Preliminary Report of Numerical Simulations of Intermediate Wavelength $\mathbf{E}\times\mathbf{B}$ Gradient Drift Instability in Ionospheric Plasma Clouds

M. J. Keskinen and S. L. Ossakow
Geophysical and Plasma Dynamics Branch
Plasma Physics Division

AND

P. K. Chaturvedi
Berkeley Research Associates
Arlington, Virginia 22209

December 7, 1979

This research was sponsored partially by the Defense Nuclear Agency under subtask S99QAXHC041, work unit 12 and work unit title Ionization Structured Research; and partially by the Office of Naval Research.
Preliminary Report of Numerical Simulation of Intermediate Wavelength ExB Gradient Drift Instability in Ionospheric Plasma Clouds

Title:
PRELIMINARY REPORT OF NUMERICAL SIMULATION OF INTERMEDIATE WAVELENGTH ExB GRADIENT DRIFT INSTABILITY IN IONOSPHERIC PLASMA CLOUDS

Authors:
M. J. Keskinen*, S. L. Ossakow and P. K. Chaturvedi†

Summary:
Two-dimensional numerical simulations of intermediate wavelength (100-1000m) ExB gradient-drift instability in local unstable regions of large F region ionospheric plasma clouds have been performed, using an initial one-dimensional (y), cloud geometry, for plasma cloud density gradient scale lengths $L = 3, 6, 10$ km. For conditions typical of 200 km barium releases, we find that linearly unstable modes saturate by nonlinear generation of linearly damped modes along the y-direction (parallel to ExB drift). In the nonlinear regime, power laws are observed in the...
18. Supplementary Notes (Continued)

This research was sponsored partially by the Defense Nuclear Agency under subtask S99QAXHCO41, work unit 12 and work unit title Ionization Structured Research; and partially by the Office of Naval Research.

19. Abstract (Continued)

one-dimensional parallel $P(k_y) \propto k_y^{-n_y}$ and perpendicular $P(k_x) \propto k_x^{-n_x}$ power spectra with $n_x \approx 2.3$ and $n_y \approx 2.25$. These results are compared with recent in situ experimental measurements and theoretical predictions.
CONTENTS

INTRODUCTION .. 1
MODEL EQUATIONS .. 2
 Numerical Simulations 3
SUMMARY .. 6
ACKNOWLEDGMENT ... 7
REFERENCES ... 8
INTRODUCTION

Barium cloud injection experiments [Rosenberg, 1971; Davis et al., 1974] have provided much data concerning the dynamical evolution of plasma clouds in the F region ionosphere. The characteristic steepening, elongation, and striation of barium plasma clouds have been explained by applying the ExB gradient-drift instability [Simon, 1963] to plasma cloud geometries [Haerendel et al., 1967; Linson and Workman, 1970; Volk and Haerendel, 1971; Perkins et al., 1973]. Numerical solution of the fundamental fluid equations modelling the ExB instability in plasma clouds have reproduced not only the large scale gross observational features of plasma cloud evolution [Zabusky et al., 1973; Lloyd and Haerendel, 1973; Goldman et al., 1974; Doles et al., 1976; Ossakow et al., 1975, 1977] but also the spatial power spectra [Scannapieco et al., 1976] and minimum scale sizes of plasma cloud striations [McDonald et al., 1978]. However, the goal of these numerical simulations was to model the dynamics of the entire plasma cloud and wavelengths less than about a kilometer were not accurately resolved. But barium cloud experiments sponsored by the Defense Nuclear Agency have shown [Baker and Ulwick, 1978; Kelley et al., 1979] that the power spectra of the plasma cloud striations extends to wavelengths on the order of meters to tens of meters. It is of interest to numerically model these intermediate wavelength (100-1000 m) irregularities in order to compare with and supplement experimental observations.

Note: Manuscript submitted October 5, 1979.
In this preliminary report we present a two-dimensional numerical simulation of the intermediate wavelength ExB gradient-drift instability applicable to local unstable regions of large F region barium plasma clouds. The results of these simulations will be shown to be consistent with experimental and theoretical studies of striated barium clouds and, in many respects, similar to recent numerical simulations [Keskinen et al., 1979] of the intermediate wavelength collisional Rayleigh-Taylor instability in local regions of the bottomside of the equatorial F region ionosphere.

MODEL EQUATIONS

We wish to model two-dimensional ExB gradient-drift processes in local unstable regions of large ionospheric F region plasma clouds. The restriction to large clouds (large Pedersen conductivity compared with that of the background ionosphere) permits both the neglect of the cloud interaction with the background ionosphere (second level) and variations of cloud density and potential along the magnetic field lines. For wavelengths greater than the ion-gyroradius (approximately 10 m for Ba+ in the twilight F region) a fluid description can be used which equations have been given previously [Perkins et al., 1973; McDonald et al., 1978; Chaturvedi and Ossakow, 1979].

