On reversible transformations of space elements

by A. M. Ostrowski

Sponsored in part by
the Swiss National
Science Foundation

Sponsored in part by
Grant DA-BRO-75-G-035
of the European Research
Office, United States
Army, to the Institute
of Mathematics, University
of Basel.
Table of content

I. Introduction.
II. Main definitions. Rank.
III. Functions U, V.
IV. The forms u and v.
V. Transformation with \(d = m \).
VI. Determinantal forms.
VII. Transformations with \(d = 0 \).
VIII. \(1 \leq d < m \).
 Appendix A
 Appendix B
 Appendix C
 Appendix D
I. Introduction.

1.1. Consider, for \(n \geq 1 \), the coordinates, \(x_1, \ldots, x_n \), of a general point of the \(n \)-dimensional space, depending on and arbitrarily often differentiable with respect to \(m \) parameters \(T_1, \ldots, T_m \). Denote generally the derivatives \(\frac{\partial x_\nu}{\partial T_\mu} \) by \(p_{\nu\mu} \) \((\nu = 1, \ldots, n; \mu = 1, \ldots, m) \).

In this paper we are going to consider the transformation

\[
(I.1) \quad y_\nu = y_\nu^*(x_\nu, p_{\nu\mu}) \quad (\nu = 1, \ldots, n),
\]

where the \(y_\nu^* \) are homogeneous of dimension 0 in the \(p_{\nu\mu} \) and have the further property:

Differentiating \(y_\nu \) **in (I.1)** with respect to the \(T_\mu \) and putting

\[
q_{\nu\mu} := \frac{\partial y_\nu}{\partial T_\mu}
\]

we can, eliminating the \(p_{\nu\mu} \) and their derivatives, express the \(x_\nu \) in function of \(y_\nu \) and \(q_{\nu\mu} \),

\[
(I.2) \quad x_\nu = x_\nu^*(y_\nu, q_{\nu\mu}) \quad (\nu = 1, \ldots, n),
\]

where the \(x_\nu^* \) are homogeneous of dimension 0 in the \(q_{\nu\mu} \); and inversely (I.1) can be deduced differentiating (I.2) and eliminating the \(q_{\nu\mu} \). The functions \(x_\nu^*, y_\nu^* \) are assumed arbitrarily often differentiable in their arguments. We will denote the transformation, described by (I.1) and (I.2), with \(T^* \).

1) Here and everywhere later in this paper, if expressions like \(u_\nu, v_\mu, w_\nu, t_\kappa \) occur inside parentheses, \((u_\nu, v_\mu, w_\nu, t_\kappa) \), this stands for

\[
(u_1, \ldots, u_n; v_1, \ldots, v_m; w_{11}, \ldots, w_{nm}; t_1, \ldots, t_k)
\]

independently of the same greek indices occurring outside of these parentheses.
Such transformations will be called reversible transformations.\(^2\)

1.2. We prove in chapter II that the matrices

\[
\frac{\partial (Y_j)}{\partial (p_{j\mu})}, \quad \frac{\partial (X_i)}{\partial (q_{i\mu})} \quad (j=1, \ldots, n; \mu=1, \ldots, m) \quad \text{3)}
\]

have the same maximal rank which is denoted throughout the whole paper with \(k\). We obtain then in the same chapter the existence of two sets of \(k\) functions

\[
\begin{align*}
\mathbf{r}_x &= \mathbf{r}_x(x_\nu, p_{j\mu}) \quad \mathbf{s}_x &= \mathbf{s}_x(y_\nu, q_{i\mu}) \quad (x=1, \ldots, k),
\end{align*}
\]

where each set is independent, and which have the property that the expressions \(Y_\nu\) in (1.1) and \(X_\nu\) in (1.2) can be written as

\(^2\) These transformations for \(n=2, m=1\) were discussed in the author's paper, Sur une classe des transformations différentielles dans l'espace à trois dimensions, Commentarii mathematici helvetici, vol.13, pp.156-194, vol.14, pp.23-60 (1942), and for arbitrary \(n\) and \(m=1\) in a second paper by the author, Sur les transformations réversibles d'éléments de ligne, Acta mathematica, vol.16, pp.151-182 (1942). See also G. Stohler's doctoral dissertation, Ueber eine Klasse von einparametrigen Differential-Transformationsgruppen, Commentarii mathematici helvetici, vol.18, pp.76-121 (1945).

\(^3\) The expressions used here and in what follows serve to denote the rectangular differential matrix formed of all derivatives of the expressions in the "numerator" with respect to all variables occurring in the "denominator".
(1.5) \[Y^v_y = Y^v_y(x^v_y, r^v_x), \quad X^v_y = X^v_y(y^v_y, s^v_x) \quad (v=1, \ldots, n), \]

where the matrices

\[
\left(\frac{\partial (Y^v_y)}{\partial (r^v_x)} \right), \quad \left(\frac{\partial (X^v_y)}{\partial (s^v_x)} \right)
\]

have the same rank \(k \).

Hence, there exists a one to one transformation between two \((n+k)\)-dimensional spaces \((x^v_y, r^v_x)\) and \((y^v_y, s^v_x)\),

\[
T \left\{ \begin{array}{l}
y^v_y = Y^v_y(x^v_y, r^v_x), \quad s^v_x = S^v_x(x^v_y, r^v_x) \\
x^v_y = X^v_y(y^v_y, s^v_x), \quad r^v_x = R^v_x(y^v_y, s^v_x)
\end{array} \right. \quad (v=1, \ldots, n; x=1, \ldots, k)
\]

Now we can formulate the main problem with which we deal in this paper. If a one to one transformation \(T \), (1.6), is given, to describe necessary and sufficient conditions which must be satisfied in order that there exists a reversible transformation \(T^\ast \) leading to the transformation \(T \) (chapter II).

1.3. In order to deal with this problem we introduce in chapter III the so called property \(U \). An expression \(U^v(x^v_y, r^v_x, p^v_{\lambda \mu}) \) is said to possess the property \(U \), if, using the relation (1.6) and the relations obtained by differentiation of these equations with respect to the \(T^\mu \), it can be expressed in the form.

\[
(1.7) \quad U^v = V(y^v_y, s^v_x, q^v_{\lambda \mu})
\]

It turns out that the following partial differential equations are characteristic for the functions \(U \) with the property \(U \):

\[
(1.8) \quad \sum^m_{\lambda=1} p^v_{\lambda \mu} U^v_{p^v_{\lambda \mu}} = 0 \quad (\mu=1, \ldots, m; x=1, \ldots, k)
\]

\[
(1.9) \quad \sum^n_{v=1} p^v_{\lambda \mu} U^v_{p^v_{\lambda \mu}} = 0 \quad (\mu, \lambda=1, \ldots, m)
\]
The meaning of the system (1.9) is discussed in the Appendix B. The partial differential equations (1.8) are independent and their system is complete. The same holds for the partial differential equations (1.9). The system consisting of (1.8) and (1.9) taken together is also complete but in exceptional cases it could happen that linear relations exist between the equations (1.8) and (1.9):

\[\sum_{\mu, \lambda} \alpha_{\mu, \lambda} \frac{\partial}{\partial \mu} \alpha_{\mu, \lambda} = \sum_{\nu=1}^{n} \beta_{\nu} \Delta_{\mu, \lambda} \quad (\mu = 1, \ldots, m; \lambda = 1, \ldots, k), \]

where the \(\alpha_{\mu, \lambda} \) and \(\beta_{\nu} \) do not depend on \(\mu \). If there are exactly \(d \) such independent relations, the total number of independent integrals of the equations (1.8) and (1.9) is

\[N := mn - m(m+k-d) = m(n-m+k+d) \]

where \(mn \) is the total number of the variables \(p_{\nu, \mu} \).

1.4. The above problem with \(d=0 \) is treated in chapter VII. We construct here a system of \(N \) functions \(U(\xi) \) \((\xi=k+1, \ldots, k+N) \) which are independent, as long as the \(r_\xi \) are considered as independent variables, and form the total system of \(N \) independent integrals of the equations (1.8) and (1.9). We can therefore write

\[r_\xi = \varphi_\xi(U^{(k+1)}, \ldots, U^{(k+N)}) \quad (\xi=1, \ldots, k) \]

These equations can be solved with respect to the \(r_\xi \) and give the corresponding expressions (1.16) of \(r_\xi \), provided that the equations (1.12) are solvable,

\[\frac{\partial(p_1 - r_1, \ldots, p_k - r_k)}{\partial(r_1, \ldots, r_k)} \neq 0 \]
where the φ are differentiated "through the" $U^{(n)}$. We have to add to (I.13) the additional condition

\begin{equation}
\frac{\partial (U^{(k+1)}, \ldots, U^{(k+N)})}{\partial (r_1, \ldots, r_k)} \mid_{r_k=r_k^*} = N.
\end{equation}

The functions φ in (I.12) are indefinitely often differentiable arbitrary functions.

As soon as the expressions (I.4) of the r_k^* are found we can obtain, using (I.6) for s_μ, the expressions (I.4) of the s_μ in the v_ν and s_μ.

At the end of the chapter VII we discuss the method on an example.

1.5. As to the exceptional cases, $d=1, \ldots, m$, we give in the chapters IV and V the complete discussion for the case $d=m$. As to the cases $1 \leq d < m$, we derive in chapter VIII, section 9, the inequality

\begin{equation}
k \leq \frac{n-m}{d+1} + 0 , \quad 0 < d \leq \frac{d}{d+1}.
\end{equation}

Further, using a method leading to (I.15), we solve in the sections 7.10-7.16 our problem completely for $d=1$.

The method used in the chapter VIII consists, in principle, in adding to the equations (I.6) d additional equations of the type

\[x_n + \xi = y_{n+\xi} \quad (\xi = 1, \ldots, d) \]

In this way we make d to 0 for the enlarged system without changing the r_k and s_μ. This allows to obtain (I.15). However, the method of chapter VIII can apparently be only extended to our
new enlarged system for $d=1$, since for $d>1$ the condition corresponding to (VII.16) is no longer satisfied.

The discussion given in the chapter VI ought to become useful for the cases $d=2, \ldots, m-1$.

The author hopes to discuss in another communication applications of the results of this paper to the theory of differential equations solvable without integration (integrallos auflösbare Differentialgleichungen).
II. Main definitions. Rank.

2.1. We consider in what follows an arbitrarily often differentiable functions

\[x_1, \ldots, x_n : J_1, \ldots, J_n \]

depending on \(m \leq n \) variables \(T_1, \ldots, T_m \). We will use in particular the indices \(\nu, \nu' ; x, x' ; \mu, \mu' ; \lambda, \lambda' \), which run through the corresponding ranges: \(1, \ldots, n ; 1, \ldots, k ; 1, \ldots, m ; k+1, \ldots, n \). These ranges hold always if the corresponding letters are summation indices or in arguments so that for instance \(f(x_\nu') \) means \(f(x_1, \ldots, x_n) \).

Put

\[
\frac{\partial x_\nu}{\partial x_\mu} =: p_{\nu \mu} \quad ; \quad \frac{\partial x_\nu'}{\partial x_\mu'} =: q_{\nu' \mu'} (\nu=1, \ldots, n; \mu=1, \ldots, m)
\]

and consider the three following (open) domains:

1) \(G_T \) an \(m \)-dimensional domain in the space of the \(T_1, \ldots, T_m \);
2) \(G_p \) an \((m+1)\)-dimensional domain in the space of the \((m+1)n\) variables \(x_\nu, p_{\nu \mu} \);
3) \(G_q \) an \((m+1)n\)-dimensional domain in the space of the \((m+1)n\) variables \(y_\nu, q_{\nu' \mu'} \).

Assume that to the points of \(G_T \) correspond always points lying in \(G_p \) and \(G_q \).

We choose an inner point \(A_0 \) in \(G_T \) to which correspond points in \(G_p, G_q \) and \(G_p \times G_q \). These three points in \(G_p, G_q \) and \(G_p \times G_q \) will be also denoted by \(A_0 \).

2.2. A reversible transformation, \(T \), of the \(x_\nu \) into the \(y_\nu \) is defined by two systems of equations:
(II.2a) \[y_{\psi} = y_{\psi}(x_1, \ldots, x_n; p_1, \ldots, p_{nm}) \quad (\psi = 1, \ldots, n), \]

(II.2b) \[x_{\psi} = x_{\psi}(y_1, \ldots, y_n; q_1, \ldots, q_{nm}) \quad (\psi = 1, \ldots, n), \]

if the \(y_{\psi}, x_{\psi} \) have derivatives of any order in \(G_p, G_q \) and possess the following four properties, A, B, C and D:

A. The Jacobians of order \(n, \)

\[
\begin{vmatrix}
\frac{\partial (y_{\psi})}{\partial (x_{\psi})} \\
\frac{\partial (x_{\psi})}{\partial (y_{\psi})}
\end{vmatrix}
\]

remain \(\neq 0 \) in \(G_p, G_q. \)

B. The functions \(x_{\psi}, y_{\psi} \) remain invariant for any non-singular arbitrarily often differentiable transformation of the variables \(T_1, \ldots, T_m. \)

C. The relations (II.2b) follow from the relations (II.2a) by differentiation and elimination and the equations (II.2a) follow from the equations (II.2b), again by differentiation and elimination.

The content of the assumption B will be investigated in the section III.

We denote the maximal rank of the \(n \times n_{nm} \)-matrix

\[
\begin{pmatrix}
\frac{\partial (y_{\psi})}{\partial (p_{\psi\mu})} \\
\frac{\partial (x_{\psi})}{\partial (q_{\psi\mu})}
\end{pmatrix} \quad (\psi, \varphi = 1, \ldots, n; \mu = 1, \ldots, m)
\]

in \(G_p \) by \(k \) and that of the matrix

\[
\begin{pmatrix}
\frac{\partial (x_{\psi})}{\partial (q_{\psi\mu})} \\
\frac{\partial (y_{\psi})}{\partial (p_{\psi\mu})}
\end{pmatrix} \quad (\psi, \varphi = 1, \ldots, n; \mu = 1, \ldots, m)
\]

in \(G_q \) by \(k' \). Then our fourth property is:
D. A can be chosen in such a way that the ranks of the matrices (II.4) and (II.5) have in A_0 their maximal values, k, k'. Obviously we can assume, restricting if necessary the domains G_T, G_p, and G_q around A_0, that the rank of (II.4) is k everywhere in G, and that a fixed subdeterminant of order k of (II.4) remains $\neq 0$ in G_p and that the analogous property subsists for (II.5) in G_q.

2.3. Then there exists a set of k functions

$$(\text{II.6}) \quad \mathfrak{g} = \mathfrak{g}(x_1, \ldots, x_n; p_1, \ldots, p_m) =: \mathfrak{R}(x_1, \ldots, x_n; Y_1, \ldots, Y_k) \quad (s = 1, \ldots, k)$$

which are independent in G_p as functions of the p_{μ}, and which have derivatives of all orders and are such that all n expressions Y_ψ can be written in the form

$$(\text{II.7}) \quad y_\psi = Y_\psi =: Y_\psi(x_1, \ldots, x_n; r_1, \ldots, r_k) \quad (\psi = 1, \ldots, n)$$

and the rank of the $n \times k$-matrix

$$(\text{II.8}) \quad \left(\frac{\partial (Y_1, \ldots, Y_k)}{\partial (r_1, \ldots, r_k)} \right)$$

has exactly the value k. The $(n+k)$-dimensional domain $[x_T, y_T]$ which is a proper part of G_p, will be denoted by G_r. For instance we can choose as the \mathfrak{g} a subset of k among the n functions Y_ψ, corresponding to a non-vanishing subdeterminant of order k of the matrix (II.4).

Similarly there exists a set of k' functions

$$(\text{II.9}) \quad \mathfrak{s} = \mathfrak{s}(y_1, \ldots, y_n; q_1, \ldots, q_m) =: \mathfrak{S}(y_1, \ldots, y_n; X_1, \ldots, X_k) \quad (s = 1, \ldots, k')$$

which are independent in G_q as functions of the q_{μ}, and which
have derivatives of all orders and are such that all \(n \) expressions \(X^*_{\gamma} \) can be written in the form

\[
(\text{II.10}) \quad x_{\gamma} = X^*_{\gamma} =: X_{\gamma}(y_1, \ldots, y_n; s_1, \ldots, s_k) \quad (\gamma = 1, \ldots, n)
\]

where the rank of the \(n \times k' \)-matrix

\[
(\text{II.11}) \quad \left(\frac{\partial (x_1, \ldots, x_n)}{\partial (s_1, \ldots, s_k)} \right)
\]

has exactly the value \(k' \). The domain \([y_\gamma, s_\gamma]\) which is a part of \(G \) will be called \(G_\gamma \).

2.4. As the \(r^*_{\gamma} \) are independent as functions of the \(p_{\gamma \mu} \), the \(n+k \) variables

\[
(\text{II.12}) \quad x_1, \ldots, x_n \ ; \ r_1, \ldots, r_k
\]

are independent in \(G_p \), since any relation between these variables would give a differential equation satisfied by the \(x_{\gamma} \). Denote the space of all arbitrarily often differentiable functions of the variables (II.12) in \(G \) by \(\Gamma_x \).

Similarly the \(n+k' \) variables

\[
y_1, \ldots, y_n \ ; \ s_1, \ldots, s_k
\]

are independent in \(G_q \), and we denote the space of all arbitrarily often differentiable functions of these variables in \(G \) by \(\Gamma_y \).

Replacing now in the formula (II.6) the \(Y^*_{\gamma} \) by \(y_{\gamma} \) and the \(x_{\gamma} \) by their expressions \(X_{\gamma} \) in the \(y_{\gamma} \) and \(s_{\mu} \), we obtain
(II.13) \[r_3 = R_3(y,y',s') \ (q=1,\ldots,k) \]

and similarly

(II.14) \[a_\nu = S_\nu(x,y,r) \ (q'=1,\ldots,k') \]

But the formulas (II.10) and (II.13) give a continuous transformation of \(G_s \) into \(G_r \) and the formulas (II.7) and (II.14) a continuous transformation of \(G_r \) into \(G_s \). It follows that the dimensions \(n+k \), \(n+k' \) of \(G_r \) and \(G_s \) are equal and therefore

(II.15) \[k = k' \]

2.5. Consider the values of the \(r_\chi \) corresponding to \(A_0 \) and those of the \(s_\chi \) equally corresponding to \(A_0 \). The corresponding points of \(G_r \) and \(G_s \) will be again denoted by \(A_0 \) as well as their projections into the spaces of the \(r_\chi \) and of the \(s_\chi \).

