FOG EVOLUTION IN THE VISIBLE AND INFRARED SPECTRAL REGIONS AND ITS MEANING IN OPTICAL MODELING

DECEMBER 1979

By
Richard D.H. Low

Approved for public release; distribution unlimited

US Army Electronics Research and Development Command
ATMOSPHERIC SCIENCES LABORATORY
White Sands Missile Range, NM 88002

80 2 6 033
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destory this report when it is no longer needed. Do not return it to the originator.
For the first time in the field of cloud physics, high-density fog drop-size data from the time near fog formation through the time near fog dissipation became available at 5-minute intervals from field measurements carried out at Meppen, Germany, on 3-4 March 1978. The fog was believed to have been brought about by frontal passage. Extinction coefficients in the 0.55μm, 3.80μm, and 10.6μm spectral regions were calculated from the measured drop-size distributions and plotted as a function of time to depict optical evolution of the fog. Such spectral evolution in relation to fog microphysical evolution was examined in...
20. ABSTRACT (cont)

detail to attempt to formulate optical models or scaling laws for electro-optical sensors applications. A cursory comparison was made with the California advection and radiation-advection fogs observed at Fort Ord on 3 and 9 May 1978, respectively, because the available data portrayed only portions of their life cycles. Because of their low liquid water contents and high number concentration, the haze regimes in these fogs played a dominant role in "messing up" spectral transmission in the 0.55\(\mu\)m and 3.80\(\mu\)m regions, usually during the phase of fog formation.

Multispectral extinction coefficients appeared to delineate a fog's life history better than microphysical parameters. Five models or scaling laws relating liquid water content to extinction in the three wavelength regions are presented: one for each of the three fogs, one for their pooled data, and one for the two California fogs together. Regression analysis indicated that the three fogs were significantly different from one another as would be expected in the sense that they belonged in different types. The correlation coefficients of extinction versus liquid water content in these models varied from 0.95 to 0.99. Further inspection of those data points used in deriving regression lines showed that in the 3.80\(\mu\)m region the models might be more appropriately represented by a quadratic fit in logarithmic space. Since the linear fit was nearly perfect in the 10.6\(\mu\)m region, design of an instrument using this feature was suggested.

In the final analysis, the choice of a particular or a general model or scaling law should be dictated by the sensitivities and requirements of the electro-optical sensors to be deployed.
CONTENTS

1. INTRODUCTION ... 5
2. DATA PROCESSING ... 6
3. OPTICAL AND MICROPHYSICAL PROPERTIES 8
 3.1 Spectral Evolution ... 9
 3.2 Spectral Evolution versus Drop-Size Distribution 13
 3.3 Microphysical Factors in Spectral Attenuation 19
 3.4 Regression Relationship between Spectral Attenuation and Liquid Water Content ... 25
 3.5 Regression Equations .. 26
 3.6 Regression Analysis .. 30
4. DISCUSSION .. 34
 4.1 The 0.55\mu m Spectral Region 34
 4.2 The 3.80\mu m Spectral Region 36
 4.3 The 10.6\mu m Spectral Region 36
5. CONCLUSIONS .. 37

REFERENCES .. 39
1. INTRODUCTION

Sensor systems, weapons direction systems, and communication systems which depend upon the propagation of optical infrared wavelength energy through the atmosphere are being developed and employed. Solutions to critical problems in system design, deployment, and overall utility are paced by knowledge and understanding of atmospheric effects on energy transmission according to the Department of Defense (DOD) plan for atmospheric transmission research and development, 16 March 1978, approved by the Under Secretary of Defense. The plan showed that aerosols such as fogs, hazes, smokes, dusts, clouds, and other randomly distributed atmospheric particles are poorly understood, and it was recommended that a capability be developed to measure, model, and predict accurately the atmospheric transmission effects of such naturally occurring aerosols.

Of these various naturally occurring atmospheric aerosols, fog may stand out as the one which would have the most serious effect on the operations of the Army's electro-optical weapons and communication systems owing to its persistence and intensity. Fog data have been collected and studied since the beginning of the century.1 More recent fog data may be found in a large number of papers and reports cited in Houghton and Radford2 and Stewart.3 Despite their relative abundance, these fog data are judged to be inadequate for modeling atmospheric transmission in different spectral regions. Low et al4 have discussed fog data deficiencies. New fog data are needed which extend measurements of particle sizes to tenths of a micrometer in diameter and which are more accurately characterized in terms of the prevailing synoptic situation and the dominant mechanism that causes fog formation.

During February and March 1978, the Atmospheric Sciences Laboratory made meteorological and microphysical measurements in Meppen, Germany. Except for brief spells of clearing, light snow, drizzle, haze and fog occurred almost persistently from 13 February through 5 March 1978 when the field measurements ended. Despite persistent haze and fog occurrences, the

2D. A. Stewart, 1977, "Infrared and Submillimeter Extinction by Fog," Technical Report TR-77-9, Technology Laboratory, Physical Science Directorate, Redstone Arsenal, AL

record of fog and haze data is fragmentary and so is the record of surface observations, except for the period of 3 to 4 March 1978. A complete documentation of the Meppen field measurement program on instrumentation, geography, topography, weather analysis, data collection procedure, and particulate data will be published later.¹

A detailed spectral analysis is covered in this report for the fog period of 3 to 4 March 1978. By careful examination and comparison of temporal variations of both the optical and microphysical properties of these fogs from formation through dissipation, insight may be gained in the complex nature of fog and haze optical modeling; then the diversity of the various models could be explained and a more logical judgment arrived at as to the quality of one model versus another for different fogs, individually or collectively. The two Fort Ord fogs were selected for comparison, some aspects of which have been investigated.² This study was limited to the spectral regions of 0.55μm, 3.80μm, and 10.6μm wavelengths and the derived liquid water content used as the common parameter in establishing models.

The following section briefly discusses the nature of the microphysical data 3 to 4 March 1978, and the treatment of the data are given. In section 3, the temporal variations of the extinction coefficients in the three spectral regions are examined, and such spectral variations are interpreted in the light of microphysical factors. Then regression relationships between spectral attenuation and liquid water content in these wavelength regions are established together with a statistical analysis of these regression lines or scaling laws. Microphysical implications in optical modeling are discussed in section 4. In the final section, the findings together with certain conclusions are summarized.

