ERROR PROPAGATION FOR GROUND-TO-SATELLITE ELLIPTICAL INTERCEPT ORBITS TO EXAMINE THE ERROR ELLIPSOID GROWTH.

THESIS

AFIT/GA/AA/78-D-8

Michael J. VonPlinsky
2nd. Lt. USAF

Approved for Public Release; Distribution Unlimited.
ERROR PROPAGATION FOR GROUND-TO-SATELLITE ELLIPTICAL
INTERCEPT ORBITS TO EXAMINE THE ERROR ELLIPSOID GROWTH

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Training Command
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science.

By:

Michael J. Von Plinsky, B.S.
2nd Lt. USAF
Graduate Astronautical Engineering
December 1978.

Approved for Public Release; Distribution Unlimited.
Preface

In selecting the topic for this study, I was motivated by a want to apply the span of knowledge I have acquired at AFIT and by the fact that I wanted to research a current problem which would lend experience and insight toward future possible assignments.

A number of people were instrumental in the completion of this study. First and foremost, I would like to express my sincere appreciation to my thesis advisor, Captain William E. Wiesel. Without his expert advice and timely aid this study would have not been possible. I would also like to thank the other two members of my thesis committee, Dr. Calico and Captain Rader, for their concise and helpful comments on the final preparation of this report. Finally, I would like to thank my typist, Denise, whose perseverance throughout was greatly appreciated.

Michael J. Von Plinsky
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Objectives</td>
<td>2</td>
</tr>
<tr>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>II. Computer Simulation</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions</td>
<td>4</td>
</tr>
<tr>
<td>Programming Considerations</td>
<td>4</td>
</tr>
<tr>
<td>Computing the Launch Site</td>
<td>6</td>
</tr>
<tr>
<td>Coordinates in Inertial Space</td>
<td>6</td>
</tr>
<tr>
<td>Computing the Satellite's Initial in Inertial Space</td>
<td>9</td>
</tr>
<tr>
<td>Finding the Satellite's Position at the Intercept Point</td>
<td>13</td>
</tr>
<tr>
<td>Compute the Orbit Between the Launch and Intercept Points</td>
<td>16</td>
</tr>
<tr>
<td>State Transition Matrix</td>
<td>17</td>
</tr>
<tr>
<td>Covariance Matrix Propagation</td>
<td>23</td>
</tr>
<tr>
<td>III. Program Execution</td>
<td>24</td>
</tr>
<tr>
<td>IV. Results</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>V. Conclusions</td>
<td>74</td>
</tr>
<tr>
<td>VI. Recommendations</td>
<td>76</td>
</tr>
<tr>
<td>Bibliography</td>
<td>78</td>
</tr>
<tr>
<td>Appendix A: Computer Program</td>
<td>79</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Relationship Between S-E-Z and I-J-K.</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Orbital Elements</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>The Kepler Problem</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Intercept Problem</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Slice Ellipsoid to Obtain the Relative Error Axes</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Error Ellipsoid Growth to the Intercept Point</td>
<td>22</td>
</tr>
<tr>
<td>7.</td>
<td>Circular (A) and Inclined (B) Target Orbits</td>
<td>25</td>
</tr>
<tr>
<td>8-11.</td>
<td>Data for the Range of Target Positions: Target Orbit # 1</td>
<td>34</td>
</tr>
<tr>
<td>12-15</td>
<td>Data for the Range of Target Positions: Target Orbit # 2</td>
<td>39</td>
</tr>
<tr>
<td>16-19.</td>
<td>Data for the Range of Target Positions: Target Orbit # 3</td>
<td>44</td>
</tr>
<tr>
<td>20-23.</td>
<td>Data for the Range of Target Positions: Target Orbit # 4</td>
<td>49</td>
</tr>
<tr>
<td>24-27.</td>
<td>Single Family of Intercepts: Target Orbit # 1</td>
<td>54</td>
</tr>
<tr>
<td>28-31.</td>
<td>Single Family of Intercepts: Target Orbit # 2</td>
<td>59</td>
</tr>
<tr>
<td>32-35.</td>
<td>Single Family of Intercepts: Target Orbit # 3</td>
<td>64</td>
</tr>
<tr>
<td>36-39.</td>
<td>Single Family of Intercepts: Target Orbit # 4</td>
<td>69</td>
</tr>
</tbody>
</table>
List of Tables.

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Target Orbits Examined</td>
<td>26</td>
</tr>
<tr>
<td>II.</td>
<td>Intercept Errors over the Range of Target Positions</td>
<td>28</td>
</tr>
<tr>
<td>III.</td>
<td>Intercept Errors for a Single Family of Intercept Orbits</td>
<td>31</td>
</tr>
</tbody>
</table>
Abstract

Errors from the intended performance of a system, composed of specialized components, could be due to any number of sub-system fluctuations. This thesis will examine the effect of these resultant errors on the mission of the system involved. In particular, errors in an interceptor's booster performance (seen as position and velocity errors at burnout) will be propagated along the interceptor's orbit to a given target point and the resultant error at the intercept point will be found. A range of intercept orbits will be examined to determine if there is a family of particular intercept orbits that give the minimum position errors at the intercept point. Conclusions will be made as to what typical intercept trajectory should be flown against a certain type of target so as to minimize the resultant free flight error propagation to the intercept point.
I Introduction

Background

In the problem of intercepting any orbital target, there are always inherent aberrations in the interceptor system components which cause deviations from the desired trajectory during the course of the intercept. The unplanned errors in the flight path could be due to any number of factors which could effect the targeted vehicle in reaching it's programmed orbit. These deviations are caused by unavoidable design and manufacturing flaws in the components that compose the missile booster system, such as fluctuations in the burn of the rocket motor during orbital insertion or small errors caused by a slightly inaccurate guidance package. All of these factors contribute to position and velocity errors which occur during the powered phase of the mission, \(\ddot{\mathbf{x}} \) - up to booster burnout. Hence, the errors generated during the powered portion of the flight will be the ultimate causes of errors in position and velocity of the interceptor at it's planned target point termination.
Objectives

This study will be concerned with investigating how the inherent errors of a missile intercept system effect the final targeting of the interceptor involved. Depending on the capability of the booster system, each interceptor has the versatility to reach an orbital target using a variety of trajectories, with each programmed to intercept the body at a different point in it's orbit. Knowing the accuracy characteristics of the booster system being used allows the propagation of each possible intercept trajectory, over a variety of times-of-flight, which give an elliptical intercept path. Once the flight path is traced to it's termination at the target's orbit, the deviation from the proposed intercept point can be found by comparing the ideal (no error) orbit and corresponding intercept point to the actual orbit found through propagation of the error ellipsoid from booster burnout to the target's orbital path. Thus, given an error covariance matrix modeling the position and velocity errors at burnout, this covariance matrix can be propagated by means of a state transition matrix to the predicted intercept point to give a covariance at intercept. Then, examination of the eigenvalues and eigenvectors of this final covariance matrix results in the generation of an error ellipsoid for the interceptor.
at the desired target point. This error ellipsoid can then be sliced appropriately to indicate deviations from the intended intercept point in the cross track directions of the target's orbit. This final process gives actual miss parameters at the intercept point from the target body in question. Repeating this process over the range of possible intercept trajectories will give data which can be examined to find the family of trajectories for which the minimum cross track intercept errors are achieved.

Research

In my research for previous work, or corresponding effort on my topic, I found no data or documentation on the subject. This was to be expected due to the uniqueness of the problem. I did, however, uncover many items that proved invaluable in the development of this project. Several supportive references were found which aided in the extensive orbital dynamics modeling which was done in the program. The typical off-the-shelf general references proved invaluable in helping me answer the "obvious" questions throughout the project.
II Computer Simulation

Assumptions

A computer program has been developed to simulate the aspects of this problem, as previously outlined. For the purposes of this study, it will be assumed that both the orbital target and the interceptor are under the influence of two-body effects only. Since the typical intercept orbit would probably be an elliptical one, due to launch and booster constraints, only elliptical intercept orbits will be examined to further simplify the process. It is also assumed that the satellite's orbital position at launch is perfectly known; thus, the only errors present at the intercept point will be due to position and velocity deviations of the interceptor. The time between receiving the initial satellite position data and launch is assumed to be zero, and an instantaneous burn time of the interceptor's booster is also assumed. In order to simplify the implementation of the many orbital dynamics formulas needed, a universal variable approach will be used throughout the project.

