EFFECTS OF IMPULSIVE HEATING EVENTS ON F-REGION CHEMISTRY AND ELECTRON DENSITY

HAES Report No. 81

John D. Kelly
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

31 July 1979

Topical Report for Period March 1978—July 1979

CONTRACT No. DNA 001-77-C-0042

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE 8322079462 125AXHX6132 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
EFFECTS OF IMPULSIVE HEATING EVENTS ON F-REGION CHEMISTRY AND ELECTRON DENSITY
HAES Report No. 81

John D. Kelly

SRI Project 5915
Subtask 125AAXHX631-32

333 Ravenswood Avenue
Menlo Park, California 94025

Director
Defense Nuclear Agency
Washington, D.C. 20305

5. TYPE OF REPORT & PERIOD COVERED
Topical Report for Period March 1978—July 1979

6. PERFORMING ORG. REPORT NUMBER

9. PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

13. NUMBER OF PAGES
42

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CLASS (of this report)
UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES
This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B322079462 125AAXHX63132 H2590D.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Atmospheric Heave
Joule Heat
Nuclear Effects

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The Chatanika incoherent-scatter radar (located near Fairbanks, Alaska, L = 5.6) has been used to study the ionospheric effects of impulsive auroral heating events. In some cases, the time-integrated auroral energy deposition is similar in magnitude to that expected from a high altitude nuclear event outside the fireball region. The resulting ionospheric effects are significant. The elevated temperatures and atmospheric heave contribute to a substantial change in F-region ion chemistry, changing...
20. ABSTRACT (Continued)

the dominant F-region ion from atomic to molecular species. As a result, a significant depletion of the F-region electron density occurs. Currently, these effects are not accurately predicted by the nuclear codes, as the function of the codes is to predict the large-scale perturbations. The Chatanika radar data can be used to improve the ambient ionospheric models and to improve the predictions of F-region changes resulting from sudden heating events.
CONTENTS

LIST OF ILLUSTRATIONS ... 2
LIST OF TABLES .. 3

I INTRODUCTION .. 5

II BACKGROUND ... 7
A. Particle Precipitation and Electron Temperature 8
B. Joule Heating and Ion Temperature 8
C. Ionospheric Heating from Nuclear Effects 9
D. Auroral Zone Ion Composition 10

III MEASURED AURORAL ZONE IONOSPHERIC RESPONSE 13
A. Radar Measurements ... 15
B. Numerical Modeling of Transition Altitude Variations 19
 1. Quiet Conditions--Diurnal Variation 23
 2. Active Conditions--Particle Precipitation 26
 3. Effect of Joule Heat Input 29
C. Summary of Numerical Modeling 31

IV CONCLUSIONS .. 32

REFERENCES ... 33
List of Illustrations

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Auroral Block Diagram</td>
<td>7</td>
</tr>
<tr>
<td>2. Ionosphere Heating From Nuclear Effects</td>
<td>9</td>
</tr>
<tr>
<td>3. Chatanika Location (65°N) and Feldstein's 1967 Auroral Oval</td>
<td>14</td>
</tr>
<tr>
<td>4. Ambient Electron Density Profile for 13 August 1975</td>
<td>16</td>
</tr>
<tr>
<td>5. Average Electric Field for 13 August 1975</td>
<td>17</td>
</tr>
<tr>
<td>6. Height-Integrated Joule Heating for 13 August 1975</td>
<td>18</td>
</tr>
<tr>
<td>7. Electron and Ion Temperatures at 277 km for 13 August 1975</td>
<td>19</td>
</tr>
<tr>
<td>8. Ion Composition [O⁺] / N⁺</td>
<td>20</td>
</tr>
<tr>
<td>9. Electron Density Profiles Through the Joule Heating Event at Chatanika on 13 August</td>
<td>21</td>
</tr>
<tr>
<td>10. Model Composition Profiles Showing Diurnal Variations</td>
<td>25</td>
</tr>
<tr>
<td>11. Model Composition Profiles Showing the Effects of Auroral Ionization</td>
<td>27</td>
</tr>
<tr>
<td>12. Composition Profiles Showing the Effect of Enhanced N₂ Vibrational Temperature</td>
<td>28</td>
</tr>
<tr>
<td>13. Composition Profile Corresponding to the Joule Heat Input Compared to the Quiet Period</td>
<td>30</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Geomagnetic Coordinates of the Chatanika Incoherent-Scatter Radar</td>
</tr>
<tr>
<td>2</td>
<td>Parameters of the Chatanika Incoherent-Scatter Radar</td>
</tr>
<tr>
<td>3</td>
<td>Model Atmosphere and Ionospheric Data for Quiet Day and Night</td>
</tr>
<tr>
<td>4</td>
<td>Model Atmosphere and Ionospheric Data for Active (Aurora) Night</td>
</tr>
<tr>
<td>5</td>
<td>Model Atmosphere and Ionospheric Data used to Evaluate the Effect of Joule Heat</td>
</tr>
</tbody>
</table>
I INTRODUCTION

There has been substantial effort to model, and subsequently predict, the ionospheric effects of nuclear explosions at high altitudes. The effects which will have serious impact on both satellite and ground-based communications include sudden enhancement of electron density, and sudden heating of both neutral and charged species resulting in atmospheric heave.

Large electric fields of magnetospheric origin have substantial influence on the state of the ionosphere. These electric fields, through the process of joule heating, produce dramatic increases in the ion and neutral temperatures. In some instances the heating is sudden, and results in an upwelling or heave of the neutral atmosphere. This results in a change in ion chemistry, so that a depletion of electron density occurs.

