DEPARTMENT
of
PSYCHOLOGY

Carnegie-Mellon University

80 2 21 025
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
A Mnemonic System for Digit Span: One Year Later

Author(s):
William G. Chase
K. Anders Ericsson

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Controlling Office Name and Address:
Personnel and Training Research Programs
Office of Naval Research
Arlington, VA 22217

Monitoring Agency Name and Address:
Office of Naval Research
Arlington, VA 22217

Report Date:
November 1979

Report Number:
N00014-79-C-0215

Contract or Grant Number:
N00014-79-C-0215

Security Class (of this report):
Approved for public release; distribution unlimited.

Distribution Statement:
Approved for public release; distribution unlimited.

Supplementary Notes:

Keywords:
Memory span
Short-term memory
Mnemonics

Abstract:
With 18 months of practice on the digit-span task, a single subject has shown a steady improvement from 7 digits to 70 digits, and there is no evidence that performance will approach an asymptote. Continuous improvement in performance is accompanied by refinements in the subject's mnemonic system and hierarchical organization of his retrieval system.
A Mnemonic System for Digit Span: One Year Later

William G. Chase and K. Anders Ericsson
Carnegie-Mellon University

This research was sponsored by the Personnel and Training Research Programs, Psychological Science Division, Office of Naval Research, under Contract No. N00014-79-C-0215, Contract Authority Identification No., NR 157-430.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Last year at this time, we reported on a subject (SF) who was able to increase his digit span from 7 digits to 38 digits after about 6 months of practice. One year later, SF has increased his digit span to 70 digits, an increase by a factor of 10 from his original memory span. Today, we want to report what we think are the important cognitive mechanisms responsible for this memory feat.

The basic procedure we used was to present SF with random digits in the auditory mode at the rate of 1 digit/sec., followed by ordered recall. We used the up-and-down procedure; if recall is correct, the size of the sequence is increased by one digit for the next trial; otherwise it is decreased by one digit. On half the trials, randomly selected, we also ask SF to provide us with a verbal report after his recall. Also, after every session, we ask SF to recall as much of the material from that section as he can remember. In the beginning, we were able to run five sessions per week, but nowadays we run three or fewer hourly sessions per week. Sometimes we run experimental sessions instead of practice sessions. The total amount of practice is slightly over 200 hours spread over 18 months, 160 hours of which were regular practice sessions, and about 40 hours were devoted to various experimental procedures.

Figure 1 shows the average digit span as a function of practice for the 160 regular practice sessions. There has been a steady increase in memory performance over this period of time without any sign of a limit.

Figure 2 shows that there has also been a steady improvement in SF’s ability to recall materials after the session is over (at least for the range over which we systematically collected these data, from Session 35 onward). In the beginning, SF, like everyone else, could recall virtually nothing after an hour’s session. Now he can consistently recall about 80% of the digits presented to him. Moreover, we have additional evidence that he now has virtually everything stored in long-term memory. In one experimental session, we used a recognition test, and we found perfect recognition of 3- and 4-digit groups that SF had seen that day, and he also showed substantial recognition of groups that he had seen 3 or 4 days earlier. In another session, after SF had recalled about 80% of the digits from a regular session, (which generally takes about 5 minutes), we asked SF to remember the other digit sequences that he had failed to recall (about twelve 3- and 4-digit sequences). After about an hour’s intense effort, SF was able to recall all but a couple of these sequences. Thus, it appears that now SF is storing virtually all the material in long-term memory.