Programming Considerations

Initially, launch site data will be inputed to find the
position of the launch site in inertial space. Satellite
data, in the form of a classical element set for the target
satellite in question, will also be inputed to find the
initial position and velocity of the satellite, also in
inertial space. An initial time-of-flight for the inter-
ceptor will be chosen and it's corresponding orbit to the
intercept point (the point where the target satellite would
be after that time-of-flight had elapsed) will be computed.
A test will be made to see if this computed orbit is
elliptical. If this orbit is not elliptical, then the time-
of-flight will be iterated, and the initial procedure
repeated until an elliptical intercept orbit is found.
Once this is accomplished, the state transition matrix for
that particular elliptical orbit will be computed. This
state transition matrix will be used to propagate a covar-
iance matrix, representing the position and velocity errors
of the interceptor at the booster's burnout point, from the
burnout point to the given intercept point. Thus, a covariance
matrix will be found at the intercept point, representing the
propagated position and velocity errors of the interceptor.
By examining this final covariance matrix, conclusions can be
made as to the effect initial booster launch errors have on
the final miss parameters, associated with the interception
of the target satellite.
Computing The Launch Site Coordinates In Inertial Space

This initial phase of the program was designed to allow the earth location of any possible site to be entered, as well as the date and time of launch, to allow flexibility in the final simulation. Inputed data consisted of the latitude and longitude of the site, it's elevation above sea level, and the year, day, and time of launch. A subroutine was developed to determine the local sidereal time of the launch site given the site's longitude and the year, day, and time of launch (Ref 1:103-104). Then, knowing the latitude, altitude, and local sidereal time of the site, a subroutine was developed to determine the position of the site in the topocentric reference frame. This position vector was then transformed by means of an appropriate rotation matrix to give the position vector of the launch site in the inertial frame (see Fig 1), (Ref 1:98).

Computing The Satellite's Initial Position In Inertial Space

In computing the satellite's position at epoch, or launch, data from a typical element set, which would be received at the launch site from the NORAD space track system, was used. This was composed of the length of the semi-major axis of the satellite's orbit, it's orbital eccentricity, it's inclination, the longitude of the
Figure 1. Relationship Between S-E-Z and I-J-K

ascending node, the argument of perihelion, and its true anomaly ($\lambda, \varpi, \Omega, \omega, \nu$), (see Fig 2.). Knowing these parameters, the initial position and velocity of the satellite can be expressed in vector form in the perifocal coordinate system by the following equations (Ref 2, 72):

\[\begin{align*}
\mathbf{r} &= P \mathbf{u} + (r \sin \nu) \mathbf{a} \\
\mathbf{v} &= \sqrt{\mu \mu} [-\sin \nu \mathbf{u} + (2 + \cos \nu) \mathbf{a}]
\end{align*}\]

where

\[P = \mu (1 - e^2)\]

\[1/r = P/(1 + e \cos \nu)\]

and in universal variables

\[\mu = 1.\]
The transformation of coordinates between the perifocal system \((R, Q, W)\) and the inertial system \((I, V, \Omega)\) can be accomplished by means of a rotation matrix \(R\) (Ref I:82). Thus, if \((\zeta_p, \zeta_\alpha, \zeta_\omega)\) are the components of a vector \(\vec{a}\) in the perifocal frame, then the coordinates of that vector in the inertial frame are given by:
\[
\begin{bmatrix}
\tilde{a}_1 \\
\tilde{a}_2 \\
\tilde{a}_3 \\
\end{bmatrix}
= \tilde{R}
\begin{bmatrix}
\tilde{a}_p \\
\tilde{a}_q \\
\tilde{a}_w \\
\end{bmatrix}
\]

where:

\[
\tilde{R} =
\begin{bmatrix}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33} \\
\end{bmatrix}
\]

\[
R_{11} = \cos \Omega \cos \omega - \sin \Omega \sin \omega \cos \alpha \\
R_{12} = -\cos \Omega \sin \omega - \sin \Omega \cos \omega \cos \alpha \\
R_{13} = \sin \omega \sin \alpha \\
R_{21} = \sin \Omega \cos \omega + \cos \Omega \sin \omega \cos \alpha \\
R_{22} = -\sin \Omega \sin \omega + \cos \Omega \cos \omega \cos \alpha \\
R_{23} = -\cos \omega \sin \alpha \\
R_{31} = \sin \omega \sin \alpha \\
R_{32} = \cos \omega \sin \alpha \\
R_{33} = \cos \alpha \\
\]

Having determined the elements of the rotation matrix, it
only remains to find \(\tilde{F} \) and \(\tilde{V} \) in terms of the inertial frame
components \((X, Y, Z)\). Thus:

\[
\begin{bmatrix}
\tilde{F}_X \\
\tilde{F}_Y \\
\tilde{F}_Z \\
\end{bmatrix}
= \tilde{R}
\begin{bmatrix}
F_X \\
F_Y \\
F_Z \\
\end{bmatrix}
\quad \text{AND} \quad
\begin{bmatrix}
\tilde{V}_X \\
\tilde{V}_Y \\
\tilde{V}_Z \\
\end{bmatrix}
= \tilde{R}
\begin{bmatrix}
V_P \\
V_Q \\
V_W \\
\end{bmatrix}
\]

Hence, the satellite's position and velocity vectors in the
inertial frame are now known at epoch \((\tilde{t}_0, \text{launch time})\).

Find The Satellite's Position At The Intercept Point

In computing the orbit needed for intercept, the time-
of-flight for the interceptor was chosen as a variable which would give a resultant elliptical intercept orbit. Due to the fact that the launch time was chosen to coincide with the epoch time for which the initial position of the target satellite was computed, the intercept point will be the point on the satellite's orbit where it will be located after traveling the chosen time-of-flight for the interceptor. Thus, the first step in computing the intercept orbit is finding the intercept point. This is done by up-dating the satellite's position from its initial location at epoch \(t = 0 \) to its resultant location, marked by the satellite's travel during the time-of-flight of the interceptor. This prediction problem can be stated as follows:

\[
\text{Given:} \quad \vec{r}_0, \vec{v}_0, t_0 = 0
\]

\[
\text{Find:} \quad \vec{r}, \vec{v} \text{ at time } t
\]

where \(t \) is the time-of-flight of the interceptor. (see Fig 3).

The solution consists of solving the Kepler problem for the satellite as it travels from \(\vec{r}_0 \) to \(\vec{r} \) in the given time-of-flight. The initial step is to compute the universal variable \(X \), which is defined by the relation \(\dot{X} = \frac{1}{r} \). Kepler's time-of-flight equation expressed in universal
variables is solely dependent on X and the initial position and velocity of the satellite, as seen here:

$$T_{OF} = (\bar{r} \cdot \bar{v})X^2C + (1 - \frac{\mu}{r^3})X^3S + \dot{r}X$$ \hspace{1cm} (7)

where:

- $S = (\sqrt{z} - \sin\sqrt{z})/\sqrt{z}$
- $C = (1 - \cos\sqrt{z})/2$
- $z = X^2/A$

An intermediate step in finding the radius and velocity vectors at a future time is to find X when time is known. Since equation (7) is transcendental in X, a trial and error solution is indicated. Fortunately, the \dot{r} vs X
curve is well-behaved and a Newton iteration technique can
be used to solve for X when the time-of-flight is given.
If a trial value for X is chosen, call it X_N, then
\[
TOF_N = (\hat{r}_0 \cdot \hat{v}_0) X_N^2 C + (1 - \frac{r_0^2}{4}) X_N^3 S + r_0 X_N
\]
where TOF_N is the time-of-flight corresponding to the
given \hat{r}_0, \hat{v}_0 and trial value X_N.
A better approximation for X_N is then obtained from the
Newton iteration algorithm:
\[
X_{N+1} = X_N + \frac{\xi - \xi_N}{d\xi/dX} \bigg|_{X=X_N}
\]
where ξ is the given time-of-flight and $d\xi/dX$ is the
slope of the ξ vs X curve at the trial point X_N. Now,
knowing X we wish to calculate the \vec{F} and \vec{V} vectors in
terms of \hat{r}_0, \hat{v}_0 and X. These vectors can be expressed in
terms of scalar quantities dependent on X as follows:
\[
\vec{F} = f \hat{r}_0 + \ddot{\xi} \hat{v}_0
\]
\[
\vec{V} = \dot{f} \hat{r}_0 + \ddot{\xi} \hat{v}_0
\]
where:
\[
f = 1 - (x^2/r_0) C \quad \ddot{\xi} = \xi - X^3 S
\]
\[
\dot{f} = \frac{x(3S-1)}{(r_0 r)} \quad \ddot{\xi} = 1 - x^2 S/r
\]
Thus, the satellite's position and velocity updated by the
chosen time-of-flight for the interceptor is now known.
Having the satellite's position gives us the data for the
interceptor's orbit: the initial position at launch and the
final position at intercept.
variables is solely dependent on \mathbf{X} and the initial position and velocity of the satellite, as seen here:

$$TOF = (\mathbf{r}_0 \cdot \mathbf{v}_0) X^3 c + \left(1 - \frac{r^2}{2}\right) X^3 S + \mathbf{r} \cdot \mathbf{X}$$ \hspace{1cm} (7)

where:

$$S = \left(\sqrt{2} - \sin \sqrt{2}\right)/\sqrt{2}$$

$$C = \left(1 - \cos \sqrt{2}\right)/\sqrt{2}$$

$$Z = X^2/A$$

An intermediate step in finding the radius and velocity vectors at a future time is to find \mathbf{X} when time is known. Since equation (7) is transcendental in \mathbf{X}, a trial and error solution is indicated. Fortunately, the \mathbf{X} vs \mathbf{X}
Compute The Orbit Between The Launch And Intercept Points

