AFOSR/AFML
ORDERED POLYMERS RESEARCH REVIEW

STATUS OF THE U.S. AIR FORCE
ORDERED POLYMERS RESEARCH PROGRAM

11-13 June 1979
Bergamo Center
Dayton, Ohio

FINAL TECHNICAL REPORT
Contract No. F49620-79-C-0097

AFOSR PROGRAM MANAGER
Dr. Donald R. Ulrich

CO-CHAIRMEN
Dr. Thaddeus E. Helminiak
Air Force Materials Laboratory

Dr. Donald R. Wiff
University of Dayton Research Institute

UNIVERSITY OF DAYTON RESEARCH INSTITUTE
DAYTON, OHIO 45469

Approved for public release; distribution unlimited.
This report presents a general overview of the "Ordered Polymer Research Review" organized by the University of Dayton Research Institute (UDRI) under Contract No. F49620-79-C-0097. The review was held 11-13 June 1979 at Bergamo Center, Dayton, Ohio with Dr. Donald R. Wiff (UDRI) and Dr. Thaddeus E. Helminiak (Air Force Materials Laboratory) as co-chairmen. The proceedings are included under the major headings Agenda, Abstracts, and List of Attendees. This research review was sponsored by the Air Force Office of Scientific Research (AFOSR) with Dr. Donald R. Ulrich as Program Manager.
AFOSR/APML
ORDERED POLYMERS RESEARCH REVIEW

STATUS OF THE U.S. AIR FORCE
ORDERED POLYMERS RESEARCH PROGRAM

11-13 June 1979
Bergamo Center
Dayton, Ohio

FINAL TECHNICAL REPORT
Contract No. F49620-79-C-0097

AFOSR PROGRAM MANAGER
Dr. Donald R. Ulrich

CO-CHAIRMEN
Dr. Thaddeus E. Helminiak
Air Force Materials Laboratory

Dr. Donald R. Wiff
University of Dayton Research Institute

UNIVERSITY OF DAYTON
RESEARCH INSTITUTE
DAYTON, OHIO 45469

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer
NOTICE

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States Gov-
ernment thereby incurs no responsibility nor any obligation what-
soever; and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifica-
tions, or other data, is not to be regarded by implication or
otherwise as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to
manufacture, use or sell any patented invention that may in any
way be related thereto.

This document may not be reproduced or published in any form
in whole or in part without prior approval of the Government.

This document was prepared under the sponsorship of the Air Force.
Neither the U.S. Government nor any person acting on behalf of
the U.S. Government assumes any liability resulting from the use
of the information contained in this document.
ABSTRACT

This report presents a general overview of the "Ordered Polymer Research Review" organized by the University of Dayton Research Institute (UDRI) under Contract No. F49620-79-C-0097. The review was held 11-13 June 1979 at Bergamo Center, Dayton, Ohio with Dr. Donald R. Wiff (UDRI) and Dr. Thaddeus E. Helminiak (Air Force Materials Laboratory) as co-chairmen. The proceedings are included under the major headings Agenda, Abstracts, and List of Attendees. This research review was sponsored by the Air Force Office of Scientific Research (AFOSR) with Dr. Donald R. Ulrich as Program Manager.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
</tr>
<tr>
<td>3.4</td>
<td>5</td>
</tr>
<tr>
<td>3.5</td>
<td>5</td>
</tr>
<tr>
<td>3.6</td>
<td>5</td>
</tr>
<tr>
<td>3.7</td>
<td>6</td>
</tr>
<tr>
<td>3.8</td>
<td>6</td>
</tr>
<tr>
<td>3.9</td>
<td>6</td>
</tr>
<tr>
<td>3.10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>