By adopting a Cartesian coordinate system (x,y,z) with the geomagnetic field \mathbf{B} in the z-direction, the ambient electric field \mathbf{E} along the x-axis, and ignoring to lowest order electron and ion inertia, we can write after transforming to the $c\mathbf{E} \times \mathbf{B}/\mathbf{B}^2$ frame
\[
\frac{\partial n}{\partial t} - \frac{c}{B} \nabla \varphi_1 \times z \cdot \nabla n = \frac{2cT}{eBk_e} \nabla^2 n
\]
(1)

\[
\nabla \cdot n \varphi_1 + \frac{T}{e} \nabla^2 n = E_o \cdot \nabla n
\]
(2)

where \(n(x,y,t) \) is the plasma cloud ion density, \(\varphi_1(x,y,t) \) is the electrostatic potential of the plasma cloud, \(k_{e}^{-1} = k_{en}^{-1} + k_{ei}^{-1} \), \(k_{e} = \Omega_e / \nu_{e} \), with \(\nu_{en} \), \(\nu_{ei} \) the electron collision frequencies with neutrals and ions, respectively, and \(T_e = T_i = T \) is the temperature. All other symbols retain their conventional meaning. By linearizing (1) and (2) and expressing \(n = n_o + n_1 \) with \(n_1, \varphi_1, \varphi \) exp

\[
i(k_{x} x + k_{y} y) + \gamma \kappa t], \quad k \cdot B = 0, \quad k L >> 1 \text{ we find}
\]

\[
\gamma_k = (cE_o / BL) (k_x /k)^2 - (\nu_{en} + \nu_{ei}) (k^2 C_s^2 / \Omega_e \Omega_i)
\]

where \(L^{-1} = (1/n_o) (\partial n_o / \partial y) \), \(k^2 = k_{x}^2 + k_{y}^2 \), \(C_s^2 = T/m_i \). We note that the growth rate \(\gamma_k \) maximizes for modes perpendicular to the density gradient \((k = k_x) \) while the modes parallel to the density gradient \((k = k_y) \) are damped by cross-field diffusion.

Numerical Simulations

By defining \(n'(x,y) = n(x,y)/n_o(y) \), \(\varphi_1'(x,y) = \varphi_1(x,y)/BL \), \(x' = x/L, y' = y/L, t' = ct/L \), where \(n_o(y) \) will be defined later, equations (1) and (2) can be written in dimensionless form as follows (after dropping primes for clarity)
\[\frac{\partial n}{\partial t} - \left(\frac{\partial \varphi}{\partial y} \frac{\partial n}{\partial x} + \frac{\partial \varphi}{\partial x} \frac{\partial n}{\partial y} \right) = - \frac{n}{n_o} \frac{\partial n_o}{\partial y} \frac{\partial \varphi}{\partial x} \]

\[+ \beta_1 \left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2} + \frac{2}{n_o} \frac{\partial n_o}{\partial y} \frac{\partial n}{\partial y} + \frac{n}{n_o} \frac{\partial^2 n}{\partial y^2} \right) \] (3)

\[\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \left(\frac{\partial n}{\partial x} \frac{\partial \varphi}{\partial y} + \frac{\partial n}{\partial y} \frac{\partial \varphi}{\partial x} \right) = - \beta_2 \frac{1}{n} \frac{\partial n}{\partial x} \] (4)

where \(\beta_1 = \frac{2T}{eB} K \) and \(\beta_2 = \frac{E_o}{B}, \beta_3 = \frac{T}{eBL} \) are dimensionless constants.

Equations (3) and (4) were solved numerically. The normalized plasma cloud density \(n/n_o \) in (3) was advanced in time using a variable time step flux-corrected predictor-corrector scheme [Zalesak, 1979] which is basically second order in time and fourth order in space. Equation (4) was solved for the cloud potential \(\varphi(x,y) \) at each time step using a regridded Chebychev relaxation method [McDonald, 1977]. The results to be presented here were obtained using mesh of 64 x 64 grid points with constant spacing \(\Delta x = \Delta y = 15 \) m. Periodic boundary conditions were imposed on \(n/n_o \) and \(\varphi \) in both the x and y directions.