Impulsive heating events have been observed by the Chatanika incoherent scatter radar (Chatanika, Alaska). Increases in ion temperatures of a few thousand degrees kelvin occur. Whether the heat source is a distant nuclear explosion or a large joule heating event, the resulting ionospheric modification should be similar. However, we find that the nuclear effects code, WEPH VI for example, does not predict similar effects. In fact, given sufficient time following a nuclear "event" the code never returns all of the parameters to ambient values.

The intent of the code is to predict only large scale perturbations. As a result, the less dramatic, but still significant, effects of heating the ionosphere outside of the fireball are generally ignored. These effects, though, affect a large volume of ionosphere changing the ion chemistry, and thus result in sufficient ionosphere depletion to limit HF propagation.
As the Chatanika radar can continuously measure ionospheric parameters before, during, and after impulsive joule heating events, the data should be very useful to improve the predictions made by nuclear effects codes.
II BACKGROUND

The high-latitude thermosphere, in contrast with the midlatitude thermosphere, is strongly coupled to the magnetosphere. As a result, large amounts of energy and momentum are transferred from the magnetosphere to the ionosphere. These energy inputs have a significant effect on the morphology, thermodynamics, and chemistry of the high-latitude ionosphere. In some cases, the magnitude of the energy deposition is similar to that of a distant nuclear explosion, i.e., the temperature enhancements are similar to those expected from nuclear sources. Energetic auroral particles are responsible for both heating effects and the production of ionization. Electric fields are responsible for joule heating. The relationship between the auroral processes and their manifestation in the high-latitude ionosphere is outlined in Figure 1.

![Auroral Block Diagram](adapted from Rees, 1975)
A. Particle Precipitation and Electron Temperature

On the left side of the auroral diagram we indicate the heating process due to auroral electrons. A flux of energetic electrons bombards the upper atmosphere, the depth of penetration depending on the electron energy. Most of the energy is deposited between 100- and 120-km altitude. The energetic primary electrons transfer energy through the ionization of the ambient neutral constituents (N_2, O_2, and O). The collision reactions are:

\[
N_2 + e \rightarrow N_2^+ + 2e \quad (1)
\]
\[
N_2 + e \rightarrow N^+ + N + 2e \quad (2)
\]
\[
O_2 + e \rightarrow O_2^+ + 2e \quad (3)
\]
\[
O_2 + e \rightarrow O^+ + O + 2e \quad (4)
\]
\[
O + e \rightarrow O^+ + 2e \quad (5)
\]

In the above ionizing reactions some of the energy from primary electrons goes into the production of excited states of N_2^+, O_2^+, N, and O. Enhanced vibrational and rotational levels of N_2^+, O_2^+, and O_2^+ are also produced. The secondary electrons have energies of tens of electron volts. Much of this energy is lost in inelastic collisions with neutrals and finally the remaining energy is shared with the ambient electrons producing a temperature enhancement.

B. Joule Heating and Ion Temperature

Referring again to Figure 1, the right side indicates the process of heating by electric fields perpendicular to the magnetic field. Magnetospheric-E fields are mapped down along magnetic field lines and are consequently applied to the ionosphere. The field produces $E \times B$ drift of both ions and electrons. As the ions drift through the neutral atmosphere they collide with neutrals and frictional heating (or joule heating) results.
The ion temperature can exceed both the neutral and electron temperatures at ionospheric heights. Temperature enhancements of 2000 K (3 times ambient) have been observed as the result of heating by a 60-mV orthogonal-E field.

C. Ionospheric Heating From Nuclear Effects

The radiation from high altitude nuclear explosions will have similar effects on the upper atmosphere as auroral particle precipitation. The UV radiation from the debris kinetic energy and X-ray from prompt and delayed radiation are the primary sources. The prompt and delayed radiation is less important at F-region altitudes. Figure 2 indicates the ionization process and the resultant heating.

![Diagram of ionospheric heating from nuclear effects](image)

FIGURE 2 IONOSPHERE HEATING FROM NUCLEAR EFFECTS
D. Auroral Zone Ion Composition

In addition to the ionization reactions, the principal auroral ionosphere reactions are as follows:

\[\text{N}_2^+ + \text{O} \rightarrow \text{NO}^+ + \text{N} \quad (6) \]
\[\text{N}_2^+ + \text{O}_2 \rightarrow \text{O}_2^+ + \text{N}_2 \quad (7) \]
\[\text{N}^+ + \text{O}_2 \rightarrow \text{NO}^+ + \text{O} \quad (8) \]
\[\text{N}^+ + \text{O}_2 \rightarrow \text{O}_2^+ + \text{N} \quad (9) \]
\[\text{O}_2^+ + \text{N}_2 \rightarrow \text{NO}^+ + \text{NO} \quad (10) \]
\[\text{O}_2^+ + \text{N} \rightarrow \text{NO}^+ + \text{O} \quad (11) \]
\[\text{O}_2^+ + \text{NO} \rightarrow \text{NO}^+ + \text{O}_2 \quad (12) \]
\[\text{O}^+ + \text{N}_2 \rightarrow \text{NO}^+ + \text{N} \quad (13) \]
\[\text{O}^+ + \text{O}_2 \rightarrow \text{O}_2^+ + \text{O} \quad (14) \]
\[\text{N}_2^+ + \text{c} \rightarrow \text{N} + \text{N} \quad (15) \]
\[\text{O}_2^+ + \text{c} \rightarrow \text{O} + \text{O} \quad (16) \]
\[\text{NO}^+ + \text{c} \rightarrow \text{N} + \text{O} \quad (17) \]

There are also reactions involving excited states--- \(\text{O}^+ (^2\text{D}, ^2\text{P}) \), \(\text{O}_2^+ (\alpha^1 \Sigma) \) which produce \(\text{N}_2^+ \) by

\[\text{O}^+ (^2\text{D}) + \text{N}_2 \rightarrow \text{N}_2^+ + \text{O} \quad (18) \]
\[\text{O}^+ (^2\text{P}) + \text{N}_2 \rightarrow \text{N}_2^+ + \text{O} \quad (19) \]
\[\text{O}_2^+ (\alpha^1 \Sigma) + \text{N}_2 \rightarrow \text{N}_2^+ + \text{O}_2 \quad (20) \]
There are, of course, other reactions, but those listed above are the principal ones.