1. INTRODUCTION
2. AGENDA
3. ABSTRACTS OF PROCEEDINGS
 3.1 CARNEGIE-MELLON UNIVERSITY
 3.2 CELANESE RESEARCH CORPORATION
 3.3 UNIVERSITY OF MASSACHUSETTS
 3.4 UNIVERSITY OF DAYTON/UNIVERSITY OF DAYTON RESEARCH INSTITUTE
 3.5 SRI INTERNATIONAL
 3.6 POLYMER BRANCH, AFML
 3.7 UNIVERSITY OF CINCINNATI
 3.8 STANFORD UNIVERSITY
 3.9 TEXAS A&M UNIVERSITY
 3.10 COMPOSITES BRANCH, AFML/UNIVERSITY OF DAYTON RESEARCH INSTITUTE
4. LIST OF ATTENDEES
5. CONCLUSION
SECTION 1
INTRODUCTION

The research review on "Ordered Polymers" was held to provide an informal atmosphere for the participants to exchange scientific information and review progress in this Air Force basic research area.

The emphasis for this meeting was on informal discussions. The meeting was to be operated "Gordon conference" style. This also related to the quoting of data, etc. Therefore, the abstracts presented herein were written so as to convey the spirit of the presentations, not the numerical data.

Participation was mandatory for all Air Force laboratory scientists and contractors and AFOSR grantees. Outside participation by the scientific community was welcomed. Special invitation was extended to three scientists (Dr. Paul Lindenmeyer, Materials Research Consultant, Seattle, Washington; Dr. Chou-Ping Wong, General Tire Company, Akron, Ohio; and Dr. Glenn Crosby, Washington State University, Pullman, Washington).

Because of the diversity of expertise involved in this investigation, it was essential that all efforts be reviewed collectively. After such an exchange of scientific knowledge, future directions were defined in light of Air Force goals and reasonable scientific probability of achievement.
SECTION 2
AGENDA

Monday (11 June 1979)

5:00 PM DINNER
7:00 AFOSR/AFML Welcome, Comments, & Overview
8:15 SOCIAL PERIOD

Tuesday (12 June 1979)

7:00 AM BREAKFAST & REGISTRATION
8:00 Carnegie-Mellon University
10:00 COFFEE BREAK
10:30 Celanese Research Corporation
11:15 University of Massachusetts
12:30 PM LUNCH
1:30 University of Massachusetts
3:15 COFFEE BREAK
3:45 University of Dayton/University of Dayton Research
 Institute
4:30 SRI International
5:15 Polymer Branch, AFML
6:30 DINNER
8:00 SOCIAL PERIOD (with informal discussion)

Wednesday (13 June 1979)

7:00 AM BREAKFAST
8:00 University of Cincinnati
8:45 Stanford University
9:30 Texas A&M University
10:00 COFFEE BREAK
10:30 Composites Branch, AFML/University of Dayton
 Research Institute
11:15 Ad Hoc Planning & Coordinating Discussion Groups
 (Processing/Berry; Synthesis/Arnold; Characteri-
 zation/Thomas)
Wednesday (13 June 1979)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 PM</td>
<td>LUNCH</td>
</tr>
<tr>
<td>1:30</td>
<td>Ad Hoc Meetings (continued)</td>
</tr>
<tr>
<td>2:30</td>
<td>Reports of Planning & Coordinating Group</td>
</tr>
<tr>
<td></td>
<td>Discussions</td>
</tr>
<tr>
<td>3:15</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>3:45</td>
<td>Summation and Plans</td>
</tr>
<tr>
<td>5:00</td>
<td>ADJOURNMENT</td>
</tr>
</tbody>
</table>
SECTION 3
ABSTRACTS OF PROCEEDINGS

3.1 CARNEGIE-MELLON UNIVERSITY
(Dr. G. Berry, Principal Investigator)

The properties of rodlike molecules with no bulky side chains, PBO and PBT; a series of rodlike molecules with phenyl substituents, PPm BO; and some heterocyclic chains containing ether linkages in the backbone, P(PO-CO-BO) were presented. These properties included light scattering and viscometry on dilute solutions, phase equilibria on moderately concentrated solutions, and cryoscopy on dilute solutions of some of the polymers and model compounds of their repeating units.