At this point, both the launch point and intercept point of the interceptor are known. It is now necessary to find the orbit between them. In other words, given \(\vec{r}_1 \) (launch site radius vector), \(\vec{r}_a \) (intercept point radius vector) and the time-of-flight from \(\vec{r}_1 \) to \(\vec{r}_a \), find \(\vec{v}_1 \) and \(\vec{v}_a \) where \(\vec{v}_1 \) is the velocity vector at launch needed to intercept at \(\vec{r}_a \) and \(\vec{v}_a \) is the interceptor's velocity at \(\vec{r}_a \). Here, the time-of-flight is known and is simply the chosen time-of-flight for the interceptor. Thus, the solution of the generalized Gauss problem in universal variables will give the needed orbit. A subprogram was developed to solve the Gauss problem. Initially, from \(\vec{r}_1 \) and \(\vec{r}_a \), the constant \(A \) was evaluated, where:

\[
A = \frac{\sqrt{r_1 r_a} \sin \Delta \nu}{\sqrt{1 - \cos \Delta \nu}} \quad (12)
\]

Here, \(\Delta \nu \) was evaluated by finding the angle between \(\vec{r}_1 \) and \(\vec{r}_a \). A trial value for \(Z \) was then chosen and the functions \(S \) and \(C \) were evaluated for the selected trial value for \(Z \) where the series representations for \(S \) and \(C \) were used to eliminate instability problems when \(Z \) is near zero.

\[
S = \frac{Z}{1!} - \frac{Z^2}{2!} + \frac{Z^3}{3!} - \frac{Z^4}{4!} + \ldots \quad (13)
\]

\[
C = \frac{Z}{5!} - \frac{Z^2}{5!} + \frac{Z^3}{7!} - \frac{Z^4}{9!} + \ldots \quad (14)
\]
In the actual program, the first four terms in these series were used.

\[S = \frac{\sqrt{2} - \sin \sqrt{2}}{\sqrt{2}} \]
\[C = \frac{1 - \cos \sqrt{2}}{\sqrt{2}} \]

Next, the auxiliary variable \(Y \) was found from:

\[Y = r_i + r_e - A \left(\frac{1 - zs}{\sqrt{c}} \right) \]

and \(X \) was determined from:

\[X = \sqrt{Y/c} \]

Now, the trial value for \(\tau \) was checked by computing \(t_N \) from:

\[t_N = X^3 S + A \sqrt{Y} \]

and it was compared to the desired time-of-flight which is the given time-of-flight chosen for the interceptor. If it is not nearly the same, the trial value of \(\tau \) is obtained, within some convergence criterion. A Newton iteration scheme for the adjustment of \(\tau \) was used, much like that used in the previous section, and was implemented as follows:

\[\tau_{N+1} = \tau_N + \frac{\tau - t_N}{\partial \tau / \partial \tau} \bigg| \tau = \tau_N \]

where \(\tau = \) desired time-of-flight

\(t_N \) is given in equation (19)
\[
\frac{dt}{dx} = x^3 \left(S' - \frac{3S\gamma}{2c} \right) + \frac{A}{3} \left(\frac{3S\sqrt{\gamma}}{c} + \frac{A}{x} \right)
\]

\[S' = \frac{1}{2\pi} (c - 3S) \]

\[C' = \frac{1}{2\pi} (1 - 2S - 2c) \]

Here, again, instability problems could occur for a small value of \(\Xi \). Thus, series expansions for \(S' \) and \(C' \) were used when \(\Xi \) is small and the function representations for \(S' \) and \(C' \) were used otherwise. When the method has converged to a solution, the functions \(f, g, \) and \(\dot{g} \) were evaluated from:

\[f = \frac{1}{-\gamma \sqrt{r_1}} \tag{23} \]

\[g = \frac{A \sqrt{\gamma}}{r_1} \tag{24} \]

\[\dot{g} = \frac{1}{-\gamma \sqrt{r_2}} \tag{25} \]

Now, since \(\vec{r}_1 = f \vec{r}_1 + g \vec{r}_2 \), we can compute \(\vec{v}_1 \) from:

\[\vec{v}_1 = \frac{\vec{r}_2 - f \vec{r}_1}{g} \tag{26} \]

and similarly:

\[\vec{v}_2 = \frac{\dot{g} \vec{r}_2 - \vec{r}_1}{g} \tag{27} \]

Thus now, both the initial position (\(\vec{r}_1 \)) and velocity (\(\vec{v}_1 \)), and the final position (\(\vec{r}_2 \)) and velocity (\(\vec{v}_2 \)) of the interceptor are known, and hence, so is the intercept orbit. (see Fig 4)
State Transition Matrix

The states at both the launch point and the intercept point are now completely defined in terms of inertial position and velocity vectors. The transition matrix between these two states can now be found by taking the partials of the state at the intercept time with respect to the partials of the state at the intercept time with respect to the partials of the state at the launch time (Ref 3:129):

$$\mathcal{E}(t_{I}, t_{o}) = \frac{\partial \mathbf{X}(t_{\text{INTERCEPT}})}{\partial \mathbf{X}(t_{\text{EPOCH}})} \bigg|_{X}.$$ (Z8)

This was done numerically by perturbing each state element at launch by a small amount and calculating the resulting
new orbit over the same time-of-flight. The difference between the final perturbed state and the initially known state at intercept, divided by the amount of the initial perturbation, gives the elements of the state transition matrix between the two states, \mathcal{E}. This transition matrix will be used to propagate covariances over the known inertial orbit.

Covariance Matrix Propagation

At the burnout point of the booster, a covariance matrix was developed to reflect the position and velocity errors due to booster performance. These error parameters were treated as input to the program. Thus, the position and velocity sigmas were inputed, transformed from the MKS to the universal variable system, and squared to give the diagonal elements of the booster covariance matrix at burnout, which is itself a diagonal 6×6 matrix. The upper three diagonal elements of the matrix represented the position sigmas while the lower three diagonal elements represented the velocity sigmas. Then, using the state transition matrix for the given intercept orbit, this covariance matrix was propagated from the burnout point to the intercept point along the intercept orbit. This was done via the following equation (Ref 2):
\[
P_{I} = \overline{X} \cdot P_{B} \cdot \overline{X}^T
\]

where:
\[
P_{I} = \textit{Covariance Matrix at Intercept}
\]
\[
P_{B} = \textit{Covariance Matrix at Burnout}
\]
\[
\overline{X} = \textit{State Transition Matrix}
\]

The justification for the use of the above transformation equation is seen in the following derivation (Ref 3):

\[
S_{X}(t_{I}) = \overline{X}(t_{I}, t_{0}) S_{X}(t_{0}) \quad \text{(Definition of Transition Matrix)}
\]

\[
P_{I} = E[S_{X}(t_{I}) S_{X}(t_{I})^T] \quad \text{(Definition of Covariance Matrix)}
\]

