Coherence in Penning Ionization and First Kind Collisions: Volume Recombination of Ions/Electrons

L. D. Schearer & W. F. Parks

The Curators of the University of Missouri for the University of Missouri-Rolla
Rolla, Mo. 65401

Department of the Navy
Office of Naval Research
Washington, D.C. 20360

Approved for Public Release: Distribution Unlimited

Penning Ionization, Three-body Recombination, Metastable Rare Gas Beams, Metastable Interactions, Energy Transfer, Hanle Effect, Coherence effects, Anisotropic excited states.

A thermal energy beam of helium atoms in the metastable state is used to coherently excite ions of Sr, Ca, and Ba in a Penning collision. The anisotropic excited state distributions appears as Polarized line emission from the excited ions. The degree of ion alignment may be used to determine the populations of the quasi-molecular states of the ion-atom pair. The coherent emission is also utilized to obtain Hanle signals from which the radiative decay rate of the excited ion is determined. This is the first case in which coherence is produced in a collision process involving Penning
ionization. The alignment of the Penning ions is an important new parameter in the
description of these reactions.

In an effort to extend such observations to molecular systems a nitrogen molecu-
lar metastable beam source was demonstrated. The use of metal vapor targets and
the excitation rate of the excited states of Cd and Zn in energy transfer collisions
with the N_2^m enable us to determine the vibrational distribution of the $A^3\Sigma^+$ state of
N_2^m in the beam.

Energy transfer cross sections and some Penning cross sections were measured
in the beam system.
TECHNICAL REPORT

I Coherence Effects in Penning Ionization

II Volume Recombination Processes at High Pressures

L. D. Schearer and W. F. Parks
Department of Physics

University of Missouri-Rolla
Rolla, Missouri 65401

Technical Report to the Office of Naval Research
Grant No. N00014-75-C-0477 for the period December 1978 - December 1979
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Heavy Particle Interactions</td>
<td>5</td>
</tr>
<tr>
<td>Energy Loss Processes at High Pressures</td>
<td>7</td>
</tr>
<tr>
<td>Progress During This Contract Period</td>
<td>9</td>
</tr>
<tr>
<td>Publications Issued During This Contract Period</td>
<td>11</td>
</tr>
<tr>
<td>Other Presentations</td>
<td>12</td>
</tr>
<tr>
<td>Progress Report: Summary</td>
<td>12</td>
</tr>
<tr>
<td>Personnel During This Contract Period</td>
<td>14</td>
</tr>
<tr>
<td>Advanced Degrees</td>
<td>14</td>
</tr>
<tr>
<td>Appendices (Abstracts of Publications)</td>
<td>15</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of the research program is to investigate collisional processes which are important in determining energy balance in discharge plasmas and their afterglows. Two of these processes, which are currently under investigation in our laboratory, are metastable interactions, such as Penning ionization and volume recombination processes.
INTRODUCTION

Heavy Particle Interactions

The general phenomena of energy transfer collisions between neutral atomic and molecular species in a beam and target impurities have been well studied. The amount and type of physical information obtained from studying such collisions has steadily grown with the technology of producing and detecting beams. Energy transfer collisions are those in which either translational or internal energy is transferred between the colliding pair during the collision. This is referred to as collisions of the first and second kind respectively.

In this research, we examine certain properties of both kinds of collisions for specific collision pairs. The two properties of specific interest are: 1) angular anisotropic distributions and nonstatistical angular momentum state populations in the excited product states of collisions and 2) reaction rates or total cross sections for the collision process.

Knowledge of these properties for a collision pair contributes much to an understanding of the collision dynamics.

Knowledge of the rate at which angular momentum substates are populated in excitation processes yields detailed information about the kinetics of the collision process. Collisional excitation occurring in a beam configuration in general leads to anisotropic excited state distributions, and such distributions manifest themselves as vector and linear polarization of line radiation, orientation and alignment of the excited species, and the nonuniform distribution of collision fragments. Such anisotropic distributions have been seen in e–atom, ion–atom, and ion–beam foil collisions in which the kinetic energy of
the projectile is the source of the kinetic energy.