2. DATA PROCESSING

Fog drop-size samples were taken in the Meppen fog of 3 to 4 March about every 30 seconds by a Knollenberg particle counter, model FSSP-100C,* which covers a size range of 0.25μm to 23μm radius. Some 8 to 10 samples were averaged by size categories to produce data points every 5 minutes. Fog particle data were collected from 1828 hours LST, 3 March through 1100

³J. D. Lindberg, 1979, Private communications

*Questions were raised by Pinnick and Auvermann (1979, "Response Characteristics of Knollenberg Light-Scattering Aerosol Counters," J Aerosol Sci, 10:55-74) about the definition of its manufacturer's size ranges. Unfortunately, the authors fail to provide their calibration values.
hours LST, 4 March (about 170 data points at 5-minute intervals). Actually, light rain, light drizzle, and ground fogs had been reported almost all day prior to the sampling time. Nevertheless, the fog did not begin to thicken until about 2200 hours. Following the termination of measurements at 1100 hours, the fog still persisted in patches for another 8 hours or so and was then followed again by light drizzle and rain, though the fog was no longer as thick as it had been. Unfortunately, the entire life history of this fog was not completely captured, but the data recorded was sufficient to delineate the fog evolution reasonably well, especially in comparison with the Fort Ord fog data. The 3 and 9 May 1978 Fort Ord fogs were of the advection and radiation-advection types, respectively. The Meppen fog was of the frontal type.

Once a drop-size distribution is given, its volume extinction coefficient can be easily obtained by the following formula:

\[\beta(\lambda) = \pi \int_{r_0}^{r_x} r^2 Q(\lambda, r) n(r) \, dr, \tag{1} \]

where \(\beta(\lambda) \) is the total volume extinction coefficient per unit length at a wavelength \(\lambda \); \(Q(\lambda, r) \) the extinction efficiency factor, a function of wavelength, complex refractive index \(m \), and particle radius \(r \); and \(n(r) \) the number density or concentration of droplets from radius \(r \) to \(r + dr \).

The integration interval for equation (1) is from \(r_0 \), the smallest droplet radius, to \(r_x \), the largest droplet. The total liquid water content per unit volume is given by

\[W = \frac{4}{3} \pi \rho_0 \int_{r_0}^{r_x} r^3 n(r) \, dr, \tag{2} \]

where \(\rho \) is the density of a droplet, taken to be unity in the case of fog, and \(W \) is the liquid water content. Furthermore, one is often interested
in the percentage contribution that a size interval makes to spectral attenuation. The expression for calculating percentage spectral contributions is shown below:

\[
F(r_i, \lambda) = \frac{\int_{r_i}^{r_x} Q(m, r, \lambda) r^2 n(r) \, dr}{\int_{r_0}^{r_x} Q(m, r, \lambda) r^2 n(r) \, dr}
\]

where \(r_i \) is any droplet radius less than or equal to \(r_x \), and \(F(r_i, \lambda) \) is the cumulative percentage contribution.

With the data processed according to equations (1) to (3), it was possible to generate different kinds of plots to facilitate analysis.

3. OPTICAL AND MICROPHYSICAL PROPERTIES

Each fog has a life of its own.\(^6\),\(^7\),\(^8\),\(^9\) No two fogs at two different places look exactly alike, meteorologically, microphysically, or environmentally; however, all fogs would have to go through a life cycle of formation, growth, maturity, and dissipation on the basis of microphysical considerations. The fog life cycle can also be examined in the light of its optical evolution. In this way, one would gain a better understanding not only of how a fog evolves spectrally throughout its entire life but also, more importantly, of why sometimes one single model or scaling law may not completely represent that fog or any other one.

3.1 Spectral Evolution

Figure 1 (a and b) depicts the spectral evolution of the Meppen fog at 0.55 μm, 3.80 μm, and 10.60 μm wavelengths. The bold lines on the abscissa show the time periods where the fog drop-size spectra are presented; these periods were chosen because the fog appeared to have gone through some dramatic changes in its life.

If a freehand trend line were drawn from about 1830 to about 0114 hours when the fog reached its peak growth spectrally, the line would appear to slope upward. Then the line would begin to stabilize but show a gentle, downward trend. By about 1000 hours, the fog would display a tendency to dissipate, although it would not. Tenuous as it may be on the basis of cloud physics considerations, the international definition that fog has a visibility of 1 km or less may be used, which is nearly equivalent to an extinction coefficient of 4 km$^{-1}$ or greater in the visible. The period from 1830 through 2217 hours in which the visibility remained above 1 km may be regarded as representing the formation stage of the fog, where it was observed to be rather inhomogeneous in its structure. During this phase, each extinction coefficient followed its own course of evolution. In terms of transmission, the 10.60 μm region was the best and the visible the worst, with the 3.80 μm lying in between. By about 2217 hours as the fog began to grow vigorously, the extinction coefficients in these three wavelength regions closed in upon one another, and the 3.80 μm coefficient then climbed above the visible and stayed up there until near dissipation. The period from about 2217 through about 0114 hours may be looked upon as the growth phase during which the fog showed appreciable homogeneity. From 0114 hours on, the fog appeared to become stabilized despite fluctuations due to the usual atmospheric turbulence and may be said to have reached the mature stage, which lasted for about 9 hours. During this period, the fog became quite homogeneous. The aging fog did not disappear for another 8 hours when it was apparently washed out by a light rain.

The spectral evolution of the Fort Ord advection fog of 3 May 1978 is shown in figure 2 and that of the Fort Ord radiation-advection fog of 9 May in figure 3. In neither case can the life history be clearly traced. Except for greatly reduced attenuation and the period up to about 0130 hours, the 3 May fog appeared to resemble the mature phase of the Meppen fog. The fog had already formed somewhere over the ocean as a low-hanging stratus cloud and reached some aspect of maturity before the cloud drifted onshore with the sea breeze. The fog data for the period up to 0130 hours could very well represent the leading edge of the incoming stratus. The figure does not show clearly which phase of life of the 9 May morning fog is being depicted. Judging from the clustering of the three extinction coefficients, one might suspect that the fog grew and stabilized in a great hurry before being burned off by the rising sun. In any case, these two fogs were fairly homogeneous.
Figure 1 (a and b). Fog evolution in three spectral regions, Meppen, Germany, 3-4 March 1978.
Figure 2. Fog evolution in three spectral regions, Fort Ord, California, 3 May 1978.
Figure 3. Fog evolution in three spectral regions, Fort Ord, California, 9 May 1978.
Fog spectral evolution will now be examined in terms of application. Let the contrast threshold be taken in the visible at 5 percent instead of the usual 2 percent. Assume that the electro-optical sensors can recognize a target also at the 5 percent level in the infrared (which is probably conservative, considering the almost certain contamination of sensor optics in such a hazy and foggy environment in addition to the sensor's inherent electronics noise level). Further assume that the sighting distance must be at least 500 meters for a missile to accomplish its final course adjustment. Then a line can be drawn across those graphs from the 6 km\(^{-1}\) point in the ordinate. These fogs would render any sensors in these wavelength ranges completely ineffective, except for short periods during their formation phase and perhaps also during their dissipation phase. However, if the required minimum sighting range is reduced to 100 meters, only the sensors in the 10.6 m\(^{-1}\) region would be capable of operating most of the time in the Meppen fog, but in the Fort Ord fogs the sensors in the other spectral regions can operate as well. The reason for this can be found only by studying fog microphysics.