3.2 CELANESE RESEARCH CORPORATION
(Dr. Sang Kim, Principal Investigator)

Processing parameters and cursory mechanical properties of PBT fibers were discussed. The preparatory studies required for future processing of PBT polymers in film form were presented for constructive scientific discussion. Cooperative interaction with solution property and morphology study contractors was indicated.

3.3 UNIVERSITY OF MASSACHUSETTS
(Dr. E. Thomas, Dr. R. Stein, and Dr. F. E. Karasz, Principal Investigators)

Detailed morphology study of findings for selected areas in fibers were presented. This study involved mainly electron microscopy. Larger area morphology characteristics were investigated using x-ray diffraction techniques. This information was then used to support a theoretical model for possible packing of the rigid rodlike PBT molecules in the bulk fiber. Some mechanical properties were presented in correspondence with the fiber identification numbers of Celanese Research Corporation. This provided a conference-wide participation in the correlation of solution properties, processing parameters, and morphology/mechanical properties of PBT fibers.
3.4 UNIVERSITY OF DAYTON/UNIVERSITY OF DAYTON RESEARCH INSTITUTE
(Dr. A. V. Fratini and Dr. D. R. Wiff, Principal Investigators)

The molecular structures and packing diagrams of model compounds (both cis and trans configurations) of PBO and PBT were presented. This information was experimentally measured. It supplied accurate molecular parameters needed for theoretical predictions and for comparison with fiber x-ray diffraction pattern measured d-spacings.

Preliminary results of polefigure and orientation analysis on fibers and films via a fully automated x-ray diffractometer were presented. The rationale for performing a polefigure analysis was to allow an investigator to correlate the processing history and mechanical properties of a specimen with possible orientational changes of specific diffracting planes in the specimen.

3.5 SRI INTERNATIONAL
(Dr. J. Wolfe, Principal Investigator)

Following the previous discussions on the physical properties of the PBT polymer, the synthesis problems involved with scaling up the polymerization batch size were discussed. Possible future molecular engineering changes to enhance desired bulk polymer properties were discussed. Available quantities of PBT polymer for future studies by various contractors were presented to Dr. Helminiak, AFML/MBC.

3.6 POLYMER BRANCH, AFML
(Dr. R. Evers, Principal Investigator)

New synthesis routes to achieve a variety of new articulated or swivel copolymers were presented. These new macromolecular chains were specifically engineered to provide better bulk polymer properties, e.g., easier processing, higher modulus and tensile strength, etc.
3.7 UNIVERSITY OF CINCINNATI
(Dr. J. Mark, Principal Investigator)

Configurational statistical analysis was applied to various molecular configurations of the PBT molecule. In each case that configuration in correspondence with the minimum conformational energy was presented. The effect of the length of the articulated unit in the copolymer synthesis on the ease of the molecules to pack was important information required in guidance of synthesis efforts. A possible ideal packing scheme of the rigid rod molecules in the bulk polymer forms (fibers or films) was discussed.

3.8 STANFORD UNIVERSITY
(Dr. P. Flory, Principal Investigator)

An analysis of the effect of molecular weight and molecular weight distribution on the phase equilibria of rigid rodlike molecules in solution was presented from a theoretical viewpoint. Ramifications of these findings in light of the practical problems encountered in processing these materials were highlighted.

3.9 TEXAS A&M UNIVERSITY
(Dr. J. Holste, Principal Investigator)

The results were presented on the use of a unique solvent search technique. It appears that the only solvents for the polymers of interest are still highly protonating solvents, namely, strong acids.

3.10 COMPOSITES BRANCH, AFML/UNIVERSITY OF DAYTON RESEARCH INSTITUTE
(Mr. G. Husman/Dr. D. R. Wiff, Principal Investigators)

Mechanical properties of various percent composition (rigid rod/flexible coil) blends were presented. A correlation between the mechanical properties, morphology (SEM photographs and x-ray diffraction crystallite size and orientation angles), and an extrapolation of chopped fiber composite theory toward the molecular level was discussed. Planned research to disperse the individual rigid rod molecules (i.e., eliminate any aggregation)
so as to increase the aspect ratio (of the chopped fiber) and, thus, greatly improve the mechanical properties completed the presentation.
SECTION 4
LIST OF ATTENDEES