In many of the heavy particle collisions, the anisotropic excited states produced are closely associated with the formation of a quasi-molecule during the collision. The observed alignment is then interpreted as a coherent excitation of the quasi-molecular state. Micha et al. demonstrated the utility of the quasi-molecular states in the united atom limit in explaining some of the features of the Penning ionization process. The Penning process is then viewed as a transition between quasi-molecular states; vis:

\[
\text{He}(2^3S_1) + \text{Sr}(^1S_0) \rightarrow \\
\text{HeSr}^+ (^2Σ, ^2Π) + e + \text{k.e.} \\
\text{He}(^1S_0) + \text{Sr} (^2P_{3/2}, 1/2) + e + \text{k.e.}
\]

The process of Penning ionization has been the subject of many experimental and theoretical investigations. Typically, in this process, the excitation energy is transferred to the target atom with the resultant ionization of the target atom. Although most studies have dealt with the total cross section for this process, recently coherent final states have also been observed. In one case, Schearer has demonstrated in an afterglow experiment that the ions are formed in a coherent state if the metastable atoms are in a coherent state. This has been shown to be a direct consequence of the Wigner spin rule. In a second case, using a beam of metastable helium atoms, Hotop and Niehaus have observed that the electrons ejected in the Penning ionization of argon are in a coherent state. Subsequently, Ebbing and Niehaus have shown this to be a general characteristic of the Penning process. In these experiments, the beam serves to define a preferred direction for the system.

The theoretical framework for the Penning ionization process has been presented by
Nakamura9 and Miller10. \textit{Ab initio} calculations have been performed for the Penning ionization of hydrogen atoms by metastable helium atoms. Semi-empirical calculations have also been made for the ionization of argon by metastable helium atoms. If one assumes with Micha \textit{et al.} that the electron comes off in a Sigma orbital, the conservation of angular momentum along the interatomic axis permits only the formation of the sigma state of the molecule5. One then expects to find that the $m = 0$ levels of the $\text{Sr}^+ (^2P_{3/2})$ ion, referenced to the collision axis, are preferentially populated. If the scattering cross section is nonisotropic, i.e., if the distribution of the orientations of the molecular axes at ionization is anisotropic, then the light emitted by the radiative decay of the $\text{Sr}^+ (^2P_{3/2})$ ions reveals this anisotropy through the polarization of the emitted light. The ion alignment with respect to the beam axis is a coherent state of the ion formed in the Penning process.

Total cross sections for energy transfer collisions are relatively easy to make. Much work on the experimental and theoretical aspects of these measurements has been done in this laboratory and by other workers11. On the other hand, the effects of anisotropic distributions and nonrandom populations are considerably more difficult to observe experimentally. Consequently, much less work has been done in this area. To date, most of the related work involves energetic ion-neutral collisions, but recently some neutral-neutral systems have also been studied12. The observation of polarized line radiation in a neutral-neutral collision of the second kind, Penning ionization, is reported here for the first time13.

\textbf{Energy Loss Processes at High Pressure}

In the afterglow of a high power, the high pressure pulsed discharge, energy loss mechanisms can occur within the context of the collisional-radiative recombination model14. Modeling studies of high power laser systems have focussed attention on the lack of..
adequate knowledge of many of the rate constants, which must be incorporated into the
model. In particular, collisional-radiative and dissociative recombination processes
in these systems play a very important role in determining the electron energy distribu-
tion. Excited state and ion populations and the gain of these discharge excited mediums
depend sensitively on the competition between multistep ionization/excitation by fast
electrons and the recombination processes.15

In more general terms, recombination processes represent loss mechanisms for ions
and electrons in high pressure plasmas, such as are present in MHD converters, fusion
plasmas, and rocket exhaust plumes.

In the C-R model, the upper energy levels are in Saha equilibrium with the ions and
electrons. This implies that their populations will have a Maxwell-Boltzmann distribution.
The electron density and electron temperature can then be calculated from the excited state
densities according to the Saha equation. And, if the excited states remain in Saha equili-
brium as the plasma decays, one can obtain a temporal display of the density and tempera-
ture in the afterglow of the pulsed discharge.

In general, it is difficult to obtain a uniform discharge at high buffer gas pressure
(> atmosphere). Consequently, we have developed a laser-induced plasma technique in
which energy loss mechanisms due to C-R recombination can be observed.16

This new technique has been applied to the study of volume recombination processes
in alkali and alkali-rare gas mixtures. Resonant two-photon ionization of the alkali atom
creates a well-defined line source of charge in the vapor cell. The time dependent decay
of electron density or optical emission from excited states of the alkali atom are monitored
in the afterglow of the fast laser pulse.
PROGRESS DURING THIS CONTRACT PERIOD

The following research accomplishments are described in terms of articles that we have had published or are in the various stages of publishing. The manuscript titles and abstracts along with their current status are listed in the following section on Publications.