The point-to-point reversible transformation between the regions \(G_r \) and \(G_s \) given by the formulas (II.7), (II.10), (II.13) and (II.14) will be called characteristic transformation, \(T* \), belonging to \(T \). This transformation is of course not uniquely determined by (II.2a), (II.2b), as the choice of the expressions \(r_\chi \) and \(s_\chi \) is highly arbitrary. The main problem of this paper is: Given a point-to-point transformation, \(T* \), between \(G_r \) and \(G_s \), how to find suitable expressions \(r_\chi \) and \(s_\chi \) so that, introducing the values of \(r_\chi \) and \(s_\chi \) from (II.13) and (II.14) into the equations (II.7) and (II.10), we obtain formulas (II.2a) and (II.2b) defining a reversible transformation \(T \).
2.6. As the rank of (II.8) is \(k \), we can assume, after a convenient reordering of the \(Y_y \), that

\[
\frac{\delta(y_{11}, \ldots, y_{kk})}{\delta(r_{k1})} \neq 0 .
\]

Therefore the following equations

\[
(II.17) \quad Y_{x}(x_{1,1}, r_{x}) - y_{x} = 0 \quad (x=1, \ldots, k)
\]

can be solved with respect to the \(r_{x} \) in a neighbourhood of \(A_0 \) so that we can write

\[
(II.18) \quad r_{x} = \bar{R}_{x}(x_{1,1}, \ldots, y_{k}) \quad (x=1, \ldots, k) .
\]

Introducing these values into the expressions of \(Y_y \), \((II.7) \ (y=1, \ldots, n) \), we obtain in a neighbourhood of \(A_0 \)

\[
(II.19) \quad \Omega_{y} := Y_{y+k}(x_{y}, \bar{R}_{y}) - y_{y+k} = \Omega_{y}(x_{1,1}, \ldots, x_{n}; y_{y+1}, \ldots, y_{n}) = 0 \quad (y=1, \ldots, n-k).
\]

Obviously the rank of the matrix

\[
(II.20) \quad \left(\frac{\delta(\Omega_{y})}{\delta(y_{y})} \right) \quad (y=1, \ldots, n; \mu=1, \ldots, n-k)
\]

is \(n-k \) as the last \(n-k \) variables \(y_y \) are isolated in the \(\Omega_y \).

2.7. We are now going to show that the rank of the matrix

\[
(II.21) \quad \left(\frac{\delta(\Omega_{y})}{\delta(x_{y})} \right) \quad (y=1, \ldots, n; \mu=1, \ldots, n-k)
\]

is also \(n-k \).
This follows easily from the lemma Al of Appendix A making the following identifications: Replace the $r_\mathbf{x}$ by z, $n-k$ by $m=m_0$, the $y_{v+k}y_{v+k}$ $(v=1,\ldots,n-k)$ by $\alpha_y (v=1,\ldots,n-k)$, the $y_{\mathbf{x}} (x=1,\ldots,k)$ by $\beta_{\mathbf{x}}$ and $y_{\mathbf{x}} (x=1,\ldots,k)$ by $U_{\mathbf{x}}$. Then the assumption (A 2) is satisfied by (II.16) while the matrix (A 3) with $m+k$ columns has the rank $m+k$. The $E_{\mathbf{x}}$ becomes $F_{\mathbf{x}}$ and it follows that the rank of (II.21) is $\geq n-k$ and therefore $=n-k$ as the matrix (II.1) has $n-k$ columns.

2.8. Denote now the 2n-dimensional space of $[x_1,\ldots,x_n; y_1, y_2,\ldots,y_n]$ by Γ^*. Then the $n-k$ relations (II.19) cut from Γ^* a region, Γ, of $n+k$ dimensions. We can therefore say that those points of Γ^* belong to Γ whose coordinates are related by the relations (II.7) for convenient $r_{\mathbf{x}}$. But these relations are equivalent to the relations (II.9) for convenient $s_{\mathbf{x}}$ and this signifies that we obtain the same region Γ starting from the formulae (II.9) and eliminating the $s_{\mathbf{x}}$. We will therefore generalize the system (II.19) of the Ω_y admitting each system of equations

\[(II.22) \quad \Omega_y(x_1,\ldots,x_n; y_1,\ldots,y_n) = 0 \quad (y=1,\ldots,n-k),\]

defining Γ in Γ^* and such that the ranks of the corresponding matrices (II.20) and (II.21) are exactly $n-k$, while the Ω_y are arbitrarily often differentiable.

In so far we could use the characterization of points in Γ the 2$n+2k$ variables

$$[x_y, y_y, r_y, s_y]$$

or any subset of these 2$n+2k$ variables containing at least $n+k$
variables independent with respect to the relations (II.7),
(II.10), (II.13) and (II.14). For instance we could characterize
a point of \mathcal{P} by the $2n$ variables (x_y, y_y) satisfying the relations
(II.22).

2.9. In the expressions $F(r_s, s_{\mathcal{P}})$ containing r_x and s_x
these quantities are usually assumed to be "free variables"
subject only to the relations (II.7), (II.10), (II.13) and
(II.14). The corresponding expressions are then said to be
"undeveloped". If however r_x and s_x are assumed to have the
meaning (II.6) and (II.9), we speak of "developed" expressions
and denote them by $F^*(r_x, s_x)$.

Further we denote by W^* the set of all arbitrarily often
differentiable functions in convenient neighbourhoods in
variables x_y, r_x, y_y, s_x.

Observe that, if a characteristic transformation \mathcal{T}^* is
fixed, then any function of W^* can be expressed as a function of
\mathcal{P}_x as well as a function of \mathcal{P}_y.
III. Functions U,V.

3.1. We return now to the "invariancy" condition B. By the lemma B_1 in the Appendix B, this condition amounts to the fact that the functions $Y_V(x_1, \ldots, x_n; p_{11}, \ldots, p_{nm})$, as functions of the $p_{\nu\mu}$, depend only on quotients of determinants of order m of the matrix

\[
\begin{pmatrix}
p_{11} & \cdots & p_{1m} \\
& \ddots & \\
p_{n1} & \cdots & p_{nm}
\end{pmatrix}
\]

(III.1)

and to the fact that the functions X_V^*, as functions of the $q_{\nu\mu}$, depend on the quotients of the subdeterminant of order m of (B 1) in Appendix B. Therefore the expressions r_{γ} in (II.6) and a_{γ} in (II.9) have also the corresponding properties.

Replacing in the lemma C_1 in Appendix C the Y_V by the X_V^*, respectively the $q_{\nu\mu}$ and Y_V by the $p_{\nu\mu}$ and Y_V^*, we obtain the relations

\[
\sum_{V=1}^{n} p_{\nu\mu} Y_V^* = 0 \quad (\mu, \mu' = 1, \ldots, m; \gamma = 1, \ldots, n),
\]

(III.2a)

\[
\sum_{V=1}^{n} q_{\nu\mu} X_V^* = 0 \quad (\mu, \mu' = 1, \ldots, m; \gamma = 1, \ldots, n),
\]

(III.2b)

where the Y_V^* and X_V^* are assumed to be developed.
3.2. We consider arbitrarily often differentiable functions \(U(x_\nu, r_\lambda, p_\mu) \) of the \(x_\nu \), \(r_\lambda \) and \(p_\mu \) with the U property consisting in that they can be represented, using (II.7), (II.10), (II.13) and (II.14), as arbitrarily often differentiable functions of the \(y_\nu, q_\mu, s_\nu \).

\[
U(x_\nu, r_\lambda, p_\mu) = V(y_\nu, s_\nu, q_\mu) \tag{III.3}
\]

The functions \(V(y_\nu, s_\nu, q_\mu) \) in (III.3) are then said to possess the V property. Obviously the \(Y_\nu \) in (II.2a), the \(Y_\nu \) in (II.7) and the \(r_\nu \) in (II.6) have the U property, while the \(X_\nu \) in (II.2b), the \(X_\nu \) in (II.10) and the \(s_\nu \) in (II.9) have the V property.

3.3. Differentiating the relation (II.10),

\[
x_\nu = X_\nu(y_\nu, s_\nu) \tag{III.4}
\]

we obtain

\[
P_\nu = \sum_{\nu=1}^{n} X'_{\nu} p_\nu q_\mu + \sum_{k=1}^{k} X'_{\nu} s_\nu e_{\nu} \mu \tag{III.5}
\]

Introducing the values (III.4) and (III.5) of the \(x_\nu \) and \(p_\nu \mu \) and (II.13) of the \(r_\nu \) in \(U(x_\nu, r_\lambda, p_\mu) \) we obtain an expression

\[
U^*(y_\nu, s_\nu, q_\mu, e_{\nu} \mu)
\]

and we have to obtain conditions under which the \(U^* \) is independent of the \(s_{\nu} \). But in virtue of (III.4) and (III.5) we obtain, since the \(s_{\nu} \) can be considered as arbitrary variables,

\[
\frac{\partial U^*}{\partial s_{\nu} \mu} = \sum_{\nu=1}^{n} U_j p_\nu X'_{\nu} s_\nu = 0 \quad (\nu=1, \ldots, k; \mu=1, \ldots, m)
\]
and U becomes

$$(III.6) \quad V(y_\sigma, s_{\lambda \sigma}, q_{\rho \mu}) = \left[X(y_\sigma, s_{\lambda \sigma}), R_{x}(y_\sigma, s_{\lambda \sigma}), \sum_{\eta=1}^{n} X_{y_\sigma, q_{\rho \mu}} \right].$$

We see that the km relations, with developed X'_{y_σ},

$$(III.7) \quad \sum_{\eta=1}^{n} X'_{y_\sigma} u'_{p_{\eta \mu}} = 0 \quad (x=1, \ldots, k; \mu=1, \ldots, m)$$

are necessary and sufficient in order that the $a'_{x \mu}$ fall out from U^*, that is that U satisfies $(III.3)$.

3.4. The system of km linear homogeneous partial differential equations $(III.7)$ consists of km linearly independent equations, as follows from the fact that the rank of $(II.11)$ is k.

It follows immediately that the system of the equations $(III.7)$ is complete, that is that, putting

$$(III.8) \quad J_{\mu, x} := \sum_{\eta=1}^{n} X'_{y_\sigma} \frac{\delta}{\delta p_{\eta \mu}} \quad (\mu=1, \ldots, m; x=1, \ldots, k),$$

the "parentheses expressions"

$$(J_{\mu, x}, J_{\lambda, \sigma}) := J_{\mu, x} J_{\lambda, \sigma} - J_{\lambda, \sigma} J_{\mu, x} \quad (\mu, \lambda=1, \ldots, m; x, \sigma=1, \ldots, k)$$

are linearly expressible through the set of the $J_{\mu, x}$.

For obviously

$$(III.9) \quad (J_{\mu, x}, J_{\lambda, \sigma}) = \sum_{\eta=1}^{n} \left(J_{\mu, x} X'_{y_\sigma} \right) \frac{\delta}{\delta p_{\eta \sigma}} - \sum_{\eta=1}^{n} \left(J_{\lambda, \sigma} X'_{y_\sigma} \right) \frac{\delta}{\delta p_{\eta \sigma}} = 0,$$

since the functions

$$J_{\mu, x} X'_{y_\sigma}, \quad J_{\lambda, \sigma} X'_{y_\sigma}$$
vanish. For the $X'_{v\omega}$ satisfy the equations (III.7), since the $X'_{v\omega}$ are expressible both in G_p as in G_q.

3.5. As the system (III.7) is complete it follows that this system implies exactly mk independent relations and possesses exactly $nm-mk$ independent integrals as functions of the $p_{\nu \mu}$.

But the k functions $r^*(x^p, p_{\nu \mu})$ satisfy (III.3) in virtue of (II.13) and (II.14). It follows, as the r^* are independent in the $p_{\nu \mu}$, using (III.8):

\[(III.10) \quad k \leq m(n-k), \quad k \leq \frac{mn}{m+1} = n - \frac{n}{m+1} .\]

In particular it follows that

\[(III.11) \quad k < n .\]

In (III.10) the equality sign holds in particular for $k=m=n-1$. Then we have the contact transformations in R^n (see Ostrowski [1]).

3.6. In the above discussion the invariancy of the U with respect to a transformation of the $T\mu$ was not assumed. If we now assume that the functions U are invariant with respect to a transformation of the $T\mu$, then we must add (see Appendix C) to the equations (III.7) the equations

\[(III.12) \quad \sum_{\nu=1}^{n} p_{\nu \mu} U'_{\nu \mu} = 0 \quad (p, \mu' = 1, \ldots, m) .\]

and assume that all r^* satisfy these equations.

The equations (III.12) could completely or partly be contained in the system (III.7). For instance in the case $k=n-1$
the set (III.12) completely depends on the equations (III.7).

Denote by \(N^* \) the total number of linearly independent among the equations (III.7) and (III.12). Then we can choose among the equations (III.12) exactly \(N^* - mk \),

\[
\Delta^{(1)} U = 0, \ldots, \Delta^{(N^* - mk)} U = 0 ,
\]

which imply, taken together with (III.7), both systems (III.7) and (III.12). It is easy to show that the system consisting of (III.7) and (III.13) is complete.

3.7. Indeed, put generally

\[
\Delta \mu, \lambda := \sum_{\nu=1}^{n} p_{\nu, \lambda} \frac{\delta}{\delta p_{\nu, \mu}} \quad (\mu, \lambda = 1, \ldots, m).
\]

Then we have for

\[
(\Delta \mu, \lambda, J \mu', x) := \Delta \mu, \lambda J \mu', x - J \mu', x \Delta \mu, \lambda
\]

the expressions

\[
(\Delta \mu, \lambda, J \mu', x) = \sum_{\nu=1}^{n} (\Delta \mu, \lambda x_{\nu}^p x_{\nu}) \frac{\delta}{\delta p_{\nu, \mu}} - \sum_{\nu=1}^{n} (J \mu', x p_{\nu} \lambda) \frac{\delta}{\delta p_{\nu, \mu}} .
\]

But the terms \(\Delta \mu, \lambda x_{\nu}^p x_{\nu} \) vanish, as the \(x_{\nu}^p x_{\nu} \) are homogeneous of dimension 0, while

\[
J \mu', x p_{\nu} \lambda = \delta p_{\nu} x_{\nu}^p x_{\nu} .
\]
Therefore

\[(\Delta_{\mu,\lambda}, J_{\mu,\lambda}) = -\delta_{\mu\nu} \sum_{v=1}^{n} p_{v} \frac{\partial}{\partial p_{v\lambda}} = -\delta_{\mu\nu} J_{\mu,\lambda}.\]

Finally we obtain easily

\[(\Delta_{\mu,\lambda}, J_{\mu,\lambda}) = \delta_{\mu\lambda} \sum_{v=1}^{n} (p_{v\lambda} \frac{\partial}{\partial p_{v\lambda}}) = \delta_{\mu\lambda} \sum_{v=1}^{n} (p_{v\lambda} \delta_{v\lambda}),\]

\[(\Delta_{\mu,\lambda}, J_{\mu,\lambda}) = \delta_{\mu\lambda} J_{\mu,\lambda} - \delta_{\mu\lambda} J_{\mu,\lambda},\]

and we see that the system of operators generated by (III.7) and (III.12) is complete.

In particular it follows that the linear system of operators generated by the \(J_{\mu,\lambda}\) for a fixed \(\mu\) is complete and the same holds for the linear system of operators generated for a fixed \(\lambda\) by the operators \(J_{\mu,\lambda}\) (\(\lambda=1,\ldots,k;\nu=1,\ldots,n\)).

On the other hand, the system of the \(m^2\) equations (III.12) is complete and has therefore \(m(n-m)\) independent integrals in the \(p_{v\lambda}\). Since there are \(k\) integrals \(\eta\), it follows

\[(III.17) \quad m(n-m) > k, \quad m < n-1.\]

3.8. Assume now generally that there exists a non-trivial linear relation between the \(J_{\mu,\lambda}\) and \(\Delta_{\mu,\lambda}\) and assume the \(J_{\mu,\lambda}\) as developed:

\[(III.18) \quad \sum_{\mu,\lambda} \alpha_{\mu,\lambda} J_{\mu,\lambda} = \sum_{\mu,\lambda} \alpha_{\mu,\lambda} \Delta_{\mu,\lambda},\]

where not all \(\alpha_{\mu,\lambda}\) and not all \(\alpha_{\mu,\lambda}\) vanish. Then, equating on the
right and on the left the parts corresponding to a general fixed \(\mu \), we obtain the relations

\[
\sum_{\chi=1}^{k} \alpha_{\chi x} J_{\mu, x} = \sum_{\lambda=1}^{m} \lambda_{\mu \lambda} \Delta_{\mu, \lambda} \quad (\mu = 1, \ldots, m)
\]

Assume that for a fixed \(\mu \) the relation (III.19) is not trivial and write it as

\[
\sum_{\chi=1}^{k} \alpha_{\chi x} J_{\mu, x} = \sum_{\lambda=1}^{m} \lambda_{\mu \lambda} \Delta_{\mu, \lambda}
\]

Then, introducing from (III.8) and (III.14) the expressions of \(J_{\mu, x} \) and \(\Delta_{\mu, \lambda} \), it follows, if we equate on both sides the coefficients of the single differential operators \(\psi_{\mu} \), the system of \(n \) relations equivalent with (III.20):

\[
\sum_{\chi=1}^{k} \alpha_{\chi x} J_{\mu, x} \psi_{\chi} = \sum_{\lambda=1}^{m} \lambda_{\mu \lambda} \psi_{\lambda} \quad (\nu = 1, \ldots, n)
\]

But the relations (III.21) do not contain \(\mu \). We see that if a non-trivial relation

\[
\sum_{\chi=1}^{k} \alpha_{\chi x} J_{\mu, x} = \sum_{\lambda=1}^{m} \lambda_{\mu \lambda} \Delta_{\mu, \lambda}
\]

holds for a certain \(\mu \), the same relation holds for any \(\mu = 1, \ldots, m \).