Thus:

\[
P_{I} = E\left[\overline{X}(t_{I}, t_{0}) S_{X}(t_{0}) \overline{X}(t_{I}, t_{0})^T\right]
\]

\[
= E\left[\overline{X}(t_{I}, t_{0}) S_{X}(t_{0}) S_{X}(t_{0})^T \overline{X}(t_{I}, t_{0})^T\right]
\]

\[
= \overline{X}(t_{I}, t_{0}) E\left[S_{X}(t_{0}) S_{X}(t_{0})^T\right] \overline{X}(t_{I}, t_{0})^T
\]

\[
P_{I} = \overline{X}(t_{I}, t_{0}) \cdot P_{B} \cdot \overline{X}(t_{I}, t_{0})^T
\]

where: \(E[\] \) indicates the expected value of the bracketed quantity. Since this thesis is interested in only the resultant position errors at intercept, the propagated covariance matrix was examined and the upper 3 \times 3 sub-matrix was extracted. This sub-matrix represents the propagated position errors at intercept since the initial
covariance matrix was developed by placing the position error elements in the upper diagonal locations of that matrix. This position sub-matrix represents the position errors at intercept with respect to the interceptor's orbit; i.e., the deviations from the intended intercept point referenced from the track of the interceptor's orbital path. However, the items of interest are the deviations from the location of the intended target relative to that target. Thus, the position sub-matrix requires a transformation so as to reflect the actual position errors referenced to the relative velocity vector. This was accomplished by a rotation of the position covariance matrix, rotating about the relative velocity vector between the satellite and the interceptor. This was done by realigning the basis vectors of the error ellipsoid along the relative velocity vector between the interceptor and target satellite (see Fig 5). This rotation matrix was developed as follows (Ref 1:61):

\[R' = \begin{bmatrix}
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0 \\
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta
\end{bmatrix} \]
Using this rotation matrix, the position covariance matrix was rotated into the relative velocity vector as follows (Ref 2): Given initial covariance elements $\mathbf{S}\mathbf{x}$ and desired rotated covariance elements $\mathbf{S}\mathbf{x}'$:

$$
\mathbf{S}\mathbf{x}' = R' \mathbf{S}\mathbf{x} \quad (34)
$$

$$
\mathbf{P}' = E\left[\mathbf{d}\mathbf{x}', (\mathbf{d}\mathbf{x}')^T\right] \quad \mathbf{P} = E\left[\mathbf{d}\mathbf{x} (\mathbf{d}\mathbf{x})^T\right] \quad (35, 36)
$$

$$
\mathbf{P}' = E\left[R' \mathbf{S}\mathbf{x} (R' \mathbf{d}\mathbf{x})^T\right]
$$

$$
= E\left[R' \mathbf{S}\mathbf{x} \mathbf{S}^T R'^T\right]
$$

$$
= R' E\left[\mathbf{d}\mathbf{x} (\mathbf{d}\mathbf{x})^T\right] R'^T
$$

$$
\mathbf{P}' = R' \mathbf{P} R'^T \quad (37)
$$
Now the position error ellipsoid at the intercept point relative to the satellite is known (see Fig 6). It now remains to find the actual miss distances from this covariance matrix. Due to the intercept problem involved, the in-track errors, those errors that indicate if the interceptor is either in front of, or behind the target at intercept, are of no real interest to this study, for they simply dictate if the intercept should occur a little sooner, or later, than expected. Thus, the row and column of the position covariance matrix that reflect the in-track errors were eliminated, leaving a 2 x 2 matrix representing the cross-track errors at intercept. The eigenvalues of this matrix were then found and their square roots were taken to determine the axis lengths of the cross-track error ellipsoid at the intercept point. Once these principal axis lengths were converted back to the MKS system, these lengths represented the propagated miss distances from the target point (in meters). These error ellipsoid axis lengths, representing the error from the center of the ellipse to a point on its edge, are one sigma errors. They represent a 68% confidence level. Due to the linearity of the error propagation process, the three sigma or 99% confidence level can be found by simply multiplying the errors by a factor of three.
Figure 6. Error Ellipsoid Growth To Intercept Point
Thus, the error ellipsoid footprint cross-track to the relative velocity vector is now known, along with the magnitudes of each perpendicular arm of the axis which make up that cross-track ellipsoid. Throughout the development of the program, the reliability of each major sub-program or element of the main program was examined in a variety of ways. All of the program elements concerned with orbit determination were verified by using data from examples previously done in the references from which that element was developed. Only high correlation between the output of that sub-program and the "book answer" insured the proper functioning of that program element. The matrix manipulations in the latter part of the main program were verified by examining output matrices during intermediate steps and calculating, by hand, certain elements of the matrix found in the subsequent step and comparing the corresponding numbers. This technique assured the reliability of the intricate matrix manipulations used in the propagation of the initial covariance matrix to the intercept point.
III Program Execution

With the theory now modeled, the program is now ready to produce the data required from which appropriate conclusions can be made. The launch site was held constant, and a variety of target orbits were examined to make up one scenario. For each orbit examined, varying times-of-flight for the interceptor were used until an elliptical family of intercept trajectories were found. Then the time-of-flight was slowly iterated over this elliptical range to produce a quantity of intercept points and, hence, two-dimensional position error data at each point. This array of data was examined and the minimum horizontal and vertical position errors were extracted along with their corresponding time-of-flight, which indicates on what type of intercept trajectory they occurred. Also, plots of the cross-track error ellipsoid foot prints were made for the first and last elliptical orbits in the family and also for the cases of the minimum horizontal and vertical miss distances.
Results

In implementing the program to generate data, many target orbits were examined. For all the runs used, the launch site was fixed along the equator with zero longitude. This located the site along the first point of Aires, \(r \), along the \(\overrightarrow{Z} \) unit vector in inertial space. Due to the restriction on the geometry of the intercept orbit (it must be elliptical), many of the target orbits considered yielded too little information to be examined for definite conclusions. This was done to the fact that there were very few elliptical intercept paths that could be flown against them. Thus, in this section only two types of target orbits were considered. A direct polar target orbit which passes perpendicular to the site was used along with a moderately inclined orbit which also passes perpendicular to the site (see Fig 7), (see Table I). Initially, cross-track error data was obtained by varying time-of-flight for the interceptor and up-dating the satellite's position from epoch by that time-of-flight. This technique gave the range of elliptical intercept orbits over a segment of the satellite's orbital path, the eccentricity of each target orbit was set at zero (circular orbit) and \(0.2 \) (moderately eccentric) to obtain data sets for comparison. Initial covariance values at burnout were found by inputting sigmas of 10 meter.
Figure 7. Polar (A) and Inclined (B) Target Orbits.
Table I: Target Orbits Examined

<table>
<thead>
<tr>
<th>Target Orbit # 1:</th>
<th>Target Orbit # 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = 1.071615)</td>
<td>(A = 1.071615)</td>
</tr>
<tr>
<td>(e = 1 \times 10^{-8})</td>
<td>(e = 0.2)</td>
</tr>
<tr>
<td>(i = 90^\circ)</td>
<td>(i = 90^\circ)</td>
</tr>
<tr>
<td>(\Omega = 270^\circ)</td>
<td>(\Omega = 270^\circ)</td>
</tr>
<tr>
<td>(\omega = 0^\circ)</td>
<td>(\omega = 0^\circ)</td>
</tr>
<tr>
<td>(\nu = 0^\circ)</td>
<td>(\nu = 0^\circ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Orbit # 3:</th>
<th>Target Orbit # 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = 1.071615)</td>
<td>(A = 1.071615)</td>
</tr>
<tr>
<td>(e = 1 \times 10^{-8})</td>
<td>(e = 0.2)</td>
</tr>
<tr>
<td>(i = 65^\circ)</td>
<td>(i = 65^\circ)</td>
</tr>
<tr>
<td>(\Omega = 90^\circ)</td>
<td>(\Omega = 90^\circ)</td>
</tr>
<tr>
<td>(\omega = 0^\circ)</td>
<td>(\omega = 0^\circ)</td>
</tr>
<tr>
<td>(\nu = 270^\circ)</td>
<td>(\nu = 270^\circ)</td>
</tr>
</tbody>
</table>
in position error and 0.3049 meters per second (10 foot per second) in velocity error. Then two other data sets were developed by first zeroing out the position error at burnout and then the velocity error. This was done to examine the sensitivity of the resultant intercept error to burnout position and velocity errors. This cross-track error data for each target orbit is summarized in table II.

Plots of this data, cross-track error vs. time-of-flight, can be seen in Figures (8 to 24). The parameter "circularized cross-track error" was developed to combine the two axis errors, as the other plots show both error ellipsoid axes plotted as they propagated vs. time. It was found by determining the radius of a circle with the same area as the ellipse represented by the two axis lengths of the cross-track slice of the error ellipsoid at the intercept point. Next, identical data computation scheme was used to examine error propagation when just one point on the target orbit was used as the intercept point. Here, the satellite's position at epoch was determined and held constant as a family of elliptical intercept orbits were computed for various times-of-flight. These intercept orbits were used in the error determination to examine the effect of orbit geometry on the intercept error growth. The corresponding data range is shown in table III.
Table II: Intercept Errors Over Range of Target Positions.

Target # 1.

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>10 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veloc.</td>
<td>0.03048 m/sec</td>
<td></td>
</tr>
<tr>
<td>Variance in Principal Axes Length (M):</td>
<td>21.73 - 46.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.01 - 120.59</td>
<td></td>
</tr>
<tr>
<td>Variance in Circular Error Parameter (M):</td>
<td>31.27 - 74.92</td>
<td></td>
</tr>
</tbody>
</table>

Target # 2.