Today, we want to report on the mechanisms we think underlie SF’s memory performance. Two of the most essential mechanisms are revealed in the verbal reports, and we first report on these mechanisms: (a) the mnemonic associations, and (b) the retrieval structure. These mechanisms, however, are not sufficient to fully explain SF’s skill, and we next consider what additional mechanisms are needed. Finally, we take up the question of whether or not SF has increased his short-term memory capacity.
Figure 2

Accession For
NTISGRAND
DDC TAB
Unannounced
Justification

By

Distribution:

Availability Codes
Avail and/or
special
Dist: 3 CF
Mnemonic Associations

A mnemonic association is some mechanism for associating unknown material with something familiar, and the advantage of a mnemonic association is that it relieves the burden on short-term memory because items can be remembered via a single association to material in long-term memory. Last year, we gave a detailed report of SF's mnemonic associations, and the evidence we have for them. Today, we will simply describe SF's mnemonic associations.

SF primarily associates 3- and 4-digit groups with running times for various races. For example, 3492 = "3:49.2 near world-record mile time." It turned out that SF is a very good long-distance runner, and he learned to make use of his knowledge of running times. He has 11 major categories of running times, ranging from 1/2 miles to marathon, with many sub-categories within each.

SF later added ages and dates as categories for those digits that could not be converted to running times. For example, 893 = "89.3 years old, very old man" and 1946 = "one year after WWII." Running times (627) and ages (257) make up the bulk of SF's mnemonic associations, and it took him about 4 to 6 months to perfect his system. These mnemonic associations are the heart of SF's memory skill, and they represent the most important mechanism. Without such a mechanism, it does not seem possible to extend the amount of information directly available in short-term memory. These mnemonic associations allow SF to indirectly increase short-term memory capacity via associations to a rich semantic network in long-term memory.

This mechanism by itself, however, is not sufficient to explain SF's performance. The problem is the following. If SF originally had a memory span of 7 digits, and he then learned to code digits into 3- and 4-digit running times, then his new span should not exceed 7 groups of digits. That is, his memory span should not exceed a maximum of 28 digits. An additional mechanism is necessary, and today we will describe that mechanism and the evidence for it.

The Retrieval Structure

A retrieval structure is a long-term memory structure that is used to make associations with material to be remembered. The best example of a retrieval structure is the set of locations used in the Method of Loci. At learning, an association is made between a node in the retrieval structure and the material to be remembered. Then, at recall, each node is activated in the retrieval structure in long-term memory, and the association with the material to be remembered is activated. Most of SF's retrieval structure is apparent in his verbal protocols.

Figure 3 illustrates the development of SF's retrieval structure, as revealed in his
Control Structures

1-7

7-15

15-18

19-34

35-38

39-42

R

Mar 15

May 16

June 12-13

June 28

Oct. 3

Oct. 30

Figure 3
verbal protocols. In the beginning, like everyone else, SF tried to hold everything in a phonemically based rehearsal buffer (R). Within the first 5 sessions, however, SF demonstrated the first rudimentary use of a retrieval structure. Instead of holding everything in a rehearsal buffer, he tried to separate one or two groups of three digits each from the rehearsal group, and recall these groups while rehearsing the last 4-6 digits. On the 5th day of practice, SF first invented his mnemonics, and he tried to code the first two groups as running times. This technique worked well, and he was able to expand this retrieval structure to hold up to three groups of 3- or 4-digit running times plus a rehearsal group. His performance increased steadily until he reached 18 digits, and then he ran into difficulties in holding more than 3 or 4 groups in his retrieval structure. We believe these difficulties are reflected in the first plateau in SF's acquisition curve (around Blocks 8 and 9 of Figure 1).

At this point, SF introduced an important advancement in his retrieval structure: hierarchical organization. He began using two 4-digit groups followed by two 3-digit groups, and the rehearsal group. From this point, SF's performance improved rapidly as he perfected the use of this hierarchical retrieval structure, in parallel with improvements in his mnemonic associations, until he began to experience the same difficulties as before. We believe that the second plateau in SF's performance curve (around Block 21 of Fig. 1) is associated with difficulties in remembering the order of more than 4 groups of 4 digits followed by more than 4 groups of 3 digits. At this point, SF first tried unsuccessfully to tag the middle item of 5 groups as a "hitching post" or "peg." Then he finally introduced another level in the hierarchy by breaking these groups up into subgroups, and his performance has improved rapidly ever since. SF is currently averaging about 70 digits, and his grouping structure for 70 digits is illustrated in Figure 4 for a typical trial. This figure illustrates our best guess about the hierarchical grouping structure, based on several sources of evidence.