The parameters used in these simulations are typical of 200 km barium releases: \(T = 10^3 \) °K, \(\Omega_e = 9 \times 10^6 \) sec \(^{-1} \), \(\Omega_i (\text{Ba}^+) = 36 \) sec \(^{-1} \), \(B = 0.5 \) G, \(E_o = 2 \) mV/m, \(v_e = 2 \times 10^3 \) sec \(^{-1} \), \(v_m = 150 \) sec \(^{-1} \) [Banks and Kockarts, 1973; McDonald et al., 1978].
Three different computer runs were made using different values of the equilibrium plasma cloud density gradient scale length $L = 3, 6, 10$ km where $n_0(y) = N_0 \left(1 + y/L \right)$, N_0 constant, is a steady state $(\partial/\partial t = 0)$ solution of (1) and (2). The simulations were initialized with a two-dimensional perturbation of the form [Chaturvedi and Ossakow, 1979] $\delta n(x,y,t=0)/n_0 = A_1,1 \sin k_y \cos k_x + A_2,0 \sin 2k_y$ with $k_x = k_y = 2\pi/960$ m with $A_1,1 = 2 \times 10^{-5}$ and $A_2,0 = 2 \times 10^{-6}$ (where $\delta n \equiv n-n_0$). We will now present the important nonlinear results of these simulations.

Fig. 1a gives an isodensity contour plot of $\delta n((x,y)/n_0$ in the x-y plane at $t = 0$ for $L = 3$ km. The initial contours describe a sequence of enhancements ($\delta n/n_0 > 0$) and depletions ($\delta n/n_0 < 0$) arranged in a checkerboard fashion. Fig. 1b and 1c show the evolution of $\delta n/n_0$ at $t = 1500$ and 1800 sec, respectively. The density fluctuation contours of $\delta n/n_0$ at $t = 2000$ sec are displayed in Fig. 1d where some elongation in the y-direction (ExB) and steepening can be seen. Similar contour development was also observed for the other two plasma cloud density gradient scale lengths $L = 6, 10$ km but on longer time scales.

Figs. 2a-b show representative one-dimensional power spectra both parallel $P(k_y)$ to the ExB drift and perpendicular $P(k_x)$ in the nonlinear late time regime for $L = 6$ km. These power spectra are defined as follows
\[
\begin{align*}
P(k_x) &= \int \frac{dk_y}{2\pi} \left| \frac{\delta n(k_x, k_y)}{n_o} \right|^2 \\
P(k_y) &= \int \frac{dk_x}{2\pi} \left| \frac{\delta n(k_x, k_y)}{n_o} \right|^2
\end{align*}
\]

In the late time nonlinear state for the three scale lengths \(L = 3, 6, 10 \) km, \(P(k_x) \propto k_x^{-n_x} \) and \(P(k_y) \propto k_y^{-n_y} \) with \(n_x \approx 2-3 \) and \(n_y \approx 2-2.5 \) for wavelengths \(\lambda = 70-960 \) m. These spectral indices are consistent with recent in situ experimental measurements [Baker and Ulwick, 1978; Kelley et al., 1979] and analytical studies [Chaturvedi and Ossakow, 1979] of barium cloud striations.

Finally, Fig. 3 presents the time history of modes \(A_{1,1} \) and \(A_{2,0} \) for \(L = 10 \) km. Initially the \(A_{2,0} \) mode along the \(\mathbf{E \times B} \) (density gradient) direction damps as given by linear theory. As the linearly unstable \(A_{1,1} \) increases it nonlinearly triggers the growth of \(A_{2,0} \). At late times these modes arrange themselves in approximate agreement with the nonlinear amplitudes predicted by Chaturvedi and Ossakow [1979]. Similar time development of \(A_{1,1} \) and \(A_{2,0} \) are observed for \(L = 3, 6 \) km.

SUMMARY

We have performed preliminary numerical simulations of the intermediate wavelength \(\mathbf{E \times B} \) gradient-drift instability in local unstable regions of large F region ionospheric plasma clouds using parameters typical of 200 km barium releases. For barium cloud density gradient scale lengths \(L = 3, 6, 10 \) km we find that: (1) linear unstable
modes saturate by nonlinear excitation of linearly damped modes along the y direction parallel to $\mathbf{E}_x \times \mathbf{B}$ drift and the initial cloud density gradient; (2) in the nonlinear well developed state elongation along the $\mathbf{E}_x \times \mathbf{B}$ direction is seen; (3) the one-dimensional power spectra $P(k_x) \propto k_x^{-n_x}$ and $P(k_y) \propto k_y^{-n_y}$ with $n_x \approx 2-3$ and $n_y \approx 2-2.5$ for wavelengths $\lambda = 70-960$ m. These results are consistent with recent barium cloud experimental measurements [Baker and Ulwick, 1978; Kelley et al., 1979]; support the nonlinear analytical work of Chaturvedi and Ossakow [1979]; and show furthermore the similarity between the $\mathbf{E}_x \times \mathbf{B}$ gradient drift instability in ionospheric plasma clouds and the collisional Rayleigh-Taylor instability in the equatorial F region ionosphere.