It follows then that if there exist for a fixed \(\mu \) exactly
(III.23) \[d \in \text{Min}(m,k) \]

linearly independent relations of the type (III.22), then the number of independent equations among the equations (III.7) and (III.12) is exactly \(mk + m^2 - dm \) and therefore the number, \(N \), of independent integrals of these equations is precisely

(III.24) \[N := m(n-k-m+d) \gg k \]

so that the coefficient of \(m \) is \(> 0 \),

(III.25) \[n \gg k+m-d, \quad n-k \gg m-d \]

3.9. Observe that the \(n \times (k+m) \)-matrix

\[
\begin{pmatrix}
X'_1 s_1 & \cdots & X'_1 s_k & p_{11} & \cdots & p_{1m} \\
X'_2 s_1 & \cdots & X'_2 s_k & p_{21} & \cdots & p_{2m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
X'_n s_1 & \cdots & X'_n s_k & p_{n1} & \cdots & p_{nm}
\end{pmatrix}
\]

(III.26) \(\mathbf{K}_x^* := \)

where all \(X'_s \) are assumed as developed, has the rank \(\gg k \). Denoting this rank by \(k+m-d \), we have therefore \(d \ll m \).

On the other hand, by the above definition of \(d \), \(d \) is the number of columns of the matrix (III.26) which linearly depend on the other columns.

Observe that, by (III.24),

(III.27) \[m(n-m+d) \gg (m+1)k \]
3.10. Observe finally that, putting

\[p_\mu = \sum_{\sigma=1}^{n} x_\nu x_\sigma q_\mu, \quad q_\mu = \sum_{\sigma=1}^{n} y_\nu x_\sigma p_\mu, \]

the formula (III.6) and the corresponding formula for \(U \) become

\[U(x \nu, r_\mu, P_\nu) = V(y \nu, s_\mu, Q_\nu) = U(x \nu, k_\mu, P_\nu), \]

\[V(y \nu, s_\mu, Q_\nu) = U(x \nu, r_\mu, P_\nu) = V(y \nu, s_\mu, Q_\nu). \]

The expressions (III.28) can be obviously considered as the corresponding derivatives of the \(X_\nu \) and the \(Y_\nu \) computed in the assumption that the \(s_\mu, r_\mu \) are constants.
IV. The forms u and v.

4.1. A u-form is by definition an expression

\[(IV.1) \quad u = \sum_{\nu,\mu} U_{\nu \mu} p_{\nu \mu}, \quad U_{\nu \mu} \in W^*, \]

where the \(U_{\nu \mu} \) belong to \(W^* \), with the property that, using the characteristic transformation \(T^* \), \(u \) can be transformed into a v-form,

\[(IV.2) \quad v = \sum_{\nu,\mu} V_{\nu \mu} q_{\nu \mu}, \quad V_{\nu \mu} \in W^* . \]

The coefficients \(U_{\nu \mu} \) and \(V_{\nu \mu} \) can be expressed both as functions of the \(x_\nu \), \(r_\lambda \) and as functions of the \(y_\nu \), \(s_\mu \).

If we introduce into (IV.1) the expressions (III.5) of the \(p_{\nu \mu} \) we obtain

\[(IV.3) \quad u = \sum_{\nu,\mu,\lambda} U_{\nu \mu} X'_{\nu \lambda} q_{\lambda \mu} + \sum_{\nu,\mu,\lambda} \left(\sum_{\nu} U_{\nu \mu} X'_{\nu \lambda} \right) s_{\lambda \mu}, \]

where the indices \(\nu \) and \(\lambda \) run from 1 to \(n \), the index \(\mu \) runs from 1 to \(m \) and the index \(\lambda \) from 1 to \(k \).

Since here the \(s_{\lambda \mu} \) can be considered as independent variables, we obtain as necessary and sufficient for the u-form (IV.1):

\[(IV.4) \quad \sum_{\nu=1}^{n} U_{\nu \mu} X'_{\nu \lambda} = 0 \quad (\mu = 1, \ldots, m; \lambda = 1, \ldots, k). \]
4.2. If we make in (IV.3) all \(U_{\mu} \) with \(\mu \neq \mu_0 \) to zero, we obtain a single u-form corresponding to \(\mu_0 \):

\[
(IV.5) \quad u(\mu_0) := \sum_{\gamma=1}^{m} U_{\gamma \mu_0}^{p \mu_0} = \sum_{\gamma, \lambda=1}^{p} U_{\gamma \mu_0}^{X'_{\gamma \lambda}} q^{\mu_0} =: v(\mu_0)
\]

and we see that, taking in (IV.1) together the groups of terms belonging to the same index \(\mu \), \(u \) is decomposed into a sum,

\[
u = \sum_{\mu=1}^{m} u(\mu),
\]

of single u-forms \(u(\mu) \) belonging each to another \(\mu \).

It follows that we can restrict ourselves to the consideration of the single u-forms and the single v-forms.

Observe that by definition the u-forms form a linear system if we admit as coefficients all functions from \(W^* \). And the same holds also for the system of all single u-forms corresponding to a fixed value of \(\mu \).

But the \(k \) equations (IV.4) corresponding to a fixed \(\mu \) are linearly independent with respect to the \(U_{\gamma \mu} \) since (II.11) has the rank \(k \). Thence there are exactly \(n-k \) single u-forms for each \(\mu \).

4.3. Therefore the question arises to find a convenient basis for all single u-forms corresponding to a fixed \(\mu \).

We obtain a system of \(n-k \) single u-forms and single v-forms, differentiating the \(\Omega_{\mu} \) in (II.22) with respect to \(T_{\mu} \) \((\mu=1, \ldots, m) \),

\[
(IV.6) \quad u_{\sigma}^{(\mu)} := \sum_{\gamma} \Omega_{\sigma \gamma \mu}^{p \gamma} = -\sum_{\gamma} \Omega_{\sigma \gamma \mu}^{q \gamma} =: -v_{\sigma}^{(\mu)}
\]

And it follows from the rank condition for the matrices
(II.20) and (II.21) that the n-k forms \(\nu_0^{(\mu)} \) are linearly independent as well as the \(\nu_0^{(\mu)} \).

Therefore the u-forms (IV.6) form a basis for the single u-forms corresponding to a fixed \(\mu \) and the same holds for the v-forms \(\nu_0^{(\mu)} \) defined by (IV.6).

4.4. Another basis for the single u-forms can be obtained using the functions \(X \) in (II.10) defining the characteristic transformation \(T^* \). Since the rank of (II.11) is \(k \) we can and will assume, changing if necessary the numbering of the \(X \) and \(Y \), the non-vanishing of the developed determinants

\[
J := \begin{vmatrix} X'_{1s_1} & \ldots & X'_{ks_k} \\ \vdots & \ddots & \vdots \\ X'_{1s_k} & \ldots & X'_{ks_k} \end{vmatrix}, \quad K := \begin{vmatrix} Y'_{1r_1} & \ldots & Y'_{kr_k} \\ \vdots & \ddots & \vdots \\ Y'_{1r_k} & \ldots & Y'_{kr_k} \end{vmatrix}
\]

(IV.7)

For the derivation of our basis for the single u-forms, using the \(X \), it is not even necessary to assume that the \(X \) belong to \(T^* \). It is sufficient to require that the \(n \) functions \(X(y_1, \ldots, y_n; s_1, \ldots, s_k) \) have with respect to the \(s \) the Jacobian rank \(=k \), that is that one of the determinants of order \(k \) from the Jacobian matrix

\[
\left(\frac{\partial (x_1, \ldots, x_k)}{\partial (y_1, \ldots, y_k)} \right)
\]

does not vanish, where in particular we can assume that the determinant \(J = \left(\frac{\partial (x_1, \ldots, x_k)}{\partial (s_1, \ldots, s_k)} \right) \) does not vanish. We can then define the u-form (IV.1) by the mk relations (IV.4). In order to distinguish our generalized assumptions from the original ones based on the relation \(U=V \), we will denote the u-forms defined solely by (IV.4) as unilateral u-forms. Then it is easy to see that a basis for the single unilateral u-forms corresponding to a \(\mu \) is given by
with respect to a system of coefficients consisting of all indefinitely often differentiable functions belonging to \(\Gamma_\gamma \).

Indeed, each \(u_\lambda^{(\mu)} \) satisfies the equation (IV.4) since replacing in \(u_\lambda^{(\mu)} \) the \(p_{v\mu} \) with \(x_{\lambda s_k} \) amounts to making in \(u_\lambda^{(\mu)} \) the first line identical to the \((\lambda+1)\)st line. The independence of the \(u_\lambda^{(\mu)} \) follows from the fact that to each \(u_\lambda^{(\mu)} \) corresponds a \(p_{v\mu} \) occurring with the coefficient \(J \) in this \(u_\lambda^{(\mu)} \) only.

4.5. It follows now that a unilateral \(u \)-form written as

\[
 u = \sum_{v=1}^{n} f_v p_{v\mu}
\]

with \(f_v \) from \(\Gamma_\gamma \) contains at least one of the \(p_{k+1\mu}, \ldots, p_{n\mu} \) with a non-vanishing coefficient unless it vanishes identically. For, representing \(u \) linearly through the basis \(u_\lambda^{(\mu)} \), none of the \(p_{\lambda\mu}(\lambda \geq k) \) is destroyed if the corresponding \(u_\lambda^{(\mu)} \) has a non-vanishing coefficient in the representation. We obtain now the rule: If a unilateral \(u \)-form is written for a fixed \(\mu \), as

\[
 (IV.9) \quad u = \sum_{v=1}^{n} f_v p_{v\mu} \quad , \quad f_v \in \Gamma_\gamma ,
\]

it follows, using the \(u_v^{(\mu)} \) from (IV.8),

\[
 (IV.10) \quad u = \frac{1}{J} \sum_{v=k+1}^{n} f_v u_v^{(\mu)}
\]

(\(J = k+1, \ldots, n \)) .
Indeed, as

\[p_{\nu} = \frac{1}{j} u_{\nu}^{(\mu)} + \{p_{1\mu}, \ldots, p_{k\mu}\} \quad (\nu = k+1, \ldots, n) \]

we obtain from (IV.9)

\[u = \frac{1}{j} \sum_{\nu=k+1}^{n} f_{\nu} u_{\nu}^{(\mu)} + \{p_{1\mu}, \ldots, p_{k\mu}\} \]

denoting generally by \(\{p_{1\mu}, \ldots, p_{k\mu}\} \) a linear form in the \(p_{1\mu}, \ldots, p_{k\mu} \)
with coefficients from \(\frac{\Gamma}{\nu} \). And this \(\{p_{1\mu}, \ldots, p_{k\mu}\} \), being a unila-
teral \(u \)-form, vanishes identically.

4.6. Similarly there exists a basis of all single \(v \)-forms
belonging to a \(\mu \), consisting of the following \(n-k \) \(v \)-forms:

\[
(IV.11) \quad v_{\lambda}^{(\mu)} = \begin{vmatrix}
q_{\lambda 1} & q_{\lambda 2} & \cdots & q_{\lambda k} \\
Y'_{1\lambda 1} & Y'_{2\lambda 1} & \cdots & Y'_{k\lambda 1} \\
\cdots & \cdots & \cdots & \cdots \\
Y'_{1\lambda k} & Y'_{2\lambda k} & \cdots & Y'_{k\lambda k}
\end{vmatrix} \quad (\lambda = k+1, \ldots, n).
\]

To obtain a representation of \(u_{\lambda}^{(\mu)} \) in terms of the \(v_{\lambda}^{(\mu)} \)
observe that, by (III.5),

\[p_{\nu} = \sum_{t=1}^{n} X'_{\nu t} q_{\nu t} + \sum_{s=1}^{k} X'_{\nu s} s_{\nu s} \quad (\nu = 1, \ldots, n; \mu = 1, \ldots, m). \]

Introducing this into (IV.8) we obtain for \(\lambda = k+1, \ldots, n \) :
Here the second determinant vanishes as its first line is a linear combination of the following lines. Taking in the first determinant the summation $\sum_{t} q_{t\mu}$ out, it follows further

$$u_{\lambda}^{(\mu)} = \sum_{t} X_{\lambda y_{t}}^{t} q_{t\mu} \quad \sum_{t} X_{1y_{t}}^{t} q_{t\mu} \quad \cdots \quad \sum_{t} X_{ky_{t}}^{t} q_{t\mu}$$

Then

$$+ \sum_{t} X_{\lambda s_{1}}^{t} q_{t\mu} \quad X_{1s_{1}}^{t} \quad \cdots \quad X_{ks_{1}}$$

$$+ \sum_{t} X_{\lambda s_{k}}^{t} q_{t\mu} \quad X_{1s_{k}}^{t} \quad \cdots \quad X_{ks_{k}}$$

But here the terms corresponding to $t=1, \ldots, k$ vanish and we obtain
\[u^{(\mu)}_\lambda = \sum_{t=k+1}^{n} A_{\lambda t} q_{t \mu} \]

(IV.12)

\[
\begin{pmatrix}
X'_{n+1} & X'_{n+2} & \cdots & X'_{n+k} \\
X'_{n+1} & X'_{n+2} & \cdots & X'_{n+k} \\
\vdots & \vdots & \ddots & \vdots \\
X'_{n+1} & X'_{n+2} & \cdots & X'_{n+k}
\end{pmatrix}
\]

\[
(IV.13) \quad A_{\lambda t} := \frac{\partial (Y_{\lambda}, Y_1, \ldots, Y_k)}{\partial (y_t, s_1, \ldots, s_k)}
\]

Applying to the form on the right in (IV.12) the analogue of the rule concerning (IV.9) and (IV.10), we obtain

(IV.14) \[u^{(\mu)}_\lambda = \frac{1}{k} \sum_{t=k+1}^{n} A_{\lambda t} v^{(\mu)}_t \quad (\lambda = k+1, \ldots, n) \]

Similarly, it follows

(IV.15) \[v^{(\mu)}_\lambda = \frac{1}{j} \sum_{t=k+1}^{n} B_{\lambda t} u^{(\mu)}_t \]

(IV.16) \[B_{\lambda t} = \frac{\partial (Y_{\lambda}, Y_1, \ldots, Y_k)}{\partial (y_t, s_1, \ldots, s_k)} \quad (\lambda = k+1, \ldots, n) \]
V. Transformation with $d = m$.

5.1. It follows obviously from the relation (III.24): if

\[(V.1) \quad k = \frac{mm}{m+1},\]

then d must be $= m$. It will be seen from the following discussion that the relation (V.1) follows, from $d = m$.

Assume $d = m$. Each of the last k columns of K^* in (III.26) must be a linear combination of the first k columns, that is

\[(V.2) \quad p^\mu_{\lambda} - \sum_{x=1}^{k} n_{\lambda}^{(\mu)} x_{\nu x} = 0 \quad (\nu = 1, \ldots, n; \mu = 1, \ldots, m).\]

This signifies that in each of the determinants (IV.8) the first line is a combination of the following lines, therefore all $n(r-k)$ forms $u_{\lambda}^{(\mu)}$ vanish and we can write, developing the $u_{\lambda}^{(\mu)}$ in (IV.8),

\[(V.3) \quad u_{\lambda}^{(\mu)} = J_{\lambda\mu} - \sum_{x=1}^{k} f_{\lambda x}^{(\mu)} p_{x\mu} = 0 \quad (\lambda = k+1, \ldots, n; \mu = 1, \ldots, m),\]

where the $f_{\lambda x}^{(\mu)}$ belong to W^*.

In the equations (V.3) we can express, in virtue of the characteristic transformation T^*, all coefficients $f_{\lambda x}^{(\mu)} J$ in G_r, that is through the variables

$x_1, \ldots, x_n, r_1, \ldots, r_k$.
Denote the rank of the Jacobian matrix of the \(m(n-k) \times k \) expressions in (V.3) with respect to the \(r_{\alpha} \),

\[
\begin{pmatrix}
d(u_{\lambda}^{(\mu)}) \\
d(r_{\alpha})
\end{pmatrix}
\]

by \(g^* \leq k \).

5.2. We are going to show that the number \(m(n-k) \) of the equations (V.3) cannot exceed \(g^* \),

\[
\text{(V.5)} \quad m(n-k) \leq g^* .
\]

For otherwise the \(r_{\alpha} \) could be eliminated using certain \(g^* \) different equations

\[
\text{(V.6)} \quad u_{\lambda}^{(\mu)} (\lambda_0) = 0 \quad (\lambda = 1, \ldots, g^*) .
\]

A \(u_{\lambda}^{(\mu)} \) different from all \(u_{\lambda}^{(\mu)} \) in (V.6) becomes then a not identically satisfied differential equation, as the \(u_{\lambda}^{(\mu)} \) in (V.6) do not depend on \(p_\lambda^{(\mu)} \). Since this is impossible, (V.5) is proved and it follows, by (III.40), \(m(n-k) \leq g^* \leq k \leq m(n-k) \) and thence

\[
m(n-k) = g^* = k .
\]

We see that the matrix (V.4) is a square, \(k \times k \), non-singular matrix, and from \(m(n-k) = k \) follows (V.1).

5.3. It follows that the expressions of \(r_{\alpha} \) in the \(x_{ij} \) and \(p_{ij}^{(\mu)} \) can be obtained solving the equations (V.3) with respect to \(r_1, r_2, \ldots, r_k \). Obviously a completely analogous result holds for the
expressions of the s_{α} in terms of the y_{μ} and $q_{\alpha \mu'}$ as in virtue of (IV.14) and (IV.15) all $v_{\alpha}^{(\mu)}$ vanish then and only then if all $u_{\alpha}^{(\mu)}$ vanish, and then the rank of the $k \times k$-matrix

\[
K^*_y = \begin{pmatrix}
y'_{1r_1} & \cdots & y'_{1r_k} & q_{11} & \cdots & q_{1m} \\
y'_{2r_1} & \cdots & y'_{2r_k} & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
y'_{nr_1} & \cdots & y'_{nr_k} & q_{n1} & \cdots & q_{nm}
\end{pmatrix}
\]

is k.

We denote the determinant corresponding to the square matrix (V.4) by Δ_u.

5. Assume on the other hand that we have given a priori the transformation T^* by the relations (II.7), (II.10), (II.13) and (II.14) where all functions X, Y, R, S are indefinitely often differentiable.