Besides the evidence from the verbal protocols listed above, what other evidence is there for these retrieval structures? There are several lines of evidence, the most straightforward of which are SF's speech patterns during recall. SF generally recalls digit groups rapidly at a normal rate of speech (about 3 digits per second) with pauses between groups (about 2 sec. between groups, on average, with longer pauses when he has difficulties in remembering). At the end of a hierarchical group, however, there is a falling intonation, generally followed by a longer pause. In one memory search experiment, instead of asking for recall after presenting the digits, we presented SF with a 3-digit or 4-digit group and asked him to name the group that preceded it or followed it in the sequence, and we measured the latency of his report. It took SF more than twice as long, on the average, if the preceding or following group crossed a hierarchical boundary than if it did not (10.0 vs 4.4 sec). In another experiment, after an hour's session we presented SF with 3- and 4-digit groups from that session and asked him to recall as much as he could about each group. SF
Invariably recalled the mnemonic associations he had generated, and he often recalled a great deal about the hierarchy, such as which hierarchical group it belonged to and where the group was located within the hierarchical group. After an hour, SF almost never was able to recall which group preceded or followed the presented group. On rare occasions, SF was able to recall a preceding or following group, but this recall was invariably associated with some specific feature (e.g. two adjacent mile times). These data suggest that groups are accessed through the hierarchical retrieval structure rather than through direct associations between groups.

One essential piece of evidence comes from two other subjects that we have run. These two subjects are contrasted with SF in Figure 5. One subject (triangles) is also a long-distance runner, and we have explicitly trained him to use SF's system. After about 75 hours of practice, he is performing satisfactorily above SF's performance curve, and he is doing essentially the same thing as SF.

The other subject (squares) was run independently for about a hundred hours, and in that time she invented a very elaborate set of mnemonic associations based mainly on days, dates, and times of day. For example, 9365342 = "September third, 1965, at 3:42 PM." However, this subject never invented a retrieval structure. SF always prepared in advance how he was going to group each sequence, whereas this subject built groups as they occurred to her during the sequence. The difference in performance is apparent in Figure 5. This subject's mnemonic associations worked well until she reached 4 independent groups, and then she reached an asymptote of about 18 digits. After reaching an asymptote, this subject eventually quit due to loss in motivation.

These data suggest that without a retrieval structure, memory performance is limited to about 4 independent groups of items. It appears that the development of a retrieval structure is necessary in order for memory span to exceed the limited number of groups that can be kept in short-term memory.

Additional Mechanisms

A set of mnemonic associations, and a corresponding retrieval structure certainly seem necessary in order to explain SF's memory skill, but they are not sufficient. There are two aspects to SF's performance that suggest that additional mechanisms are needed. First, there is the question of the precision of the mnemonic associations, and second, there is the problem of the continuous improvement in SF's performance.

First, SF's mnemonic associations are not sufficient in themselves to explain the precision of SF's performance. For instance, "Near world-record mile time" is not sufficient to retrieve 3:49.2. We believe that there must be some mechanism, not apparent in the verbal protocols, that binds the more abstract mnemonic associations to more precise information. We believe that this mechanism involves the redundancy and uniqueness of the memory trace
DIGIT SPAN

PRACTICE (5-Day Blocks)

Figure 5
induced by meaningful associations.