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>10 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veloc.</td>
<td>0.03048 m/sec</td>
<td></td>
</tr>
<tr>
<td>Variance in Principal Axes Length (M):</td>
<td>20.35 - 48.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.17 - 107.92</td>
<td></td>
</tr>
<tr>
<td>Variance in Circular Error Parameter (M):</td>
<td>28.23 - 67.65</td>
<td></td>
</tr>
</tbody>
</table>
Table II (cont.)

Booster Burnout Errors: Position 1×10^{-3} M
Velocity $0.03048 \frac{M}{\text{sec}}$
Variance in the Principal Axes Lengths (M): 19.62 - 47.82
28.23 - 67.65
Variance in the Circular Error Parameter (M): 25.79 - 69.71

Booster Burnout Errors: Position 10 M
Velocity $1 \times 10^{-8} \frac{M}{\text{sec}}$
Variance in the Principal Axes Lengths (M): 4.76 - 3.09
19.77 - 37.01
Variance in the Circular Error Parameter (M): 9.70 - 9.74

Target #3.

Booster Burnout Errors: Position 10 M
Velocity $0.03048 \frac{M}{\text{sec}}$
Variance in the Principal Axes Lengths (M): 20.72 - 40.46
26.43 - 152.84
Variance in the Circular Error Parameter (M): 23.41 - 78.63

Booster Burnout Errors: Position 1×10^{-8} M
Velocity $0.03048 \frac{M}{\text{sec}}$
Variance in the Principal Axes Lengths (M): 19.49 - 39.76
23.01 - 140.88
Variance in the Circular Error Parameter (M): 21.18 - 74.84
Table II (cont.)

Booster Burnout Errors: Position 10 M
Velocity 1×10^{-8} m/sec

<table>
<thead>
<tr>
<th>Target # 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booster Burnout Errors: Position 10 M</td>
</tr>
<tr>
<td>Velocity 0.03048 m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M): $18.69 - 49.18$</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M): $21.36 - 74.49$</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Booster Burnout Errors: Position 10 M</td>
</tr>
<tr>
<td>Velocity 1×10^{-8} m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M): $6.75 - 4.22$</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M): $9.43 - 15.15$</td>
</tr>
</tbody>
</table>
Table # III: Intercept Errors for a Single Family of Intercept Orbits.

Target # 1.

Booster Burnout Errors: Position $10\,m$

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Position</th>
<th>Variance in the Principal Axes Lengths (M)</th>
<th>Variance in the Circular Error Parameter (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.03048,m/sec$</td>
<td>$1.x10^{-8},m$</td>
<td>$22.03 - 39.55$</td>
<td>$44.87 - 155.77$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$31.16 - 78.49$</td>
<td></td>
</tr>
</tbody>
</table>

Target # 2.

Booster Burnout Errors: Position $10\,m$

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Position</th>
<th>Variance in the Principal Axes Lengths (M)</th>
<th>Variance in the Circular Error Parameter (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.03048,m/sec$</td>
<td>$1.x10^{-8},m$</td>
<td>$16.42 - 35.11$</td>
<td>$35.74 - 151.68$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25.65 - 72.98$</td>
<td></td>
</tr>
</tbody>
</table>
Table # III: (cont.)

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>(1 \times 10^{-8}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity</td>
<td>(0.03048) m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>(17.54 - 34.51)</td>
<td>(31.99 - 139.47)</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>(23.07 - 69.38)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>(10) m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity</td>
<td>(1 \times 10^{-8}) m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>(5.11 - 3.98)</td>
<td>(19.00 - 59.83)</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>(9.85 - 15.92)</td>
<td></td>
</tr>
</tbody>
</table>

Target # 3.

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>(10) m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity</td>
<td>(0.03048) m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>(19.59 - 37.93)</td>
<td>(23.48 - 140.42)</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>(21.45 - 72.98)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Booster Burnout Errors:</th>
<th>Position</th>
<th>(1 \times 10^{-8}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity</td>
<td>(0.03048) m/sec</td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>(18.13 - 37.62)</td>
<td>(20.13 - 129.62)</td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>(19.10 - 69.67)</td>
<td></td>
</tr>
</tbody>
</table>
Table III (cont.)

<table>
<thead>
<tr>
<th>Target # 4</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Booster Burnout Errors: Position 10 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>1×10^{-8} m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>7.25 (\pm) 2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>12.20 (\pm) 55.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booster Burnout Errors: Position 10 m

<table>
<thead>
<tr>
<th>Target # 4</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>0.03048 m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>18.57 (\pm) 36.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>24.42 (\pm) 137.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booster Burnout Errors: Position 10 m

<table>
<thead>
<tr>
<th>Target # 4</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>1×10^{-8} m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>18.08 (\pm) 36.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>20.72 (\pm) 129.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booster Burnout Errors: Position 10 m

<table>
<thead>
<tr>
<th>Target # 4</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>1×10^{-8} m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Principal Axes Lengths (M):</td>
<td>7.02 (\pm) 2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance in the Circular Error Parameter (M):</td>
<td>12.75 (\pm) 54.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURES 8 - 11.

Data for the Range of Target Positions

TARGET # 1.
Figure # 8
Figure # 9
Figure # 11
FIGURES 12-15.

Data for the Range of Target Positions

TARGET # 2.
Figure # 12
Figure # 14
FIGURES 16 - 19.

Data for the Range of Target Positions

TARGET # 3.
Figure # 17

CIRCULARIZED CROSS-TRACK ERROR (M) vs TIME-OF-FLIGHT (TU)

Values:
- 23.00
- 31.00
- 39.00
- 47.00
- 55.00
- 63.00
- 71.00
- 79.00

TIME-OF-FLIGHT (TU)

Range:
- 0.80 to 2.80
Figure 4.8

TIME-OF-FLIGHT (TU)

CROSS TRACK ERROR (M)

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00

0.80
1.20
1.60
2.00
2.40
2.80

Figure #8

47
FIGURES 20 - 23.

Data for the Range of Target Positions

TARGET # 4.
Figure # 26
Figure # 21
Figure # 23
FIGURES 24 - 27.

Single Family of Intercepts

TARGET # 1.
Figure # 24

TIME-OF-FLIGHT (TU)

CROSS TRACK ERROR (M)
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00

1.10 1.50 1.90 2.30 2.70 3.10
Figure # 25

CIRCULARIZED CROSS-TRACK ERROR (M) vs TIME-OF-FLIGHT (TU)

- Time-of-Flight (TU) values range from 1.10 to 3.10.
- Circularized Cross-Track Error (M) values range from 24.00 to 80.00.

Figures showing data points and trends for a specific analysis.
Figure # 26
Figure #27
FIGURES 28 - 31.

Single Family of Intercepts

TARGET # 2.
Figure # 28
Figure # 31

CROSS TRACK ERROR (m)

TIME-OF-FLIGHT (TU)
FIGURES 32 - 35.

Single Family of Intercepts

TARGET # 3.
Figure 32
Figure # 33
Figure # 34

CROSS TRACK ERROR (ft)
0.00 40.00 60.00 80.00 100.00 120.00 140.00

TIME-OF-FLIGHT (TU)
0.80 1.20 1.60 2.00 2.40 2.80 3.20

Figure # 34
Figure # 35
FIGURES 36 - 39.

Single Family of Intercepts

TARGET # 4.
Figure # 38
Conclusions

In analyzing the results, the first obvious conclusion is the fact that shorter times-of-flight give the smallest miss distances at the intercept point. This observation is consistent throughout the data analysis and does not depend on orbit geometry. But this fact was an expected result in that, due to the linearity of the propagation routine and a bit of common sense, the errors should increase as the interceptor tracks further down its orbital path, as the times-of-flight become larger. In comparing like target orbits which have different eccentricities it was seen that the eccentric orbit yielded smaller intercept errors for the same time-of-flight. The length discrepancies appeared in both principal axes. This fact indicates that the resultant intercept error is dependent on the eccentricity of the target satellite’s orbit. Comparing data for identical times-of-flight between the two different geometry orbits considered, it was evident that the inclined target orbit gave the smaller intercept errors. This suggests that the inclination of the target satellite has a definite effect on the final target miss distance. But a much more extensive examination along this line should be attempted before a definitive statement concerning this effect can be made.
The most generalized observation that can be made in examining the results concerns the magnitudes of the computed errors themselves. The fact that these one sigma errors, represented by the circularized error parameter, typically range between 2.1 and 7.9 meters indicates that the final free flight intercept position is known better than the position of the target itself. For the purposes of this study, the target's position at intercept was assumed to be perfectly known when in reality it's three sigma location is only known to the order of about 500 meters. Now comparing the same target orbit data while initial position and velocity errors were nulled shows that the final intercept error is mainly dependent on initial booster velocity errors and is not very sensitive to corresponding position errors at the burnout point. Finally, in examining the plot of the circularized error parameter vs. time-of-flight it is noticed that, for all the cases considered, it is a straight line increasing over time. This result was also expected, as stated previously, due to the linearity of the error propagation over time and this fact lends considerable credibility to the computed data.
Recommendations