Mr. Wade Adams
Polymer Science Department
Graduate Research Center
University of Massachusetts
Amherst, MA 01002

Mr. S. Allen
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. Fred Arnold
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. Leonid V. Azaroff
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. Donald Ball
Director, Directorate of Chem. Sci.
AFOSR/NC Bldg. #410
Bolling AFB, DC 20332

Dr. Ed Barker
Department of Material Science
University of Virginia
Charlottesville, VA 22904

Mr. Charles Benner
University of Dayton
Research Institute
Dayton, Ohio 45469

Mr. Freeman Bentley
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. Guy Berry
Department of Chemistry
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. D. Bhaumik
Chemistry Department
University of Cincinnati
Cincinnati, OH 45221

Dr. Edwin Blakemore
Tennessee Eastman Company
Kingsport, TN 37662

Prof. Alexandre Blumstein
University of Lowell
1 University Avenue (Chemistry)
Lowell, MA 01854

Col. Dana Brabson
AFML/CD
Wright-Patterson AFB, OH 45433

Mr. Darryl Buck
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. B. J. Bulkin
Dean of Arts & Sciences
Polytechnic Institute of NY
333 Jay Street
Brooklyn, NY 11201

Mr. Jerald L. Burkett
University of Dayton
Research Institute
Dayton, OH 45469

Dr. J. M. Butler
University of Dayton
Research Institute
Dayton, OH 45469

Dr. E. Catsiff
Ciba-Geigy
Saw Mill River Road
Ardsley, NY 10502

Dr. R. P. Chartoff
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Edward C. Chenevey
Celanese Research Company
P. O. Box 1000
Summit, NJ 07901
Dr. Frank Harris
Department of Chemistry
Wright State University
Dayton, OH 45435

Dr. Frank Harris
Tennessee Eastman Company
Kingsport, TN 37662

Dr. Thaddeus Helminiak
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. J. C. Holste
Chemical Engineering Department
Texas A&M University
College Station, TX 77843

Mr. J. C. Holverstott
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Shaw Ling Hsu
Dept. of Polymer Sci. & Eng.
University of Massachusetts
Amherst, MA 01003

Mr. George Husman
AFML/MBC
Wright-Patterson AFB, OH 45433

Dr. Grant Jones
Systems Research Laboratories
2800 Indian Ripple Road
Dayton, OH 45440

Dr. William Jones
AFML/MBC
Wright-Patterson AFB, OH 45433

Dr. James Kane
Chemistry Department
Wright State University
Dayton, OH 45435

Dr. Frank Karasz
Polymer Sci. & Eng. Dept.
University of Massachusetts
Amherst, MA 01003

Mr. Jerome Kelble
AFML/MB
Wright-Patterson AFB, OH 45433

Dr. R. E. Kelchner
Hughes Aircraft Company
6/DL34
Culver City, CA 90230

Prof. A. Keller
H. H. Wills Physics Lab
Royal Fort, Tundall Avenue
Bristol, BS8 1TL
United Kingdom

Dr. Sang N. Kim
Celanese Research Company
P. O. Box 1000
Summit, NJ 07901

Dr. Jack Knox
AMOCO Research Center
P. O. Box 400
Bldg. 503, Room 3303
Naperville, IL 60540

Dr. A. K. Kulshreshtha
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. Joseph R. Leal
Celanese Research Company
P. O. Box 1000
Summit, NJ 07901

Dr. Charles Lee
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Paul Lindenmeyer
Materials Research Consultant
165 Lee Street
Seattle, WA 98109

Dr. Francis M. Logullo
E. I. DuPont Company
Experimental Station
Bldg. 302
Wilmington, DE 19898

Mr. Charles C. Lovett
University of Dayton
Research Institute
Dayton, OH 45469
Dr. James E. Mark
Director, Polymer Research Center
Chemistry Department
University of Cincinnati
Cincinnati, OH 45221

Dr. Anthony J. Matuszko
Directorate of Chemical Science
AFOSR
Bolling AFB, DC 20332