Second, how is SF able to show further continuous improvement beyond the point where he has essentially perfected his mnemonic system (beyond 50 digits)? That is, SF has made no substantial improvements in his mnemonic associations or retrieval structure over the past 50 hours or so of practice. Nevertheless he has continued to show steady, rapid gains in performance, and there is no evidence that he is approaching an asymptote. How is this possible? We believe that this improvement, in part, is associated with continuous improvements with practice in the speed and reliability with which SF activates these mnemonic associations. One obvious advantage is that SF has additional time to allot to other kinds of processes, such as elaborative rehearsal. We have, in fact, some good evidence that there has been substantial improvements over time in the speed with which SF can activate his mnemonic associations. We believe that there must be some mechanism that increases the probability of activating a mnemonic association and decreases its latency as a function of the number of times it has been activated in the past.

Short-Term Memory Capacity

Finally, after all this practice, do we conclude that SF increased his short-term memory capacity? There are several reasons for saying no. First, the size of SF’s mnemonic associations were almost always 2-, 3-, and 4-digit groups, and he never generated a mnemonic association larger than 5 digits. In our review of the literature, we also found that expert mental calculators also seem to group digits together in these sized units (e.g., 625=54). Second, SF almost never allowed his rehearsal group to exceed six digits. In fact a 6-digit rehearsal group invariably was segmented as two groups of three digits each. Third, SF generally used a hierarchical organization of 3 groups, and after some initial difficulty with 5 groups, SF never allowed his hierarchical organization to exceed 4 groups. Finally, in one experimental session, SF was switched from digits to letters of the alphabet after 3 months of practice, and under these circumstances, there was no transfer, and his memory span dropped back to about six consonants.

