JK\sigma_B^2}{\sigma_C^2} \), so an upper confidence interval on \(\frac{\theta_1 - \theta_2}{\theta_3} \) is equivalent to an upper confidence interval on \(\frac{\sigma_A^2}{\sigma_C^2} \).

Since \(\sigma_A^2 / (\sigma_A^2 + \sigma_C^2) \) is a function of \(\theta_1, \theta_2, \theta_3 \) only, this is unchanged if any constant \(c \) is added to \(Y_{ijk} \) in the model given in Section 1. Thus the lower confidence point \(g(\bar{Y} \ldots, S_1^2, S_2^2, S_3^2) \) should also be unchanged if \(c \) is added to \(Y_{ijk} \). Let \(c = -\bar{Y} \ldots \); thus \(\bar{Y} \ldots + c \) is zero and \(S_1^2, S_2^2, S_3^2 \) are unchanged when \(Y_{ijk} \) is replaced by \(Y_{ijk} + c \) (or specifically by \(Y_{ijk} - \bar{Y} \ldots \)). Hence \(g(\bar{Y} \ldots, S_1^2, S_2^2, S_3^2) \) becomes \(g(0, S_1^2, S_2^2, S_3^2) \) and the lower confidence point is a function of \(S_1^2, S_2^2, \) and \(S_3^2 \) only. So the objective is to find a function of \(S_1^2, S_2^2, S_3^2 \), say \(f(S_1^2, S_2^2, S_3^2) \) such that

\[
P[f(S_1^2, S_2^2, S_3^2) < (\theta_1 - \theta_2)/\theta_3] \approx 1 - \alpha.
\]

If \(Y_{ijk} \) is replaced by \(cY_{ijk} \) for \(c \neq 0 \), then \((\theta_1 - \theta_2)/\theta_3 \) is unchanged. Thus we require \(f(c^2S_1^2, c^2S_2^2, c^2S_3^2) = f(S_1^2, S_2^2, S_3^2) \). Let \(c^2 = 1/S_2^2 \), then \(f(S_1^2, S_2^2, S_3^2) = f(S_1^2/S_2^2, 1, S_3^2/S_2^2) = h(S_1^2/S_2^2, S_3^2/S_2^2) \), so the lower confidence point of \((\theta_1 - \theta_2)/\theta_3 \) is a function of \(S_1^2/S_2^2 \) and \(S_3^2/S_2^2 \) only.
Since the maximum likelihood estimator of \(\frac{\theta_1 - \theta_2}{\theta_3} = \frac{\theta_1/\theta_2 - 1}{\theta_3/\theta_2} \) is of the form \(\frac{s_1^2 - s_2^2}{s_3^2} = \frac{s_1^2/s_2^2 - 1}{s_3^2/s_2^2} \), we require \(h(s_1^2/s_2^2, s_3^2/s_2^2) \) to be

(a) monotonic increasing in \(s_1^2/s_2^2 \); (b) monotonic decreasing in \(s_3^2/s_2^2 \).

Let \(\theta = \frac{s_2^2 - s_1^2}{s_3^2} \), then from Mood et al. (1974, p. 180).

\[
\text{Var}(\theta) = \text{Var}(\frac{s_1^2 - s_2^2}{s_3^2}) = \frac{2n_2^2}{n_1(n_3 - 2)^2} \frac{\theta_1^2}{\theta_3} + \frac{2n_2^3}{n_2(n_3 - 2)^2} \frac{\theta_2^2}{\theta_3^2} + \frac{2n_2^2}{(n_3 - 4)(n_3 - 2)^2} \left(\frac{\theta_1}{\theta_3} - \frac{\theta_2}{\theta_3} \right)^2 + \frac{4n_3^2}{n_1(n_3 - 4)(n_3 - 2)^2} \frac{\theta_2^2}{\theta_3^2} + \frac{4n_3^2}{n_2(n_3 - 4)(n_3 - 2)^2} \frac{\theta_2^2}{\theta_3^2}
\]