3.2 Spectral Evolution versus Drop-Size Distribution

The relationship between optical evolution and drop-size distribution in terms of size range and the magnitude of the haze regime will be examined. Figure 4 (a through c) illustrates the evolution of drop-size distributions in the Meppen fog for periods during which dramatic changes appeared to have taken place. Although incomplete, the drop-size spectra of the Fort Ord fogs on 3 and 9 May are depicted for comparison in figure 5 (a through c) and figure 6 (a through c), respectively. In each time period, which may span from 30 to 60 minutes, three drop-size distribution curves are presented. In this way, some idea of how drop-size spectra had evolved during each period and how they affected attenuation may be gained. The approximate time at which the dramatic change presumably occurred is shown. The number concentrations, size ranges, and mode radii of the spectra have been extracted from the graphs by estimation. While there is usually only one mode in the haze regime,\(^{10}\) there may be one or more in the fog sector. However, only the first one was picked. The others would be useful in studying the microphysical processes of collision, coalescence, sedimentation, and turbulence. With the addition of liquid water content, the above-mentioned parameters are summarized in table 1.

Figure 4 (a through e). Fog drop-size evolution for periods marked in figure 1 (a and b), Meppen, Germany, 3-4 March 1974.
Figure 5 (a through c). Fog drop-size evolution for periods marked in figure 2, Fort Ord, California, 3 May 1978.
Figure 6 (a through c). Fog drop-size evolution for periods marked in figure 3, Fort Ord, California, 9 May 1978.
<table>
<thead>
<tr>
<th>Time</th>
<th>First Mode</th>
<th>Second Mode</th>
<th>Total Liquid Water Content (mg m⁻³)</th>
<th>Size Range (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
</tr>
<tr>
<td>1832</td>
<td>0.25</td>
<td>800</td>
<td>2.40</td>
<td>14</td>
</tr>
<tr>
<td>2217</td>
<td>0.40</td>
<td>500</td>
<td>2.40</td>
<td>35</td>
</tr>
<tr>
<td>0114</td>
<td>0.50</td>
<td>200</td>
<td>3.00</td>
<td>100</td>
</tr>
<tr>
<td>0539</td>
<td>0.50</td>
<td>130</td>
<td>3.50</td>
<td>90</td>
</tr>
<tr>
<td>1000</td>
<td>0.40</td>
<td>550</td>
<td>2.70</td>
<td>40</td>
</tr>
</tbody>
</table>

Meppen, Germany, 3-4 March 1978

<table>
<thead>
<tr>
<th>Time</th>
<th>First Mode</th>
<th>Second Mode</th>
<th>Total Liquid Water Content (mg m⁻³)</th>
<th>Size Range (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
</tr>
<tr>
<td>0046</td>
<td>0.40</td>
<td>25</td>
<td>2.40</td>
<td>3</td>
</tr>
<tr>
<td>0329</td>
<td>0.40</td>
<td>30</td>
<td>3.40</td>
<td>35</td>
</tr>
<tr>
<td>0547</td>
<td>0.40</td>
<td>20</td>
<td>3.40</td>
<td>30</td>
</tr>
</tbody>
</table>

Fort Ord, California, 3 May 1978

<table>
<thead>
<tr>
<th>Time</th>
<th>First Mode</th>
<th>Second Mode</th>
<th>Total Liquid Water Content (mg m⁻³)</th>
<th>Size Range (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
<td>r(μm)</td>
<td>n(cm⁻³ μm⁻¹)</td>
</tr>
<tr>
<td>0433</td>
<td>0.40</td>
<td>25</td>
<td>3.90</td>
<td>3</td>
</tr>
<tr>
<td>0622</td>
<td>0.40</td>
<td>40</td>
<td>3.50</td>
<td>5</td>
</tr>
<tr>
<td>0744</td>
<td>0.50</td>
<td>35</td>
<td>4.00</td>
<td>4</td>
</tr>
</tbody>
</table>

Fort Ord, California, 9 May 1978

*Number densities dropped below 10⁻⁴ cm⁻³.

**At 23 μm radius, the instrument limit, the number density is greater than 10⁻² cm⁻³.
The figures in relation to spectral evolution shall be discussed. During the early formation period the three extinction coefficients differed appreciably (figure 1a). Two features were dominant (figure 4a): a large haze regime (in comparison with the fog part) and a small size range. As a result, there was little water in the fog during this period. The number concentration of the first mode was nearly 60 times that of the second. Note in figure 1a that the infrared extinctions at 10.6\,\mu m and 3.80\,\mu m were nearly 18 and 4 times, respectively, lower than those in the visible. When the 3.80\,\mu m extinction curve crossed the 0.55\,\mu m curve (figure 1a), the haze regime (figure 4b) shrunk considerably, and the drop-size range of the fog regime extended beyond the sampling limit of the Knollenberg particle counter; as a result, there was an appreciable increase in liquid water content. Now the number concentration of the first mode dropped to 14 times that of the second. In neither case could a similar pattern of evolution be found in the Fort Ord fogs.

The Meppen fog then went through a period of rapid growth. By the time the three extinction coefficients approached one another (figure 1a), microphysical evolution (figure 4c) almost stopped (cf. figures 5b and 6c) during this period. The fog appeared to have attained its maximum growth at about 0114 hours. Its liquid water content jumped to 280.8 mg m$^{-3}$, and the number ratio of the first mode to the second dropped to 2. The haze regime became insignificant, and the drop-size range went far beyond the instrument's sizing capability. Neither of the Fort Ord fogs reached such intensity in terms of liquid water and attenuation. From then on, the fog began to stabilize and was on its downward excursion (figure 1b), neglecting the turbulent fluctuations. These fluctuations, which could be taken as an indication of turbulent mixing, are necessary to promote a fog's growth in depth and sustain its life and often bring about homogeneity. Figure 4d shows that the haze regime became appreciable again, and the size range dropped to about 20 \mu m radius. During the period from about 0300 through 0930 hours, the three extinction coefficients maintained their separate paces in an orderly manner with the 3.80\,\mu m coefficient staying on top of the other two. Although stable and mature, the fog began to age, and the microphysical mechanism of sedimentation took its toll of large droplets (figure 4e). Turbulent mixing appeared to have subsided but worked to dissipate the fog as the temperature rose in its diurnal march. Figures 1b and 4e show that the two extinction coefficients in the 0.55\,\mu m and the 3.80\,\mu m wavelength regions met again and stayed close together (compare the period from 2158 to 2232 hours) but the drop-size distribution curves (figure 4b and 4e) were entirely different. The haze regime had somewhat regained its former magnitude. The 3 May Fort Ord fog, as noted earlier, resembled the Meppen fog in the

latter's stable and mature phase (cf. figures 1b and 2) and appeared to
dissipate near the end of the sampling period during which the evolution
of its drop-size spectra in figure 5c bore some resemblance to that of
figure 4e. However, the 9 May fog still looked rather stable near the end
of drop-size measurement.