Throughout the development of this thesis, and especially in the final stages, I became more and more aware of the many things that could, and should be done, for which I just would have time. The next step in the utilization of the program would be to alter the logic so that the covariance propagation is done from an actual burnout point to the intercept point. Because of the initial assumption of an instantaneous burn of the booster, the program propagated the covariance from the launch site to the intercept point. An appropriate burnout altitude could be inputted as a variable and it's location on the path of the intercept orbit could be found. It then remains to use this location to begin the covariance matrix propagation to give more realistic results. Another interesting area which could be examined is the development of a contour map of time of launch for the interceptor vs. cross-track error for various times-of-flight. Considering a certain launch time, corresponding launch and intercept points could be found and a family of intercept orbits computed between the points along with the associated miss distance. Then the launch time could be increased and the process repeated until a wide range of launch times have been considered. Appropriate conclusions could then be made as
to the effect of the time-of-launch on the ultimate interceptor's error at the target point. Also of interest might be the examination of the sensitivity of the interceptor's error to intercepts on different passes of the target relative to the launch point. Here, hopefully conclusions could be made as to which revolution of a target should be used to fly the most accurate intercept trajectory against.

In the implementation of this program, I see that I've just scratched the surface by finding the cross-track errors at the intercept point and doing the rather general orbit geometry comparison. This groundwork has been laid in hopes that follow-on research would be attempted to further broaden the knowledge on this subject.
APPENDIX A

COMPUTER PROGRAM
PROGRAM SATE (INPUT=70, OUTPUT=TAPE=OUTPUT)

DIMENSION P(3,6), Q(6,6), S(3,3), O(3,1), SS(3,1), NM(60), CHECK(6,6)
DIMENSION PHI(6,6), XR(3,3), QT(3,3), COV(6,6), COVR(2,2), DD(3,3)
DIMENSION V(1,40), Z(400), ARX(810), IT(400), DEP(400)

COMMON THECA
COM/N/LAT, LONG, DAY, TIME, THETA30
COM/N/SITE, LAT, HI
CMPX/JS,W
REAL LAT, LONG, NJ, MAG1, MAG2, L1, L2
INTEGER CD

C**
C** ERROR PROPAGATION FOR GROUND-TO-SATELLITE ELLIPTICAL
C** INTERCEPT ORBITS TO EXAMINE E.G. GROWTH OF BOOSTER COVARIANCE
C**

PRINT 98
PRINT 38
FORMAT(1X,12)(1H*)
C
C
KLX=0
III=0
111 IF(III,9,3) 222
KLX=KLX+1
III=III+1
CD=0
LX=0
PRINT*,"**
PRINT*, "****** ORBIT NUMBER ", III, "******
PRINT*,"**
C INPUT DATA
A-1
C**
READ* ,I, IF, JF
READ* ,RP, VP
READ* ,LATT, LONGI, HI, TIME, DAY, THETAS
C**
PRINT*, "COVARIANCE VALUES... POSITION ERROR=" , RP, " (M)"
PRINT*, " VELOCITY ERROR=" , VP, " (M/SEC)"
PRINT*, " RP=(RP/648145)**2
VP=(VP/7905.36828)**2
00 15 I=1,3
1E COV(I,I)=??
00 16 J=4,5
1E COV(J,J)=VP
70 9 I=1,400
YA(I)=0.
ZA(I)=0.
ARY(I)=0.
9 TT(I)=0.
C**
C COMPUTE LOCAL SIDERIAL TIME OF LAUNCH SITE
CALL LS
time
C**
T=.1
THETA=1.
C**
C COMPUTE INERTIAL COORDINATES OF LAUNCH SITE
CALL SITE(X,Y,Z,VX,VY,VZ)
C**
C COMPUTE INITIAL SATELLITE POSITION
CALL ORBIT(XI,YI,ZI,VXI,VYI,VZI,RO,VO,A)
IJ=3
JJJ=1
C**
C UPDATE SATellite POSITION TO INTERCEPT POINT
C**
OUT=X1*VX1+Y1*VY1+Z1*VZ1
7c CALL FINDXY(XX,ROT,R0,V0,IN),1)
IF(INO.EQ.30) Go TO 19
CALL LOCATE(XX,FO,V0,F,6,G,S,ZZ,4)
R1=F*X1+G*VX1
R2=F*Y1+G*VY1
R3=F*Z1+G*VZ1
DF=XX*(7**5-1.)/(R*20)
DG=1.-XX**2.*CC/R
V4=DF*X1+DG*VX1
V5=DF*Y1+DG*VY1
V6=DF*Z1+DG*VZ1
R=SQRT(R1**2.+R2**2.+R3**2.)
V=SQRT(V5**2.+V6**2.+V4**2)
C**
C COMPUTE ORBIT REQUIRED FOR PROBE INTERCEPT
C**
4AG1=SQRT(X**2.+Y**2.+Z**2)
4AG2=SQRT(R1**2.+R2**2.+R3**2)
X1=X/4AG1
Y1=Y/4AG1
Z1=Z/4AG1
X2=R1/4AG2
Y2=R2/4AG2
Z2=R3/4AG2
DOP=X1*X2+Y1*Y2+Z1*Z2
VU=ACOS(DOP)
CALL GAUSS(VU,4AG1,4AG2,F,5,3G,L4)
IF(LM.EQ.1.) Go TO 77
IF(LM.EQ.0.) Go TO 77
V11=(R1-F*X)/F
V12=(R2-F*Y)/F
V13=(R3-F*Z)/F
VT1 = (3*RT - X) / G
VT2 = (3*RT - Y) / G
V13 = (3*RT - 7) / G
V1 = SQRT (V11**2 + V12**2 + V13**2)
VVS = SQRT (VT1**2 + VT2**2 + VT3**2)
VVI = SQRT (V11**2 + V12**2 + V13**2)
10T1 = X*VI1 + Y*VI2 + Z*VI3
CC = VI**2 - 1 / MAG1
E1 = CC*X - DOT1*VI1
E2 = CC*Y - DOT1*VI2
E3 = CC*Z - DOT1*VI3
E = SQRT (E1**2 + E2**2 + E3**2)
TI = E
AN = ANS(1, (VI**2 - 2, MAG1))

C**
C BRANCH -- ELLIPTICAL OR HYPERBOLIC INTERCEPT ORBIT
C**
IF (EU.GT.1) GO TO 50
GO TO 500
229 PRINT*, "NO ELLIPTICAL INTERCEPT ORBITS POSSIBLE FOR GIVEN DATA"
STOP
50 IF (K.GT.EQ.1) GO TO 111
77 T = T + .1
IF (T.GT.20.) GO TO 229
GO TO 78
500 CONTINUE
C**
C DEVELOP THE STATE TRANSITION MATRIX
C**
51 J = 1
LL = 0
I = 1
TW = .0001
XW = X + TW
YW = Y + TW
7W = 7 + TW
\[V1W = V1i + TW \]
\[V2W = V2i + TW \]
\[V3W = V3i + TW \]
\[R1i = R1 \]
\[R2i = R2 \]
\[R3i = R3 \]
\[VIS1 = VT1 \]
\[VIS2 = VT2 \]
\[VIS3 = VT3 \]
\[XC = XW \]
\[YC = Y \]
\[ZC = Z \]
\[V1C = V1i \]
\[V2C = V2i \]
\[V3C = V3i \]
\[R0 = SQRT(XW**2 + YW**2 + ZW**2) \]
\[VO = SQRT(V1i**2 + V2i**2 + V3i**2) \]
\[DOT = XW*V1i + YW*V2i + ZW*V3i \]
\[A = 1.0 / (VO**2 - ZW**2) \]
\[A = 0.5*R \]

CALL FINIT(XW, DOT, R3, VO, TW, 1)
CALL LOCATE(XW, F0, VO, F, G, S, CO, ZZ, 4)
\[R1 = XW*G + V1C \]
\[R2 = YC*G + V2C \]
\[R3 = ZC*G + V3C \]
\[R = SQRT(R1**2 + R2**2 + R3**2) \]
\[F = XW**2 + S**2 - 1.0 / (R**2) \]
\[DG = 1.0 - XW**2 + S**2 \]
\[V1 = DF*XC + DG*YC \]
\[V2 = DF*YC + DG*VC \]
\[V3 = DF*ZC + DG*VC \]
\[V = SQRT(V1**2 + V2**2 + V3**2) \]
\[CHECK(1, I) = (RI - PI1) / TW \]
\[CHECK(2, I) = (RI - PI2) / TW \]
\[CHECK(3, I) = (RI - PI3) / TW \]
\[CHECK(4, I) = (V1 - VIS1) / TW \]
CHECK(3,I) = (VI2-VIS2)/TW
CHECK(5,I) = (V3-VIS3)/TW
IF(LL.EQ.1) GO TO 96
IF(I.EQ.1) GO TO 72
IF(I.EQ.2) GO TO 73
IF(I.EQ.3) GO TO 74
IF(I.EQ.4) GO TO 75
IF(I.EQ.5) GO TO 76
IF(I.EQ.6) GO TO 96