If we replace the \(\theta_1 \) by UMVU estimators and denote the resulting \(\text{Var}(\hat{\theta}) \) by \(\hat{\text{Var}}(\hat{\theta}) \), then \(\hat{\text{Var}}(\hat{\theta}) = c_1 s_1^2/s_3^2 + c_2 s_2^2/s_3^2 + (c_3 s_1^2/s_3^2 - c_4 s_2^2/s_3^2)^2 \) where \(c_1, c_2, c_3 \) and \(c_4 \) are appropriate constants which are functions of \(n_1, n_2, \) and \(n_3 \).
So a large sample lower confidence point for \(\frac{\hat{\theta}_1 - \hat{\theta}_2}{\hat{\theta}_3} \) is

\[
\hat{\theta} = N_a \sqrt{\text{Var}(\hat{\theta})} = \frac{s_1^2}{s_3^2} - N_a \left\{ c_1 \frac{s_1^4}{s_3^4} + c_2 \frac{s_2^4}{s_3^4} + (c_3 \frac{s_1^2}{s_3^2} - c_4 \frac{s_2^2}{s_3^2})^2 \right\}^{1/2} = \frac{s_2^2}{s_3^2} \left[\frac{s_1^2}{s_2^2} - 1 - N_a \left\{ c_1 \left(\frac{s_1^2}{s_2^2} \right)^2 + c_2 + (c_3 \frac{s_1^2}{s_2^2} - c_4^2) \right\}^{1/2} \right] = \frac{s_2^2}{s_3^2} q \left(\frac{s_1^2}{s_2^2} \right)
\]

where \(N_a \) is the upper \(a \) probability point of a standard normal p.d.f.

Therefore, in general we require the lower confidence point, \(h(S_1^2/S_2^2, S_3^2/S_2^2) \), of \(\frac{\hat{\theta}_1 - \hat{\theta}_2}{\hat{\theta}_3} \) to be of the form \(\frac{s_2^2}{s_2^2} q \left(\frac{s_1^2}{s_2^2} \right) \), and we determine the function \(q \left(\frac{s_1^2}{s_2^2} \right) \) such that

\[
P\left[-\frac{S_1^2}{S_3^2} q \left(\frac{s_1^2}{s_2^2} \right) \leq \frac{\hat{\theta}_1 - \hat{\theta}_2}{\hat{\theta}_3} \right] = 1 - a \tag{2.1}
\]

is close to \(1 - a \). We require \(q \left(\frac{s_1^2}{s_2^2} \right) \) to satisfy (1), (2), (3) below.

1. When the hypothesis \(H_0: \sigma_A^2 = 0 \) vs. \(H_a: \sigma_A^2 > 0 \) is accepted for a size \(a \) test the confidence interval should include zero, and when \(H_0 \) is rejected, \(h(S_1^2/S_2^2, S_3^2/S_2^2) \) should be an increasing function of \(S_1^2/S_2^2 \).

To test \(H_0: \sigma_A^2 = 0 \) vs. \(H_a: \sigma_A^2 > 0 \) the hypothesis \(H_0 \) is accepted if and only if \(S_1^2/S_2^2 < F_a: n_1, n_2 \) (This test is uniformly most powerful unbiased). Thus

\[
h(S_1^2/S_2^2, S_3^2/S_2^2) = 0 \quad \text{when} \quad S_1^2/S_2^2 \leq F_a: n_1, n_2
\]

\[
h(S_1^2/S_2^2, S_3^2/S_2^2) > 0 \quad \text{and increasing in} \quad S_1^2/S_2^2 \quad \text{when} \quad S_1^2/S_2^2 > F_a: n_1, n_2
\]
Since \(h(S_1^2/S_2^2, S_3^2/S_2^2) = \frac{s_2^2}{s_3^2} q(s_1^2/s_2^2) \) we obtain

\[
q(s_1^2/s_2^2) = 0 \quad \text{when } S_1^2/S_2^2 \leq F\alpha: n_1, n_2
\]

\[
q(s_1^2/s_2^2) > 0 \text{ and increasing in } S_1^2/S_2^2 \quad \text{when } S_1^2/S_2^2 > F\alpha: n_1, n_2
\]