Manuscripts A and C listed in the next section describe the results of polarization measurements on the optical radiation produced in two classes of collisions. In the first class, an 800 eV He(1S0) atom beam produces excited neutral states in Ca and Sr targets by collisions of the first kind. In the second class, a thermal beam of helium metastable atoms produces excited ions of Ca, Sr, and Ba by collisions of the second kind—Penning ionization. In both cases, the optical radiation from the excited product target states was measured and found to have a net linear polarization with respect to the beam axis. The observation of polarization of line radiation in both classes of collisions is a sensitive measure of the populations of angular momentum states immediately after the collision and of the angular distribution of the collision axes with respect to the beam direction. In manuscript C, a theoretical framework is developed that relates the state populations and the collision axis distribution to the observed polarization in the Penning collisions.

Manuscripts B and D describe the results of lifetime measurements for a neutral level of Ca and Sr and an ion level of Sr. The measurements utilized the Hanle effect or zero field level crossing techniques. The necessary excited state coherence, which in this case results in polarized emission, was produced by the same collisions described above. Such measurements demonstrate the usefulness of polarized, target state emission beyond the understanding of the collision process. The Sr ion level measurement represents the first such measurement in which thermal energy collisions of the second kind were used to pre-
pare the excited state.

Manuscript E describes the results of cross section measurements made for helium metastable atoms incident on Cd and Zn by using the ion collection method. A specially designed oven containing the target vapor was used in order to provide a well-defined target line-density. The only previous measurements of these cross sections were obtained from pulsed stationary afterglow experiments. The measurement of a total quenching cross section adds important information to the knowledge of the specific collision process and serves to complement the excited state alignment measurements.

Manuscript F describes the results of optical emission measurements made on Cd, Zn, and Sr targets excited by excitation transfer from a thermal nitrogen metastable beam. From the variation of the intensity from the target states as a function of the energy of the state, the vibrational temperature of the metastable nitrogen was inferred. This experiment demonstrates a sensitive beam-diagnostic method to measure the vibrational temperature of a thermal, molecular metastable beam. Such a diagnosis is necessary if the alignment measurements described for the atomic beams are to be extended to molecular systems.

In addition to the radiation intensity measurements, linear polarization measurements were made on the emission lines of Cd, Zn, and Sr excited by the nitrogen beam. The measurements were limited to the strongest emission lines and in all cases yielded a null result.

Central to the studies reported here is a reliable and versatile atomic and molecular beam source with a high flux output. As part of this work, such a beam source was developed to produce energetic ground state beams and thermal rare-gas and molecular metastable
beams. The metastable source design is described in manuscript C.

Coherence transfer is the subject of manuscript H. The work on recombination is described in manuscript I. A related laser article is given in J.

PUBLICATIONS ISSUED DURING THIS CONTRACT PERIOD

The following list gives the titles of the manuscripts mentioned above.

E. "Total Penning Ionization Cross Sections of Cd and Zn for Helium Metastable Atoms", Journal of Chemical Physics, in press.

G. "High Flux Beam Source of Thermal, Rare-Gas Metastable Atoms", Journal of Physics E, in press.

OTHER PRESENTATIONS

In addition to the refereed publications indicated here, oral presentations were made at the DEAP and the Gaseous Electronics Conference.

PROGRESS REPORT: SUMMARY

1. A thermal energy, high flux, metastable beam source was designed and constructed. The source provides helium, argon, neon, and molecular nitrogen metastable beams. The beam characterization includes particle detection which yields mean energy, absolute flux, and energy spread and optical detection from the target region, which is used to identify the beam composition and the vibrational distribution in the case of molecular nitrogen.

2. A beam-gas cell arrangement was designed and constructed that permits absolute Penning cross sections to be made. It is particularly useful when channels for metastable quenching are available that involve processes other than Penning ionization. The number of ions can be counted directly, and the metastable loss rate monitored in transmission experiments.