The Meppen fog was dealt with in great detail, while the Fort Ord fogs
played a minor role. In summarizing, an interesting but puzzling observa-
tion was that despite their variations the mode radii in both regimes in
these fogs were nearly of the same size, whereas the magnitudes of their
haze regimes were quite different. Except for the formation period of
the Meppen fog, the shapes of their haze regimes looked alike, yet the
number density of the mode radius in the Meppen fog was at least one order
of magnitude greater than that in the Fort Ord fogs. The magnitudes of
the haze regimes in the latter were quite comparable even though they
belonged in different fog types and had vastly different liquid water
contents. Moreover, the number concentration of the mode radius in the
fog regime of the Meppen fog never once caught up with that of its haze
sector. Only when the fog was about to attain its peak growth did the
ratio of their number reach a minimum. In the 3 May advection fog, the
two modes often exchanged their positions in number concentrations, but
the second mode on the average appeared to have the upper hand. The
9 May radiation-advection fog resembled the Meppen fog, if limited to comparing
their haze and fog regimes.

This phenomenon may be briefly interpreted from a microphysical point of
view. The air over Meppen was relatively rich in submicron particles,
most likely a result of pollution, many of which would serve as fog con-
densation nuclei. By contrast, the air over Fort Ord was relatively clean
but rich in large sea-salt particles which grow easily and can attain
great sizes in a short time under slight supersaturation. In fact, the
haze regime in the 3 May fog could have been picked up while the low-
hanging stratus was moving overland; this may account for the similar
haze regimes in the two Fort Ord fogs. Another noteworthy feature in
these fogs is that the extinction curves with the 3.80 μm wavelength on
top, the 0.55 μm wavelength in the middle, and the 1.06 μm wavelength
at the bottom, which appeared to be normal in a fog when its visible
extinction went beyond 3 km^-1 (or 1 km visibility at the 5 percent con-
trast threshold). Note that the crossover of the 0.55 μm and the 3.80 μm
curves in the Meppen fog took place at about 1 km visibility, as shown in
figure 1a at 2217 hours. An indication that visible extinction may not
correlate well with 3.80 μm extinction, except for certain segments of
the fog's life, is a problem that will be examined further.

3.3 Microphysical Factors in Spectral Attenuation

The above discussion essentially dealt with how drop-size evolution was
reflected in spectral evolution, or vice versa. In this part a few
individual drop-size spectra will be examined and an attempt made to find the factors that brought about spectral extinction as it was. Figure 7 (a through e) was prepared to depict five normalized cumulative distributions of the Meppen fog at about 4-hour intervals through the fog’s life cycle. Two cumulative distributions each of the Fort Ord fogs are shown for comparison in figure 8 (a and b) and figure 9 (a and b). After some consideration, the median radius of a distribution, which can be readily estimated from the figures, was felt to be as meaningful as any other parameter such as mean volume radius or root-mean-square radius in explaining spectral attenuation. In the same vein, the "median" radii of the three extinction coefficient distributions can also be estimated; hence, droplets smaller than or equal to these "median" radii would make up 50 percent contribution to spectral attenuation, or doubling the contribution in this range would give the total extinction coefficient of the normalized drop-size distribution. Table 2 shows these radii and the liquid water contained in sizes up to the "median" radius, the percentage contribution of the haze regime, and the total number density or concentration which were extracted from the processed data. The haze regime which contains negligible amount of liquid water is that portion of a fog whose distribution appears to be separate from that of the fog regime and whose particles are submicron in size, generally no greater than 1 μm to 2 μm in radius. The drop-size data indicated that the haze regime lay below about 1.25 μm radius, but 1 μm radius was used as the dividing line in the analysis.

These figures are not restricted to the study of the spectral median radius alone. The percentage contributions to spectral attenuation in any size intervals can be readily obtained. Next, the Meppen fog will be examined in detail and the Fort Ord fogs will be mentioned only to illuminate certain observations.

Table 2 shows that the fog evolution is well reflected in the size changes as a function of time of the statistical median radius. Corresponding changes of the median radii are also found in the 0.55 μm and 3.80 μm spectral regions. Note the changes with time of the size differences between

Figure 7 (a through e). Percentage cumulative frequencies in number density and in three spectral regions as a function of time, Meppen, Germany, 3-4 March 1978.
Figure 8 (a and b). Percentage cumulative frequencies in number density and in three spectral regions as a function of time, Fort Ord, California, 3 May 1978.
Figure 9 (a and b). Percentage cumulative frequencies in number density and in three spectral regions as a function of time, Fort Ord, California, 9 May 1978.
Table 2. Fifty Percent Contribution to Spectral Attenuation by Droplets Smaller Than 10 μm: The Percentage Amount of Liquid Water Content (LWC) Contributed Towards Each Water Droplets Size Below 1 μm Radius

<table>
<thead>
<tr>
<th>Time</th>
<th>Median 10 μm</th>
<th>Median 1 μm</th>
<th>Median 0.5 μm</th>
<th>LWC (%)</th>
<th>Median 10 μm</th>
<th>Median 1 μm</th>
<th>Median 0.5 μm</th>
<th>LWC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1032</td>
<td>0.46</td>
<td>0.7</td>
<td>0.6</td>
<td>17.4</td>
<td>0.58</td>
<td>0.7</td>
<td>0.6</td>
<td>17.4</td>
</tr>
<tr>
<td>T1033</td>
<td>5.75</td>
<td>0.8</td>
<td>0.7</td>
<td>15.2</td>
<td>0.55</td>
<td>0.7</td>
<td>0.6</td>
<td>15.2</td>
</tr>
<tr>
<td>T1034</td>
<td>2.75</td>
<td>2.3</td>
<td>0.3</td>
<td>19.6</td>
<td>0.77</td>
<td>0.7</td>
<td>0.6</td>
<td>19.6</td>
</tr>
<tr>
<td>T1035</td>
<td>1.75</td>
<td>0.7</td>
<td>0.3</td>
<td>18.7</td>
<td>0.77</td>
<td>0.7</td>
<td>0.6</td>
<td>18.7</td>
</tr>
<tr>
<td>T1036</td>
<td>0.75</td>
<td>0.9</td>
<td>0.3</td>
<td>17.6</td>
<td>0.77</td>
<td>0.7</td>
<td>0.6</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Note:
- T1032, T1033, T1034, T1035, T1036 refer to different time periods.
- Median values represent the size range for droplets contributing to spectral attenuation.
- LWC (%) indicates the percentage of liquid water content contributed by these droplets sizes.
the median radii in these two spectral regions. From 2217 hours on, the median radii in the 3.80\,\mu m region became comparable with those in the 0.55\,\mu m region. As mentioned previously, at about 2217 hours in figure 1 (a and h) the extinction coefficient in the 3.80\,\mu m region crossed over the 0.55\,\mu m coefficient and then remained above the latter for good. The same change was also observed in the Fort Ord fogs. In contrast, the same cannot be said of the percentages of liquid water content in these fogs. Yet, in the 10.6\,\mu m region, the median radius departed little from the statistical median-volume radius which, by definition, is the radius of the droplet such that half the water is contained in larger (or smaller) droplets.