Then, assuming that the Jacobian, Δ_u, of the $u_{\alpha}^{(\mu)}$ with respect to the r_{α} does not vanish, we can solve the equations (V.3) in the form

\[
\tilde{u}_{\alpha}^{(\mu)}(p_{\gamma \mu}, x_{\gamma}, x_{\nu}) := p_{\gamma \mu} - \frac{1}{k} \sum_{\lambda=1}^{k} \frac{\epsilon_{\lambda}^{(\mu)}}{L_{\alpha}^{\lambda \mu}} p_{\gamma \mu} = 0 \quad (\mu=1, \ldots, m; \lambda=k+1, \ldots, n)
\]

with respect to the r_{α} in a neighbourhood of a point B_0 and obtain the expressions

\[
x_{\alpha} = \tilde{R}_{\alpha}(x_{\gamma}, p_{\gamma \mu}) \quad (\alpha=1, \ldots, k)
\]

of the r_{α} in terms of the x_{γ} and $p_{\gamma \mu}$. Putting these expressions into (II.7) we obtain expressions for the y_{μ} in function of the x_{γ}, $p_{\gamma \mu}$.
$$Y_\nu (x_\nu, \tilde{R}_\nu ^{(x_\nu, p_{\mu})}) \rightarrow y_\nu = Y_\nu ^* (x_\nu, p_{\mu})$$
corresponding to (II.2a).

Further, putting the \tilde{R}_ν for the r_ν in (II.14) we obtain the expressions

$$(V.10) \quad s_\sigma ^\gamma (x_\nu, r_\nu) = S_\sigma ^\gamma (x_\nu, p_{\mu}) \quad (\sigma = 1, \ldots, k)$$

where the functions $s_\sigma ^\gamma (x_\nu, r_\nu)$, $S_\sigma ^\gamma (x_\nu, p_{\mu})$ have in a neighbourhood of B_0 the values of the $s_\sigma ^\gamma$ corresponding to the transformation T^*.

5.5. We have now to show the existence of the representations of the $s_\sigma ^\gamma$ as functions of the q_{11}, \ldots, q_{nm}. Expressing in (V.8) the quotients $f_\lambda ^{(\mu)} / J$ in terms of the y_ν and $s_\sigma ^\gamma$ we obtain

$$(V.11) \quad \xi_\lambda ^{(\mu)} (y, s, y^{\prime}, s^{\prime}) := p_{\mu} - \frac{1}{J(y, s, y^{\prime}, s^{\prime})} \sum_{\lambda = 1}^{k} f_\lambda ^{(\mu)} (y_\nu, s_\nu) p_{\mu}.$$

And all these forms vanish in the neighbourhood of B_0.

But now it follows from (IV.14) that all $v_\lambda ^{(\mu)}$,

$$(V.12) \quad v_\lambda := K_\lambda ^{(\mu)} - \sum_{\sigma = 1}^{k} s_\sigma ^\gamma ^{(\mu)} (y_\nu, s_\sigma ^\gamma) q_{\lambda, \sigma} = 0 \quad (\lambda = k + 1, \ldots, n)$$

vanish for $s_\sigma ^\gamma = S_\sigma ^\gamma$ in a neighbourhood of B_0. If we now assume that the Jacobian,

$$(V.13) \quad \Delta_\lambda := \frac{\partial v_\lambda ^{(\mu)}}{\partial (s_\sigma ^\gamma)}$$
of the $v^{(\mu)}_\lambda$ with respect to the s_λ^r does not vanish in the neighbourhood of B_0, it follows that the s_λ^r are unique solutions of the equations (V.12) in a convenient neighbourhood and can therefore be represented in terms of the q_{11}, \ldots, q_{nm}.

Introducing these expressions into (II.9) we obtain (II.2b), and the invertibility of the transformation T obtained in this way follows from the assumed invertibility of T^*.

5.6. We have still to prove that the r^*_λ are independent as functions of the p_λ^μ and that the s_λ^r are independent as functions of the q^μ_λ.

But it follows from (V.8) that with $\lambda = k+1, \ldots, n$ and $\mu = 1, \ldots, m$,

$$
\frac{\partial (u^\lambda_\mu)}{\partial (p_\lambda^\mu)} = \pm 1
$$

where the determinant is for variable λ and μ of the order $k = m(n-k)$. On the other hand, if we put with $\lambda = k+1, \ldots, n$ and $\mu = 1, \ldots, m$,

$$
\Delta_1 := \frac{\partial (r_\lambda^r)}{\partial (p_\lambda^\mu)} ; \quad \Delta := \frac{\partial (u^\lambda_\mu)}{\partial (r_\lambda^r)} = \Delta_u / j^n \neq 0,
$$

both determinants are of the order k and the inequality $\Delta \neq 0$ follows from the assumption. But by (V.14) and (V.15) $\Delta \Delta_1 = \pm 1$, $\Delta_1 \neq 0$. The independence of the r^*_λ is proved and the independence of the s^*_λ follows by symmetry.

5.7. We have finally to prove that the r^*_λ and s^*_λ are absolutely invariant with respect to the linear transformations of the T^μ_λ, that is to say that for the r^*_λ and s^*_λ the relations

$$
\sum_{\mu=1}^{n} p_\lambda^\mu \frac{\partial v^\mu_\lambda}{\partial p_\lambda^\mu} = 0 \quad (\mu, \mu' = 1, \ldots, m)
$$
are linear combinations of the relations

\[\sum_{\nu=1}^{n} Y'_{\nu} \frac{\partial Y_{\nu}}{\partial X_{\mu}} = 0. \]

This signifies that the relations hold:

\[p_{\nu\mu} = \sum_{\tau=1}^{k}(\mu)X'_{\nu\tau}, \quad (\mu=1, \ldots, m) \]

But these relations follow from the fact that \(K \) has the rank \(k \) in virtue of the relations (V.8).

5.8. We observe finally that the special choice of the basis forms \(u(\mu) \) and \(v(\mu) \) is not essential. Indeed, if an arbitrary basis for the \(u \)-forms is given, obviously their Jacobian with respect to the \(r \) does not vanish then and only then when this is true for the \(u(\mu) \), and similar situation prevails for the \(v \)-forms and \(s \). We can therefore obtain the \(r \), equating to 0 a complete set of the basis elements of the \(u \)-forms, and similarly for the \(s \) and the \(v \)-forms.

5.9. We can summarize our results in the following statement:

Assume given a transformation \(T^* \) with (II.7), (II.10), (II.13) and (II.14), where all functions occurring in these formulas have derivatives of all orders in certain domains corresponding by \(T^* \).

Assume that \(d=m \) and that \(JK \neq 0 \).

1) If \(T^* \) is a characteristic transformation of a reversible \(T \), given by (II.2a), (II.2b), then both Jacobians \(\Delta_u, \Delta_v \) do not vanish with indeterminants \(p_{\nu\mu}, q_{\nu\mu} \) and the expressions of the \(r_{\mu}(x, p_{\nu\mu}), s_{\mu}(y, q_{\nu\mu}) \) satisfy (V.8) and (V.12).

2) If the functions \(x, y, R_x, S_y \) defining \(T^* \) satisfy (V.4) and (V.13) then \(T^* \) is a characteristic transformation of a reversible transformation \(T \), and the expressions of the \(r_{\mu}, s_{\mu} \) in \(p_{\nu\mu}, q_{\nu\mu} \) are obtained, uniquely in convenient neighbourhoods, from the equations (V.8) and (V.13).
5.10. Example.

Assume

\[(v.16)\]
\[n = 6, \ k = 4, \ m = 2\]

and put for \(T\):

\[(v.17)\]
\[
\begin{align*}
X_1 &= Y_1 = r_1 = s_1, \\
X_2 &= y_2 + \frac{1}{2}(s_1^2 + s_2^2), \\
X_3 &= y_3 + \frac{1}{2}(s_2^2 + s_4^2), \\
Y_5 &= x_5 - \frac{1}{2}(r_1^2 + r_2^2), \\
Y_6 &= x_6 + \frac{1}{2}(r_3^2 + r_4^2).
\end{align*}
\]

Then

\[(v.18)\]
\[
\begin{pmatrix}
p_{\lambda\mu} & p_{1\mu} & \cdots & p_{4\mu} \\
X_1 & X_2 & \cdots & X_4 \\
& \vdots & & \vdots \\
& & \text{U} & \\
& & & \text{U} \\
& & & \\
X_1 & X_2 & \cdots & X_4
\end{pmatrix}
\]

\(\lambda = 5, 6; \mu = 1, 2\)

where \(U\) is the Unity Matrix of order 4, and the \(v_{\lambda}^{(\mu)}\) are obtained replacing in the \(u_{\lambda}^{(\mu)}\) the \(s_{\lambda}\) with the \(r_{\lambda}\) and the \(p_{\lambda\mu}\) with the \(q_{\lambda\mu}\).

Developing we obtain

\[(v.19)\]
\[
\begin{align*}
u_{5}^{(\mu)} &= p_{5\mu} - p_{1\mu}X_{5}^{1} - p_{2\mu}X_{5}^{2} = p_{5\mu} - p_{1\mu}s_{1} - p_{2\mu}s_{2}, \\
u_{6}^{(\mu)} &= p_{6\mu} - p_{3\mu}X_{6}^{3} - p_{4\mu}X_{6}^{4} = p_{6\mu} - p_{3\mu}s_{3} - p_{4\mu}s_{4}, \\
v_{5}^{(\mu)} &= q_{5\mu} + q_{1\mu}r_{1} + q_{2\mu}r_{2}, \\
v_{6}^{(\mu)} &= q_{6\mu} + q_{3\mu}r_{3} + q_{4\mu}r_{4}.
\end{align*}
\]
and, solving the equations $u_2^{(\mu)} = 0, v_2^{(\mu)} = 0$,

$$r_1 = s_1 = \frac{p_{51}p_{22} - p_{52}p_{21}}{p_{11}p_{22} - p_{12}p_{21}} = \frac{q_{51}q_{22} - q_{52}q_{21}}{q_{11}q_{22} - q_{12}q_{21}},$$

$$r_2 = s_2 = \frac{p_{11}p_{52} - p_{12}p_{51}}{p_{11}p_{22} - p_{12}p_{21}} = \frac{q_{11}q_{52} - q_{12}q_{51}}{q_{11}q_{22} - q_{12}q_{21}},$$

$$(v.20)$$

$$r_3 = s_3 = \frac{p_{61}p_{43} - p_{62}p_{41}}{p_{31}p_{42} - p_{32}p_{41}} = \frac{q_{61}q_{43} - q_{62}q_{41}}{q_{31}q_{42} - q_{32}q_{41}},$$

$$r_4 = s_4 = \frac{p_{31}p_{62} - p_{32}p_{61}}{p_{31}p_{42} - p_{32}p_{41}} = \frac{q_{31}q_{62} - q_{32}q_{61}}{q_{31}q_{42} - q_{32}q_{41}}.$$
VI. Determinantal Forms.

6.1. We define multiple indices \(\mathbf{\gamma}, \mathbf{\delta}, \mathbf{\varepsilon} \) of order \(i \) as

\[
\mathbf{\gamma} := \{\nu_1, \nu_2, \ldots, \nu_i\} \quad (1 \leq \nu_1 < \nu_2 < \ldots < \nu_i \leq n),
\]

\[
\mathbf{\delta} := \{\mu_1, \mu_2, \ldots, \mu_i\} \quad (1 \leq \mu_1 < \mu_2 < \ldots < \mu_i \leq m),
\]

\[
\mathbf{\varepsilon} := \{\lambda_1, \lambda_2, \ldots, \lambda_i\} \quad (k+1 \leq \lambda_1 < \lambda_2 < \ldots < \lambda_i \leq n),
\]

and put

\[
(VI.2) \quad \frac{\partial^q \mathbf{\gamma}}{\partial \mathbf{\delta}^p} := \begin{vmatrix}
\nu_1 \mu_1 & \cdots & \nu_1 \mu_i \\
\nu_2 \mu_1 & \cdots & \nu_2 \mu_i \\
\vdots & \cdots & \vdots \\
\nu_i \mu_1 & \cdots & \nu_i \mu_i
\end{vmatrix}.
\]

We write further \(\frac{\partial^q \mathbf{\gamma}}{\partial \mathbf{\delta}^p} \) for the determinant formed with the \(q \) correspondingly to (VI.2).

6.2. Assume now a fixed characteristic transformation \(T^* \) and consider the general expression

\[
(VI.3) \quad \sum_{\mathbf{\gamma}, \mathbf{\delta}} T_{\mathbf{\gamma}\mathbf{\delta}} \left(\frac{\partial^q \mathbf{\gamma}}{\partial \mathbf{\delta}^p} \right)_p,
\]

where the \(T_{\mathbf{\gamma}\mathbf{\delta}} \) are functions from \(W^* \) and the summation extends over all \(\mathbf{\gamma} \) and \(\mathbf{\delta} \) as defined in (VI.1).

If the expression can be represented in terms of the \(x, \nu, r, \xi \) and \(q, \nu, \mu \), we call it a determinantal form of order \(i \). We have then

\[
(VI.4) \quad \sum_{\mathbf{\gamma}, \mathbf{\delta}} T_{\mathbf{\gamma}\mathbf{\delta}} \left(\frac{\partial^q \mathbf{\gamma}}{\partial \mathbf{\delta}^p} \right)_p = \sum_{\mathbf{\gamma}, \mathbf{\delta}} \hat{T}_{\mathbf{\gamma}\mathbf{\delta}} \left(\frac{\partial^q \mathbf{\gamma}}{\partial \mathbf{\delta}^p} \right)_q,
\]

where the \(\hat{T}_{\mathbf{\gamma}\mathbf{\delta}} \) belong to \(W^* \).
If in such a form only the \(T_{\gamma \delta} \) corresponding to a fixed \(\delta \) are different from zero, it will be called a single determinantal form.

In exactly the same way we define the determinantal forms and single determinantal forms belonging to the \(q \mu \). Obviously in (VI.4) the right-handed sum is a determinantal form of order \(i \) belonging to the \(q \mu \).

6.3. Observe that the relation (VI.4) reduces to the requirement that the left-handed expression in it has a U property in the sense of chapter 3. Indeed the determinants (VI.2), if expressed through the \(q \mu \), becomes a linear combination of the \(\left(\frac{A}{\alpha} \right)_q \) with coefficients from \(W^\ast \). Therefore, for a determinantal form we obtain the differential equations (III.7) belonging to \(\mu = \mu_1, \ldots, \mu_i \).

As in the case of u-forms the differential equations (II.7) depend only on the functions \(x_\nu \) in (II.10), therefore it is reasonable to define an expression of the type (VI.3) as a unilateral determinantal form of order \(i \), if it satisfies all equations (III.7).

6.4. Our first problem is to find a linear basis for the unilateral determinantal forms (VI.3). In particular, if we consider in (VI.4) on the left the aggregate of the terms depending on a fixed \(\delta = \delta_1 \), this aggregate depends on the right only on the \(\left(\frac{A}{\alpha} \right)_q \) corresponding to the same \(\delta_1 \) and represents therefore a single determinantal form with a fixed \(\delta = \delta_1 \). Obviously we have only to consider, for an arbitrary \(\delta \),

\[
D_\delta := \sum_\gamma T_{\gamma \delta} \left(\frac{A}{\alpha} \right)_p
\]

In order to define convenient elements of such a basis, we return to the expression \(u_\alpha^{(\mu)} \) in (IV.8) and rewrite it here:
Choosing then multiple indices ξ, ξ of order i, as given by (VI.1), consider the expression

\[(VI.7) \quad P^{(\xi)} := \begin{vmatrix}
u_{\mu_1}^{(\xi)} & u_{\mu_2}^{(\xi)} & \cdots & u_{\mu_l}^{(\xi)} \\
u_{\mu_1}^{(\xi)} & u_{\mu_2}^{(\xi)} & \cdots & u_{\mu_l}^{(\xi)} \\
\vdots & \vdots & \ddots & \vdots \\
u_{\mu_1}^{(\xi)} & u_{\mu_2}^{(\xi)} & \cdots & u_{\mu_l}^{(\xi)}
\end{vmatrix}
\]

We are going to show that these expressions are single unilateral determinantal forms of order i belonging to ξ.

Form the determinant of order $k+i$:

\[(VI.8) \quad G^{(\xi)} := \begin{vmatrix}
X'_{i_{s_1}} & \cdots & X'_{i_{s_k}} & p_{1\mu_1} & \cdots & p_{1\mu_1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
X'_{k\xi_k} & \cdots & X'_{k\xi_k} & p_{k\mu_1} & \cdots & p_{k\mu_1} \\
X'_{i_{s_1}} & \cdots & X'_{i_{s_k}} & p_{\alpha_{1\mu}} & \cdots & p_{\alpha_{1\mu}} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
X'_{i_{s_1}} & \cdots & X'_{i_{s_k}} & p_{\alpha_{1\mu}} & \cdots & p_{\alpha_{1\mu}}
\end{vmatrix}
\]
6.5. The relation between $G_\mathcal{E}(\mathcal{E})$ and $P_\mathcal{E}(\mathcal{E})$ as given by Sylvester’s theorem is

\[(VI.9)\]
\[j^{-1}G_\mathcal{E}(\mathcal{E}) = P_\mathcal{E}(\mathcal{E})\]

Since J does not depend explicitly on the $p_\mathcal{W}$, we obtain, developing the determinant $G_\mathcal{E}(\mathcal{E})$ in subdeterminants of order i taken from the last i columns, a representation of $G_\mathcal{E}(\mathcal{E})$ in the form (VI.5) for a fixed \mathcal{E} and thence a similar representation of $P_\mathcal{E}(\mathcal{E})$.

On the other hand each of the elements $u_\mathcal{E}(\mu)$ of $P_\mathcal{E}(\mathcal{E})$ satisfies the relations (III.7). Therefore the determinant $P_\mathcal{E}(\mathcal{E})$ is also a single unilateral determinantal form belonging to \mathcal{E}.

Further it follows that $P_\mathcal{E}(\mathcal{E})$, if expressed through the $p_\mathcal{W}$, \mathcal{E} and the \mathcal{E}, is equal to a single determinantal form belonging to \mathcal{E}.