(2) When \(J \rightarrow \infty \) (hence \(n_2 \rightarrow \infty \) and \(n_3 \rightarrow \infty \)) the confidence interval will be required to have an "exact" confidence coefficient \(1 - \alpha \). When \(J \rightarrow \infty \) it follows that \(n_2 \rightarrow \infty \) and \(n_3 \rightarrow \infty \) and from this it follows that \(S_2^2 + \theta_2 \) in probability and \(S_3^2 + \theta_3 \) in probability. Start with

\[
P\left[F_{\alpha: n_1, \infty} \right] = 1 - \alpha
\]

and use the result of \(J \rightarrow \infty \), i.e. replace \(S_2^2 \) and \(S_3^2 \) by their "equivalent" values \(\theta_2 \) and \(\theta_3 \) respectively, to obtain

\[
P\left[\frac{S_2^2}{S_3^2} \left(\frac{S_1^2}{S_2^2} - 1 \right) \leq \frac{\theta_1 - \theta_2}{\theta_3} \right] = 1 - \alpha
\]

Hence when \(J \rightarrow \infty \)

\[
q(s_1^2/s_2^2) = 0 \quad \text{when } S_1^2/S_2^2 \leq F\alpha: n_1, \infty
\]

\[
q(s_1^2/s_2^2) = \frac{s_1^2}{s_2^2} - 1 \quad \text{when } S_1^2/S_2^2 > F\alpha: n_1, \infty
\]

(3) If \(\sigma_A^2 \rightarrow \infty \), the quantity \(\frac{\theta_1 - \theta_2}{\theta_3} \) is dominated by \(\theta_1/\theta_3 \), and we want

\[
P\left[\frac{s_2^2}{s_3^2} \left(\frac{s_1^2}{s_2^2} \right) \leq \frac{\theta_1}{\theta_3} \right] = 1 - \alpha
\]

to be equal to \(1 - \alpha \). This requires \(q(s_1^2/s_2^2) \) to behave like

\[
q(s_1^2/s_2^2) = \frac{s_1^2}{s_2^2} \left(1 + c(s_1^2/s_2^2) \right) \quad \text{where}
\]

\[
q(s_1^2/s_2^2) = \frac{s_1^2}{s_2^2} \left(1 + c(s_1^2/s_2^2) \right) \quad \text{where}
\]
\[l(S_1^2/S_2^2) \to 0 \text{ as } S_1^2/S_2^2 \to \infty \]

Any function \(q(S_1^2/S_2^2) \) satisfying conditions (1), (2), (3) will give an exact confidence coefficient in the three limiting cases \(\theta_1/\theta_2 = 1, \theta_1/\theta_2 = \infty \) and \(J = \infty \).

The simplest function satisfying those conditions is the linear function

\[q(S_1^2/S_2^2) = a_1 S_1^2/S_2^2 + b_1 \]

where \(a_1 \) and \(b_1 \) are functions of \(n_1, n_2, n_3 \), and \(\alpha \) and are determined by the conditions (1), (2), and (3). However, this did not give results as good as desired so a more general function was used, namely

\[q(S_1^2/S_2^2) = [a_1 S_1^2/S_2^2 + b_1 + c_1(S_1^2/S_2^2)^{-1}] / F_\alpha: n_1, n_3 \]

(2.2)

From condition (3) \(a_1 = 1 \).

From condition (2) \(b_1(n_1, =, \infty) = -F_\alpha: n_1, =: c_1(n_1, =, \infty) = 0 \)

From condition (1) \(F_\alpha: n_1, n_2 + b_1 + c_1/F_\alpha: n_1, n_2 = 0 \) or

\[c_1 = -F_\alpha: n_1, n_2 (F_\alpha: n_1, n_2 + b_1). \]

Let \(b_1(n_1, n_2, n_3) = -F_\alpha: n_1, = \) for all \(n_2 \) and \(n_3 \), then

\[c_1 = F_\alpha: n_1, n_2 (F_\alpha: n_1, = -F_\alpha: n_1, n_2), \]

and

\[q(S_1^2/S_2^2) = [S_1^2/S_2^2 - F_\alpha: n_1, = + F_\alpha: n_1, n_2 (F_\alpha: n_1, = - F_\alpha: n_1, n_2) S_2^2/S_1^2] / F_\alpha: n_1, n_3 \]

Thus a \(1 - \alpha \) upper confidence interval on \((\theta_1 - \theta_2)/\theta_3\) is \(L_2 \leq (\theta_1 - \theta_2)/\theta_3 < \infty \)

where \(L_2 \) is defined by

\[L_2 = 0 \quad \text{if} \quad S_1^2/S_2^2 \leq F_\alpha: n_1, n_2 \]