As regards the haze regime, which was discussed in the preceding section, the changes with time of its magnitudes correspond very well in both the statistical and the optical domains. Its predominant effect on visible transmission during the fog formation stage and, to a lesser extent, during the dissipation stage is well displayed in table 2. However, its effect on 3.80\,\mu m transmission diminished appreciably and became almost negligible in the 10.6\,\mu m region. Only when the fog became fully grown and attained maturity did the effect of the haze regime nearly disappear from 0114 to about 0539 hours. An explanation for the interaction between haze and fog particles was offered by Low.¹

3.4 Regression Relationship between Spectral Attenuation and Liquid Water Content

One of the technical goals of the DOD plan for atmospheric transmission research and development, mentioned at the beginning of this report, is to accurately model the propagation effects of naturally occurring aerosols. Models may be empirical or physical. The former are usually derived from experimental data and the latter from the so-called first principles such that haze and fog formation, transport, and dissipation may be modeled in relation to measurable or predictable meteorological parameters. The haze and fog data collected by this laboratory in the past as well as data reported in the literature do not lend themselves to development of physical models. The meteorological descriptions of fog and/or haze were, without exception, sketchy or, oftentimes, none at all. There is no way to develop physical models on the basis of such data. Until haze and fog data become available (collected specifically with the development of physical models in mind), the approach at present must therefore be empirical.

The liquid water content of a fog will be used as the common parameter to be related to spectral attenuation at three wavelengths. It is a convenient parameter to use since extinction coefficients at any wavelengths which correlate well with liquid water content will be mutually correlated. The Meppen and the Fort Ord fog drop-size data were processed to produce liquid water contents and extinction coefficients in the \(0.55\,\mu m\), \(3.80\,\mu m\), and \(10.6\,\mu m\) spectral regions. These derived data were then plotted on full-log papers separately and collectively so as to generate different regression equations and thus enable regression analysis to be performed. In this section the regression equations will be dealt with first, and then a brief regression analysis will be performed to find out if these equations, and hence these fogs, are similar or different statistically.

3.5 Regression Equations

When the liquid water and spectral extinction data were plotted in scatter diagrams on full-log papers, a linear relationship in log space appeared to exist between them (as demonstrated in the visible region by several other authors\(^1\)\(^,\)\(^2\)\(^,\)\(^3\)\(^,\)\(^4\)). The form of the regression lines on the basis of a least-square fit can be represented by

\[\kappa = a W^b \]

where \(\kappa\), a function of wavelength, is the extinction coefficient; \(a\) and \(b\) are the regression coefficients, also functions of wavelength; and \(W\) is the liquid water content. Figures 10 to 12 present the scatter diagrams together with the regression lines and the so-called prediction bands. Figures 10 and 11 show that three separate regression lines be derived from each set of the fog data. To keep these figures uncluttered, only the overall lines are displayed.

Figure 1b. The regression line derived from all fog data relating 0.55-μm extinction coefficient to liquid water content bounded by the 95 percent prediction band.
Figure 11. The regression line derived from all fog data relating 3.80-μm extinction coefficient to liquid water content bounded by the 95 percent prediction band.
Figure 12. The regression line derived from all fog data relating 10.6μm extinction coefficient to liquid water content, bounded by the 95 percent prediction band.
The regression coefficients in different spectral regions for individual as well as collective fog cases are listed in table 3. In figure 10, there appeared to be a group of data in the Meppen fog in which perfect linear correlation in log space existed between $0.55\mu m$ extinction and liquid water content. All other data points fell below this perfect regression line; that is, in the data range considered, for the same amount of liquid water, these points would give lower extinction values. In figure 11, which relates $3.80\mu m$ extinction to liquid water, the same group of data no longer represented a straight-line fit but more like a quadratic fit on log paper. All other data points would again give lower extinction values for the same liquid water content. In figure 12, which concerns the $10.6\mu m$ region, the straight-line fit is nearly perfect for all three fogs. That is why in table 3 only one set of regression coefficients is given although some insignificant differences in coefficients did exist when each fog was fitted separately. A discussion of these observations and their implications will be presented in the following section.

3.6 Regression Analysis

It is already known that these three fog episodes belonged in different fog types. Not only that, two fogs came from one place, and one fog from another. One would instinctively surmise that one model cannot cover them all. Nevertheless, it would be of academic, if not practical, interest to ascertain statistically whether the fogs were different and whether a single model might suffice. To be able to carry out a simple linear regression analysis, equation (4) is transformed into the following linear expression:

$$Y = A + BX,$$

where $Y = \log_{10}B$, $A = \log_{10}a$, and $X = \log_{10}W$. In the course of deriving a least-squares fit, the statistics necessary for regression analysis are not difficult to calculate. These statistics are listed in tables 4 and 5 for the $0.55\mu m$ and $3.80\mu m$ spectral regions, respectively; namely, number density, N; mean X, \bar{X}; mean Y, \bar{Y}; variance of Y, $V(Y)$; sum of X squares, $S(X^2)$; and correlation coefficient, R.

A cursory examination of the two tables shows that by themselves, with the possible exception of the last case in table 5, linear regression is acceptable if considering the correlation coefficients alone. A table was not prepared for the $10.6\mu m$ region since the table would be superfluous. The correlation coefficient for the line in figure 12 is 0.994, and the value from the F-test or the ratio of mean squares due to regression to that due to residual is 3.34×10^5. For a perfect regression line, the ratio, of course, would be infinity; that is, no part of the line cannot be explained.
<table>
<thead>
<tr>
<th>Fog Cases</th>
<th>0.55m</th>
<th>3.80m</th>
<th>10.6m</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>120.81</td>
<td>242.82</td>
<td>155.22</td>
</tr>
<tr>
<td>Meppen</td>
<td>162.00</td>
<td>315.04</td>
<td>155.22</td>
</tr>
<tr>
<td>Fort Ord</td>
<td>171.09</td>
<td>213.05</td>
<td>155.22</td>
</tr>
<tr>
<td>(3 May '72)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Ord</td>
<td>147.10</td>
<td>165.61</td>
<td>155.22</td>
</tr>
<tr>
<td>(9 May '72)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Ord</td>
<td>112.00</td>
<td>124.83</td>
<td>155.22</td>
</tr>
<tr>
<td>(All)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fog Cases</td>
<td>N</td>
<td>\bar{x}</td>
<td>\bar{y}</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>All</td>
<td>241</td>
<td>-1.475</td>
<td>1.095</td>
</tr>
<tr>
<td>Meppen</td>
<td>170</td>
<td>-1.633</td>
<td>1.032</td>
</tr>
<tr>
<td>Fort Ord (3 May 78)</td>
<td>48</td>
<td>-1.221</td>
<td>1.201</td>
</tr>
<tr>
<td>Fort Ord (9 May 78)</td>
<td>23</td>
<td>-0.838</td>
<td>1.341</td>
</tr>
<tr>
<td>Fort Ord (All)</td>
<td>71</td>
<td>-1.097</td>
<td>1.246</td>
</tr>
</tbody>
</table>
TABLE 5. STATISTICAL PARAMETERS REQUIRED FOR COMPARING REGRESSION LINES IN THE 3.80μm SPECTRAL REGION