We have investigated the effects of large E fields on the concentrations of NO^+ and O^+ at high latitudes. The measurements indicate that during periods of large E fields the dominant F-region ion becomes NO^+ instead of O^+. As a result of this change in ion composition, the F-region ionization rapidly decays because of recombination of the molecular ions.

The following processes contribute to increasing the NO^+ abundance; these are:

- enhanced $[\text{N}_2]$
- enhanced ion temperatures
- enhanced N_2 vibrational temperatures.

Enhanced $[\text{N}_2]$ arises because, during periods of large joule heating, it is expected that the neutral atmosphere should be heated by ion-neutral collisions. Hays, et al., [1973], have shown that a heated volume element of neutral particles will rise with a vertical velocity which increases with altitude. This expansion will cause an upwelling of N_2 molecules, thereby increasing the number density of N_2 at higher altitudes. In the nuclear case, this phenomena is called "heave." The number density of NO^+ will be enhanced because more N_2 is available to either react with O^+ to form NO^+ (Eq. 13), or be ionized to form N_2^+ (Eq. 1), which in turn reacts with O to form NO^+ (Eq. 6).

The second contributing factor to the enhancement of NO^+ ions is the dependence of certain reaction rate coefficients on ion temperature. The rate coefficient (K_1) for the reaction $\text{O}^+ + \text{N}_2 \rightarrow \text{NO}^+ + \text{N}$ from Banks et al., [1974], is

$$K_1 = \begin{cases} 1.2 \times 10^{-12} \left(\frac{300 \text{ K}}{T_{\text{eff}}} \right) \text{ cm}^3/\text{s} & T_{\text{eff}} < 750 \\ 8.0 \times 10^{-14} \left(\frac{T_{\text{eff}}}{300 \text{ K}} \right)^2 \text{ cm}^3/\text{s} & T_{\text{eff}} > 750 \end{cases}$$
where $T_{\text{eff}} = T_n + 0.329 \frac{E}{B}$, and E is the orthogonal E-field measured in the neutral-wind frame. This is a simplified form assuming $v_i/n < 1$ and $B = 0.5$ gauss (Polar region). As an example, for an E field of 50 mV/m, and $T_n = 900$ K, T_{eff} will be increased by a factor of 1.9, as compared to T_{eff} for no E field. This in turn increases K_1 by a factor of 3.7. The result should be an enhancement in the number of NO$^+$ ions. The ions are lost through dissociative recombination. The recombination-rate coefficient decreases with increasing electron temperature [Walls and Dunn, 1974]; consequently, the net result is an increase in the number density of molecular ions.

The third point relative to the production of NO$^+$ concerns the reaction $O^+ + N_2 \rightarrow NO^+ + N$, where N_2^* is vibrationally excited N_2. The reaction rates for this reaction are enhanced as compared to $O^+ + N_2$ [Banks et al., 1974]. In the auroral oval, N_2 becomes vibrationally excited through the process

\begin{align*}
 e \text{ (energetic electrons)} + N_2 \rightarrow N_2^* + e \\
 N + NO \rightarrow N_2^* + O \\
 O \left(^1D \right) + N_2 \rightarrow N_2^* + O \left(^3P \right).
\end{align*}

All of these processes—i.e., (1) enhanced number density of N_2^*, (2) enhanced reaction rate coefficients due to elevated T_i, and (3) enhanced reaction coefficients due to vibrational excitation of N_2, act jointly to increase the NO$^+$ abundance in the F region. The first and second processes are mainly a result of joule heating, and the third process results from electron precipitation.

The nominal lifetime of molecular ions in the presence of moderate electron densities (10^5 e1/cm3) is only a few seconds, whereas the O^+ lifetime is minutes. Consequently, changing the dominant F-region ion to NO$^+$ results in a depletion of electron density. During the event examined in the study, the critical frequency decreased to about 2.7 MHz from 4.7 MHz.
III MEASURED AURORAL ZONE IONOSPHERIC RESPONSE

The geomagnetic coordinates of the Chatanika incoherent-scatter radar are given in Table 1, and its parameters are given in Table 2.

Table 1

GEOMAGNETIC COORDINATES OF THE CHATANIKA INCOHERENT-SCATTER RADAR

<table>
<thead>
<tr>
<th>Geographic Coordinates</th>
<th>Dipole Geomagnetic Coordinates</th>
<th>Magnetic Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>Longitude</td>
<td>Latitude</td>
</tr>
<tr>
<td>65.103°N</td>
<td>147.451°W</td>
<td>64.75°N</td>
</tr>
</tbody>
</table>

Table 2

PARAMETERS OF THE CHATANIKA INCOHERENT-SCATTER RADAR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>1290 MHz</td>
</tr>
<tr>
<td>Transmitted peak power</td>
<td>3 to 4 MW</td>
</tr>
<tr>
<td>Pulsewidths</td>
<td>60 μs, 160 μs, 320 μs</td>
</tr>
<tr>
<td>Effective antenna aperture</td>
<td>180 m²</td>
</tr>
<tr>
<td>Antenna on-axis gain</td>
<td>47.1 dB</td>
</tr>
<tr>
<td>Antenna 1/2-power-full-width beamwidth</td>
<td>0.6°</td>
</tr>
<tr>
<td>Transmit polarization</td>
<td>Right circular</td>
</tr>
<tr>
<td>Receive polarization</td>
<td>Left circular</td>
</tr>
<tr>
<td>System noise temperature</td>
<td>110 K</td>
</tr>
<tr>
<td>A/D converter sample spacing</td>
<td>10 μs</td>
</tr>
<tr>
<td>On-line computer system</td>
<td>XDS 930</td>
</tr>
</tbody>
</table>
The geometrical relationship between Chatanika and the auroral oval for moderate geomagnetic activity is shown in Figure 3. The oval is usually far north of Chatanika at local noon and is often overhead near midnight. The circle (arbitrarily located at 1500 UT) indicates the E-region coverage typical for these experiments.