These data suggest that the reliable working capacity of short-term memory is around 3 or 4 units, as Broadbent has recently proposed, and that it is not possible to increase the capacity of short-term memory with extended practice. The increases in memory span reported here and elsewhere are due to the use of mnemonic associations in long-term memory. With an appropriate mnemonic system and retrieval structure, there is seemingly no limit to the improvements that are possible in memory skill with practice.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Department</th>
<th>Address/Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ed Aiken</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. Robert Blanchard</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92151</td>
</tr>
<tr>
<td>Mr. James S. Duva</td>
<td>Chief, Human Factors Laboratory</td>
<td>Naval Training Equipment Center</td>
</tr>
<tr>
<td></td>
<td>(Code N-215)</td>
<td>Orlando, Florida 32813</td>
</tr>
<tr>
<td>Dr. Pat Federico</td>
<td>NAVY PERSONNEL R&D CENTER</td>
<td>SAN DIEGO, CA 92152</td>
</tr>
<tr>
<td>Dr. John Ford</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>LT Steven D. Harris, MSC, USN</td>
<td>Naval Air Development Center</td>
<td>Warminster, Pennsylvania 18974</td>
</tr>
<tr>
<td>CDR Wade Helm</td>
<td>PAC Missile Test Center</td>
<td>Point Mugu, CA 93041</td>
</tr>
<tr>
<td>CDR Robert S. Kennedy</td>
<td>Naval Aerospace Medical and Research Lab</td>
<td>Box 29407, New Orleans, LA 70189</td>
</tr>
<tr>
<td>Dr. Norman J. Kerr</td>
<td>Chief of Naval Technical Training</td>
<td>Naval Air Station Memphis (75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Millington, TN 38054</td>
</tr>
<tr>
<td>CHAIRMAN, LEADERSHIP & LAW DEPT. DIV. OF PROFESSIONAL DEVELOPMENT</td>
<td>U.S. NAVAL ACADEMY</td>
<td>ANNAPOLES, MD 21402</td>
</tr>
<tr>
<td>Navy</td>
<td>Navy</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>
| 1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014 | 5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217 |
| 1 Library
Navy Personnel R&D Center
San Diego, CA 92152 | 1 Psychologist
OFFICE OF NAVAL RESEARCH BRANCH
223 OLD MARYLEBONE ROAD
LONDON, NW, 15TH ENGLAND |
| 6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390 | 1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101 |
| 1 JOHNS OREN
CHIEF OF NAVAL EDUCATION & TRAINING SUPPORT
PENSACOLA, FL 32509 | 1 Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo American Embassy
APO San Francisco, CA 96503 |
| 1 Psychologist
ONR Branch Office
495 Summer Street
Boston, MA 02210 | 1 Office of the Chief of Naval Operations Research, Development, and Studies Branch (OP-102)
Washington, DC 20350 |
| 1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605 | 1 LT Frank C. Petho, MSC, USNR (Ph.D)
Code L51
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32508 |
| 1 Office of Naval Research
Code 200
Arlington, VA 22217 | 1 DR. RICHARD A. POLLAK
ACADEMIC COMPUTING CENTER
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402 |
| 1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217 | 1 Dr. Gary Poock
Operations Research Department
Naval Postgraduate School
Monterey, CA 93940 |
| 1 Office of Naval Research
Code 441
800 N. Quincy Street
Arlington, VA 22217 | 1 Roger W. Remington, Ph.D
Code L52
NAHRNL
Pensacola, FL 32508 |
| 1 Director
Engineering Psychology Programs
Code 455
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217 | 1 Dr. Bernard Rimland
Navy Personnel R&D Center
San Diego, CA 92152 |
<table>
<thead>
<tr>
<th>Navy</th>
<th>Army</th>
</tr>
</thead>
</table>
| 1 Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (087244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360 | 1 HQ USAREUE & 7th Army
ODCSOPS
USAAREUE Director of GED
APO New York 09403 |
| 1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508 | 1 LCOL Gary Bloedorn
Training Effectiveness Analysis Division
US Army TRADOC Systems Analysis Activity
White Sands Missile Range, NM 88002 |
| 1 Dr. Sam Schifflett
Systems Engineering Test Directorate
U.S. Naval Air Test Center
Patuxent River, MD 20670 | 1 DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 A. A. SJOHOLM
TECH. SUPPORT, CODE 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152 | 1 Col Frank Hart
Army Research Institute for the
Behavioral & Social Sciences
5001 Eisenhower Blvd.
Alexandria, VA 22333 |
| 1 Mr. Robert Smith
Office of Chief of Naval Operations
OP-987E
Washington, DC 20350 | 1 Dr. Ed Johnson
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333 |
| 1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group (TAEG)
Dept. of the Navy
Orlando, FL 32813 | 1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152 | 1 Dr. Milton S. Katz
Individual Training & Skill
Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 CDR Charles J. Theisen, JR. MSC, USN
Head Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974 | 1 Dr. Beatrice J. Farr
Army Research Institute (PERI-OK)
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152 | 1 Technical Director
U.S. Army Human Engineering Labs
Aberdeen Proving Ground, MD 21005 |
1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 LTCOL Michael T. Plumser
Organizational Effectiveness Division
Office of the Deputy Chief of Staff for Personnel
Department of the Army
Washington, DC 20301

1 Dr. Robert Sasnor
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Frederick Steinheiser
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 DR. T. E. COTTERMAN
AFHRL/ASR
WRIGHT-PATTERSON AFB
OHIO 45433

1 DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHT-PATTERSON AFB, OH 45433

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Donald E. Meyer
U.S. Air Force
ATC/XPTD
Randolph AFB, TX 78148

1 Dr. Ross L. Morgan (AFHRL/ASR)
Wright-Patterson AFB
Ohio 45433

1 Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Jack A. Thorpe, Maj., USAF
Naval War College
Providence, RI 02846
Pittsburgh/Glaser&Leagold November 1, 1979 Page 5