72 I=2
RD=SORT(X**2+YW**2+Z**2)
DOT=X*VI1+YW*VI2+Z*VI3
XC=X
YC=YW
GO TO 39

73 I=3
RD=SORT(W**2+Y**2+X**2)
DOT=X*VI1+YW*VI2+W*VI3
YC=W
ZC=W
GO TO 99

74 I=4
RD=SORT(X**2+Y**2+Z**2)
VC=SORT(VI1**2+VI2**2+VI3**2)
DOT=X*VI1+YW*VI2+Z*VI3
ZC=7
VC=VI1
GO TO 99

75 I=5
VC=SORT(VI1**2+V2W**2+V3W**2)
DOT=X*VI1+YW*V2W+Z*VI3
V1C=VI1
V2C=V2W
GO TO 39

76 I=6
VC=SORT(VI1**2+VI2**2+V3W**2)
DO 1,9

C***
C COMPUTE UPDATED COVARIANCE MATRIX
C***
CALL MULT(CHECK,COV,C,6,6,3)
DO 7 I=1,6
 DO 7 J=1,6
 7 S(I,J)=CHECK(J,T)
 CALL MULT(C,3,PHI,6,6,6)
C***
C EXTRACT POSITION: SUB-ELEMENTS OF COVARIANCE MATRIX
C***
DO 2 I=1,3
 DO 1 J=1,3
 1 X(I,J)=PHI(I,J)
 2 CONTINUE
C***
C ALIGN COVARIANCE ELEMENTS ALONG SATELLITE TRACK
C***
VXR=VT1-V4
VYR=VT2-V5
VZR=VT3-V6
VX=SQR(T(VXR**2+VYR**2+VZR**2))
VXY=SQR(T(VXR**2+VYR**2))
CPX=VXR/VXY
SPX=VYR/VXY
PZ=ATAN(VYR/VXY)
ROT(1,1)=COS(PZ)*CPX
ROT(1,2)=COS(PZ)*SPX
ROT(1,3)=-SIN(PZ)
ROT(2,1)=-SPX
ROT(2,2)=CPX
ROT(2,3)=0,
ROT(2,1)=SIN(PI)*CPX
ROT(3,2)=SIN(PI)*SPX
ROT(3,3)=COS(PI)
CALL MULR(ROT,PR,OO,3,3,3)
DO 8 I=1,3
DO 9 J=1,3
8 EE(I,I)=ROT(I,I)
CALL MULR(00,EE,EE,3,3,3)
DO 11 I=1,2
DO 10 J=1,2
10 CXXR(I,J)=EE(I+1,J+1)
11 CONTINUE
C**
C COMPUTE ERROR ELLIPSOID RESULTS
C**
 I7=2
 CALL EIGRF(COV,P,2,2,2,W,1,IZ,WK,IER)
 DCX=V4*VT1/(V*VVS)+VS+VT/(V*VVS)+VE*VT/(V*VVS)
 HANG=ACOS(DCX)
 HANG=HANG*180./?14159265353
 L1=W(1)
 L2=W(2)
 IFL(L1*L2,1) GO TO 111
 L1=6379.463*SORT(L1)
 L2=6379.463*SORT(L2)
 TH=T+13.4685457
66 CONTINUE
 CEP=SORT(L1*L2)
 QVI=VI?39056828
 LK=LK+1
 PRIT*,"TIME TO INTERCEPT=",(M,(4V))"T",(TU)
 PRINT*,"ELLIPSOID AXES LENGTHS1",(M,"L1","(M)
 PRINT*,"","L2","(M)"
PRINT*, "INTERCEPT ANGLE =", HANG, " (DEG)"
PRINT*, "INTERCEPTOR LAUNCH VELOCITY =", VVI, " (KM/SEC)"
PRINT*, " CEP =", CEP, " (M)"
IF (LK, JT, 70) = 0 TO 27
CD = CD + 1
I = 2 * CD - 1
J = 2 * CD
Y(A CD) = L1
Z(A CD) = L2
TT(CD) = T
ARY(I) = L1
ARY(J) = L2
OEP(CD) = CEP
100 T = T + IF*, 1.25
KK = 1
JJJ = JJJ + 1
GO TO 78
27 CALL PLOT((YA, ZA, TT, ARY, CD)
IF (III, EQ, 1) GO TO 66
GO TO 111
66 CALL ERR (OEP, TT, CD)
GO TO 111
222 IF (KLM, EQ, 12) GO TO 223
III = 0
PRINT*, " "
PRINT*, " "
PRINT*, " "
GO TO 111
223 CALL PLOT
STOP
END
SUBROUTINE LTIME
COMMON THETA
COMMON/LTIME/LONGI, DAY, TIME, THETAG
REAL LONGI, LONG
PI=3.141592654
LONG=LONGI*PI/180.
TIME=TIME/2400.
DAY=DAY+TIME
1
THETA=THETAG+1.0027379073*2.*PI*DAY+LONG
RETURN
END
SUBROUTINE SITE(X,Y,Z,VX,VY,VZ)
COMMON THETA
COMMON/SITE5/LATI,HI
REAL LAT,LATI
AE=1.003003136
E=.9956710533
E=.08131
PI=3.141592654
LAT=LATI*PI/180.
H=HI/2.992567257E7
XI=(AE/(1.-E**2.*SIN(LAT)**2.)*5.51*E**3/2.*SIN(LAT)**2.)*SIN(LAT)
Theta=(AE/(1.-E**2.)*SIN(LAT)**2.)*SIN(LAT)
X=XI*COS(THETA)
Y=XT*SIN(THETA)
VEARTH=JFS3336C01
VX=-VEARTH*Y
VY=VEARTH*X
VZ=0.
RETURN
END
SUBROUTINE MLT(A, B, C, L, N, M)
DIMENSION D(6,6), B(6,6), C(5,5), AD(3,6), BD(6,6), CD(6,6)

100 DC 105 J=1, M
DO 104 I=1, L
104 AD(I, J)=2(I, J)
DO 106 K=1, N
108 BD(J, K)=V(J, K)
DO 112 I=1, L
DO 112 J=1, N
CD(I, J)=0.
DO 112 K=1, M
112 CD(I, J)=CD(I, J)+AD(I, K)*BD(K, J)
DO 116 I=1, L
DO 116 J=1, N
116 C(I, J)=CD(I, J)
RETURN
END
SUBROUTINE 4LIP (A, P, Q, R, M, N)
DIMENSION A(3,3), P(3,3), Q(3,3), AR(3,3), AC(3,3), C9(3,3)

240 DO 208 J=1, M
208 DO 204 I=1, L
204 AR(I, J) = Z(I, J)
208 DO 206 K=1, N
206 BC(J, K) = P(J, K)
206 DO 212 I=1, L
206 DO 212 J=1, N
206 GB(I, J) = 0.
212 DO 216 K=1, M
212 CM(I, J) = CM(I, J) + AR(I, K) * BC(K, J)
216 DO 216 I=1, L
216 DO 216 J=1, N
216 Q(I, J) = C9(I, J)
RETURN
END