The Chatanika radar measures the following ionospheric parameters:

1. Electron density \(N_e \) (backscatter power)
2. Ion velocity \(V_i \) (doppler shift)
3. Temperature ratio \(\frac{T_e}{T_i} \) (spectral shape)
4. Ion temperature

From these measurements other parameters, such as the electric field, currents, and conductivities, are derived.

Figure 3 Chatanika location (65° N) and Feldstein's 1967 auroral oval. (Source: Feldstein and Starkov, 1967.)
A. Radar Measurements

A representative joule heating event of interest occurred on 13 August 1976. The radar was operated continuously for the entire day. The operating mode was an azimuth scan at a fixed elevation angle of 76.5° (the magnetic dip angle). The time for one antenna scan was about 6 minutes, and the data were integrated over two antenna scans giving 12-minute averages of all the parameters.

The ambient electron density profile is shown in Figure 4. This profile was measured about 45 minutes prior to a large joule heating event. It can be seen that an auroral E-region of about 3×10^5 el/cm3 and a moderate F region (2×10^5 el/cm3) existed.

The electric field was computed for the 24-hour period and it shows the characteristic pattern of auroral zone electric fields. In the evening prior to local midnight, the field is directed to the north. Near midnight the field reverses and is directed south during the early morning. The north-south field is plotted in Figure 5. The field becomes quite large at 1400 UT—nearly 60 mV/m. The resulting joule heating is plotted in Figure 6. At 1400 UT the energy input is about 30 ergs/cm2-s, which is substantial. This is one of the largest joule heating events analyzed in detail and, as will be seen, its effects are considerable.

The electron and ion temperatures at 277 km altitude are shown in Figure 7. At the start of the run, 0000 UT, the ion temperature is fairly constant with a value of 900 K. There is little change in the ion temperature until about 1000 UT, when the joule input begins. There is an obvious enhancement in ion temperature at 1400 UT—the peak of the joule input. The temperature remains elevated even after the joule heat source terminates at 1500 UT, being about 150 K higher than the earlier temperatures. The temperature gradually decreases and it returns to initial conditions by 2300 UT.

The electron temperature shows the effect of the changing Solar-Zenith-Angle (SZA). Initially the temperature is about 2200 K and it gradually decreases with increasing SZA (from 0430 to 0800 UT).
FIGURE 4 AMBIENT ELECTRON DENSITY PROFILE FOR 13 AUGUST 1975
The ratio of the number densities of O^+ ions to the total number of ions, $[O^+]/N_c$, is used to describe the ion composition vs. altitude. Figure 8 shows contours of $[O^+]/N_c$ as a function of time for the 13 August event. The transition altitude, the altitude where half the ions are atomic ($[O^+]/N_c = 0.5$), is seen to be near 190 km at the beginning of the observation. However, at 1400 UT, the peak of the heating event, this altitude increases by 50 km--molecular ions dominate below 240 km.
An important consequence of this alteration of ion composition is an immediate decrease of electron density. Molecular ions, O_2^+ and NO^+, recombine much more rapidly than atomic ions and the result is a decay of the lower F region.

Electron density profiles, measured before, during, and after the joule heating event are shown in Figure 9. The F-region depletion can easily be seen. The critical frequency prior to the depletion was about 4.1 MHz. During the heating, the critical frequency dropped to 2.7 MHz and 30 minutes later, it is 3.5 MHz.

To aid in the interpretation of these measurements, we performed a numerical analysis in which we varied parameters such as electron density, production rate, and joule heating rate. The resulting effects on the ion composition agree with the observed data, and are described below.
B. Numerical Modeling of Transition Altitude Variation

The initial conditions include quiet day and night parameters in order to establish background composition profiles. The change in ion composition can be examined with the aid of an expression derived using the following simplified system of reactions and continuity equations:
FIGURE 8 ION COMPOSITION CONTOURS FOR 13 AUGUST 1975. At a fixed altitude the ratio of O$^+$ to total ionization decreased markedly during the joule heating event and increased slowly thereafter. The transition altitude computed during the event is a lower bound with a 5 km uncertainty.

\[
\begin{align*}
O^+ + O_2 \rightarrow^\gamma_1 O_2^+ + O & \quad \gamma_1 = 2 \times 10^{-11} \left(\frac{300}{T_i} \right)^{1/2} \\
O_2^+ + e \rightarrow^\alpha_1 O + O & \quad \alpha_1 = 2.2 \times 10^{-7} \left(\frac{300}{T_c} \right) \\
O^+ + N_2 \rightarrow^\gamma_2 NO^+ + N & \quad \gamma_2 = 1 \times 10^{-12} \left(\frac{300}{T_i} \right) \\
NO^+ + e \rightarrow^\alpha_2 N + O & \quad \alpha_2 = 4.1 \times 10^{-7} \left(\frac{298}{T_c} \right) \\
N_2^+ + O \rightarrow^\gamma_3 NO^+ + N & \quad \gamma_3 = 1.4 \times 10^{-10} \\
N_2^+ + e \rightarrow^\alpha_3 N + N & \quad \alpha_3 = 2.9 \times 10^{-7} \left(\frac{300}{T_c} \right)^{1/3}
\end{align*}
\]
FIGURE 9 ELECTRON DENSITY PROFILES DURING THE JOULE HEATING EVENT ON 13 AUGUST 1975. The F-region density decreases during the event and recovers as the heating subsides.
\[
\frac{\partial [O^+]}{\partial t} = q(O^+) - \gamma_1 [O_2][O^+] - \gamma_2 [N_2][O^+] = 0
\]