3. Angular anisotropies in excited state distributions have been observed in collisions of both the first and second kind. Such angular anisotropies appear as polarization of
the line radiation produced in the beam collision process. The nonsymmetric excited state distributions had not been observed in second kind collisions prior to this work.

4. The coherent excitation of excited states in these collisions has permitted us to observe Hanle (zero-field Level crossing) signals in some of the Group II metal atoms. These represent the first and only reports of Hanle signals obtained in neutral-neutral beam interactions and represent an extension of the Hanle method for lifetime measurements to new collisional systems.

5. The observed polarization of the optical emission can be related to the alignment produced in the collision process. We have also shown theoretically that the measurement of the ion alignment and a knowledge of the interaction potential can be used to deduce the relative populations of the quasi-molecular states formed during the Penning collision.
PERSONNEL DURING THE CONTRACT PERIOD
(December 1978 to November 1979)

Dr. L. D. Schearer
Dr. W. F. Parks
Dr. Leo Lam, postdoctoral position
Dr. Javed Hussain, postdoctoral position
Mr. David Fahey, graduate student
Mr. Danny Krebs, graduate student
Mr. Howard Cole, graduate student
Mr. Dean Blankenship, graduate student

Advanced Degrees

Mr. Fahey completed the requirements for a Ph.D. degree in October. He has accepted the award of a National Research Council Fellowship to work with Dr. Fehoenfeld at NOAA Laboratories in Boulder, Colorado and has joined the NOAA staff.
APPENDICES

Abstracts of Publications
APPENDIX A

NON-STATISTICAL EXCITATION OF THE MAGNETIC SUBSTATES
OF THE \(^1P_1 \) LEVEL OF GROUP II METAL ATOMS IN COLLISION
WITH 800 eV HELIUM ATOMS

D. W. Fahey and L. D. Schearer

A large polarization has been observed for the emission lines of strontium and calcium excited by a beam of neutral helium atoms with 800 eV lab energy. The measured value of 15% indicates a preferential population of the magnetic substates of the correlated atom states of the target species. Depolarization of the emission in a magnetic field has been observed demonstrating the feasibility of Hanle-type lifetime measurements.
APPENDIX B

HANLE LIFETIME MEASUREMENTS OF SrI 1P_1 AND CaI 1P_1
LEVELS EXCITED BY A NEUTRAL BEAM OF $^{1S_0}_0$ HELIUM ATOMS

D. W. Fahey, W. F. Parks, and L. D. Scheerer

A 0.8 keV He($^{1S_0}_0$) beam was used to coherently excite the 1P_1 levels of Sr and Ca targets. The coherence appears as an alignment of the excited state with respect to the beam axis. We report here the results of a Hanle measurement, or a zero-field level-crossing experiment, performed on these coherently excited levels. The radiative lifetimes of the SrI 1P_1 and CaI 1P_1 levels were measured to be 4.7 ns and 5.3 ns, respectively. These values are in good agreement with conventional Hanle measurements.
We have observed the alignment of the \(5p^2P_{3/2}^-\) state of strontium ions produced in Penning collisions between an unpolarized beam of helium metastable atoms and a strontium vapor target. The alignment is shown by a linear polarization of the optical emission from the excited ion. For a 66 meV beam of helium metastable atoms we measure a 3.5% linear polarization of the emission relative to the beam axis. We indicate how the alignment may be used to determine the probabilities for populating the various final quasi-molecular states of the ion-atom pair. The alignment of the Penning ions is an important new parameter in the description of these reactions.
APPENDIX D

THE HANLE EFFECT IN PENNING EXCITED IONS

D. W. Fahey, W. F. Parks, and L. D. Schearer

A thermal beam of helium (\(^{2}S_{\frac{3}{2}}\)) metastable atoms was used to coherently excite the \(^{2}P_{\frac{3}{2}}\) levels of Ca, Sr, and Ba in a Penning ionizing collision. The coherent excitation of the ions appears as a linear polarization of the optical emission from the excited ions. The degree of linear polarization is 5.5, 3.5, and 0.5% for Ca, Sr, and Ba, respectively, with the polarization parallel to the beam direction. Hanle effect signals from the \(^{2}P_{\frac{3}{2}}\) level of Sr were observed and the radiative decay rate measured.
APPENDIX E