<table>
<thead>
<tr>
<th>Fog Cases</th>
<th>N</th>
<th>\bar{X}</th>
<th>\bar{Y}</th>
<th>A</th>
<th>B</th>
<th>$V(Y)$</th>
<th>$S(X^2)$</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>241</td>
<td>-1.475</td>
<td>1.118</td>
<td>2.385</td>
<td>0.859</td>
<td>0.0224</td>
<td>156.78</td>
<td>0.96</td>
</tr>
<tr>
<td>Meppen</td>
<td>170</td>
<td>-1.633</td>
<td>1.027</td>
<td>2.498</td>
<td>0.901</td>
<td>0.0170</td>
<td>133.31</td>
<td>0.97</td>
</tr>
<tr>
<td>Fort Ord (3 May 78)</td>
<td>48</td>
<td>-1.221</td>
<td>1.308</td>
<td>2.328</td>
<td>0.836</td>
<td>0.0026</td>
<td>6.136</td>
<td>0.97</td>
</tr>
<tr>
<td>Fort Ord (9 May 78)</td>
<td>23</td>
<td>-0.838</td>
<td>1.394</td>
<td>2.219</td>
<td>0.984</td>
<td>0.0026</td>
<td>0.664</td>
<td>0.92</td>
</tr>
<tr>
<td>Fort Ord (All)</td>
<td>71</td>
<td>-1.097</td>
<td>1.336</td>
<td>2.096</td>
<td>0.693</td>
<td>0.0124</td>
<td>9.084</td>
<td>0.84</td>
</tr>
</tbody>
</table>
The correlation for each case in table 5 for the 3.80\mu m region is not as good as that in table 4 when both the residual mean squares and the correlation coefficients are considered. Therefore, an analysis of table 4 would suffice; any inferences drawn here would be applicable to those cases in table 5. The intercepts and slopes of each pair will be compared. Since the sample size is sufficiently large, the normal Z test can be used instead of the student t test. At the 5 percent significance level, the Z-value is 1.96, and table 6 was prepared. Only the Fort Ord fogs shared the overall model or scaling law of the three fogs. No two fogs are alike statistically although the Meppen fog and the two Fort Ord fogs seem to share the same intercept. On the other hand, depending on sensor system specifications and laboratory requirements, the overall models presented in figures 10 to 12 may well serve the purpose. To this end, the prediction interval or band was drawn in each figure at the 5 percent significance level; that is, given a liquid water content value, the extinction coefficient will lie within this band 95 percent of the time.

4. DISCUSSION

In this section an attempt will be made to relate the derived models to fog optical and microphysical properties, and the latter's implications in the formulation of these models in the three spectral regions will be discussed.

4.1 The 0.55\mu m Spectral Region

As already mentioned, quite a substantial number of data points in the Meppen fog appeared to give a nearly perfect linear relationship between visible extinction and liquid water content. To find out what made this set of data so well-behaved, a freehand straight line was drawn through these points, which yielded the following regression equation:

$$\beta = 175.79 \theta^{0.70\mu}$$

whose slope does not differ significantly from that of the overall regression equation. To determine which data points would satisfy this equation, the liquid water content was allowed to vary by ±14 percent, thereby generating extinction coefficients which vary about ±10 percent. Then all the 170 Meppen data points were run through this ±10 percent interval and those lying in this interval were picked out and compared with the original data while the times of their occurrences were noted. The results were that while some points were contained during the fog's formation stage the rest of them were found in the period from about 0240 through about 0930 hours with a few out of place here and there.
<table>
<thead>
<tr>
<th>Fog Cases</th>
<th>Z-Test</th>
<th>All</th>
<th>Meppen</th>
<th>Fort Ord (3 May 78)</th>
<th>Fort Ord (9 May 78)</th>
<th>Fort Ord (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Slope</td>
<td>0</td>
<td>2.28</td>
<td>8.99</td>
<td>5.17</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0</td>
<td>4.15</td>
<td>4.82</td>
<td>1.01</td>
<td>1.72</td>
</tr>
<tr>
<td>Meppen</td>
<td>Slope</td>
<td>2.28</td>
<td>0</td>
<td>7.58</td>
<td>4.67</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>4.15</td>
<td>0</td>
<td>0.97</td>
<td>0.83</td>
<td>4.26</td>
</tr>
<tr>
<td>Fort Ord</td>
<td>Slope</td>
<td>8.99</td>
<td>7.58</td>
<td>0</td>
<td>2.44</td>
<td>3.42</td>
</tr>
<tr>
<td>(3 May 78)</td>
<td>Intercept</td>
<td>4.82</td>
<td>0.97</td>
<td>0</td>
<td>1.27</td>
<td>4.75</td>
</tr>
<tr>
<td>Fort Ord</td>
<td>Slope</td>
<td>5.17</td>
<td>4.67</td>
<td>2.44</td>
<td>0</td>
<td>3.98</td>
</tr>
<tr>
<td>(9 May 78)</td>
<td>Intercept</td>
<td>1.01</td>
<td>0.83</td>
<td>1.26</td>
<td>0</td>
<td>1.97</td>
</tr>
<tr>
<td>Fort Ord</td>
<td>Slope</td>
<td>1.41</td>
<td>0.46</td>
<td>3.42</td>
<td>3.98</td>
<td>0</td>
</tr>
<tr>
<td>(All)</td>
<td>Intercept</td>
<td>1.72</td>
<td>4.26</td>
<td>4.75</td>
<td>1.97</td>
<td>0</td>
</tr>
</tbody>
</table>
It is in this period designated as the mature or stable phase of the Meppen fog (figure 1b) that the three extinction coefficients appeared to march in orderly steps. During the other periods, the data points all lay below this line. In fact, one or more regression equations could be derived from this set of data which one would expect to be different from either equation (6) or the overall equation. The mature stage was marked by a moderate haze regime (figure 4d and table 2), maximum mode radius in the fog sector (table 1), minimum ratio in number density of the first mode to the second (table 2), near maximum spectral "median" radius (table 2).

In the case of the 3 May advection fog, all data points appeared to lie quite close to the overall regression line and seemed to be well-behaved, conceivably an indication of maturity and stability. By comparison, all the data points of the 9 May radiation-advection fog were below the overall line and appeared to form a lower boundary to the overall line. The points by themselves, however, seemed to be fairly well organized.

Depending on the requirements, the three fogs may call for three different representations. Moreover, the Meppen fog by itself may be modeled by two regression lines, each depicting a different stage of its life history. On the other hand, if the requirements are not too stringent, a single model or scaling law for all three fogs might suffice.