(2.3)

\[L_2 = \frac{S_2^2}{S_3^2 F_\alpha: n_1, n_3} \left[S_1^2/S_2^2 - F_\alpha: n_1, = + F_\alpha: n_1, n_2 (F_\alpha: n_1, = - F_\alpha: n_1, n_2) S_2^2/S_1^2 \right] \]

\[\text{if} \quad S_1^2/S_2^2 > F_\alpha: n_1, n_2 \]
Note that $L_2 = 0$ if and only if the α level test of $H_0: \sigma_A^2 = 0$
is accepted, so $P[L_2 = 0] = P[S_1^2/S_2^2 < F_{n_1, n_2}] < 1 - \alpha$ and $P[L_2 = 0] = 1 - \alpha$
if and only if $\sigma_A^2 = 0$. The probability associated with Equation (2.3) is a function
of the unknown parameter $\rho = \theta_1/\theta_2$ and is exactly equal to $1 - \alpha$ when ρ is one
or infinity or when J is infinite.

The excellence of this approximation is indicated by Table 2, calculated by
simulation. Columns 7, 8, and 9 of Table 2 contain the range of probabilities of
$L_2 \leq (\theta_1 - \theta_2)/\theta_3$ as the unknown parameter θ_1/θ_2 varies from 1 to ∞. The
approximation appears to be quite satisfactory even for small sample sizes.

The remainder of this section is devoted to the study of the behavior of
$P = \frac{\sigma_A^2}{\sigma^2} q(S_1^2/S_2^2) \leq \frac{\theta_1 - \theta_2}{\theta_3}$ for all values of $n_1, n_2,$ and n_3. From Table 2

P appears to get closer to $1 - \alpha$ as the value of K (hence n_3) increases.
In fact as $K \to \infty$ (hence $n_3 \to \infty$) the problem is reduced to the interval
estimation of σ_A^2 in the one-factor model and the method discussed in this
section is equivalent to Moriguti's method (1954). From this one knows that the
error in P is of the order n_2^{-2}, i.e. $P = 1 - \alpha + O(n_2^{-2})$. Another way to
examine the behavior of P is to expand P in powers of n_2^{-1} and n_3^{-1}.
The algebraic details of this work are heavy (see Bulmer (1957)). The resulting
expansion is

$$P = 1 - \alpha + a_0 + a_{12}/n_2 + a_{13}/n_3 + a_{22}/n_2^2 + a_{33}/n_3^2 + a_{23}/n_2n_3 + O(n_2^{-2}, n_3^{-3}).$$

This assures that as the values of J and K (hence n_2 and n_3) increase
the accuracy of the approximation gets better.

In Table 2, P is between 0.9500 and 0.9597 when $I = 3$, $J = 3$, $K = 3$, and
$1 - \alpha = 0.95$ and when $I = 7$, $J = 3$, $K = 3$, P is between 0.9500 and 0.9581.
A study of the values of P when I is large (n_1, n_2, and n_3 are large, but
$R_1 = n_1/n_2$, $R_2 = n_1/n_3$ remain constant) is in Wang (1979).
3. Upper Limit of the Lower Confidence Interval on σ^2_A/σ^2_C

Since $P[\frac{\theta_1 - \theta_2}{\theta_3} < f(S^2_1, S^2_2, S^2_3)] = 1 - P[f(S^2_1, S^2_2, S^2_3) \leq \frac{\theta_1 - \theta_2}{\theta_3}]$, we use the confidence coefficient α in the lower limit of the upper confidence interval in Equation (2.3) to obtain a lower $1 - \alpha$ confidence interval on $(\theta_1 - \theta_2)/\theta_3$ given by $0 < (\theta_1 - \theta_2)/\theta_3 < U$ where

$$U = \frac{S^2_2}{S^2_2 F_{1-\alpha:n_1,n_3}} \left[S^2_1/S^2_2 - F_{1-\alpha:n_1,n_2} - F_{1-\alpha:n_1,n_2} (F_{1-\alpha:n_1,n_2} - F_{1-\alpha:n_1,n_2}) S^2_2/S^2_1 \right]$$