The determinants $G_\mathcal{E}(\mathcal{E})$ in (VI.8) are subdeterminants of the fixed matrix (III.6), containing the fixed $k\times k$-subdeterminant J.

The rank of the matrix (III.6) has been computed in (III.7). Using this value it follows that all determinants $P_\mathcal{E}(\mathcal{E})$ corresponding to an $i > \mathcal{E}$ vanish, while for each $i \leq \mathcal{E}$ there exist non-vanishing $P_\mathcal{E}(\mathcal{E})$.

We are going to show that the $P_\mathcal{E}(\mathcal{E})$ are a basis for single determinantal forms belonging to \mathcal{E}.

6.6. We begin by deriving a convenient representation for the determinant (VI.2). This will be the formula (VI.14).

Solving the relation (VI.6) for $\mathcal{A} \backslash k$ with respect to $p_\mathcal{W}$ we obtain

\[jP_\mathcal{E} = u_\mathcal{A}(\mu) + S_\mathcal{A}(\mu)\]

with
On the other hand, if \(\forall \leq k \) we can write

\[
S_{\gamma}^{(\mu)} := J_{p_{\gamma \mu}}
\]

so that these \(S_{\gamma}^{(\mu)} \) are also linear forms in the \(p_{\gamma \mu} \) (\(\gamma = 1, \ldots, k \)). Therefore, we can write generally

\[
J_{p_{\gamma \mu}} = \begin{cases}
S_{\gamma}^{(\mu)} & (\forall \leq k) \\
\left(\sum_{h=0}^{k} u_{\gamma}^{(\mu)} \right) + S_{\gamma}^{(\mu)} & (\forall > k)
\end{cases}
\]

where the expressions \(S_{\gamma}^{(\mu)} \) are in both cases linear forms in the \(p_{1\mu}, \ldots, p_{k\mu} \) with coefficients from \(W^* \) and can be written in the form (VI.10).

6.7. In the following part of this chapter the iXi-determinants are usually represented by writing out the general column with the index \(\mu_p \) where \(\forall = 1, \ldots, i \).

For the indices sequence \(\gamma \) in (VI.1) an \(h=0,1,\ldots, i \) is uniquely determined by the inequality

\[
\forall_h \leq k < \forall_{h+1} \quad , \quad h=0,\ldots, i
\]
where \(h=0 \) corresponds to \(v_1 > k \). We denote then the elements of the partial sequence of \(\gamma, \{v_{h+1}, v_{h+2}, \ldots, v_i\} \), in the same order by \(\lambda_1, \lambda_2, \ldots, \lambda_{i-h} \), as long as \(v_i > k \).

Then multiplying the determinant

\[
(VI.12) \quad \left(\frac{\partial Y}{\partial \delta} \right)_\rho := \begin{vmatrix}
 \rho_{v_1, \nu} \\
 \vdots \\
 \rho_{v_i, \nu}
\end{vmatrix}_{\nu=1, \ldots, i}
\]

by \(J^i \) we can write, using (VI.11),

\[
j^i \left(\frac{\partial Y}{\partial \delta} \right)_\rho = \begin{vmatrix}
 (\mu_{\nu}) \\
 S_{v_1} \\
 \vdots \\
 S_{v_h} \\
 u_{\lambda_1} + s_{\lambda_1} \\
 \vdots \\
 u_{\lambda_{i-h}} + s_{\lambda_{i-h}}
\end{vmatrix}
\begin{pmatrix}
 v_1 < \ldots < v_h \leq k ; h \geq 0 \\
 k+1 \leq \lambda_1 < \ldots < \lambda_{i-h} \leq n
\end{pmatrix}
\]

Observe that, for fixed \(\delta \) and \(\gamma \), both the sequence of the \(v, v_1, \ldots, v_h, \lambda_1, \ldots, \lambda_{i-h} \) and the sequence of the \(\mu_{\nu} \) corresponding to \(\delta \) are fixed.

6.8. Decompose here the determinant according to its rows and reorder the rows so as to bring all rows containing the \(S_{\nu}^{(\mu_{\nu})} \) first. We obtain
where the right-hand algebraic sum consists of \(2^{i-h}\) terms and, of course, \(g\) is \(\rho h\). Observe that in (VI.13) the \(\sigma\)- and \(\lambda\)-sequences vary from one of the \(2^{i-h}\) determinants to another.

Observe that in the right-hand sum of (VI.13) the term consisting only of the \(u_{\alpha}^{(\mu\nu)}\) occurs then and only then if \(h=0\), that is \(\psi_1 > k\), and then this term has in (VI.14) the plus sign. Introducing

\[
\varepsilon_0 = \begin{cases}
1 & (\psi_1 > k+1) \\
0 & (\psi_1 \leq k)
\end{cases}
\]

and using (VI.7) we can therefore rewrite (VI.13) as

\[
(VI.14) \quad j^i \left(\frac{d\psi}{dt} \right)_\rho = \varepsilon_0 \psi \left(\frac{d\psi}{dt} \right)_\rho + \sum_{g \geq 1} \varepsilon_0 \psi \frac{d\psi}{dt} + \sum_{g = 1}^{\psi_1} \frac{d\psi}{dt}.
\]
where ξ_1', \ldots, ξ_h' coincide with ν_1, \ldots, ν_h, while all further $\xi_{h+1}', \ldots, \xi_g'$ are $> k$.

If we now multiply (VI.14) by τ_{ξ_0} and sum over all ξ, we obtain on the left $j^i D_{\xi}$. As to the right-hand expression, obviously, the first right-hand terms in (VI.14) only occur if ξ is an ξg so that we obtain here the sum $\sum_{\xi} T_{\xi g} P_{\xi}^g$ taken over all multiple indices ξ of order i. We can therefore write

\[(VI.15) \quad j^i D_{\xi} = \sum_{\xi} T_{\xi g} P_{\xi}^g + \sum_{g<h} T_{\xi g} P_{\xi}^g,\]

where the right-hand expression is a polynomial in the p_{ν^μ} ($\nu=1, \ldots, i; \mu=1, \ldots, k$) and $u_{\lambda}^{(\nu)}$ ($\nu=1, \ldots, i; \lambda=k+1, \ldots, n$), linear for each $\nu=1, \ldots, i$.

6.9. We consider the expression in (VI.15) as function of $p_{\mu_1}, p_{\mu_2}, \ldots, p_{\mu_k}$ and of the $u_{\lambda}^{(\nu)}$. Obviously we can write

\[(VI.16) \quad j^i D_{\xi} = \sum_{\nu} B_{\mu}^{\nu} p_{\mu_1} + \sum_{\lambda} C_{\lambda} u_{\lambda}^{(\nu)} + U,\]

where B_{μ}^{ν}, C_{λ} and U no longer contain $p_{\mu_1}, \ldots, p_{\mu_k}$, but are polynomials in the p_{ν^μ} ($\nu=1, \mu=1, \ldots, k$) and in the $u_{\lambda}^{(\nu)}$ ($\nu=1$) with
coefficients from W^*, linear for each fixed ψ_1.

Now, observe that in (VI.16) the differential equations

\[(III.7) \text{ for } \mu = \mu_1 \text{ are satisfied for } j^i D_j, U \text{ and the sum } \sum_{\lambda} C_\lambda u^{(\lambda)}_. \]

Thence, they are also satisfied for the sum

\[(VI.17) \sum_{\lambda=1}^{k} B_{\lambda} p_{\lambda} \psi_1 \]

Reordering (VI.17) in products of the $p_{\lambda}^{\psi_1} (\psi_1)$, we can write

\[(VI.18) \sum_{\lambda=1}^{k} B_{\lambda} p_{\lambda} \psi_1 = \sum_{\sigma} P_{\sigma} \sum_{\lambda=1}^{k} B_{\lambda}^{(\sigma)} n_{\lambda} \psi_1 , \]

where P_{σ} are different products of the $p_{\lambda}^{\psi_1} (\psi_1)$ ordered in some way, and the coefficients $B_{\lambda}^{(\sigma)}$ belong to W^*. Therefore for each P_{σ} which actually occurs in (VI.18) the corresponding sum

\[\sum_{\lambda=1}^{k} B_{\lambda}^{(\sigma)} p_{\lambda} \psi_1 \quad , \quad B_{\lambda}^{(\sigma)} \in W^* \]

satisfies for $\mu = \mu_1$ the equations (III.7) and is therefore, being linear, a single u-form containing only $p_{\lambda_1}, \ldots, p_{\lambda_k}$. Such a form, as was proved in chapter IV, must vanish identically. We see that the sum (VI.17) identically vanishes. But $P_{\lambda_1}, \ldots, P_{\lambda_k}$ in (VI.16) occur only in the sum (VI.17). We see that D_σ is independent of $P_{\lambda_1}, \ldots, P_{\lambda_k}$.

6.10. Proceeding in the same way, for each μ_{ψ_1} we see that the right-hand expression in (VI.15) is independent of all $p_{\lambda_{\psi_1}}$ ($\lambda = 1, \ldots, k$). Putting then all these $p_{\lambda_{\psi_1}} = 0$, we obtain from (VI.15),
\[j^i D_\delta = \sum_{\varepsilon} T_{\varepsilon\delta} P_\varepsilon(\varepsilon) \]

(VI.19)

and we see that \(D_\delta \) can indeed be written as a linear expression in the \(P_\varepsilon(\varepsilon) \) with coefficients from \(\Gamma_y \). Further, we find in (VI.19) an explicit rule for the representation of \(D_\delta \) through the \(P_\varepsilon(\varepsilon) \):

Throw away in (VI.5) all terms corresponding to \(\gamma \) with \(\nu_1 \leq k \) and replace, since the remaining sequences \(\gamma \) are also sequences \(\varepsilon \), each \(\binom{2s}{s} \) by \(P_\varepsilon(\varepsilon) j^{-i} \).

6.11. We show now that it does not exist a linear homogeneous relation between the \(P_\varepsilon(\varepsilon) \) for the order \(i \) with coefficients depending only on the \(y_\nu \) and \(s_\alpha \) for independent variables \(y_\nu \) and \(s_\alpha \).

\[\sum_{\varepsilon, \delta} T_{\varepsilon\delta} P_\varepsilon(\varepsilon) = 0 \]

(VI.20)

Indeed, if we make all \(p_{\lambda\mu}(\nu=1, \ldots, k; \mu=1, \ldots, m) \) equal to zero, we obtain from (VI.20)

\[j^i \sum_{\varepsilon, \delta} T_{\varepsilon\delta} \begin{vmatrix} p_{\lambda_1\mu_1} & \cdots & p_{\lambda_1\mu_1} \\ \vdots & \ddots & \vdots \\ p_{\lambda_1\mu_1} & \cdots & p_{\lambda_1\mu_1} \end{vmatrix} = 0 \]

(VI.21)

For an arbitrary \(\varepsilon_0=\{\lambda_1 < \ldots < \lambda_1\} \) and \(\delta_0=\{\mu_1 < \ldots < \mu_1\} \) attribute to the corresponding elements \(p_{\lambda_1\mu_1}, \ldots, p_{\lambda_1\mu_1}, \ldots, p_{\lambda_1\mu_1}, \ldots, p_{\lambda_1\mu_1}, \ldots, p_{\lambda_1\mu_1} \) the
weight 1 and to all other $p_{v\mu}$ the weight 0. Then the terms of
the weight i occur only in the term of (VI.21) corresponding to
$T_{v\mu}$, while all other terms of (VI.21) have weights < i. Therefore
it follows $T_{v\mu}$ = 0 and since E_{v} and S_{v} were arbitrarily chosen, we
see that all coefficients $T_{E_{v}}$ in (VI.21) vanish.

6.12. We assume now that the relations (II.10) and (II.13)
hold together with (II.7) and (II.11). We define similarly as in
(VI.7) for $P_{v}^{(s)}$,

$$Q_{v}^{(s)} := \begin{vmatrix}
\nu_{\lambda_{1}^{(s)}} & \ldots & \nu_{\lambda_{i}^{(s)}} \\
\nu_{\lambda_{1}^{(s)}} & \ldots & \nu_{\lambda_{i}^{(s)}} \\
\vdots & \ddots & \vdots \\
\nu_{\lambda_{1}^{(s)}} & \ldots & \nu_{\lambda_{i}^{(s)}}
\end{vmatrix}
$$

It has been proved with the formulas (IV.14) and (IV.16)
that the $u_{\lambda}^{(s)}$ and the $v_{\lambda}^{(s)}$ are connected by a non-singular linear
transformation of order $m(n-k)$. It is then obvious that the deter-
minants of the order i, $P_{v}^{(s)}$ and $Q_{v}^{(s)}$, are also connected by non-
singular linear transformations the coefficients of which are
expressible through the determinants formed by the A_{λ} and the B_{λ}
in (IV.13) and (IV.16).

Therefore, all $P_{v}^{(s)}$ of the order i vanish then and only
then when all $Q_{v}^{(s)}$ of the same order vanish. This signifies that
both matrices K_{x} and K_{y} have the same rank $k+9$.

The expressions $Q_{v}^{(s)}$ correspond to the subdeterminants of
the matrix K_{y} in (V.7),
and are connected with them by the relation corresponding to (VI.9),

\[(VI.23) \quad H^{(\varepsilon)} = \begin{bmatrix} \gamma^{i\varepsilon_1} & \cdots & \gamma^{i\varepsilon_k} & q_{1\mu_1} & \cdots & q_{1\mu_1} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ \gamma^{i\varepsilon_1} & \cdots & \gamma^{i\varepsilon_k} & q_{k\mu_1} & \cdots & q_{k\mu_1} \\ \gamma^{i\varepsilon_1} & \cdots & \gamma^{i\varepsilon_k} & q_{1\mu_2} & \cdots & q_{1\mu_2} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ \gamma^{i\varepsilon_1} & \cdots & \gamma^{i\varepsilon_k} & q_{k\mu_2} & \cdots & q_{k\mu_2} \end{bmatrix} \]

and are connected with them by the relation corresponding to (VI.9),

\[(VI.24) \quad k^{i\varepsilon_1} H^{(\varepsilon)} = Q^{(\varepsilon)} \]

6.13. By the relations (VI.9) and (VI.24) it follows further that the $G^{(\varepsilon)}$ and the $H^{(\varepsilon)}$, again, are connected by non-singular linear transformations the coefficients of which belong to W^*, for a fixed i:

\[(VI.25) \quad G^{(\varepsilon)} = \sum_{\varepsilon, \varepsilon'} \Omega^{(\varepsilon, \varepsilon')} H^{(\varepsilon')} \]

It follows further from the relations (VI.9) and (VI.24) that the relation (VI.25) holds also between the $P^{(\varepsilon)}$ and the $Q^{(\varepsilon)}$,

\[(VI.26) \quad P^{(\varepsilon)} = \sum_{\varepsilon, \varepsilon'} \Omega^{(\varepsilon, \varepsilon')} Q^{(\varepsilon')} \]

6.14. We will have in particular to do with the case $i=m$. In this case δ becomes

\[\delta := \{1, 2, \ldots, m\} \]
and we put

\[p^{(\varepsilon)}_{\delta_0} =: p_\varepsilon, \quad q^{(\varepsilon)}_{\delta_0} =: q_\varepsilon. \]

Then the relation (VI.26) can be written as

(VI.27) \[p_\varepsilon = \sum_{\varepsilon'} \Omega_{\varepsilon\varepsilon'} q_{\varepsilon'} \quad (i=x). \]

If we now consider an expression, \(A(s_x; y_v; G_\delta^{(\varepsilon)}) \), depending on the \(s_x \), the \(y_v \) and the \(G_\delta^{(\varepsilon)} \), where all \(\varepsilon \) and \(\delta \) belong to the same \(i \), we can express the \(G_\delta^{(\varepsilon)} \) linearly through the \(H_\delta^{(\varepsilon)} \) and then eliminate the \(s_x \) and \(y_v \), replacing them with functions of \(x_v \).

We obtain thus an expression

(VI.28) \[B(s_x; x_v; H_\delta^{(\varepsilon)}) = A(s_x; y_v; G_\delta^{(\varepsilon)}). \]
VII. Transformations with \(d = 0 \).

7.1. In the case that \(s = m \) it follows from (III.30):

\[(VII.1) \quad n > k + m \quad . \]

Interchanging in \(K^* \), if necessary, the rows with the indices \(k+1, \ldots , n \) we can assume that

\[
\begin{bmatrix}
X'_{ls_1} & \cdots & X'_{ls_k} & p_{ll} & \cdots & p_{lm} \\
\vdots & & & \vdots & & \vdots \\
X'_{ks_1} & \cdots & X'_{ks_k} & p_{kl} & \cdots & p_{km} \\
\end{bmatrix}
\]

\[(VII.2) \quad D :=
\begin{bmatrix}
X'_{k+1 s_1} & X'_{k+1 s_k} & p_{k+1 l} & \cdots & p_{k+1 m} \\
\vdots & & \vdots & & \vdots \\
X'_{k+m s_1} & \cdots & X'_{k+m s_k} & p_{k+m l} & \cdots & p_{k+m m} \\
\end{bmatrix} \neq 0. \]

We consider further the determinants \(D_{\mu \tau} \) which are obtained from \(D \) if, for \(\mu \) with \(k+m < \mu < k \), the row in \(D \) with the index \(\mu \) is deleted and the row of \(K^* \) with the index \(\tau \), where \(\tau \) is one of the indices \(k+m+1, \ldots , n \), is added at the bottom,

\[
\begin{bmatrix}
X'_{ls_1} & \cdots & X'_{ls_k} & p_{ll} & \cdots & p_{lm} \\
\vdots & & & \vdots & & \vdots \\
X'_{ks_1} & \cdots & X'_{ks_k} & p_{kl} & \cdots & p_{km} \\
\end{bmatrix}
\]

\[(VII.3) \quad D_{\mu \tau} :=
\begin{bmatrix}
X'_{\mu-1 s_1} & \cdots & X'_{\mu-1 s_k} & \mu-1 l & \cdots & \mu-1 m \\
\vdots & & \vdots & & \vdots & & \vdots \\
X'_{\mu+1 s_1} & \cdots & X'_{\mu+1 s_k} & \mu+1 l & \cdots & \mu+1 m \\
\vdots & & \vdots & & \vdots & & \vdots \\
X'_{k+m s_1} & \cdots & X'_{k+m s_k} & p_{k+m l} & \cdots & p_{k+m m} \\
\end{bmatrix} \quad . \]
The number of the determinants $D_{\mu \tau}$ is obviously

(VII.4) \[m (n-k-m) = N \]

7.2. More generally, put $\xi := \{1, \ldots, m\}$ and, for an i with $1 \leq i \leq m$, denote by ξ', ξ'' two combinations of i indices, ξ' from the sequence $\{1, \ldots, i+m\}$ and ξ'' from the sequence $\{k+m+1, \ldots, n\}$,

$$
\xi' = \{\mu_1 < \ldots < \mu_i\}, \quad \mu_i \leq k+m,
$$

(VII.5) \[\xi'' = \{\tau_1 < \ldots < \tau_i\}, \quad \tau_i > k+m+1, \quad \tau_i \leq n. \]

Denote further by ξ the sequence obtained from $\{1,2,\ldots,k+m\}$ by deleting the elements of ξ' and adding at the end the elements of ξ''. The determinant obtained from D by deleting the rows corresponding to ξ' and adding at the bottom the rows corresponding to ξ'' will be denoted by $D_{\xi',\xi''}$. It follows comparing with the determinants $G_{\xi}^{(\xi)}$ (VI.8) of order m:

(VII.6) \[D_{\xi',\xi''} = G_{\xi}^{(\xi)}. \]

In particular, the determinants $D_{\mu \tau}$ corresponds to $\xi' = \{\mu_i\}$, $\xi'' = \{\tau\}$.