Future studies are planned which include variation of the parameters used in these simulations, addition of inertial effects, and inclusion of the cloud interaction with the background ionosphere (second level).

Acknowledgements

We wish to thank B. E. McDonald for useful discussions. This work was supported by the Defense Nuclear Agency and the Office of Naval Research.

Ossakow, S.L., S.T. Zalesak, and N.J. Zabusky, Recent results on cleavage, bifurcation, and cascade mechanisms in ionospheric

Fig. 1 - Isodensity contours for $L = 3$ km at (a) $t = 0$, (b) $t = 1500$, (c) $t = 1800$, and (d) $t = 2000$ sec. Solid lines denote $\delta n/n > 0$; dashed lines denote $\delta n/n < 0$. All contours are evenly spaced with the y axis vertical (parallel to $E \times B$ and initial cloud density gradient) and x axis horizontal (perpendicular to $E \times B$). The tick marks represent grid point locations.
Fig. 1c - Isodensity contours of $\delta n/n$ for $L = 3$ km at (a) $t = 0$, (b) $t = 1500$, (c) $t = 1800$, and (d) $t = 2000$ sec. Solid lines denote $\delta n/n > 0$; dashed lines denote $\delta n/n < 0$. All contours are evenly spaced with the y axis vertical (parallel to E_xB and initial cloud density gradient) and x axis horizontal (perpendicular to E_xB). The tick marks represent grid point locations.
Fig. 2 - One dimensional perpendicular (a) $P(k_x)$ and parallel (b) $P(k_y)$ power spectra vs k_x and k_y, respectively, for $L = 6$ km in late time regime ($t = 3150$ sec.). Solid line is least squares fit to results from numerical simulation (dots) and $k_0 = 2\pi/960$ m is the fundamental wave number.
Fig. 3 — Time history of mode amplitudes $A_{2,0}$ (along initial cloud density gradient) and $A_{1,1}$ for $L = 10$ km where $A_{m,n} = A_{m k_{ox}, n k_{oy}}$ and $k_{ox} = k_{oy} = 2\pi/960$ m. The horizontal solid lines are the steady state amplitudes $A_{1,1}^{TH}$ and $A_{2,0}^{TH}$ from the theory of Chaturvedi and Ossakow [1979].
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CD, CONT & INTELL
WASHINGTON, D.C. 20301
01CY ATTN J. BARCOO
01CY ATTN M. EPSTEIN

ASSISTANT TO THE SECRETARY OF DEFENSE
ATOMIC ENERGY
WASHINGTON, D.C. 20301
01CY ATTN EXECUTIVE ASSISTANT

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R820
01CY ATTN CODE R410 JAMES W. MCELEAN
01CY ATTN CODE R720 J. WORTHINGTON

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, D.C. 20305
(ADR CNWDI: ATTN CODE 240 FOR)
01CY ATTN CODE 101B

DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
(12 COPIES IF OPEN PUBLICATION, OTHERWISE 2 COPIES)
12CY ATTN TC

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, D.C. 20301
01CY ATTN DT-1B
01CY ATTN DB-4C E. D'FARRELL
01CY ATTN DIAP A. WISE
01CY ATTN DIAT-5
01CY ATTN DT-1B2 R. MORTON
01CY ATTN HQ-TR J. STEWART
01CY ATTN H. WITTIG DC-7D

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN JOST
05CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68118
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P. O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

DIRECTOR
NATIONAL SECURITY AGENCY
DEPARTMENT OF DEFENSE
FT. GEORGE G. MEADE, MD 20755
01CY ATTN JOHN SKILLMAN R52
01CY ATTN FRANK LEONARD
01CY ATTN W14 PAT CLARK
01CY ATTN DIVER H. BARTLETT W32
01CY ATTN R5

COMMANDANT
NATD SCHOOL (SHAPE)
APD NEW YORK 09712
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (DS)

WMSCS SYSTEM ENGINEERING DRG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-ED F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P. O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 18269
WASHINGTON, D.C. 20310
01CY ATTN DRESL-C-E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-HD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J. E. QUIGLEY

15
GENERAL ELECTRIC TECH SERVICES CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
OICY ATTN G. MILLMAN

GENERAL RESEARCH CORPORATION
SANTA BARBARA DIVISION
P.O. BOX 6770
SANTA BARBARA, CA 93111
OICY ATTN JOHN ISE JR
OICY ATTN JOEL GARBARINO