\[
\frac{\partial [NO^+]}{\partial t} = \gamma_2 [N_2][O^+] + \gamma_3 [N_2^+][O] - \alpha_2 [NO^+] N_e = 0
\]

\[
\frac{\partial [O_2^+]}{\partial t} = q(O_2^+) + \gamma_1 [O_2][O^+] - \alpha_1 [O_2^+] N_e = 0
\]

\[
\frac{\partial [N_2^+]}{\partial t} = q(N_2^+) - \gamma_3 [N_2^+][O] - \alpha_3 [N_2^+] N_e = 0
\]

where \(q(x) \) is the production rate of species \(x \). If steady state is assumed, the number densities of the various ions are expressed as:

\[
[NO^+] = \frac{\gamma_2 [N_2][O^+]}{\alpha_2 N_e} + \frac{\gamma_3 [N_2^+][O]}{\alpha_3 N_e}
\]

\[
[O_2^+] = \frac{q(O_2^+) + \gamma_1 [O_2][O^+]}{\alpha_3 N_e}
\]

\[
[N_2^+] = \frac{q(N_2^+)}{\gamma_3 [O] + \alpha_3 N_e}
\]

Substitution of the above into the expression for charge neutrality,

\[
N_c = [O^+] + [NO^+] + [O_2^+]
\]

and solving for \([O^+] / N_c\), gives
where

\[q(O^+) = \frac{0.56[O]}{1.15[N_2] + 1.5[O_2] + 0.56[O]} \]

\[q(O_2^+) = \frac{[O_2]}{1.15[N_2] + 1.5[O_2] + 0.56[O]} \]

\[[N_2^+] = \frac{q(N^+)}{\gamma_3[O] + \alpha_3N_e} \]

\[= \left[\frac{0.92[N_2]}{1.15[N_2] + 1.5[O_2] + 0.56[O]} \right] / (\gamma_3[O] + \alpha_3N_e) \]

and \(\gamma \) = total ion production rate [Jones and Rees, 1973]. The effects on the transition altitude of varying the atmospheric density, electron density, production rate, and temperature can then be assessed.

1. Quiet Conditions—Diurnal Variation

The model atmosphere used in all cases was taken from Banks and Kockarts for an exospheric temperature of 1000 K, and the ionospheric parameters were obtained from Chatanika radar data. The model atmospheric and ionospheric data are given in Table 3. The calculated composition profiles are shown in Figure 10. The difference in the profiles is most pronounced above 180 km. Above that altitude, the daytime electron density is at least an order of magnitude larger than the nighttime density. The transition altitude increases by about 20 km at night.
Table 3
MODEL ATMOSPHERE AND IONOSPHERIC DATA FOR QUIET DAY AND NIGHT

Quiet Day

<table>
<thead>
<tr>
<th>Alt (km)</th>
<th>N_e (cm$^{-3}$)</th>
<th>T_e (K)</th>
<th>T_i (K)</th>
<th>$[O_2]$ (cm$^{-3}$)</th>
<th>$[O]$ (cm$^{-3}$)</th>
<th>$[N_2]$ (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>7.5E4*</td>
<td>596</td>
<td>650</td>
<td>4.40E9</td>
<td>2.44E10</td>
<td>5.37E10</td>
</tr>
<tr>
<td>160</td>
<td>1.0E5</td>
<td>765</td>
<td>1000</td>
<td>1.20E9</td>
<td>1.13E10</td>
<td>1.67E10</td>
</tr>
<tr>
<td>180</td>
<td>1.2E5</td>
<td>861</td>
<td>1600</td>
<td>4.43E8</td>
<td>6.45E9</td>
<td>6.88E9</td>
</tr>
<tr>
<td>200</td>
<td>1.5E5</td>
<td>916</td>
<td>1800</td>
<td>1.87E8</td>
<td>4.07E9</td>
<td>3.22E9</td>
</tr>
<tr>
<td>220</td>
<td>2.0E5</td>
<td>948</td>
<td>2000</td>
<td>8.48E7</td>
<td>2.69E9</td>
<td>1.60E9</td>
</tr>
<tr>
<td>240</td>
<td>3.0E5</td>
<td>967</td>
<td>2000</td>
<td>4.00E7</td>
<td>1.83E9</td>
<td>8.26E8</td>
</tr>
<tr>
<td>260</td>
<td>2.5E5</td>
<td>979</td>
<td>2000</td>
<td>1.93E7</td>
<td>1.26E9</td>
<td>4.36E8</td>
</tr>
<tr>
<td>280</td>
<td>2.45E5</td>
<td>986</td>
<td>2000</td>
<td>9.43E6</td>
<td>8.80E8</td>
<td>2.33E8</td>
</tr>
<tr>
<td>300</td>
<td>2.0E5</td>
<td>991</td>
<td>2000</td>
<td>4.67E6</td>
<td>6.20E8</td>
<td>1.26E8</td>
</tr>
</tbody>
</table>