The number of the $D_{\xi',\xi''}$ corresponding to a certain i is obviously $(k+m)\binom{n-k-m}{i}$ and therefore the total number of all $D_{\xi',\xi''}$ is

(VII.7) \[M := \sum_{i=1}^{\infty} (k+m)\binom{n-k-m}{i} \]

where of course the series breaks up as soon as $i > k+m$ or $i > n-k-m$.

7.3. We are first going to show that the $M+1$ functions

(VII.8) \[D_{\xi',\xi''} \]
are V functions in the sense of chapter III, that is satisfy (III.3), if they are expressed, using (II.7) and (II.14), through the x, y, z and $p_{\nu \mu}$. Indeed, applying the operator $j_{\nu \mu}$ in (III.8) to one of these determinants we are simply replacing the μ-th column with the x-th column and obtain a determinant with two identical columns. Therefore the equations (III.7) which are necessary and sufficient for the U property are satisfied.

7.4. Further, applying the operator

\[(VII.9) \quad \Delta_{\mu, \mu'} := \sum_{\nu=1}^{n} p_{\nu \mu} \frac{d}{d p_{\nu \mu}}\]

to D and $D_{e', e''}$ we obtain again two identical columns if $\mu' = \mu$, while if $\mu' \neq \mu$ the corresponding determinant vanishes or is reproduced. But then, if $D_{e', e''}$ is reproduced, applying for $\mu' = \mu$ the operator $\Delta_{\mu, \mu'}$, we have

\[\Delta_{\mu, \mu'} D_{e', e''}/D = \frac{D(\Delta_{\mu, \mu'} D_{e', e''}) - D_{e', e''}(\Delta_{\mu, \mu'} D)}{D^2} = 0.\]

We see that all M quotients

\[(VII.10) \quad U(\mathcal{C}) := \frac{D_{e', e''}}{D} \quad (\mathcal{C}=k+1, \ldots, k+N)\]

ordered conveniently, beginning with $U^{(k+1)}$, satisfy as well the equations (III.7) as (III.12) and therefore are U functions invariant with respect to the choice of the T_1, \ldots, T_m. We choose the ordering of $U(\mathcal{C})$ in such a way that the first N of them, that is $U^{(k+1)}, \ldots, U^{(k+N)}$ correspond to the $D_{\mu \mathcal{C}}$ in (VII.3). The values of \mathcal{C} in (VII.3) corresponding to a \mathcal{C} in the first N of the $U(\mathcal{C})$ will be denoted by $\mathcal{C}_{\mu \mathcal{C}}$.
7.5. Consider now, for a fixed \(\tau \), the \(m \) determinants \(D^{(\tau)} \)
(\(\mu = k+1, \ldots, k+m \)) and develop them each time in the elements of the row with the index \(k+\mu \). Then we obtain

\[
(VII.11) \quad D^{(\tau)} = \sum_{\lambda=1}^{m} D^{(\lambda)}_{\mu \tau} P_{\sigma \lambda} + D^{(\tau)}_{\mu \tau} \quad (\mu = k+1, \ldots, k+m),
\]

where the terms of the developments corresponding to the first \(k \) terms of the \(k+\mu \)-th row are taken together in \(D^{(\tau)}_{\mu \tau} \).

Here the coefficients \(D^{(\lambda)}_{\mu \tau} \) are subdeterminants of \(D \) and are therefore independent of \(\tau \). Thence, we can write (\(VII.11 \)) as

\[
(VII.12) \quad D^{(\tau)} = \sum_{\lambda=1}^{m} D^{(\lambda)}_{\mu \tau} P_{\sigma \lambda} + D^{(\tau)}_{\mu \tau} \quad (\mu = k+1, \ldots, k+m).
\]

The coefficients \(D^{(\lambda)}_{\mu \tau} \) are obviously obtained deleting in \(D \) the \(\mu \)-th row and the \(k+\lambda \)-th column. By the generalized Sylvester's Theorem we have

\[
(VII.13) \quad |D^{(\lambda)}_{\mu \tau}| = JD^{m-1} \neq 0 \quad \ast
\]

The \(P_{\sigma \lambda} \) for our fixed value of \(\tau \) can be therefore expressed through the \(D_{k+1 \tau}, \ldots, D_{k+m \tau} \).

\ast) Kowalewski, Einführung in die Determinantentheorie, 3rd ed., 1942.

Observe that in Kowalewski's treatise the exponent of \(\tau \) in the last formula on page 100, \((n-h-1)^{m-1} \), is false and must be replaced with \((n-h-1)^{m-h} \).

where the functions Q_λ do not contain any $p_{\gamma \mu}$ with $\gamma > k + m$.

7.6. But writing then (VII.14) out for all $c = k + m + 1, \ldots, n$ and $a = 1, \ldots, m$ we obtain the representation of the N derivatives $p_{\nu \lambda}$ through the N quotients (VII.10) corresponding to the D. It follows that the first N quotients (VII.10) considered as undeveloped, are independent functions with respect to the $p_{\nu \lambda}$. Thence, denoting generally the rank of a matrix A by $R_k A$, we can write

$$\text{(VII.15)} \quad R_k \left(\frac{\delta(U^{(k+1)}\ldots U^{(k+N)})}{\delta(p_{\nu \mu})} \right) = N,$$

where N, given by (VII.4), is the total number of independent integrals of the joint system consisting of (III.7) and (III.12). But the following $U(\sigma)$ with $\sigma > k + N$ are also integrals of this system and are therefore functions of $U^{(k+1)}, \ldots, U^{(k+N)}$. It follows thence

$$\text{(VII.15a)} \quad U^{(k+N+\sigma)} = A_\sigma(v_\alpha; U^{(k+1)}, \ldots, U^{(k+1)}) \quad (\sigma = 1, \ldots, M-N)$$

where the functions A_σ depend only on T^* (but not on T).

Using (II.7) and (II.14) we assume from now on that the functions (VII.8) are functions of the x_ν, r_{ν} and $p_{\nu \mu}$.

7.7. We make a further assumption going beyond (VII.15), namely that (VII.15) remains true if the $U(\sigma)$ are replaced with the $U^*(\sigma)$,

$$\text{(VII.16)} \quad R_k \left(\frac{\delta(U^*(k+1)\ldots U^*(k+N))}{\delta(p_{\nu \mu})} \right) = N. \quad$$

Then, the r^2, satisfying also the property U, are expressible through the $U^*(\sigma)$ and the equations
(VII.17) \[r_x = \varphi_x(u^{(k+1)}, \ldots, u^{(k+N)}) \quad (x=1, \ldots, k) \]
can be solved with respect to the \(r_1, \ldots, r_k \) if

(VII.18) \[\frac{\partial (r_x - r_x)}{\partial (r_x)} \neq 0 \]

where the \(\varphi_x \) are \(k \) arbitrary, indefinitely often differentiable functions. Thus the \(r_x \) can represented as functions of the \(x_y, p_{ym} \),

(VII.19) \[r_x = r_x(x_y, p_{ym}) \quad (x=1, \ldots, k). \]

Therefore, the \(s_x \) defined, in virtue of (II.14), by

(VII.20) \[s_x = S_x(x_v, r_x^*) \quad (x=1, \ldots, k) \]

have also the property \(U \) and can be expressed in function of \(x_y, s_x^*, q_{ym} \),

(VII.21) \[S_x = \psi_x(y_v, s_x^*, q_{ym}) \quad (x=1, \ldots, k). \]

Thus we obtain \(k \) equations

(VII.22) \[s_x = \psi_x(y_v, s_x, q_{ym}) \quad (x=1, \ldots, k) \]

which can be solved with respect to \(s_x \) if

(VII.23) \[\frac{\partial (s_x - s_x)}{\partial (s_x)} \neq 0. \]

In this way we obtain the expressions
(VII.24) \[s_{n} = s_{g}(y_{\nu}, p_{\mu}) \]

satisfying together with the \(r_{2} \) the equations (II.7), (II.11), (II.13) and (II.14), and our problem is solved.

Example for \(d=0, m=2 \)

7.8. Take

(VII.25) \[n=4, m=2, d=0, k=1 \]

Then, from (VII.4) it follows \(N=2 \) and for \(D_{\mu \nu} \) we have \(\zeta=k+m+l=n=4 \), while \(\mu \) can assume the values 2 or 3. We obtain from (VII.2) and (VII.3) more generally

(VII.26) \[D = \begin{vmatrix}
X'_{1s} & p_{11} & p_{12} \\
X'_{2s} & p_{21} & p_{22} \\
X'_{3s} & p_{31} & p_{32}
\end{vmatrix} \]

\[D_{14} = \begin{vmatrix}
X'_{2s} & p_{21} & p_{22} \\
X'_{3s} & p_{31} & p_{32} \\
X'_{4s} & p_{41} & p_{42}
\end{vmatrix}, \quad D_{24} = \begin{vmatrix}
X'_{1s} & p_{11} & p_{12} \\
X'_{3s} & p_{31} & p_{32} \\
X'_{4s} & p_{41} & p_{42}
\end{vmatrix} \]

(VII.27)

\[D_{34} = \begin{vmatrix}
X'_{1s} & p_{11} & p_{12} \\
X'_{2s} & p_{21} & p_{22} \\
X'_{4s} & p_{41} & p_{42}
\end{vmatrix} \]

We can therefore write, by (VII.10),

(VII.28) \[u^{(2)} = D_{24}/D, \quad u^{(3)} = D_{34}/D \]
and obtain with an arbitrary function \(\psi \) of two variables (VII.17), if \(U^{(2)}, U^{(3)} \) are independent,

\[
(VII.29) \quad \mathbf{r}^* = \psi(U^{* (2)}, U^{* (3)})
\]

7.9. We specialize now our transformation to

\[
\begin{align*}
 x_1 &= X_1(y, s) = y_1 + s & y_1 &= x_1 + r \\
 x_2 &= X_2(y, s) = y_2 - s & y_2 &= x_2 - r \\
 x_3 &= X_3(y, s) = y_3 + s & y_3 &= x_3 + r \\
 x_4 &= X_4(y, s) = y_4 - s & y_4 &= x_4 - r
\end{align*}
\]

and take \(r = -s \).

We obtain from (IV.7) \(K = J = 1 \) and further

\[
(VII.31) \quad D = \begin{vmatrix} 1 & p_{11} & p_{12} \\ -1 & p_{21} & p_{22} \\ 1 & p_{31} & p_{32} \end{vmatrix} = \begin{vmatrix} 0 & p_{21}+p_{11} & p_{22}+p_{12} \\ 0 & p_{31}-p_{11} & p_{32}-p_{12} \end{vmatrix}
\]

\[
(VII.32) \quad D_{14} = \begin{vmatrix} -1 & p_{21} & p_{22} \\ 1 & p_{31} & p_{32} \\ -1 & p_{41} & p_{42} \end{vmatrix} = \begin{vmatrix} 0 & p_{31}+p_{21} & p_{32}+p_{22} \\ 0 & p_{41}-p_{21} & p_{42}-p_{22} \end{vmatrix}
\]

\[
(VII.33) \quad D_{24} = \begin{vmatrix} 1 & p_{11} & p_{12} \\ 1 & p_{31} & p_{32} \\ -1 & p_{41} & p_{42} \end{vmatrix} = \begin{vmatrix} 0 & p_{31}-p_{11} & p_{32}-p_{12} \\ 0 & p_{41}+p_{11} & p_{42}+p_{12} \end{vmatrix}
\]

\[
(VII.34) \quad D_{34} = \begin{vmatrix} 1 & p_{11} & p_{12} \\ -1 & p_{21} & p_{22} \\ -1 & p_{41} & p_{42} \end{vmatrix} = \begin{vmatrix} 0 & p_{21}+p_{11} & p_{22}+p_{12} \\ 0 & p_{41}+p_{11} & p_{42}+p_{12} \end{vmatrix}
\]
where (VII.33) and (VII.34) are assumed as independent.

Thence

(VII.35) \(-s^* = r^* = \phi(D_{24}/D, D_{34}/D)\)

where the right-hand expression is easy to be transformed into a function depending only on the \(q_{\nu\mu}\).
8.1. Put

\[(VIII.1) \quad n' := n + d\]

We change the notation of chapter II in so far that the orderings of the X_ψ's and Y_ψ's have a gap from $k+1$ to $k+d$, where in particular the

\[X_{1s_1}^1, X_{2s_2}^2, \ldots, X_{ks_k}^k, X_{k+d+1}^{k+d+1}, \ldots, X_{ns_n}^n\]

are expressed in terms of the x_ψ and r_κ. We further introduce d auxiliary equations

\[(VIII.2) \quad x_\psi = X_\psi = y_\psi, \quad y_\psi = Y_\psi \quad (\psi = k+1, \ldots, k+d)\]

Consider n vectors of order $k+m$,

\[(VIII.3) \quad L_\psi = (X_{1s_1}^\psi, \ldots, X_{ks_k}^\psi, P_{\psi_1}, \ldots, P_{\psi_m})\]

where ψ runs through $1, \ldots, k, k+d+1, \ldots, n'$ so that there is a gap from $k+1$ to $k+d$.

Consider further a matrix

\[(VIII.4) \quad \tilde{X}_x = (L_1 \ldots L_k L_{k+d+1} \ldots L_n)^\dagger\]

where as also in the following the accent denotes that the rows are to be written from above to below.

8.2. Assume now that the rank of \tilde{X}_x is $k+m-d$,

\[(VIII.5) \quad \text{Rk}(\tilde{X}_x) = k+m-d, \quad 1 \leq d \leq m\]
Then there exist exactly \(d \) independent linear relations between the columns of \(F_x^* \)

\[
(VIII.6) \quad \sum_{i}^{k} p_i^{(s)} x_i + \sum_{j}^{l} p_j^{(s)} y_j = \sum_{m}^{n} a_m^{(s)} w_m \quad (s=d,\ldots,n).
\]

Obviously the coefficients \(p_i^{(s)} \) and \(a_m^{(s)} \) are independent of the \(p_{d+s} \) \((d=1,\ldots,d)\). It is easy to see that in \((VIII.6) \)

\[
(VIII.7) \quad Rk(\alpha_{\mu}^{(s)}) = d \quad (s=1,\ldots,d; \mu=1,\ldots,m).
\]

Indeed, otherwise we could obtain, eliminating the \(p_{\mu} \), a non-trivial relation,

\[
\sum_{i}^{k} p_i^{(s)} x_i + \sum_{j}^{l} p_j^{(s)} y_j = 0 \quad (s=1,\ldots,k,k+d+1,\ldots,n')
\]

in contradiction to the formula \((II.11) \), where we have to replace \(k' \) with \(k \).

8.3. From \((VIII.7) \), it follows that there exists a non-vanishing determinant of order \(d \) with \(\alpha_{\mu}^{(s)} \) and we can assume without loss of generality that this is the determinant

\[
(VIII.8) \quad \begin{vmatrix} \alpha_{\mu}^{(s)} \end{vmatrix} \neq 0 \quad (s,\mu=1,\ldots,d),
\]

changing conveniently the ordering of the \(p_{\mu} \). Further, changing conveniently the order of the columns in \((VIII.8) \), we can assume that its diagonal product does not vanish,

\[
\alpha_1^{(1)} \alpha_2^{(2)} \cdots \alpha_d^{(d)} \neq 0 .
\]

But then, dividing all relations \((VIII.6) \) by the corresponding
we can finally assume without loss of generality that
\[(VIII.9) \quad \alpha_1^{(1)} = \alpha_2^{(2)} = \ldots = \alpha_d^{(d)} = 1.\]

From (VIII.8) it follows that there does not exist a non-trivial relation
\[(VIII.10) \quad \beta_1 X_1 \ldots + \beta_k X_k = \alpha_1 P_1 + \ldots + \alpha_m P_m \quad (\forall = 1, \ldots, k, k+d+1, \ldots, n).\]

8.4. Consider now \(d\) vectors of order \(k+m\) corresponding to (VIII.2).
\[(VIII.11) \quad P_{\nu} = (0, \ldots, 0, P_{\nu_1}, \ldots, P_{\nu_m}) \quad (\forall = k+1, \ldots, k+d),\]
where the first \(k\) elements of each \(P_{\nu}\) consist of zeros. Using these vectors together with the vectors (VIII.3), form the \((k+m) \times n'\)-matrix
\[(VIII.12) \quad K^{*} = (L_1, \ldots, L_k, P_{k+1}, \ldots, P_{k+d}, L_{k+d+1}, \ldots, L_{n'}).\]

We consider further the determinants of the order \(k+m\):
\[(VIII.13) \quad D_{\alpha_1 \alpha_2 \ldots \alpha_k \alpha_{k+d+1} \ldots \alpha_{k+m}} := \begin{vmatrix} L_{\alpha_1} & L_{\alpha_2} & \ldots & L_{\alpha_k} & P_{\alpha_{k+1}} & \ldots & P_{\alpha_{k+d}} & L_{\alpha_{k+d+1}} & \ldots & L_{\alpha_{k+m}} \end{vmatrix},\]
where
\[(VIII.14) \quad 1 < \alpha_1 < \alpha_2 < \ldots < \alpha_k < \alpha_{k+1} < \ldots < \alpha_{k+m} \leq n',\]
and none of the \(\alpha_j\) assumes the values \(k+1, \ldots, k+d\).