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
OICY ATTN T. N. DAVIS (UNCL ONLY)
OICY ATTN NEAL BROWN (UNCL ONLY)
OICY ATTN TECHNICAL LIBRARY

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
OICY ATTN MARSHAL CROSS

ILLINOIS, UNIVERSITY OF
DEPARTMENT OF ELECTRICAL ENGINEERING
URBANA, IL 61803
OICY ATTN K. YEH

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
801 S. WRIGHT STREET
URBANA, IL 61801
OICY ATTN K. YEH (ALL CORRESP ATTN SECURITY SUPERVISOR FOR)

INSTITUTE FOR OFFENSE STUDIES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
OICY ATTN J. M. AIN
OICY ATTN ERNEST BAUER
OICY ATTN HANS WOLFHARD
OICY ATTN JOEL BENGSTON

ISS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
OICY ATTN DONALD HANSEN

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
OICY ATTN TECHNICAL LIBRARY

JAYCOR
1401 CAMINO DEL MAR
DEL MAR, CA 92014
OICY ATTN S. R. GOLDMAN

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
OICY ATTN DOCUMENT LIBRARIAN
OICY ATTN THOMAS POTEMKA
OICY ATTN JOHN JASSOYAS

LOCKHEED MISSILES & SPACE CO INC
P.O. BOX 504
9000 CHARLOTTE VILLAGE
SAN ANTONIO, TX 78216
OICY ATTN DEPT 60-12
OICY ATTN D. R. CROCE MILL

LOCKHEED MISSILES AND SPACE CO INC
3251 MANHATTAN STREET
PALO ALTO, CA 94304
OICY ATTN MARTIN WALTER DEPT 52-10
OICY ATTN RICHARD G. JOHNSON DEPT 52-12
OICY ATTN W. L. MACK DEPT 52-12

KAMAN SCIENCES CORP
P.O. BOX 7433
COLORADO SPRINGS, CO 80933
OICY ATTN T. MEAGHER

LINKABIT CORP
13043 ROSELLI
SAN DIEGO, CA 92121
OICY ATTN IAN JACOBS

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
OICY ATTN DAVID M. TOWLE
OICY ATTN P. WALDRON
OICY ATTN L. LOUGHLIN
OICY ATTN D. CLARK

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5373
ORLANDO, FL 32805
OICY ATTN R. HEFFNER

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
OICY ATTN N. HARRIS
OICY ATTN V. MOLE
OICY ATTN J. R. WILSON
OICY ATTN F. FAJEN
OICY ATTN M. SCHIEBE
OICY ATTN CONRAD L. LONGMIRE
OICY ATTN WARREN A. SCHUEITER

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
OICY ATTN P. FISCHER
OICY ATTN W. F. CREEVER
OICY ATTN STEVEN L. GUTSCHE
OICY ATTN D. BOUFA
OICY ATTN R. HENDRIX
OICY ATTN R. K. MILB
OICY ATTN F. FAJEN
OICY ATTN M. SCHIEBE
OICY ATTN CONRAD L. LONGMIRE
OICY ATTN WARREN A. SCHUEITER

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
OICY ATTN JOHN MORGANSTERN
OICY ATTN G. HARING
OICY ATTN C. E. CALLAMAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 OAKLEY MADISON BLVD
MCLEAN, VA 22101
OICY ATTN W. HALL
OICY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
1650 CLOVERFIELD BLVD.
SANTA MONICA, CA 90404
OICY ATTN E. C. FIELI JR

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(ALL CLASSIFIED TO THIS ADDRESS)
OICY ATTN IONOSPHERIC RESEARCH LAB

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
OICY ATTN P. FISCHER
OICY ATTN W. F. CREEVER
OICY ATTN STEVEN L. GUTSCHE
OICY ATTN D. BOUFA
OICY ATTN R. HENDRIX
OICY ATTN R. K. MILB
OICY ATTN F. FAJEN
OICY ATTN M. SCHIEBE
OICY ATTN CONRAD L. LONGMIRE
OICY ATTN WARREN A. SCHUEITER

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
OICY ATTN JOHN MORGANSTERN
OICY ATTN G. HARING
OICY ATTN C. E. CALLAMAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 OAKLEY MADISON BLVD
MCLEAN, VA 22101
OICY ATTN W. HALL
OICY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
1650 CLOVERFIELD BLVD.
SANTA MONICA, CA 90404
OICY ATTN E. C. FIELI JR

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(ALL CLASSIFIED TO THIS ADDRESS)
OICY ATTN IONOSPHERIC RESEARCH LAB