if $S^2_1/S^2_2 > F_{1-\alpha:n_1,n_2}$ \hspace{1cm} (3.1)

$$U = 0$$

if $S^2_1/S^2_2 < F_{1-\alpha:n_1,n_2}$

We could determine how close the confidence coefficient of this confidence interval is to the nominal $1 - \alpha$ by simulation. However, due to the expense of computer simulation we chose a different route. We used $q_1(S^2_1/S^2_2) = a_{11} S^2_1/S^2_2 + b_1$ and conditions similar to (1), (2), (3) of Section 2 to obtain the confidence interval $0 < (\theta_1 - \theta_2)/\theta_3 < U_1$, where U_1 is given by

$$U_1 = 0$$

if $S^2_1/S^2_2 < F_{1-\alpha:n_1,n_2}$ \hspace{1cm} (3.2)

$$U_1 = \frac{S^2}{S^2_3} (S^2_1/S^2_2 F_{1-\alpha:n_1,n_3} - F_{1-\alpha:n_1,n_2}/F_{1-\alpha:n_1,n_2})$$

if $S^2_1/S^2_2 > F_{1-\alpha:n_1,n_2}$

Note that $U_1 = 0$ and $U = 0$ if and only if the $1 - \alpha$ level test of $H_0: \sigma^2_A = 0$ is accepted. Also note that conditions (2) and (3) of Section 2 are satisfied by the confidence intervals given in Equations (3.1) and (3.2).
The probability associated with Equation (3.2) depends on the value of \(\rho = \frac{\theta_1}{\theta_2} \), \(n_1, n_2, n_3 \) and can be easily calculated if \(n_1 \) is even; we get

\[
P[\frac{\theta_1 - \theta_2}{\theta_3} \leq \frac{S_2^2}{S_3^2} \left(\frac{S_1^2}{S_2^2 F_{1-\alpha, n_1, n_2}} - F_{1-\alpha, n_1, n_3} \right)]
\]

\[
= \frac{1}{c+1} \frac{n_2/2}{d+1} \frac{n_3/2}{n_1/2-1} \sum_{y=0}^{1} \frac{1}{y!2^y} \left(\frac{c}{c+1} + \frac{d}{d+1} \right)^y
\]

where \(c = \frac{R_1 F_{1-\alpha, n_1, n_2}}{\rho} \), \(d = (\rho-1) R_2 F_{1-\alpha, n_1, n_3}/\rho \) (see Wang (1979)).

The results of the probabilities of \((\theta_1 - \theta_2)/\theta_3 \leq U \) are given in Table 3 for various values of \(I, J, K \) and for \(1-\alpha = 0.09, 0.95, 0.99 \). The actual probabilities are quite close to the specified probabilities even for small sample sizes. We expect the results to be even better if the more general confidence interval \(0 < (\theta_1 - \theta_2)/\theta_3 \leq U \) is used where \(U \) is given in Equation (3.1).

4. Comparison with Other Methods.

The literature does not contain any references that have been evaluated and directly relate to confidence intervals on \(\sigma_A^2/\sigma_C^2 \). Perhaps Satterthwaite's (1946) method could be used but this procedure is extremely poor when used to place confidence intervals on the difference of expected mean squares (i.e. on \((\theta_1 - \theta_2)/\theta_3 = J K \sigma_A^2/\sigma_C^2 \)). Broemeling (1969) presents a method for placing simultaneous confidence intervals on \(\sigma_A^2/\sigma_C^2 \) and \(\sigma_B^2/\sigma_C^2 \). This method can be used to place confidence intervals on \(\sigma_A^2/\sigma_C^2 \).

We use Equation (15) in Broemeling (1969) to obtain

\[
P[0 < K J \sigma_A^2/\sigma_C^2 \leq \frac{S_2^2}{S_1^2} F_{1-\alpha, n_1, n_3}] \geq (1 - \alpha)^2
\]
(4.1)
which can be used for a lower confidence interval on KJq^2_A/σ^2_c with confidence coefficient greater than or equal to $(1 - \alpha)^2$. Clearly the $1 - \alpha$ lower confidence interval in Equation (3.2) above is shorter than the $(1 - \alpha)^2$ confidence interval in Equation (4.1). Thus the confidence interval on σ^2_A/σ^2_c derived from the procedure by Broemeling is not as good as the method presented in this paper.