On the other hand, we consider vectors of order \(k+m-d\),
obtained from the L_y by dropping the first d columns of $P_{y'}$.
Correspondingly we define the determinants of order $k+m-d$,

$$L := (X'_{y_1}, ..., X'_{y_k}, P_{y'} d+1, ..., P_{y'} m)$$

and the $(k+m-d) \times n$-matrix

$$K^* := (\hat{L}_1, ..., \hat{L}_k, \hat{L}_{k+1}, ..., \hat{L}_n)$$

8.5. We are now going to transform in a convenient way the matrix K^* without changing its rank. We add to the $(k+1)$-st column of K^* the following columns multiplied subsequently with $\alpha_2^{(1)}$, $\alpha_3^{(1)}$, ..., $\alpha_m^{(1)}$ and subtract then the first k columns multiplied by $\beta_1^{(1)}$, ..., $\beta_k^{(1)}$. Then we obtain a matrix in which the only elements in the $(k+1)$-st column are the expressions

$$P_{k+5}^{(1)} := \sum_{\gamma=1}^{m} \alpha_{\gamma}^{(1)} p_{k+5}^{(1)}$$

Generally we apply the same transformation to the columns with the index $k+\xi$, $\xi=1, ..., d$, adding to each such column all other p columns multiplied by $\alpha_1^{(\xi)}$, $\alpha_2^{(\xi)}$, ..., $\alpha_{d-1}^{(\xi)}$, $\alpha_{d-1}^{(\xi)}$, ..., $\alpha_m^{(\xi)}$ and then subtracting the first k columns multiplied by $\beta_1^{(\xi)}$, ..., $\beta_k^{(\xi)}$. Then the only elements in the $(k+\xi)$-th column are the expressions

$$P_{k+5}^{(\xi)} := \sum_{\gamma=1}^{d} \alpha_{\gamma}^{(\xi)} p_{k+5}^{(\xi)}$$

We obtain in this way a matrix of dimensions $n' \times (k+m)$,
Here the matrices J_k and J_{n-k} are matrices of dimensions $k \times k$ and $(n-k) \times k$ formed with the X^V for $V=1, \ldots, k$ and $v=k+d+1, \ldots, n'$. The matrices O_1, O_2 and O_3 are matrices consisting of zeros, the first of the dimensions $k \times d$, the second of the dimensions $d \times k$ and the third of the dimensions $(n-k) \times d$. Further the matrices Q_1, Q_2 and Q_3 are matrices from the last $(m-d)$ columns of the $P_{\nu\mu}$ with dimensions $k \times (m-d)$, $d \times (m-d)$ and $(n-k) \times (m-d)$. Finally the matrix \hat{P} is the matrix formed with the expressions (VIII.18).

\begin{equation}
(VIII.20) \quad \hat{P} := \left(\hat{P}_{k+d} \right)_{k+d, \ell=1, \ldots, d}.
\end{equation}

Observe that the determinant $|\hat{P}|$ of \hat{P} does not identically vanish in the $P_{d+S \mu'}$ since the coefficients in (VIII.18) do not depend on these $P_{d+S \mu'}$.

8.6. It follows obviously from the decomposition (VIII.19) that the determinants (VIII.13) can be written as

\begin{equation}
(VIII.21) \quad D_{\alpha_4 \cdots \alpha_k \alpha_{k+d+4} \cdots \alpha_{k+m}} = |\hat{P}| D_{\alpha_4 \cdots \alpha_k \alpha_{k+d+4} \cdots \alpha_{k+m}}.
\end{equation}

On the other hand the rank of the $n \times (k+m-d)$-matrix \hat{K}^x is obviously exactly

\begin{equation}
(VIII.22) \quad \text{Rk}(\hat{K}^x) = k+m-d,
\end{equation}

since otherwise we would have a relation of the type (VIII.10). Therefore, by (VIII.21), there exist subdeterminants $D_{\alpha_4 \cdots \alpha_{k+d+4} \cdots \alpha_{k+m}}$.
which do not vanish and the rank of (VIII.19) and thence that of \(K^*_X \) is exactly \(k+m \),

\[(VIII.23) \quad \text{Rk}(K^*_X) = k+m \]

We can therefore change the order of the \(X_{xy} \) in (II.2b) in such a way that the determinants

\[(VIII.24) \quad J := \begin{vmatrix} X'_{ls_1} & \ldots & X'_{ls_k} \\ \vdots & \ddots & \vdots \\ X'_{ks_1} & \ldots & X'_{ks_k} \end{vmatrix} \]

\[(VIII.25) \quad D_l \ldots \ k \ k+l \ldots \ k+d \ldots k+m \]

and

\[(VIII.26) \quad D_l \ldots \ k \ k+d+1 \ldots k+m \]

do not vanish and we can assume without loss of generality that it is the case from the beginning.

8.7. We now subdivide the sequence \(k+m+1, \ldots, n' \) into \(\ell \) consecutive sequences of the length \(d \) and a last one of the length \(< d \) which could be also \(= 0 \). The first \(\ell \) sequences are

\[k+m+1, \ldots, k+m+d; k+m+d+1, \ldots, k+m+2d; \ldots; k+m+(\ell-1)d+1, \ldots, k+m+\ell d \]

where

\[k+m+\ell d \leq n' < k+m+(\ell+1)d \]

and thence
\[\epsilon \in \frac{n'-k-m}{d} < \epsilon + 1, \]

(VIII.27) \[\epsilon = \frac{n'-k-m}{d} + \theta_0, \quad 0 \leq \theta_0 \leq 1. \]

We replace now, for \(\lambda = 1, 2, \ldots, \epsilon \), in (VIII.5) the rows with the numbers \(k+1, \ldots, k+d \) with the rows \(k+m+(\lambda-1)d+1, \ldots, k+m+\lambda d \) and denote the determinants obtained in this way by \(D_1, D_2, \ldots, D_\epsilon \).

(VIII.28) \[D_1, D_2, \ldots, D_\epsilon. \]

All rows of these determinants belong to \(K_x \) and therefore vanish so that we obtain finally \(\epsilon \) equations

(VIII.29) \[D_1 = 0, \ldots, D_\epsilon = 0. \]

8.9. Observe that each of \(D_\lambda \) contains a rectangle of values of the \(p_\mu \) which is not contained in any other of the \(D_\lambda \). Therefore, as \(j \neq 0 \), the \(\epsilon \) expressions \(D_\lambda \) are independent as functions of the \(p_\mu \). But the relations (VIII.29) contain \(\epsilon \) equations for the \(k \) expressions \(r_1, r_2, \ldots, r_k \) and we have therefore the inequality

(VIII.30) \[k \epsilon \leq \frac{n'-k-m}{d} - \theta_0, \quad 0 \leq \theta_0 \leq 1. \]

Solving this with respect to \(k \) we obtain

(VIII.30a) \[k \leq \frac{n-m}{d+1} + \theta, \quad 0 < \theta \leq \frac{d}{d+1}. \]
8.10. We describe now the method we use for some cases with $1 \leq d < m$. We consider the new transformation, introduced in 8.1, and which we call the enlargement, \hat{T}, of the original one, T. If we put

\[(\text{VIII.31})\quad y_\nu = y^*_\nu(x_\nu, R_x), \quad x_\nu = x^*_\nu(y_\nu, s_x) \quad (\nu = 1, \ldots, k, k+d+1, \ldots, n')\]

\[(\text{VIII.32})\quad x_\nu = y_\nu \quad (\nu = k+1, \ldots, k+d),\]

then T is given by (VIII.31) and \hat{T} by (VIII.31) together with (VIII.32).

We are now going to show that for this enlarged transformation d vanishes, that is to say that no non-trivial relation of the type

\[(\text{VIII.33})\quad \sum_{x=1}^{k} \beta_x x_{\nu,x} = \sum_{\mu=1}^{n'} \alpha_\mu \rho_{\mu} \quad (\nu = 1, \ldots, n')\]

exists. Indeed, such a relation would be in particular valid for $\nu = 1, \ldots, k, k+d+1, \ldots, n' = n+d$ and therefore be a combination of relations (VIII.6),

\[\beta_x = \sum_{s=1}^{d} u_s \beta^{(s)}_x, \quad \alpha_\mu = \sum_{s=1}^{d} u_s \alpha^{(s)}_\mu \quad (x=1, \ldots, k; \mu=1, \ldots, m)\]

Since the relation (VIII.33) holds also for $\nu = k+1, \ldots, k+d$ we would have the relations

\[\sum_{s=1}^{d} u_s \sum_{\mu=1}^{m} \alpha^{(s)}_\mu \rho_{\mu} = 0 \quad (\nu = k+1, \ldots, k+d)\]

Hence the determinant
would vanish, contrary to the lemma D1 of the Appendix D, as the coefficients \(\alpha_{\mu}^{(S)} \) do not depend on the \(p_{\nu \mu} \) with \(k < \nu \leq k + d \).

8.11. Therefore the method used in chapter VII can be tried for the enlarged transformation \(\tilde{T} \) given by (VIII.31), (VIII.32). The expressions of the \(r_{\kappa}, s_{\kappa} \) obtained in this way have to be chosen independent of the \(p_{\nu \mu} \) (\(k < \nu \leq k + d \)) and belong to \(T \). However this is only possible for \(d = 1 \), as in all other cases (VII.16) is not satisfied.

8.12. We consider now the case \(d = 1 \). The relations (VIII.6) reduce here to relations which can be written, omitting the superscript \(1 \) and putting \(n' := n + 1 \), as

\[
(VIII.34) \quad \sum_{\nu=1}^{k} p_{\nu \kappa} X_{\nu \sigma} = \sum_{\mu=1}^{m} \alpha_{\mu}^{(S)} p_{\nu \mu} (\nu = 1, \ldots, k, k+2, \ldots, n')
\]

Here we let \(\nu \) run through \(1, \ldots, n' \) omitting \(k+1 \). Our enlarged system becomes (VIII.31) together with

\[
(VIII.35) \quad x_{k+1} = y_{k+1}
\]

For this enlarged system \(N = m(n' - k - m) = m(n + 1 - k - m) \) is the same as for the original one.

From the formula (VIII.30) it follows for \(d = 1 \):

\[
(VIII.36) \quad k + m \leq n \leq 2k + m - 1
\]

8.13. We now form in notations of 7.1. for the enlarged system the expressions \(D \) and \(D_{\mu \kappa} \).

We have for \(D \):
while the expressions for $D_{\mu\kappa}$ are different for $\mu = k+1$ and $\mu > k+1$:

\[
\text{(VIII.38) } D_{k+1,\tau} = \begin{bmatrix}
X'_{1s_1} & \cdots & X'_{ls_k} & p_{ll} & \cdots & p_{lm} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
X'_{ks_1} & \cdots & X'_{ks_k} & p_{kl} & \cdots & p_{km} \\
0 & \cdots & 0 & p_{k+1l} & \cdots & p_{k+1m} \\
X'_{k+2s_1} & \cdots & X'_{k+2s_k} & p_{k+2l} & \cdots & p_{k+2m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
X'_{k+ms_1} & \cdots & X'_{k+ms_k} & p_{k+ml} & \cdots & p_{k+mm} \\
X'_{\xi_1} & \cdots & X'_{\xi_\kappa} & p_\xi & \cdots & p_\zeta \\
\end{bmatrix} = 0
\]
\[(\mu = k+2, \ldots, k+m) \]

where the notations \(I(\mu) \) signifies that the row corresponding to the index \(\mu \) is omitted.

8.14. Without loss of generality we can assume that \(\alpha_l = 1 \).

Similarly as in 8.5. we add to the \((k+1)\)-st columns in the determinants (VIII.37) and (VIII.39) the columns with the indices \(k+2, \ldots, m \) multiplied with the corresponding \(\alpha_i \) and subtract the the columns with the indices \(1, \ldots, k \) multiplied with the corresponding \(\alpha_i \). Then all elements of the \((k+1)\)-st column become 0 save the \((k+1)\)-st element which becomes

\[\begin{align*}
\sum_{\mu=2}^{m} \alpha_i \mu p_{k+1, \mu} + p_{k+1, m}
\end{align*} \]

Then \(D \) and \(D_{\mu \nu} \) in (VIII.39) become finally
8.15. From the relations (VIII.33) it follows that the x^*_k satisfy the equations

\[(VIII.43) \quad D_{k+1 \xi} (x_1, x_2, \ldots, x_n) = 0 \quad (\xi = k+m+1, \ldots, n')\]

which do not depend on the $p_{\mu \nu}$ ($k+1 \leq \nu \leq k+m$) and their number is
(VIII.44) \[k_1 := n' - k - m = n - k + m + 1 \]

That this is \(\leq k \) follows from (VIII.36).

We assume now that

(VIII.45) \[Rk \left(\frac{\partial (D_{k+1}X)}{\partial (r_{k+1}^2)} \right) = k_1 \quad (\mathcal{C}=k+m+1,\ldots,n';X=1,\ldots,k) \]

and that in particular

(VIII.46) \[Rk \left(\frac{\partial (D_{k+1}X)}{\partial (r_1,\ldots,r_{k+1})} \right) = k_1 \quad (\mathcal{C}=k+m+1,\ldots,k+m+k_1=n') \]

Now we proved in section 7.5, that the \(D_{k+1}/p \) together with the \(D_{\mu \nu} \) are independent as functions of the \(p_{\nu \mu} \). As their number is \(N \) and they do not depend on the \(p_{\nu \mu} (k+1 \leq \nu \leq k+d) \) they form a complete system of functions with the property \(U \) with respect to the original system. Thence the \(r_2^\mathcal{C} \) are functions of the \(D_{k+1}/p \) and the \(D_{\mu \nu} \).

(VIII.47) \[r_2^\mathcal{C} = \Psi(x_{\nu}, \frac{1}{p} D_{k+1}/p, D_{\mu \nu}) \quad (\mathcal{N}=1,\ldots,k) \]

8.16. Since however the \(x_\mathcal{C} \) satisfy also (VIII.31) we can replace the \(\Psi(x_{\nu}, \frac{1}{p} D_{k+1}/p, D_{\mu \nu}) \) with the \(\Psi(x_{\nu}, 0,\ldots,0, D_{\mu \nu}) =: \Psi(x_{\nu}, D_{\mu \nu}) \). We assume now that

(VIII.48) \[Rk \left(\frac{\partial (\Psi_1^2)}{\partial (r_{k+1}^2)} \right) = k_2 =: k_2 \]

and that in particular

(VIII.49) \[Rk \left(\frac{\partial (\Psi_1,\ldots,\Psi_k)}{\partial (r_{k+1}^2,\ldots,r_{k+1}^2)} \right) = k_2 \]
Finally we assume that

\[(VIII.50) \quad \frac{\delta(D_{k+1} \varphi_1 \varphi_{k-1} + \cdots + \varphi_{k-1} \varphi_k - \psi)}{\delta(x_k)} \neq 0 \]

Then the \(k \) expressions \(r_k^* \) can be obtained from the \(k \) equations

\[(VIII.51) \quad D_{k+1} c = 0, \quad \varphi_k - \varphi_{k-1} + \mathcal{R} = 0 \quad (\tau = k+m+1, \ldots, n'; \mathcal{R} = 1, \ldots, k_2)\]

as functions of the original \(p_{\mu} \). Further, using (II.14), the expressions \(S_{\xi}(x_\nu, r_\xi) \) can be represented through the \(y_\nu \) and \(q_{\mu\nu} \) and give the representations (II.9) of the \(s_{\xi}(y_\nu, q_{\mu\nu}) \), with which our problem is solved.
Lemma A1. Consider the \(m+k \) functions of the \(n+k \) variables,

\[
\beta_n(x_1, \ldots, x_n; z_1, \ldots, z_k) \quad (\forall = 1, \ldots, k), \quad \alpha_\mu(x_1, \ldots, x_n; z_1, \ldots, z_k) \\
(\mu = 1, \ldots, m),
\]

all functions being assumed to have continuous first derivatives in convenient domains. Assume that the Jacobian

\[
\left| \frac{\partial (\beta_n)}{\partial (z_\ell)} \right| \neq 0
\]

and further that the Jacobian matrix of the \(\beta_n \) and \(\alpha_\mu \) with respect to the \(z_\ell \) and \(x_\ell \)

\[
\left(\frac{\partial (\beta_n, \alpha_\mu)}{\partial (z_\ell, x_\ell)} \right)
\]

with \(m+k \) columns has the rank \(m_0 + k, \quad m_0 \leq m \).

Consider the \(k \) equations

\[
\beta_n(x_\ell, z_\ell) = U_\ell \quad (\ell = 1, \ldots, k)
\]

solved, for indeterminates \(U_1, \ldots, U_k \), with respect to the \(z_\ell \) and denote the solution

\[
\bar{z}_\ell(x_1, \ldots, x_n) \quad (\ell = 1, \ldots, k).
\]

Introducing these values of the \(z_\ell \) into the \(\alpha_\mu(x_\ell, z_\ell) \) put

\[
\alpha_\mu(x_1, \ldots, x_n; \bar{z}_1, \ldots, \bar{z}_k) =: \bar{\alpha}_\mu(x_\ell).
\]
Then the rank of the matrix

\[
\begin{pmatrix}
\frac{\partial}{\partial x} f(x,y) \\
\frac{\partial}{\partial y} f(x,y)
\end{pmatrix}
\]

is \(m_0 \), that is at most by \(k \) less than that of \((A 3)\).

Corollary. If \(m_o=m \), then the rank of \((A 7)\) is precisely \(m \).

Proof. The matrix \((A 7)\) has as its \(V \)-th line

\[
\alpha'_{1x_y} + \sum_{x=1}^{k} \alpha'_{1z_x} z'_{xy} + \ldots + \alpha'_{mx_y} + \sum_{z=1}^{k} \alpha'_{mz_x} z'_{xy},
\]

where the \(z_x \) are to be replaced, after \((A 8)\) has been written out, by the \(z_x' \).