A-13
SUBROUTINE ORBIT(XI,YI,ZI,VXI, VYI, VZI, RO, VO, A)
DIMENSION G(5,6), R(6,6), C(3,3), D(3,1), SS(3,1)
REAL I
READ*, A, E, I, OMEGA, WMEGA, ANOMY
IF (EOF(5, INPUT), NE, 0) STOP
PRINT*, " SATELLITE'S ORBITAL ELEMENTS (A, E, I, OMEGA, WMEGA, ANOMALY)"
PRINT*, " "'A, E, I, OMEGA, WMEGA, ANOMY,"" #######
P=A* (1. - E** 2)
Z=3. 14159265359/180.
I=I+Z
OMEGA=OMEGA*
WMEGA=WMEGA*
ANOMY=ANOMY*
R=P/(1. + E* COS(ANOMY))
B(1,1)=R* COS(ANOMY)
B(2,1)=R* SIN(ANOMY)
B(3,1)=0.
D(1,1)=-(1./P**.5* SIN(ANOMY))
D(2,1)=1./P**.5* (E* COS(ANOMY))
D(3,1)=0.
Q(1,1)=COS(OMEGA)* COS(WMEGA) - SIN(OMEGA)* SIN(WMEGA)* COS(I)
Q(1,2)=COS(OMEGA)* SIN(WMEGA) - SIN(OMEGA)* COS(WMEGA)* COS(I)
Q(1,3)=SIN(OMEGA)* SIN(I)
Q(2,1)=SIN(OMEGA)* COS(WMEGA) + COS(OMEGA)* SIN(WMEGA)* COS(I)
Q(2,2)=-SIN(OMEGA)* SIN(WMEGA) + COS(OMEGA)* COS(WMEGA)* COS(I)
Q(2,3)=-COS(OMEGA)* SIN(I)
Q(3,1)=SIN(WMEGA)* SIN(I)
Q(3,2)=COS(WMEGA)* SIN(I)
Q(3,3)=COS(I)
CALL MULT(Q, C, 3, 3, 1)
DO 11 K=1,3
11 SS(K, 1)=C(K, 1)
B(K, 1)=Q(K, 1)
CALL MULT(B, C, 3, 3, 1)
XT=SS(1, 1)
Y1=SS(2, 1)
?I = SS(3, 1)
VXI = C(1, 1)
VYI = C(2, 1)
V?I = C(3, 1)
RG = (XI**2 + VY**2 + 71**2)**.3
VO = (VXI**2 + VYI**2 + V?I**2)**.5
A = 1 / (VO**2 - 2 / FO)
A = ABS(A)
RETURN
END
SUBROUTINE FINNX(XX, DOT, R, T), IND, A)
COMMON/TIME/T
X=T/A
I=0
Z=X**2.*A
C=(1.-COS(SORT(7)))/Z
S=(SORT(7)-SIN(SORT(7)))/SORT(Z**3.)
TT=DOT*X**2.*C+(1.-R0/A)*X**3.*S*R3*X
DT=X**2.*C+DOT*X*(1.-Z*S)+R3*(1.-T*X)
DELT=T-TT
I=I+1
IF(I.EQ.50)GO TO 10
IF(ABS(DELT).LT.1.E-6)GO TO 20
X=X+DELT/DT
GO TO 10
PRINT*, "CONVERGENCE NOT MADE--X=", X
20 XX=X
IND=I
RETURN
END
SUBROUTINE LOCATE(XX, RO, VJ, F, G, S, CC, ZZ, A)
COMMON TIME/T
Z=XX**2.4
S= (SORT(T)-SIN(SORT(Z)))/SORT(Z**3)
C= (1.-COS(SORT(T)))/Z
F=1.-XX**2*C/RO
G=T-XX**3.*S
CC=C
ZZ=7
RETURN
END
SUBROUTINE GAUSS(NU, MAG1, MAG2, F, G, J, S, L)
COMMON/TIM/T
REAL NU, MAG1, MAG2
AA=SQR(4*G1*MAG2)*SIN(NU)/SQR(1.-COS(NU))
LM=0
Z=0.
I=0
1 IF(NU.GT.25)GO TO 55
IF(NU.LT.-25)GO TO 57
GO TO 59
55 C=(1.-COS(SQR(NU)))/Z
S=(SQR(NU)-SIN(SQR(Z)))/SQR(Z**3)
DC=(1.-Z*S-2.*C)/(2.*Z)
DS=(C-3.*S)/(Z**2)
GO TO 50
57 C=(1.-COSH(-Z))/Z
S=(SINH(SQR(-Z))-SQR(-Z))/SQR(-Z**3)
DC=1./24.+2.+7./26.-3.*Z**2/46320.+4.*7**3/3628800.+
DS=1./120.+2.+7./5040.+3.*7**2/3628800.+
GO TO 50
59 C=1./2,-7./24,7./2720.,-3./40320.
S=1./36,-7./120,7./5040,-7./352800.
DC=1./24,+2.+7.-20.-3.*Z**2/40320.+4.*Z**3/3628800.
DS=1./120.+2.+7./5040.-3.*7**2/362880.
GO TO 50
50 I=I+1
4 Y=MAG1+MAG2-AA*(1.-Z*S)/SQR(2.)
IF(Y.LT.3)GO TO 58
X=SQR(Y/C)
TT=X**3*S+AA*SQR(Y)
DELT=T-XT
DELS=AA*S(DELT)
IF(DELS.LT.1.E-10)GO TO 13
4T=X**3*S**2-3.*S*DC/(2.*C)+AA/8.*S**3*SQR(Y)/C+AA/X
Z=Z+DELT/4T
IF(1.GT.500)GO TO 80
GO TO 1
10 IF(7.LE.3.) GO TO 88
 G=AA*SORT(Y)
 DG=1.-Y/MAG2.
 LM=2
 GO TO 93
80 LM=0
GO TO 93
85 LM=1
83 RETURN
END
SUBROUTINE PLOT(YA,ZA,TT,ARY,CD)
INTEGER CD,CP
DIMENSION YA(400),ZA(400),TT(400),ARY(810)
CD1=CD+1
CD2=CD+2
CP=2*CD
CALL PLOT(8.,-2.5,-3)
CALL PLOT(0.,1.75,-3)
CALL PLOT(0.,3.75,-2)
CALL PLOT(6.25,0.,-2)
CALL PLOT(0.,-8.75,-2)
CALL PLOT(-4.25,0.,-2)
CALL PLOT(4.75,-8.75,-2)
CALL PLOT(-4.75,8.75,-3)
CALL SCALE(0.,5.,CD,1)
CALL SCALE(ARY,7.25,CP,1)
YA(CD1)=ARY(CP+1)
YA(CD2)=ARY(CP+2)
ZA(CD1)=ARY(CP+1)
ZA(CD2)=ARY(CP+2)
CALL AXSO(0.,0.,190TIME-OF-FLIGHT(TT),-19,5.,0.,TT(CD1),TT(CD2))
CALL AXSO(0.,0.,21CROSS TRACK ERROR (M),21,7,25,90.,ARY(CP+1),ARY(CP+2))
CALL LINE(TT,YA,CD,1,0,0)
CALL LINE(TT,7A,CD,1,0,0)
RETURN
END
SUBROUTINE ERR(CEP,TT,CD)
DIMENSION DEP(400),TT(400)
INTEGER CD
CALL PLOT(4.,-2.,5.,-3)
CALL PLOT(0.,1.375,-3)
CALL PLOT(0.,1.75,-2)
CALL PLOT(5.,2.5,0.,-2)
CALL PLOT(0.,-8.75,-2)
CALL PLOT(-5.,2.5,0.,-2)
CALL PLOT(.75,7.5,-2)
CALL SCALE(TT,5.,CD,1)
CALL SCALE(DEP,.75,CD,1)
CALL AXIS(0.,0.,19TIME-OF-FLIGHT(TU),-19.5.,0.,TT(CD+1),TT(CD+2))
CALL AXIS(0.,0.,34HCIRCULIZED CROSS-TRACK ERROR (M),34,7.25,30.
&DEP(CD+1),DEP(CD+2))
CALL LINE(TT,DEP,CD,1,0,0)
RETURN
END
Vita

Michael J. VonPlinsky was born on 24 September 1955, in Rochester, New York. After graduation from High School, he attended the Pennsylvania State University, receiving a Bachelor of Science degree in Aerospace Engineering on 28 May 1977. Upon graduation, he was commissioned in the United States Air Force. In September 1977, he entered the Air Force Institute of Technology, Wright Patterson AFB, Ohio, as a resident graduate student in Astronautics.

Permanent Address: 1339 Towerlawn Drive
Monroeville, PA 15146
Error Propagation for Ground-to-Satellite Elliptical Intercept Orbits to Examine the Error Ellipsoid Growth

Authors:

S. [Author's Name]

Performing Organization Name and Address:

Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433

Report Date:

December 1978

Number of Pages:

102

Distribution Statement:

Approved for Public Release; distribution unlimited.

Key Words:

Error Ellipsoid
Covariance Propagation
Intercept
Miss Distance

Abstract:

Errors from the intended performance of a system, composed of specialized components, could be due to any number of sub-system fluctuations. This thesis will examine the effect of these resultant errors of the mission of the system involved. In particular, errors in an interceptor's booster performance (seen as position and velocity errors at burnout) will be propagated along the interceptor's orbit to a given target point and the resultant...
error at the intercept point will be found. A range of intercept orbits will be examined to determine if there is a family of particular intercept orbits that give the minimum position errors at the intercept point. Conclusions will be made as to what typical trajectory should be flown against a certain type of target so as to minimize the resultant free flight error propagation to the intercept point.