Quiet Night

<table>
<thead>
<tr>
<th>Alt (km)</th>
<th>N_e (cm$^{-3}$)</th>
<th>T_e (K)</th>
<th>T_i (K)</th>
<th>$[O_2]$ (cm$^{-3}$)</th>
<th>$[O]$ (cm$^{-3}$)</th>
<th>$[N_2]$ (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>8.6E4</td>
<td>596</td>
<td>596</td>
<td>4.40E9</td>
<td>2.44E10</td>
<td>5.37E10</td>
</tr>
<tr>
<td>160</td>
<td>7.0E4</td>
<td>765</td>
<td>765</td>
<td>1.20E9</td>
<td>1.13E10</td>
<td>1.67E10</td>
</tr>
<tr>
<td>180</td>
<td>5.6E4</td>
<td>861</td>
<td>861</td>
<td>4.43E8</td>
<td>6.45E9</td>
<td>6.88E9</td>
</tr>
<tr>
<td>200</td>
<td>5.0E4</td>
<td>916</td>
<td>916</td>
<td>1.87E8</td>
<td>4.07E9</td>
<td>3.22E9</td>
</tr>
<tr>
<td>220</td>
<td>3.4E4</td>
<td>948</td>
<td>943</td>
<td>8.48E7</td>
<td>2.69E9</td>
<td>1.60E9</td>
</tr>
<tr>
<td>240</td>
<td>3.0E4</td>
<td>965</td>
<td>965</td>
<td>4.00E7</td>
<td>1.83E9</td>
<td>8.26E8</td>
</tr>
</tbody>
</table>

7.5E4 = 7.5 \times 10^4.
Figure 10: Model composition profiles showing diurnal variation.
2. Active Conditions--Particle Precipitation

The effects of electron precipitation that are considered are enhanced N_e, electron temperature, and vibrational temperature of N_2. The atmospheric and ionospheric parameters are given in Table 4. The first case considered uses temperature and N_e profiles from data taken on 18 February 1976. The particle energy input rate was approximately 20 ergs/cm2-s. The composition profiles shown in Figure 11 indicate that, relative to the background profile (quiet night), the transition altitude is lower by more than 20 km. In fact, the transition altitude is lower in this case than it was using daytime conditions.

The effects of enhanced vibrational temperatures of N_2 are examined using the above (active night) model. According to Schunk and Banks [1975], the vibrational temperatures during an auroral substorm can be in the range 1400 to 2200 K. These temperatures will increase the N_2 and O^+ reaction-rate coefficient (ν_2) by 1.5 to 3.6 times the ground-state coefficient. Consequently, the composition profiles were recomputed applying those factors to ν_2. The results are shown in Figure 12. There is a substantial increase in the transition altitude for the case when $T_v = 2200$ K.

Table 4

MODEL ATMOSPHERE AND IONOSPHERIC DATA FOR ACTIVE (AURORA) NIGHT

<table>
<thead>
<tr>
<th>Alt (km)</th>
<th>N_e (cm$^{-3}$)</th>
<th>T_i (K)</th>
<th>T_e (K)</th>
<th>$[O_2]$ (cm$^{-3}$)</th>
<th>[O] (cm$^{-3}$)</th>
<th>$[N_2]$ (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>2.0E5</td>
<td>596</td>
<td>750</td>
<td>4.40E9</td>
<td>2.44E10</td>
<td>5.37E10</td>
</tr>
<tr>
<td>160</td>
<td>1.3E5</td>
<td>765</td>
<td>1120</td>
<td>1.20E9</td>
<td>1.13E10</td>
<td>1.67E10</td>
</tr>
<tr>
<td>180</td>
<td>1.5E5</td>
<td>861</td>
<td>1300</td>
<td>4.43E8</td>
<td>6.45E9</td>
<td>6.88E9</td>
</tr>
<tr>
<td>200</td>
<td>1.8E5</td>
<td>916</td>
<td>1800</td>
<td>1.87E8</td>
<td>4.07E9</td>
<td>3.22E9</td>
</tr>
<tr>
<td>220</td>
<td>1.9E5</td>
<td>948</td>
<td>2000</td>
<td>8.48E7</td>
<td>1.83E9</td>
<td>1.60E9</td>
</tr>
</tbody>
</table>
FIGURE 11 MODEL COMPOSITION PROFILES SHOWING THE EFFECTS OF AURORAL IONIZATION
FIGURE 12 COMPOSITION PROFILES SHOWING THE EFFECT OF ENHANCED N₂ VIBRATIONAL TEMPERATURE. The model from Table 4 was used and the reaction-rate coefficient for N₂ + O⁺ was enhanced.
3. Effect of Joule Heat Input

The atmospheric model and ionospheric data used to evaluate the effect of joule heat are given in Table 5. The ionospheric data—i.e., electron density, and electron/ion temperatures were taken from 13 August 1975 data. The composition profile (Figure 13) corresponding to the active data indicates that more molecular ions exist at all altitudes as compared to the quiet period. The transition altitude increased by 20 km. The active period was characterized by elevated ion temperature and decreased electron density; both factors contribute to the increase of the transition altitude.

<table>
<thead>
<tr>
<th>Alt (km)</th>
<th>(N_e) (cm(^{-3}))</th>
<th>(T_i) (K)</th>
<th>(T_e) (K)</th>
<th>([O_2]) (cm(^{-3}))</th>
<th>([O]) (cm(^{-3}))</th>
<th>([N_2]) (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>2.0E5</td>
<td>830</td>
<td>965</td>
<td>1.20E9</td>
<td>1.13E10</td>
<td>1.67E10</td>
</tr>
<tr>
<td>190</td>
<td>1.2E5</td>
<td>1050</td>
<td>1400</td>
<td>2.85E8</td>
<td>5.08E9</td>
<td>4.66E9</td>
</tr>
<tr>
<td>220</td>
<td>1.5E5</td>
<td>1200</td>
<td>2000</td>
<td>8.48E7</td>
<td>2.69E9</td>
<td>1.60E9</td>
</tr>
<tr>
<td>276</td>
<td>1.0E5</td>
<td>1800</td>
<td>2000</td>
<td>9.60E6</td>
<td>9.00E8</td>
<td>2.50E8</td>
</tr>
</tbody>
</table>