In order to prove that the matrix \((A 7)\) has the rank \(m_0 \), it is sufficient to show that to this matrix \(k \) further columns can be added so as to obtain a matrix of the rank \(m_0+k \).

But if we add to the general element \((A 8)\) of the \(V \)-th lines the further elements \(z'_{1x_y}, \ldots, z'_{kx_y} \) we obtain a matrix, whose \(V \)-th line is

\[
(\sum_{x=1}^{k} \alpha'_{1z_x} z'_{xy}, \ldots, \alpha'_{mx_y} + \sum_{z=1}^{k} \alpha'_{mz_x} z'_{xy})
\]

Therefore, subtracting in \((A 9)\) from the \((m+1)\)-th column the first \(k \) columns multiplied respectively by \(\alpha'_{\mu z_x} \), the \((k+1)\)-th element of the \(V \)-th line becomes \(\alpha'_{1x_y} \). Proceeding in the same way with the following columns of \((A 9)\) we obtain the matrix

\[
(\sum_{x=1}^{k} \alpha'_{1z_x} z'_{xy}, \ldots, \alpha'_{mx_y} + \sum_{z=1}^{k} \alpha'_{mz_x} z'_{xy}) \ (V=1, \ldots, n).
\]
Multiply this matrix from the left by the square matrix of order \(k+m \):

\[
\begin{pmatrix}
\beta'_{x'z'} & 0 \\
0 & I_n
\end{pmatrix}
\]

where \(x \) and \(x' \) run from 1 to \(k \) and \(I_m \) is the unity matrix of order \(m \). We obtain with \(v=1, \ldots, n \):

\[
\begin{pmatrix}
\sum_{x'} \beta'_{x'z} z' x_v \\
\vdots \\
\sum_{x'} \beta'_{x'z} z' x_v \\
\alpha'_{1x_v} \\
\vdots \\
\alpha'_{mx_v}
\end{pmatrix}
\]

But differentiating totally \((A 4)\) with respect to each \(v \) we obtain

\[
\sum_{x'} \beta'_{x'z} z' x_v = - \beta'_{xz_v} \quad (x=1, \ldots, k; v=1, \ldots, n)
\]

Therefore \((A 12)\) becomes

\[
\begin{pmatrix}
-\beta'_{1x_v} \\
\vdots \\
-\beta'_{kx_v} \\
\alpha'_{1x_v} \\
\vdots \\
\alpha'_{mx_v}
\end{pmatrix}
\]

And this matrix has, by comparison with \((A 3)\), the exact rank \(m_0+k \). Therefore \((A 10)\) has at least the rank \(m_0+k \) and lemma A1 is proved.
Lemma A2. Consider \(k \) equations

\[
(A\,13) \quad w_{2}(r_{g}, u_{y}) = 0 \quad (x, g = 1, \ldots, k; y = 1, \ldots, n)
\]

and assume that the \(\frac{d w_{x}}{d r_{g}} \), \(\frac{d w_{x}}{d u_{y}} \) exist and are continuous in convenient domains and that the Jacobian matrix

\[
(A\,14) \quad V := \left(\frac{d(w_{2})}{d(r_{g})} \right)
\]

is non-singular. Assume further that, solving the equations (A\,13) with respect to the \(r_{g} \), we obtain the relations

\[
(A\,15) \quad r_{2} - M_{2}(u_{y}) = 0 \quad (x = 1, \ldots, k) .
\]

Replacing now the \(u_{y} \) with continuously differentiable functions of the \(r_{2} \), put for any continuously differentiable function \(A \) of the \(r_{g} \) and \(u_{y} \):

\[
(A\,16) \quad \frac{dA}{dr_{g}} := \frac{\partial A}{\partial r_{g}} + \sum_{y=1}^{n} \frac{\partial A}{\partial u_{y}} \frac{\partial u_{y}}{\partial r_{g}} ,
\]

and consider the matrix

\[
(A\,17) \quad \hat{V} := \left(\frac{d(w_{2})}{d(r_{g})} \right)
\]

Then the relation holds:

\[
(A\,18) \quad \left(\frac{d(r_{2} - M_{2}(u_{1}, \ldots, u_{n}))}{dr_{g}} \right) = V^{-1} \hat{V} .
\]
If in particular \(V \) is non-singular, then the matrix

\[
\begin{pmatrix}
\frac{d(r_x \cdot M_y)}{d(r_y)} \\
\frac{d(r_y)}{d(r_y)}
\end{pmatrix}
\]

is non-singular.

We verify first that, independently of the way in which the \(u_y \) depend on the \(r_x \), we have

\[
\Omega := \begin{pmatrix} w'_{x \cdot u_y} \end{pmatrix},
\]

\[
\begin{pmatrix} M'_{x \cdot u_y} \end{pmatrix} = -V^{-1} \Omega.
\]

Indeed, we have identically

\[
\sum_{j=1}^{k} w'_{x \cdot r_y} d(M_y) + \sum_{y=1}^{n} w'_{x \cdot u_y} d(u_y) \equiv 0 \quad (x=1, \ldots, k).
\]

This can be written, using here the accents to denote the transposed, that is vertical vectors,

\[
(d(M_{x}))' = -V^{-1} \Omega (d(u_y))' = \begin{pmatrix} M'_{x \cdot u_y} \end{pmatrix}'(d(u_y))',
\]

and (A 21) follows since the differentials \(d(u_y) \) are arbitrary.

Assuming now the \(u_y \) as continuously differentiable functions of the \(r_x \) put

\[
\hat{u} := \begin{pmatrix} \frac{d(u_y)}{d(r_x)} \end{pmatrix}.
\]
The relations (A 16) can then be written applied to the \(w_2 \) as

\[
\left(\frac{d(w_2)}{d(r_3)} \right) = \left(\frac{d(w_2)}{d(r_3)} \right) + \Omega \left(u_{1r}^{i}, \ldots, u_{nr}^{i} \right),
\]

(A 23) \(\hat{V} = V + \Omega \hat{U} \).

On the other hand, by (A 22) and (A 21),

\[
\left(\frac{d(r_{x} - M_{x})}{d(r_3)} \right) = I - \left(\frac{d(M_{x})}{d(r_3)} \right) = I - \left(M_{x}^{i} \right) \hat{U} =
\]

\[= I + V^{-1} \Omega \hat{U} = V^{-1} \left[V + \Omega \hat{U} \right] = V^{-1} \hat{V}, \]

and (A 18) is proved.
Lemma B1. Consider an $m \times n$-matrix of $n > m$ row vectors $q_y = (q_{y1}, \ldots, q_{ym})$:

\[Q^* = \begin{pmatrix} q_1 \\ \vdots \\ q_n \end{pmatrix} = \begin{pmatrix} q_{11} \cdots q_{1m} \\ \vdots \\ q_{nm} \end{pmatrix} \]

with arbitrary complex $q_{y\mu}$ and a function $Y(q_1, \ldots, q_n)$ of the vectors q_y, that is of mn variables $q_{y\mu}$. Assume that for an arbitrary non-singular $m \times m$-matrix, B, always

\[Y(q_1 B, \ldots, q_n B) = Y(q_1, \ldots, q_n). \]

Then Y is a homogeneous function of dimension 0 of the subdeterminants of order m of the matrix Q^*, more precisely

\[Y = Z(\bar{q}_{m+1}, \ldots, \bar{q}_n), \]

\[\bar{q}_\mu = (\bar{q}_{\mu 1}, \ldots, \bar{q}_{\mu m}), \quad \Delta_{\mu} = \Delta_{\mu}^{(W)} / \Delta \quad (\forall = m+1, \ldots, n; \mu = 1, \ldots, m). \]

Here Δ is an arbitrary but fixed subdeterminant of order m from Q^* and $\Delta_{\mu}^{(W)}$ is another subdeterminant of order m of Q^*, conveniently chosen, but having $m-1$ rows in common with Δ.

If in particular Δ is the determinant formed with the first m rows of (B 1), then $\Delta_{\mu}^{(W)}$ is obtained from Δ replacing the μ-th row of Δ by the μ'-th row of Q^*.
Proof. Without loss of generality we can assume that Δ is the determinant of the matrix Q formed by the first m rows of Q^*,

(B 5) \[Q \hat{=} (q_1', \ldots, q_m')', \quad \Delta \hat{=} \det Q. \]

If we choose now B in (B 2) as Q^{-1}, the first m of the vectors $q_q Q^{-1}$ reduce to the m unity vectors, I_1, \ldots, I_m, and we can write

(B 6) \[Y(q_1, \ldots, q_n) = Y(q_1 Q^{-1}, \ldots, q_n Q^{-1}) = Y(I_1, \ldots, I_m, q_{m+1}, \ldots, q_n), \]

(B 7) \[q_q = q_q Q^{-1} \quad (q = m+1, \ldots, n). \]

Consider the matrix

(B 8) \[A = (A_{x\mu}) := \Delta Q^{-1}. \]

Then obviously

(B 9) \[\sum_{x=1}^{m} q_{\mu x} A_{x\mu} = \Delta \quad (\mu = 1, \ldots, m). \]

Observe that the $A_{x\mu}$ are the algebraic complements of the $q_{\mu x}$, are for any fixed μ independent of the vector q_{μ} that is of the m elements $q_{\mu1}, \ldots, q_{\mu m}$. Therefore, if we replace in (B 9) q_{μ} by q_q $(q > m)$ the left side sum is $\Delta^{(q)}$ defined as the subdeterminant of Q^* obtained from Δ replacing there q_{μ} by q_q;

(B 10) \[\sum_{x=1}^{m} q_{\mu x} A_{x\mu} = \Delta^{(q)} \quad (q > m), \]

on the other hand the left-hand expression in (B 10) is by (B 8) and (B 7)
(B 11) \[(q_\mu^A)\mu = \Delta(q_\mu Q^{-1})\mu = \Delta q^\mu \]

where the subscript \(\mu \) denotes taking the \(\mu \)-th component of the vector in parentheses. We obtain finally from (B 10) and (B 11) the formula (B 4) and our lemma is proved.

Observe that inversely, if a function \(Y(q_1, \ldots, q_m) \) can be written as a function of the quotients of subdeterminants of order \(m \) of \(Q^* \), then obviously the formula (B 2) holds.
APPENDIX C

We introduce first some notations useful when dealing with matrices. We denote by $E_{\mu\lambda}$ an $m \times m$-matrix which has 1 as its λ-th element in the μ-th row while all other elements of $E_{\mu\lambda}$ vanish. For the multiplication of such matrices we see at once that, if $\delta_{\mu\mu}$ is Kronecker's symbol, then always

\[(C\ 1)\quad E_{\mu\lambda} E_{\nu\sigma} = \delta_{\lambda\nu} E_{\mu\sigma} \quad .\]

Then if I denotes the unity matrix of order m, we have

\[(C\ 2)\quad I = \sum_{\mu=1}^{m} E_{\mu\mu} \quad .\]

Lemma C1. Under the assumptions of lemma B1, necessary and sufficient for the relation (B 2) being satisfied for any arbitrary non-singular $m \times m$-matrix B, is that the Eulerian equations hold:

\[(C\ 3)\quad \sum_{\gamma=1}^{n} q_{\mu\gamma} Y_{\gamma} = 0 \quad (\mu, \lambda=1, \ldots, m) \quad .\]

Proof. We will have to specialize the matrix B in (B 2) in two particular ways.

\[(C\ 4)\quad I + (g-1)E_{\mu\lambda} \quad (\lambda=1, \ldots, m)\]

are m matrices such that
\[Q^*(I + (g-1)E_{\lambda\lambda}) \]

is obtained from \(Q^* \) multiplying the \(\lambda \)-th column of \(Q^* \) with \(g \).

\[(C 5) \quad I + gE_{\mu\lambda} \quad (\lambda \neq \mu)\]

are \(m(m-1) \) matrices such that generally

\[Q^*(I + gE_{\mu\lambda}) \]

is obtained from \(Q^* \) if we add to the \(\lambda \)-th column the product of the \(\mu \)-th column with \(g \).

The matrices of the types \((C 4)\) and \((C 5)\) can in so far be considered as elementary matrices, as any non-singular \(mm \)-matrix \(B \) can be written as the product of a final number of such matrices. (This fact was repeatedly used in Kronecker's and Hensel's work on determinants and matrices.)

Our lemma C1 will therefore be proved if we prove that the necessary and sufficient invariancy condition for

\[(C 6) \quad B = I + (g-1)E_{\lambda\lambda}\]

is the relation \((C 3)\) for \(\mu=\lambda \) and further that the relation \((C 3)\) corresponding to \(\mu \) and \(\lambda \) is the necessary and sufficient condition of invariancy for

\[(C 7) \quad B = I + gE_{\mu\lambda} \quad (\lambda \neq \mu) .\]

As to the relation \((C 3)\) for a \(\mu=\lambda \) it is by Euler's theorem equivalent with \(Y \) being a homogeneous function of dimension 0 in
$q_{1\lambda}, q_{2\lambda}, \ldots, q_{n\lambda}$ and this is again equivalent with (B 2) being true for

$$B = I + (g-1)E_{\lambda}.$$

The invariancy with respect to $B = I + \varepsilon E_{\mu}\lambda$ amounts to the relation, for fixed μ and λ,

$$Y(q_{\mu, \nu} + q_{\lambda} + gq_{\mu}) = Y(q_{\nu, \mu})$$

where only the variables corresponding to the μ-th and λ-th columns are written out. This relation is again equivalent to

$$
\frac{d}{dg} Y(q_{\mu, \nu} + q_{\lambda} + gq_{\mu}) = 0.
$$

On the other hand introducing in (B 3) instead of the $q_{\nu, \lambda}$ the new variables $r_{\nu, \lambda}

\begin{align}
(\text{C 9}) \quad r_{\nu, \lambda} &= q_{\nu, \lambda} + gq_{\mu},
\end{align}

we obtain

$$
\sum_{\nu=1}^{n} q_{\mu, \nu} Y_{r_{\nu, \lambda}}(q_{\mu, \nu}, r_{\nu, \lambda}) = 0.
$$

But obviously by (C 9)

$$
\frac{d}{dr_{\nu, \lambda}} = \frac{d}{dq_{\nu, \lambda}}.
$$

We obtain therefore
and this is identical with \((C 8)\). Our lemma \(C1\) is proved.

We are going now to verify that the system of \(m^2\) equations \((C 3)\) is complete. Indeed, we have

\[
\sum_{j=1}^{n} q_{yj} Y'_{q_{yj}, q_{yj} r_{xj}} = 0
\]

and this is identical with \((C 8)\). Our lemma \(C1\) is proved.

We are going now to verify that the system of \(m^2\) equations \((C 3)\) is complete. Indeed, we have

\[
\sum_{j=1}^{n} q_{yj} \frac{\partial}{\partial q_{yj}} \sum_{k=1}^{n} q_{yk} Y'_{q_{yk}, q_{yk} r_{xk}} = \sum_{j=1}^{n} q_{yj} \frac{\partial}{\partial q_{yj}} \sum_{k=1}^{n} q_{yk} Y'_{q_{yk}, q_{yk} r_{xk}}
\]

\[
\left[\sum_{j=1}^{n} q_{yj} \delta_{yj} q_{yk} Y''_{q_{yk}, q_{yk} r_{xk}} - \sum_{j=1}^{n} q_{yj} \delta_{yj} q_{yk} Y''_{q_{yk}, q_{yk} r_{xk}} \right] +
\]

\[
\sum_{j=1}^{n} q_{yj} \delta_{yj} q_{yk} Y'_{q_{yk}, q_{yk} r_{xk}} - \sum_{j=1}^{n} q_{yj} \delta_{yj} q_{yk} Y'_{q_{yk}, q_{yk} r_{xk}}
\]

But here on the right the expression in the brackets vanishes and we can account for the factor \(\delta_{yj}\) taking \(j = k\). We obtain

\[
\sum_{j=1}^{n} q_{yj} Y'_{q_{yj}, q_{yj} r_{xj}} = \delta_{yj} \sum_{j=1}^{n} q_{yj} Y'_{q_{yj}, q_{yj} r_{xj}}
\]

We see that combining two of the equations \((C 3)\) by Poisson's parentheses we obtain at the most a linear combination of two of the equations \((C 3)\). The system \((C 3)\) is indeed complete.

This system \((C 3)\) has therefore \(\infty^{nm-m^2}\) solutions. But by lemma \(B1\) all solutions of the system \((C 3)\) can be expressed as functions of \(m\)-vectors \(\bar{q}_{m+1}, \ldots, \bar{q}_n\). It follows that the system
of components of these $n-m$ vectors,

\[\frac{\Delta^{(\nu)}}{\Delta_{\nu}} \quad (\nu=m+1, \ldots, n; \mu=1, \ldots, m) \]

is independent.

This independence could be also deduced by lemma B1 from the relation (B 2).
Lemma D1. Consider d linear and linearly independent functions $L_\gamma(x_1, \ldots, x_m)$ ($\gamma = 1, \ldots, d$) and d m-dimensional vectors $V_\delta(p_{\delta 1}, \ldots, p_{\delta m})$ with elements $p_{\delta \mu}$ as dm independent variables. Write $L_\varepsilon(V_\delta)$ for $L_\varepsilon(p_{\delta 1}, \ldots, p_{\delta m})$. Then if $d \leq m$, the determinant

$$\det L_\varepsilon(V_\delta)$$

($\varepsilon, \delta = 1, \ldots, d$)

does not vanish.

Proof. Put

$$L = \sum_{\mu=1}^m \alpha^{(\delta)}_{\mu} x_\mu \quad (\delta = 1, \ldots, d).$$

Then, by assumption, the rank of the matrix $(\alpha^{(\delta)}_{\mu})$ is d. We can therefore, after suitable rearrangement of the indices $1, \ldots, m$, assume that the determinant

$$\det \alpha^{(\delta)}_{\mu}$$

($\delta, \mu = 1, \ldots, d$)

is not zero. But then if we replace all $p_{\delta d+1}, \ldots, p_{\delta m}$ with zeros, the determinant (D 1) becomes

$$\det \alpha^{(\delta)}_{\mu} \mid \mid p_{\delta \mu}$$

($\delta, \mu = 1, \ldots, d$)

and does not therefore vanish.