Air Force

1 Brian K. Waters, LCOL, USAF
Air University
Maxwell AFB
Montgomery, AL 36112

Marines

1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
CoastGuard

1 Mr. Richard Lanterman
PSYCHOLOGICAL RESEARCH (G-P-1/62)
U.S. COAST GUARD HQ
WASHINGTON, DC 20590

Other DoD

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Craig I. Fields
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Civil Govt</th>
</tr>
</thead>
</table>
| 1 Dr. Susan Chipman
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 Dr. Frank Withrow
U.S. Office of Education
400 6th Street SW
Washington, DC 20202 |
| 1 Mr. James M. Ferstl
Bureau of Training
U.S. Civil Service Commission
Washington, D.C. 20415 | 1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550 |
| 1 Dr. Joseph L. Lipson
Division of Science Education
Room W-638
National Science Foundation
Washington, DC 20550 | 1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208 |
| 1 William J. McLaurin
Room 301, Internal Revenue Service
2221 Jefferson Davis Highway
Arlington, VA 22202 | 1 Dr. Arthur Helmed
National Institute of Education
1200 19th Street NW
Washington, DC 20208 |
| 1 Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550 | 1 Dr. Jeffrey Schiller
National Institute of Education
1200 19th St. NW
Washington, DC 20208 |
| 1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314 | 1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550 |
Non Govt

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Mr Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 Dr. Gerald V. Barrett
Dept. of Psychology
University of Akron
Akron, OH 44325

1 Dr. Gerald V. Barrett
Dept. of Psychology
University of Akron
Akron, OH 44325

1 Dr. Michael Atwood
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
INGLEWOOD, CO 80110

1 Dr. Gerald V. Barrett
Dept. of Psychology
University of Akron
Akron, OH 44325

1 Dr. Jackoan Beatty
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721

1 Dr. R. A. Avner
University of Illinois
Computer-Based Educational Research Lab
Urbana, IL 61801

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721

1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208

1 Dr. Kenneth Bowles
Institute for Information Sciences
University of California at San Diego
La Jolla, CA 92037

1 Ms. Carole A. Bagley
Minnesota Educational Computing
Consortium
2520 Broadway Drive
St. Paul, MN 55113

1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 DR. C. VICTOR BUNDERSO

WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 S& STATE ST.
OREM, UT 84057 |
| 1 Dr. Anthony Cancelli

School of Education
University of Arizona
Tuscon, AZ 85721 |
| 1 Dr. John B. Carroll

Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514 |
| 1 Center for the Study of Reading

174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820 |
| 1 Charles Myers Library

Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND |
| 1 Dr. William Chase

Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 |
| 1 Dr. Micheline Chi

Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
| 1 Dr. William Clancey

Department of Computer Science
Stanford University
Stanford, CA 94305 |
| 1 Dr. Allan M. Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, Ma 02138 |
| 1 Dr. Meredith P. Crawford

American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036 |
| 1 Dr. Fred Reif

SESAME
o/o Physics Department
University of California
Berkeley, CA 94720 |
| 1 Dr. Emmanuel Donchin

Department of Psychology
University of Illinois
Champaign, IL 61820 |
| 1 ERIC Facility-Acquisitions

4833 Rugby Avenue
Bethesda, MD 20014 |
| 1 Dr. A. J. Eschenbrenner

Dept. E422, Bldg. 101
McDonnell Douglas Astronautics Co.
P.O. Box 516
St. Louis, MO 63166 |
| 1 MAJOR I. N. EVONIC

CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA |
| 1 Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138 |
| 1 Dr. Victor Fields

Dept. of Psychology
Montgomery College
Rockville, MD 20850 |
| 1 Dr. Edwin A. Fleishman

Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014 |
<p>| DR. JOHN D. FOLLEY JR. | DR. Dustin H. Heuston |
|APPLIED SCIENCES ASSOCIATES INC | Wicat, Inc. |
|VALENCIA, PA 16059 | Box 986 |
|DR. John R. Frederiksen | Orem, UT 84057 |
|Bolt Beranek & Newman | |
|50 Moulton Street | |
|Cambridge, MA 02138 | |
|DR. Alinda Friedman | DR. James R. Hoffman |
|Department of Psychology | Department of Psychology |
|University of Alberta | University of Delaware |
|Edmonton, Alberta | Newark, DE 19711 |
|CANADA T6G 2J9 | |
|DR. R. Edward Geiselman | DR. Lloyd Humphreys |
|Department of Psychology | Department of Psychology |
|University of California | University of Illinois |
|Los Angeles, CA 90024 | Champaign, IL 61820 |
|DR. ROBERT GLASER | Library |
|LRDC | HumRRO/Western Division |
|UNIVERSITY OF PITTSBURGH | 27857 Berwick Drive |
|3939 O'HARA STREET | Carmel, CA 93921 |
|PITTSBURGH, PA 15213 | |
|DR. JAMES G. GREENO | DR. Earl Hunt |
|LRDC | Dept. of Psychology |
|UNIVERSITY OF PITTSBURGH | University of Washington |
|3939 O'HARA STREET | Seattle, WA 98105 |
|PITTSBURGH, PA 15213 | |
|Dr. Harold Hawkins | DR. KAY INABA |
|Department of Psychology | 21116 VANOWEN ST |
|University of Oregon | CANOGA PARK, CA 91303 |
|Eugene OR 97403 | |
|Dr. Barbara Hayes-Roth | DR. Wilson A. Judd |
|The Rand Corporation | McDonnell-Douglas Astronautics Co. East |
|1700 Main Street | Lowry AFB |
|Santa Monica, CA 90406 | Denver, CO 80230 |
|Dr. Frederick Hayes-Roth | DR. Steven W. Keele |
|The Rand Corporation | Dept. of Psychology |
|1700 Main Street | University of Oregon |
|Santa Monica, CA 90406 | Eugene, OR 97403 |
|Dr. Walter Kintsch | DR. David Kieras |
|Department of Psychology | Department of Psychology |
|University of Colorado | University of Arizona |
|Boulder, CO 80302 | Tuscon, AZ 85721 |</p>
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 Dr. Kenneth Klivington
Alfred P. Sloan Foundation
630 Fifth Avenue
New York, NY 10020 | 1 Dr. Richard B. Millward
Dept. of Psychology
Hunter Lab.
Brown University
Providence, RI 82912 |
| 1 Dr. Mazie Knerr
Litton-Mellonics
Box 1286
Springfield, VA 22151 | 1 Dr. Allen Munro
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007 |
| 1 Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138 | 1 Dr. Donald A Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92039 |
| 1 LCOL. C.R.J. Lafleur
PERSONNEL APPLIED RESEARCH
NATIONAL DEFENSE HQS
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A OK2 | 1 Dr. Robert Pachella
Department of Psychology
Human Performance Center
330 Packard Road
Ann Arbor, MI 48104 |
| 1 Dr. Jill Larkin
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 | 1 Dr. Seymour A. Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139 |
| 1 Dr. Alan Leagold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260 | 1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207 |
| 1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Pk.
Goleta, CA 93017 | 1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P. O. Box 178
N. Stonington, CT 06359 |
| 1 Dr. Mark Miller
Systems and Information Sciences Laborat
Central Research Laboratories
TEXAS INSTRUMENTS, INC.
Mail Station 5
Post Office Box 5936
Dallas, TX 75222 | 1 MR. LUIGI PETRULLO
2431 N. EDDIEWOOD STREET
ARLINGTON, VA 22207 |
| 1 | Dr. Martha Polson
Department of Psychology
University of Colorado
Boulder, CO 80302 |
<table>
<thead>
<tr>
<th>1</th>
<th>DR. PETER POLSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF COLORADO</td>
</tr>
<tr>
<td></td>
<td>BOULDER, CO 80302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>DR. DIANE M. RAMSEY-KLEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-K RESEARCH & SYSTEM DESIGN</td>
</tr>
<tr>
<td></td>
<td>3947 RIDGEMONT DRIVE</td>
</tr>
<tr>
<td></td>
<td>MALIBU, CA 90265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Peter B. Read</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Social Science Research Council</td>
</tr>
<tr>
<td></td>
<td>605 Third Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Mark D. Reckase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Educational Psychology Dept.</td>
</tr>
<tr>
<td></td>
<td>University of Missouri-Columbia</td>
</tr>
<tr>
<td></td>
<td>12 Hill Hall</td>
</tr>
<tr>
<td></td>
<td>Columbia, MO 65201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Fred Reif</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESAME</td>