REFERENCES

Table 2
Confidence Coefficients for an Upper Confidence Interval on $\frac{1-\theta_2}{\theta_3}$ (on σ^2_1/σ^2_0) Using Equation (2.3)

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>K</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>1-(\alpha = .90)</th>
<th>1-(\alpha = .95)</th>
<th>1-(\alpha = .99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>.90 - .9109</td>
<td>.95 - .9597</td>
<td>.99 - .9955</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>.90 - .9092</td>
<td>.95 - .9580</td>
<td>.99 - .9937</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>30</td>
<td>.90 - .9082</td>
<td>.95 - .9550</td>
<td>.99 - .9927</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>27</td>
<td>60</td>
<td>.90 - .9044</td>
<td>.95 - .9534</td>
<td>.99 - .9908</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>.90 - .9115</td>
<td>.95 - .9591</td>
<td>.99 - .9947</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>50</td>
<td>.90 - .9063</td>
<td>.95 - .9549</td>
<td>.99 - .9927</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>45</td>
<td>100</td>
<td>.90 - .9033</td>
<td>.95 - .9534</td>
<td>.99 - .9918</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>42</td>
<td>.90 - .9108</td>
<td>.95 - .9581</td>
<td>.99 - .9945</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>28</td>
<td>70</td>
<td>.90 - .9063</td>
<td>.95 - .9549</td>
<td>.99 - .9922</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>42</td>
<td>98</td>
<td>.90 - .9034</td>
<td>.95 - .9539</td>
<td>.99 - .9918</td>
</tr>
</tbody>
</table>
Table 3
Confidence Coefficients for a Lower Confidence Interval on $\frac{1 - \theta}{\theta} \left(\text{on } \frac{\sigma_{A}}{\sigma_{C}} \right)$ Using Equation (3.2)

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>K</th>
<th>n₁</th>
<th>n₂</th>
<th>n₃</th>
<th>1-α = .90</th>
<th>1-α = .95</th>
<th>1-α = .99</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>81</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>30</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>27</td>
<td>60</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>297</td>
<td>600</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>100</td>
<td>2</td>
<td>6</td>
<td>891</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10001</td>
<td>2</td>
<td>6</td>
<td>9000</td>
<td>.90 .9000</td>
<td>.95 .9500</td>
<td>.99 .9900</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>.90 .9021</td>
<td>.95 .9516</td>
<td>.99 .9904</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>50</td>
<td>.90 .9012</td>
<td>.95 .9509</td>
<td>.99 .9902</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>45</td>
<td>100</td>
<td>.90 .9006</td>
<td>.95 .9504</td>
<td>.99 .9901</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>42</td>
<td>.90 .9039</td>
<td>.95 .9528</td>
<td>.99 .9908</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>28</td>
<td>70</td>
<td>.90 .9022</td>
<td>.95 .9516</td>
<td>.99 .9904</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>42</td>
<td>98</td>
<td>.90 .9015</td>
<td>.95 .9511</td>
<td>.99 .9903</td>
</tr>
</tbody>
</table>
CONFIDENCE INTERVALS ON A RATIO OF VARIANCES IN THE TWO-FACTOR NESTED COMPONENTS OF VARIANCE MODEL

PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Statistics
Colorado State University
Fort Collins, CO 80523

CONTRACT OR GRANT NUMBER(S)
N00014-78-C-0463

REPORT DATE
May 1980

DISTRIBUTION STATEMENT (of this report)
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

ABSTRACT
Confidence intervals on ratios of variances
ABSTRACT

Consider the two-factor nested components of variance model \(Y_{ij} = \mu + A_i + B_{ij} + C_{ij}, \) where \(\text{Var}(A_i) = \sigma_A^2, \)
\(\text{Var}(B_{ij}) = \sigma_B^2, \) \(\text{Var}(C_{ij}) = \sigma_C^2. \)

Confidence intervals are derived for \(\hat{\sigma}_A^2, \sigma_A^2/(\sigma_B^2 + \sigma_C^2) \)
and \(\sigma_C^2/\sigma_C^2. \)