Quiet Day

<table>
<thead>
<tr>
<th>Alt (km)</th>
<th>(N_e) (cm(^{-3}))</th>
<th>(T_i) (K)</th>
<th>(T_e) (K)</th>
<th>([O_2]) (cm(^{-3}))</th>
<th>([O]) (cm(^{-3}))</th>
<th>([N_2]) (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>2.0E5</td>
<td>765</td>
<td>965</td>
<td>1.20E9</td>
<td>1.13E10</td>
<td>1.67E10</td>
</tr>
<tr>
<td>190</td>
<td>2.3E5</td>
<td>1100</td>
<td>1784</td>
<td>2.85E8</td>
<td>5.08E9</td>
<td>4.66E9</td>
</tr>
<tr>
<td>220</td>
<td>3.5E5</td>
<td>1600</td>
<td>2000</td>
<td>8.48E7</td>
<td>2.69E9</td>
<td>1.60E9</td>
</tr>
</tbody>
</table>
ELEVATED T_i
13 AUGUST 1975

FIGURE 13 COMPOSITION PROFILE CORRESPONDING TO THE JOULE HEAT INPUT COMPARED TO THE QUIET PERIOD
C. Summary of Numerical Modeling

We have just shown that the ion composition at a given altitude changes as a function of the production and loss rates. Factors that contribute to the enhancement of the production rate tend to increase the relative abundance of O^+ ions. These factors are Solar EUV radiation during the day and energetic auroral electron bombardment at night. Both the radar data and the numerical modeling indicate lower transition altitudes during these periods.

Factors that contribute to the enhancement of the loss rate tend to increase the relative abundance of molecular ions. These factors include elevated ion and neutral temperatures, and enhanced vibrational temperatures of N_2 molecules. The ion temperature and the N_2 vibrational temperature determine the rate coefficient and the neutral temperature defines the N_2 number density.
IV CONCLUSIONS

Impulsive ionospheric heating events resulting from auroral energy input have been observed by the Chatanika radar. In some cases, the time--and height--integrated auroral energy deposition is comparable to that expected from a high altitude nuclear event outside the fireball region.

In the auroral event, virtually all ionospheric parameters (electron density, ion, electron and neutral temperatures, and ion and neutral composition) are strongly affected. This would also be the case for extended regions outside a nuclear fireball. The increased temperatures and the resulting atmospheric heave contribute to a change in ion composition such that molecular ions (NO⁺, O⁺₂) dominate over atomic ions (O⁺). Since molecular ions recombine much more rapidly than atomic ions, the net electron density decreases. The region affected by this depletion is larger than the region affected by the fireball and debris.

The nuclear effects codes do not attempt to accurately model this region. Consequently, they do not accurately predict ionospheric effects of nuclear explosions beyond the fireball region. In fact, the ambient atmosphere and ionosphere models are not realistic compared to observed parameters.

The Chatanika radar provides relevant information concerning both the ambient and aurorally disturbed ionosphere. These results can be used to improve the nuclear effects codes so that the much larger region beyond the fireball is more realistically modeled.
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant Secretary of Defense Comm., Cmd., Cont. & Intell.
ATTN: Dir. of Intelligence Systems, J. Babcock
ATTN: C31ST&CIS, M. Epstein

Assistant to the Secretary of Defense
Atomic Energy
ATTN: Executive Assistant

Command & Control Technical Center
ATTN: C-312, R. Mason
ATTN: C-650, G. Jones
3 cy ATTN: C-650, W. Heidig

Defense Advanced Rsch. Proj. Agency
ATTN: T10

Defense Communications Agency
ATTN: Code 101B
ATTN: Code 810, J. Barna
ATTN: Code 205
ATTN: Code 480
ATTN: Code R1033, M. Raffensperger
ATTN: Code 480, F. Dieter

Defense Communications Engineer Center
ATTN: Code R123
ATTN: Code R410, R. Craighill
ATTN: Code R720, J. Worthington
ATTN: Code R410, J. McLean

Defense Intelligence Agency
ATTN: DT-18
ATTN: HQ-TR, J. Stewart
ATTN: DB, A. Wise
ATTN: DC-70, W. Wittig
ATTN: DT-5
ATTN: DB-4C, E. O'Farrell

Defense Nuclear Agency
ATTN: STYH
ATTN: DOD
3 cy ATTN: RRAE
4 cy ATTN: T114

Defense Technical Information Center
12 cy ATTN: DDO

Field Command
Defense Nuclear Agency
ATTN: FCP

Field Command
Defense Nuclear Agency
Livermore Division
ATTN: FCPRL

Interservice Nuclear Weapons School
ATTN: TTV

Joint Chiefs of Staff
ATTN: J-3, WWMCCS Evaluation Office
ATTN: C3S
ATTN: J-37

DEPARTMENT OF DEFENSE (Continued)

Joint Strat. Tgt. Planning Staff
ATTN: JPST, G. Goetz
ATTN: JLTW-2

National Security Agency
ATTN: W-32, O. Bartlett
ATTN: R-52, J. Skillman
ATTN: B-3, F. Leonard

Undersecretary of Defense for Rsch. & Engrg.
ATTN: Strategic & Space Systems (GS)

WWMCCS System Engineering Org.
ATTN: R. Crawford

DEPARTMENT OF THE ARMY

Assistant Chief of Staff for Automation & Comm.
Department of the Army
ATTN: DAAC-ZT, P. Kenny

Atmospheric Sciences Laboratory
U.S. Army Electronics R&D Command
ATTN: DELAS-ED, F. Niles

BMD Systems Command
Department of the Army
2 cy ATTN: BMSC-HW

Deputy Chief of Staff for Ops. & Plans
Department of the Army
ATTN: DAMO-RQC

Electronics Tech. & Devices Lab.
U.S. Army Electronics R&D Command
ATTN: DELET-ER, H. Bonke