TOTAL PENNING IONIZATION CROSS-SECTIONS
OF Cd AND Zn FOR He(2^3S_1) ATOMS

D. W. Fahey, W. F. Parks, and L. D. Schearer

The total Penning ionization cross-sections for Cd and Zn for He(2^3S_1) atoms have been measured. The method used was that of Penning ion collection from a vapor cell through which a He(2^3S_1) beam was passed. The beam energy was 66 meV with a velocity spread of 45%. The measured cross-sections were 106 and 35 Å² for the Cd and Zn targets, respectively.
Excitation of the electronic levels of Cd, Zn, and Sr is observed when these metal vapors collide with a thermal-energy, active nitrogen beam. The beam is extracted from a glow discharge in pure N\textsubscript{2}. The active beam component is inferred to be vibrationally excited N\textsubscript{2} in the A 3 \Sigma\text{u}+ electronic state. The absolute relative intensity of the emission lines in each element was measured. The excitation rates of the Cd and Zn target levels were found to depend exponentially on their energies indicating an effective temperature of approximately 4000°K. We believe that this temperature is related to the vibrational temperature of the N\textsubscript{2}(A 3 \Sigma\text{u}+) states that excite Cd and Zn in energy transfer collisions. The excitation rates of the Sr levels did not show an exponential energy dependence, which is a result consistent with N\textsubscript{2}(A 3 \Sigma\text{u}+) as the active species. The potential of such an emission study as a sensitive beam diagnostic is noted.
APPENDIX G

HIGH FLUX BEAM SOURCE OF THERMAL RARE-GAS METASTABLE ATOMS

D. W. Fahey, W. F. Parks, and L. D. Schearer

A high flux beam source has been constructed for the production of helium, neon, and argon metastable atoms. The source is a dc electric discharge maintained in an expanding gas. A metastable flux of 3.5×10^{14}, 1.5×10^{14}, and 7.2×10^{13} atoms/s sr has been achieved with most probable energies of 66, 72, and 74 meV for the helium, neon, and argon sources, respectively. Time of flight measurements showed the widths of the respective velocity distributions to be 45%, 27%, and 27%. The beam composition was determined with the use of particle multipliers and by the observation of the optical excitation produced in certain metal vapor targets.
APPENDIX H

SPIN AND COHERENCE TRANSFER IN PENNING IONIZATION

L. D. Schearer and W. F. Parks

The Penning ionization process has been effectively used as a mechanism for energy transfer from one species to another. Penning processes are special cases of collisions of the second kind in which a portion of the internal energy of the first species is utilized to ionize and excite the second species. This mechanism has been successfully applied in the He–Cd and He–Zn lasers, in which the laser levels are excited states of the Cd or Zn ions which have been populated by the Penning collision between helium metastable atoms and the Cd or Zn ground–state neutral atom. The Penning process has also been used as a convenient and efficient source of ground–state ions. In a recent series of measurements ensembles of ground–state ions of Mg, Ca, Zn, Sr, Cd, and Ba were formed with sufficient densities to perform conventional Hanle experiments. In this way the radiative lifetimes and depolarization cross sections of the first excited $^2P_{3/2}$ states of the ions were determined.

In this article we discuss the phenomenon of spin exchange and coherence transfer in the population of the Zeeman levels of ions by the Penning ionization process.
APPENDIX I

LASER INITIATED AFTERGLOW IN A HIGH PRESSURE K-Kr MIXTURE

L. K. Lam and L. D. Scheerer

We ionized potassium atoms in a K-Kr ([K] = 6 \times 10^{14} \text{ cm}^{-3}; [Kr] = 2 \times 10^{19} \text{ cm}^{-3}) mixture with a 120 \mu J, 404 nm dye laser pulse in a stepwise absorption process and monitored the fluorescence spectra as a function of time. We saw a fast (\ll 20 \text{ ns}) initial component due to electron excitation and a slow decay tail (\approx 10 \mu s) due to electron ion recombination.
APPENDIX J

Institute of Electrical and Electronics Engineers Journal of Quantum Electronics, 1979 (in press).

INJECTION-LOCKED DYE LASER PUMPED BY A XENON-ION LASER

E. R. Carney, D. W. Fahey, and L. D. Schearer

Injection-locking of a dye laser is reported for a 4-mirror ring-cavity dye laser pumped by a xenon-ion laser. Both a He-Ne laser and tunable CW dye laser were used as the injection sources.