Dr. Clayton May
Lockheed Missiles
P. O. Box 504
Sunnyvale, CA 94086

Dr. Patricia Metzger
Department of Chemistry
Carnegie-Mellon University
Pittsburgh, PA 15213

Mr. Joseph Militello
University of Dayton
Research Institute
Dayton, OH 45469

Mr. J. Minter
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. William Moddeman
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Jim Pickard
Systems Research Laboratories
2800 Indian Ripple Road
Dayton, OH 45440

Dr. D. C. Prevorsek
Allied Chemical Corporation
Corporate Chemical Research Lab
P. O. Box 1021R
Morristown, NJ 07960

Mr. Gary Price
University of Dayton
Research Institute
Dayton, OH 45469

Mr. Bruce Reinhardt
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. R. J. Roe
Mail Location 12
University of Cincinnati
Cincinnati, OH 45221

Dr. Harold Rosenberg
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. R. W. Rosser
Hughes Aircraft Company
6/D133
Culver City, CA 90230

Ms. Mary T. Ryan
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. L. C. Scala
Manager, Polymers Chemistry Sec.
Westinghouse R&D Center
Pittsburgh, PA 15235

Dr. P. Shu
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Mr. Albert J. Sicree
Research Chemist
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. Steve Sikka
AFML/MBP
Wright-Patterson AFB, OH 45433

Mr. Ed Soloski
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Terry L. St. Clair
M.S. 226
NASA-Langley Research Center
Hampton, VA 23662
Dr. R. S. Stein
Polymer Research Institute
Graduate Research Center TWRA
University of Massachusetts
Amherst, MA 01003

Dr. James F. Wolfe
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. T. Takahashi
Dept. of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. C. P. Wong
General Tire & Rubber Company
2990 Gilchrist Road
Akron, OH 44305

Dr. Edwin L. Thomas
Department of Polymer Science
University of Massachusetts
Amherst, MA 01003

Dr. Kenneth Wynne
Code 472
Department of the Navy
Office of Naval Research
Chemistry Program Office
Arlington, VA 22217

Dr. David A. Tirrell
Department of Chemistry
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. J. H. Magill
School of Engineering
University of Pittsburgh
Pittsburgh, PA 15261

Dr. Donald R. Ulrich
Program Manager
Directorate of Chemical Sciences
AFOSR
Bolling AFB, DC 20332

Dr. Subu Venkatraman
Department of Chemistry
Carnegie-Mellon University
Pittsburgh, PA 15213

Capt. Michael Wellman
AFML/MBP
Wright-Patterson AFB, OH 45433

Dr. William Welsh
Department of Chemistry
University of Cincinnati
Cincinnati, OH 45221

Dr. D. R. Wiff
University of Dayton
Research Institute
Dayton, OH 45469

Dr. Anthony F. Wilde
Organic Materials Laboratory
Army Materials & Mechanics
Research Center
Watertown, MA 02172
SECTION 5
CONCLUSION

The Ordered Polymers Research Program is directed toward the preparation and processing of very high strength, environmentally resistant polymers for use as structural materials in aerospace vehicles. In attendance were 95 scientists and technical managers from 36 different government, university and industrial research organizations. During the three days of review and discussion, presentations were made covering the research work being carried out at 11 laboratories within or under contract to the AFML or AFOSR. The basic theoretical work of Nobel Laureate Prof. P. Flory concerning phase equilibria of rigid rods in solution were considered in great detail.

The emphases of the program review were to determine the status of the various research efforts, improve and insure communications between the numerous investigators, inform the scientific community of the progress being made and plan and coordinate the research effort for the next six to 18-month increment.

The polymer PBT (poly-paraphenylene benzbisthiazole) was established as the material currently exhibiting the most favorable properties. Plans are completed to scale this material in pound quantities to further investigate processing. In fiber form, PBT has shown outstanding properties of 12.3 grams per denier tenacity and 1500 grams per denier modulus, as measured at room temperature. These values are especially encouraging because optimization of fiber formation has not been carried out.