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-N-RB, F. Williams
ATTN: DELHD-N-P, F. Wimenitz
ATTN: DELHD-I-1, M. Weiner
ATTN: DELHD-N-P

ATTN: CCC-CEC-CCO, W. Neuendorf
ATTN: CCC-EMEO, W. Nair
ATTN: CCC-EMEO-PEO, G. Lane

U.S. Army Communications Command
ATTN: CC-OFS-W, H. Wilson
ATTN: CC-OFS-W

U.S. Army Communications R&D Command
ATTN: DRODO-COM-RY, W. Kesselman

ATTN: DRXST-SD

U.S. Army Materiel Dev. & Readiness Ctr.
ATTN: DRDCG, J. Bender

U.S. Army Nuclear & Chemical Agency
ATTN: Library
DEPARTMENT OF THE AIR FORCE (Continued)

Foreign Technology Division
Air Force Systems Command
ATTN: SDEC, A. Oakes
ATTN: NIIIS Library
ATTN: TQTD, B. Ballard

Headquarters Space Division
Air Force Systems Command
ATTN: ZJJ, L. Doan
ATTN: ZJJ, W. Mercer

Rome Air Development Center
Air Force Systems Command
ATTN: TSLD
ATTN: OCS, V. Coyne

Rome Air Development Center
Air Force Systems Command
ATTN: EEP

Strategic Air Command
Department of the Air Force
ATTN: ODKN
ATTN: XFPF
ATTN: DCX:
ATTN: DCX
ATTN: DCXT, T. Jorgensen
ATTN: DCXT

Headquarters Space Division
Air Force Systems Command
ATTN: SKA, M. Clavin
ATTN: SKA, C. Rightmyer

DEPARTMENT OF ENERGY CONTRACTORS

EG&G, Inc.
Los Alamos Division
ATTN: Document Control for D. Wright
ATTN: Document Control for J. Colvin

Lawrence Livermore Laboratory
ATTN: Document Control for Technical Information Dept. Library

Los Alamos Scientific Laboratory
ATTN: Document Control for P. Keaton
ATTN: Document Control for D. Westervelt
ATTN: Document Control for R. Taschek

Sandia Laboratories
ATTN: Document Control for Org. 1250
ATTN: Document Control for 3141
ATTN: Document Control for Space Project Div.
ATTN: Document Control for D. Thornbrough
ATTN: Document Control for D. Dahlgren

Sandia Laboratories
Livermore Laboratory
ATTN: Document Control for T. Cook
ATTN: Document Control for B. Murphy

OTHER GOVERNMENT AGENCIES (Continued)

Department of Commerce
National Bureau of Standards
ATTN: Security Officer for R. Moore

Department of Commerce
National Oceanic & Atmospheric Admin.
Environmental Research Laboratories
ATTN: R. Grubb

Institute for Telecommunications Sciences
National Telecommunications & Info. Admin.
ATTN: D. Crombie
ATTN: L. Berry
ATTN: W. Utlaut

U.S. Coast Guard
Department of Transportation
ATTN: G-DOE-3/TP54, B. Romine

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corp.
ATTN: T. Salmi
ATTN: N. Stockwell
ATTN: R. Slaughter
ATTN: V. Josephson
ATTN: F. Morse
ATTN: S. Bower
ATTN: D. Olsen
ATTN: I. Garfunkel

University of Alaska
ATTN: T. Davis

Analytical Systems Engineering Corp.
ATTN: Radio Sciences

Analytical Systems Engineering Corp.
ATTN: Security

Barry Research Communications
ATTN: J. McLaughlin

BDM Corp.
ATTN: T. Neighbors
ATTN: L. Jacobs

Berkeley Research Associates, Inc.
ATTN: J. Workman

Boeing Co.
ATTN: S. Tashird
ATTN: G. Hall
ATTN: D. Murray
ATTN: J. Kenney

University of California at San Diego
ATTN: H. Bookb

Charles Stark Draper Lab., Inc.
ATTN: D. Cox
ATTN: J. Gilmore

Computer Sciences Corp.
ATTN: H. Blank

Comsat Labs
ATTN: R. Taur
ATTN: G. Hyde

Central Intelligence Agency
ATTN: OS1/PSITD
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R & D Associates
ATTN: W. Karzas
ATTN: M. Gantsweg
ATTN: R. Turco
ATTN: C. Greifinger
ATTN: H. Ory
ATTN: W. Wright, Jr.
ATTN: C. MacDonald
ATTN: B. Gabbard
ATTN: R. Lelevier
ATTN: F. Gilmore

Riverside Research Institute
ATTN: V. Trapani

Rockwell International Corp.
ATTN: J. Kristof

Santa Fe Corp.
ATTN: E. Ortlieb

Science Applications, Inc.
ATTN: L. Linson
ATTN: C. Smith
ATTN: D. Hamlin
ATTN: J. McDougall
ATTN: D. Sachs
ATTN: E. Straker

Science Applications, Inc.
ATTN: D. Divis

Science Applications, Inc.
ATTN: S2

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

SRI International
ATTN: W. Jaye
ATTN: A. Burns
ATTN: G. Smith
ATTN: G. Price
ATTN: M. Baron
ATTN: D. Neilson
ATTN: C. Rino
ATTN: R. Leadabrand
ATTN: R. Livingston
ATTN: W. Chesnut
3 cy ATTN: J. Kelly

Teledyne Brown Engineering
ATTN: R. Deliberis

Tri-Com, Inc.
ATTN: D. Murray

TRW Defense & Space Sys. Group
ATTN: S. Altschuler
ATTN: R. Plebuch
ATTN: D. Dee

Utah State University
ATTN: K. Baker
ATTN: L. Jensen

Visidyne, Inc.
ATTN: J. Carpenter