</tr>
<tr>
<td></td>
<td>c/o Physics Department</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Berkley, CA 94720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Andrew M. Rose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American Institutes for Research</td>
</tr>
<tr>
<td></td>
<td>1055 Thomas Jefferson St. NW</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Ernst Z. Rothkopf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bell Laboratories</td>
</tr>
<tr>
<td></td>
<td>600 Mountain Avenue</td>
</tr>
<tr>
<td></td>
<td>Murray Hill, NJ 07974</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. David Rumelhart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center for Human Information Processing</td>
</tr>
<tr>
<td></td>
<td>Univ. of California, San Diego</td>
</tr>
<tr>
<td></td>
<td>La Jolla, CA 92030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>DR. WALTER SCHNEIDER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF ILLINOIS</td>
</tr>
<tr>
<td></td>
<td>CHAMPAIGN, IL 61820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Allen Schoenfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Mathematics</td>
</tr>
<tr>
<td></td>
<td>Hamilton College</td>
</tr>
<tr>
<td></td>
<td>Clinton, NY 13323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. ROBERT J. SEIDEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INSTRUCTIONAL TECHNOLOGY GROUP</td>
</tr>
<tr>
<td></td>
<td>HUMRRO</td>
</tr>
<tr>
<td></td>
<td>300 N. WASHINGTON ST.</td>
</tr>
<tr>
<td></td>
<td>ALEXANDRIA, VA 22314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Robert Singer, Director</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motor Learning Research Lab</td>
</tr>
<tr>
<td></td>
<td>Florida State University</td>
</tr>
<tr>
<td></td>
<td>212 Montgomery Gym</td>
</tr>
<tr>
<td></td>
<td>Tallahassee, FL 32306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Robert Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td></td>
<td>Rutgers University</td>
</tr>
<tr>
<td></td>
<td>New Brunswick, NJ 08903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Richard Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Kathryn T. Spoehr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>Brown University</td>
</tr>
<tr>
<td></td>
<td>Providence, RI 02912</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Robert Sternberg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td>Yale University</td>
</tr>
<tr>
<td></td>
<td>Box 11A, Yale Station</td>
</tr>
<tr>
<td></td>
<td>New Haven, CT 06520</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>DR. ALBERT STEVENS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BOLT BERANEK & NEWMAN, INC.</td>
</tr>
<tr>
<td></td>
<td>50 MOULTON STREET</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE, MA 02138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Thomas Sticht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HumRRO</td>
</tr>
<tr>
<td></td>
<td>300 N. Washington Street</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>Non Govt</td>
<td>Non Govt</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Mr. William Stobie
McDonnell-Douglas
Astronautics Co.
P. O. Box 30204
Chico, CA 95926 | Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364 |
| DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305 | Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201 |
| Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801 | Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138 |
| Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044 | Dr. David J. Weiss
6660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455 |
| Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598 | DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367 |
| DR. PERRY THORDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406 | DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044 |
| Dr. Walt W. Tornow
Control Data Corporation
Corporate Personnel Research
P.O. Box 0 - HQ060
Minneapolis, MN 55440 | Dr. William B. Whitten, II
Department of Psychology
SUNY, Albany
1400 Washington Avenue
Albany, NY 12222 |
| Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007 | Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820 |
| | Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024 |
Non Govt

Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104