4.2 The 3.80 μm Spectral Region

The preceding discussion on the 0.55 μm spectral region is equally applicable to this region, except that the straight-line sector of the Meppen fog now became parabolic. However, this is not too discernible in the Fort Ord fogs, perhaps because of the paucity of data. Nevertheless, note that in Pinnick et al. the same parabolic trend may be detected in their figure 10c. Perhaps a quadratic fit should be considered.

4.3 The 10.6 μm Spectral Region

Since the linear relationship between extinction and liquid water content is so nearly perfect in the 10.6 μm region despite the diversity of fogs in origin and type, this relationship could be taken advantage of. The relationship strongly indicates that the liquid water content of a fog can be derived from transmission measurement in the 10.6 μm region. Following measurements of transmittances in a fog chamber at different wavelengths,

Carlon et al15 suggested precisely that kind of measurement in the 10.5\textmu m region. In a quasi-theoretical approach, Chylek16 showed that the liquid water content of a fog or cloud can be readily found regardless of its drop-size distributions by means of transmission measurements at the 11.0\textmu m wavelength if the largest droplet in the fog or cloud is no larger than 14\textmu m radius. The fog chamber which Carlon et al15 used in their experiments produced droplets probably no larger than 10\textmu m radius. Therefore, both sides came to the same conclusion.

The fogs used for this report had sizes far beyond 10\textmu m in radius most of the time, yet there existed a nearly perfect correlation between 10.6\textmu m extinction and liquid water content. The same may be found in Pinnick et al14 in their figure 10d, although they used the 10.0\textmu m wavelength. Thus, it seems that a 10.6\textmu m CO\textsubscript{2} laser may be used in a device designed so that the liquid water content in a finite volume over a path length may be obtained.

5. CONCLUSIONS

The Meppen fog which occurred on 3 to 4 March 1978 was analyzed in detail both spectrally and microphysically. Spectral evolution was examined in relation to drop-size evolution in an attempt to gain some insight in the complex nature of establishing optical models or scaling laws and hence to better judge the adequacy of a model or a law.

The magnitude of the haze regime of a fog, often a reflection of the pollution level at a locality, showed a strong influence on the microphysical properties and hence the optical characteristics of the haze regime. Generally, the dominance of the haze regime in the early life of a fog, which severely affects the transmission in the 0.55\textmu m and 3.80\textmu m regions, hinders a working relationship between extinction and liquid water due to its tiny particle sizes and water deficiency. As the fog grows into maturity laden

with plenty of water and as its haze regime decreases in size and influence, this relationship becomes more tractable in these two spectral regions. As the fog becomes aged and approaches dissipation, although its haze regime may have regained some strength, the fog sector is still quite water laden despite the depletion of its larger droplets, and the relationship between extinction and liquid water is still relatively tractable. From this study of the Meppen fog, indications are strong that a linear relationship exists in the visible region, except perhaps at extremely low liquid water content of the order of 10^{-4} g m$^{-3}$ or less, and in the 3.80 µm region there may be a quadratic relationship. By contrast, in the 10.6 µm region the relationship is almost perfectly linear, thus the suggestion that liquid water content be obtained by means of transmittance measurements using a 10.6 µm CO$_2$ laser.

As was noted in a preceding section, the Meppen fog may be represented by a comprehensive regression line, a line according to equation (6), or one or more lines derived without those data points used to generate equation (6). However, the comprehensive line encompassed the complete drop-size data set; its completeness lies in the fact that it represents the Meppen fog’s entire life history. Consequently, not much attention was given to the Ford Ord fogs in this analysis. It is imperative that an optical model representing a fog be built on the foundation of a complete set of data, spanning fog formation through dissipation rather than a set depicting an unknown phase of its life cycle, unless it can be demonstrated statistically that the model derived from the former does not differ significantly from the latter. Only in this way may the relative validity of the models allegedly representing different haze and fog types be assessed.

Five models or scaling laws in each of the three spectral regions are presented: one each for the three fogs, one for all, and one for the California coastal fogs. Statistically and genetically, these fogs are different. By itself, the least-squares fit for each case in the visible is quite respectable if its correlation coefficient means anything. In fact, when all the fog data are taken together, the fit is no less respectable, neglecting the fact that only certain phases of the Ford Ord fogs were portrayed, and the prediction bands at the 5 percent significance level appear to justify this observation.

Finally, it should be emphasized that with the possible exception of the Meppen model which represents one type of fog occurring in the Meppen area, the Ford Ord models must be used with caution for reasons already discussed. Again, whether one model or scaling law would suffice or more than one is needed depends entirely upon the sensitivities and requirements of the electro-optical sensors to be deployed. When a heavy fog became fully grown, sensors operating in wavelength regions other than the 10.6 µm were so degraded that they were rendered ineffective. However, those in the 10.6 µm region could operate most of the time. Then, modeling the heavy fogs may become a moot question.
REFERENCES

Size and Liquid Water Content in Fogs and Clouds," Papers in Physical
Oceanography and Meteorology, Vol VI, No 4.

Technical Report TR-77-9, Technology Laboratory, Physical Science Directorate,
Redstone Arsenal, AL.

Atmospheric Sciences Laboratory, ERADCOM, White Sands Missile Range, NM.

4. Low, Richard D. H., Louis D. Duncan, and Y. Y. Roger R. Hsiao, 1979,
"Microphysical and Optical Properties of California Coastal Fogs at Fort
Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, ERADCOM,
White Sands Missile Range, NM.

5. Lindberg, J. D., 1979, Private communications.

7. Pilie, R. J., E. J. Mack, W. C. Kocmond, W. J. Eadie, and C. W. Rogers,

Droplets and Their Influence on Visibility in Fog," Preprints: 6th
Conference on Inadvertent and Planned Weather Modification, American
Meteorological Society, Boston, 10-13.

14:49-86.

J. D. Lindberg, G. B. Hoidale, and S. G. Jennings, 1978, "Vertical
Structure in Atmospheric Fog and Haze and Its Effects on Visible and

<table>
<thead>
<tr>
<th>Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Aviation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZQ-D-MA</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Aviation School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZQ-D-MA</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>Ballistic Missile Defense</td>
<td>Advanced Technology Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATC-R</td>
</tr>
<tr>
<td></td>
<td>PO Box 1500</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td>Chief, Atmospheric Sciences Div</td>
<td>Code ES-01, NASA</td>
</tr>
<tr>
<td></td>
<td>Marshall Space Flight Center, AL 35812</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Patriot Missile Systems</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRCPM-MD-T</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-CGA (R. W. Fowler)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-TCG (R. W. Fowler)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile and Munitions Center & School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATOMIC-CD</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-REO (Dr. Maxwell Harper)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-REO (Dr. Julius Lilly)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-HRO (Dr. Gene Widenhofer)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-TDO (Dr. Hugh Anderson)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDMI-TDO (Mr. W. S. Rich)</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Intelligence Center & School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATIC-CD</td>
</tr>
<tr>
<td></td>
<td>Fort Huachuca, AZ 85613</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Intelligence Center & School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATIC-CD</td>
</tr>
<tr>
<td></td>
<td>Fort Huachuca, AZ 85613</td>
</tr>
</tbody>
</table>
Commander
US Army Intelligence Center & School
ATTN: ATSI-CD-CS (Mr. Jim Rustenbeck)
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATSI-CD-MD
Fort Huachuca, AZ 85613

Commander
US Army Communications Command
Fort Huachuca, AZ 85613

Commander
US Army Yuma Proving Ground
ATTN: Technical Library
Bldg 2100
Yuma, AZ 85364

Northrop Corporation
Electro-Mechanical Division
ATTN: Dr. R. D. Tooley
500 East Orangethorpe Ave
Anaheim, CA 92801

Naval Weapons Center
ATTN: Code 3173 (Dr. A. Shlanta)
China Lake, CA 93555

Hughes Helicopters
ATTN: Charles R. Hill
Centinela and Teale Streets
Culver City, CA 90230

Commander
US Army Combat Dev Evaluation Command
ATTN: ATEC-PL-M (Gary Love)
Fort Ord, CA 93941

SRI International
ATTN: Dr. Ed Uthe
333 Ravenswood Avenue
Menlo Park, CA 94025

SRI International
ATTN: J. E. Van der Laan
333 Ravenswood Avenue
Menlo Park, CA 94025

Sylvania Elec Sys Western Div
ATTN: Technical Reports Library
PO Box 205
Mountain View, CA 94040

Geophysics Officer
PMTC Code 3250
Pacific Missile Test Center
Point Mugu, CA 93042

Commander
Naval Ocean Systems Center
ATTN: Code 4473 (Tech Library)
San Diego, CA 92152

Commander
Naval Ocean Systems Center
ATTN: Code 532 (Dr. Juergen Richter)
San Diego, CA 92152

General Electric - TEMPO
ATTN: Dr. James Thompson
816 State Street
PO Drawer QQ
Santa Barbara, CA 93102

The RAND Corporation
ATTN: Ralph Huschke
1700 Main Street
Santa Monica, CA 90406

National Center for Atmos Research
NCAR Library
PO Box 3000
Boulder, CO 80307

Library-R-51-Tech Reports
NOAA/ERL
320 S. Broadway
Boulder, CO 80302

Wave Propagation Laboratory
NOAA/ERL
ATTN: Dr. Vernon Derr
Boulder, CO 80302

Particle Measuring Systems, Inc.
ATTN: Dr. Robert Knollenberg
1855 South 57th Court
Boulder, CO 80301
Commander
US Army Cold Regions Rsch & Engr Lab
ATTN: Mr. George Aitken
Hanover, NH 03755

Commander
US Army Cold Regions Rsch & Engr Lab
ATTN: CRREL-RD (Dr. K.F. Sterrett)
Hanover, NH 03755

Commander
US Army Armament R&D Command
ATTN: DRDAR-TSS (Bldg 59)
Dover, NJ 07801

Commander
US Army Armament R&D Command
ATTN: DRDAR-AC (J. Greenfield)
Dover, NJ 07801

Project Manager
Cannon Artillery Weapons Systems
ATTN: DRCPM-CAWS
Dover, NJ 07801

Project Manager
Cannon Artillery Weapons Systems
ATTN: DRCPM-CAWS-GP (G.H. Waldron)
Dover, NJ 07801

Commander
HQ, US Army Avionics R&D Activity
ATTN: DAVAA-O
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monmouth, NJ 07703

Director
US Army Electronics Technology & Devices Laboratory
ATTN: DELET-D
Fort Monmouth, NJ 07703

Commander
US Army Electronic Warfare Laboratory
ATTN: DELEW-D (Mr. George Haber)
Fort Monmouth, NJ 07703

Commander
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Rudolf Buser)
Fort Monmouth, NJ 07703

Commander
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Robert Rodhe)
Fort Monmouth, NJ 07703

Commander
ERADCOM Technical Support Activity
ATTN: DELSD-L
Fort Monmouth, NJ 07703

Project Manager, FIREFINDER
ATTN: DRCPM-FF
Fort Monmouth, NJ 07703

Project Manager, REMBASS
ATTN: DRCPM-RBS
Fort Monmouth, NJ 07703

Commander
US Army Satellite Comm Agency
ATTN: DRCPM-SC-3
Fort Monmouth, NJ 07703

Commander
ERADCOM Scientific Advisor
ATTN: DRDEL-SA
Fort Monmouth, NJ 07703

Project Manager
Army Tactical Data Systems
ATTN: DRCPM-TDS
Fort Monmouth, NJ 07703

6585 TG/WE
Holloman AFB, NM 88330

AFWL/WE
Kirtland, AFB, NM 87117

AFWL/Technical Library (SUL)
Kirtland AFB, NM 87117
Institute for Defense Analysis
ATTN: Mr. Lucian Biberman
Arlington, VA 22202

Institute for Defense Analysis
ATTN: Dr. Robert Roberts
Arlington, VA 22202

Director
ARPA
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Steve Zakanyez
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. Carl Thomas
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. James Tegnelia
1400 Wilson Blvd
Arlington, VA 22209

Commander
US Army Security Agency
ATTN: IARO-MF
Arlington Hall Station
Arlington, VA 22212

USA Intelligence & Security Command
ATTN: E. A. Speakman, Science Advisor
Arlington Hall Station
Arlington, VA 22212

Commander
US Army Foreign Sci & Tech Center
ATTN: DRXST-IS1
220 7th Street, NE
Charlottesville, VA 22901

Commander
US Army Foreign Sci & Tech Center
ATTN: Dr. Orville Harris
220 7th Street, NE
Charlottesville, VA 22901

Commander
US Army Foreign Sci & Tech Center
ATTN: Dr. Bertram Smith
220 7th Street, NE
Charlottesville, VA 22901

Naval Surface Weapons Center
ATTN: Code G65
Dahlgren, VA 22448

Commander
Operational Test & Evaluation Agency
Columbia Pike Bldg
5600 Columbia Pike
Falls Church, VA 22041

Commander
US Army Night Vision & Electro-Optics Lab
ATTN: DELNV-D (Mr. John Johnson)
Fort Belvoir, VA 22060

Commander
US Army Night Vision & Electro-Optics Lab
ATTN: DELNV-VI (Mr. J.R. Moulton)
Fort Belvoir, VA 22060

Commander
US Army Night Vision & Electro-Optics Lab
ATTN: DELNV-VI (Luanne Overt)
Fort Belvoir, VA 22060

Commander
US Army Night Vision & Electro-Optics Lab
ATTN: DELNV-VI (Tom Cassidy)
Fort Belvoir, VA 22060
ATMOSPHERIC SCIENCES RESEARCH PAPERS

42. Gillespie, James B., and James D. Landberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 to 3.0 μm Using a Cary 171 Spectrophotometer," ECOM-5806, November 1976.
53. Rubio, Roberto, and Mike Izquierdo, "Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region," ECOM-5817, May 1977.

* U.S. GOVERNMENT PRINTING OFFICE 1980 — 577-119/60