COEFUV: A COMPUTER IMPLEMENTATION OF A GENERALIZED UNMANNED VEHICLE COST MODEL

OCTOBER 1978

MAJOR THOMAS M. BOMBER, USAF
MR. CHRISTOPHER A. FEUCHTER

DIRECTORATE OF AEROSPACE STUDIES
DCS DEVELOPMENT PLANS, HQ AFSC
KIRTLAND AFB, NEW MEXICO 87117
In September of 1977, the Directorate of Aerospace Studies (DAS) undertook an analysis to illuminate fundamental differences between manned and ground-launched, recoverable unmanned airborne vehicle operations. The potential to save operating and support (O&S) costs by storing unmanned vehicles and removing them from storage when needed was found to be foremost among the differences. However, the implications of such a difference were not obvious and a detailed analysis was needed before they could be understood. It was found that the biggest shortcoming to such an analysis was the lack of a suitable unmanned vehicle cost methodology. This report documents the results of the efforts of DAS to fill that void by systematizing the calculation of the cost of doing a particular job with unmanned vehicles in a specified period of time. The calculations are based on the most well-developed unmanned vehicle operational concepts currently available. The methodology is unusual because the specific nature of the job to be done by the unmanned vehicles is not of concern. Only the number of sorties needed "on target" and the time to generate them are important.

Many DAS participants supported this effort. The authors wish to acknowledge Richard H. Anderson for the development of the effectiveness equations; Lt Col Winston M. Boyer and James H. Suttle for the development of the cost equations; Captain David K. Forbes for programming assistance; and Dr Kenneth W. Smith for his overall guidance and critical review.

CHRISTOPHER A. FEUCHTER
Operations Research Analyst

THOMAS M. BOMBER, Major, USAF
Operations Research Analyst

This guide has been reviewed and is approved for publication.

HARRY L. BOGAN
Technical Director

PAUL V. VALLERIE, Lt Col, USAF
Director of Aerospace Studies

DCS/Plans and Programs, HQ AFSC
This document summarizes a method of determining the cost and cost effectiveness of ground-launched, recoverable unmanned airborne vehicle (e.g., remotely piloted vehicle) operations in a tactical environment. The inputs and outputs of a computer code implementing the methodology are described in detail and a listing of the code is presented.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>THE THEORETICAL EQUATIONS</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>THE COST EQUATIONS</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>INPUT TO PROGRAM COEFUV</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>SAMPLE INPUTS AND OUTPUTS</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>APPENDIX: COMMENTED PROGRAM LISTING</td>
<td>56</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FUNDAMENTAL RELATIONSHIPS</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>TIME HISTORIES</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>A SAMPLE INPUT CASE FOR TYPE = 1</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS OF INTERMEDIATE CALCULATIONS</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>RESULTS OF MORE INTERMEDIATE CALCULATIONS</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>INTERMEDIATE COST RESULTS FOR (\eta_{CR})</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>THE FINAL RESULTS - THE MOST COST EFFECTIVE OPTION</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>A SAMPLE INPUT CASE FOR TYPE = 2</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>RESULTS OF INTERMEDIATE CALCULATIONS</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>RESULTS OF MORE INTERMEDIATE CALCULATIONS</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>THE FINAL RESULTS</td>
<td>55</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The prediction of costs of future manned aircraft operations, including the personnel, equipment, and facilities required is a procedure backed by decades of experience. The situation for costing future ground-launched, recoverable unmanned vehicle operations is quite different. While a minor amount of experience exists for unmanned vehicle programs based on the Viet Nam conflict and the on-going COMBAT ANGEL program at Davis-Monthan Air Force Base, there is not a generally accepted costing methodology for unmanned vehicles. This is especially true for operations involving large numbers of vehicles for no experience exists in this area. This situation has made a meaningful cost comparison between manned and unmanned vehicles virtually impossible.

In an attempt to rectify this shortcoming for a manned/unmanned vehicle operational comparison, the Directorate of Aerospace Studies (DAS) developed the effectiveness and costing methodology of the COEFUV (COst EFfectiveness of Unmanned Vehicles) model. The effectiveness methodology addresses a fundamental operational difference between manned and unmanned vehicle operations -- the ability to store unmanned vehicles for long periods of time prior to their use. The costing methodology represents an extensive application of analogy and first order analysis to determine from the most detailed unmanned vehicle operational concepts available the nature of the factors determining unmanned vehicle operational cost. For the costing, the following areas were identified as being characteristic of unmanned vehicles:

1. Vehicle Acquisition.
2. Operating Location.
3. Launch.
4. Recovery.
5. Maintenance.
6. Operations
7. Storage.
8. Training.
Figure 1 shows the fundamental relationship between model inputs, the effectiveness methodology, the costing methodology, and the final product which the model delivers.

The effectiveness and costing relationships for the COEFUV model are discussed in sections 2 and 3, respectively. Section 2 presents a set of equations which relate the mission to be accomplished by the unmanned vehicles, the time available to do the mission, and the number of vehicles required. Section 3 presents the costing equations developed by DAS for the eight cost areas mentioned previously. An equation for each area is given with the definition of each symbol, including the proper dimensions to avoid ambiguity. A brief discussion of each equation is also included.

The executive routine of COEFUV is built around the equations of section 2. The COST subroutine evaluates the equations of section 3 and the INPUT subroutine handles all program input. Program inputs are discussed in section 4. Section 5 illustrates typical inputs with some of the resulting output. The report is concluded with an appendix containing a commented program listing.
Figure 1. The relationship between major inputs, the effectiveness and cost equations, and the final model product.
2. THE THEORETICAL EQUATIONS

One of the fundamental differences between manned and ground-launched, recoverable unmanned vehicle operations is the potential to keep unmanned vehicles (U/V) in storage prior to the onset of hostilities and to retrieve them from storage as desired. This possibility provides options for the use of unmanned vehicles not available with manned vehicles. These options basically may be characterized by the number of vehicles initially ready to fly and the number initially in storage. The possible configurations run from the extreme of all vehicles initially ready to all vehicles initially in storage. The theory discussed below will treat the implications of these various configurations to the cost of doing a specific task in a fixed time. Two cases will be considered in the following discussion. They will be denoted as the target rich (optimization) case and the constant level of effort case. The computer code implements both.

To facilitate the presentation of the theory, seven basic quantities will be defined initially.

\[E_0 = \text{the job (mission) to be done, consisting of } E_0 \text{ subtasks.} \]

\[d_0 = \text{the number of days in which to do the } E_0 \text{ subtasks.} \]

\[p = \text{the expected number of the } E_0 \text{ subtasks done by each successful unmanned vehicle sortie.} \]

\[A = \text{the single sortie attrition of the unmanned vehicles.} \]

\[n = \text{the number of vehicles to be retrieved from storage each day.} \]

\[d_s = \text{the number of days vehicles are to be removed from storage.} \]

\[r_s = \text{the sortie rate maintained by a ready vehicle while it survives.} \]

With these definitions in mind, consider figure 2. Depicted heuristically in this figure are several time histories of the number of the launches per day
required in achieving E_0 in d_0 days. Curve a represents the situation of all vehicles initially ready. On the first day all vehicles are launched and recovered and relaunched repeatedly, as long as they survive, at the sortie rate r_s. On succeeding days, this pattern is repeated, beginning the day with the previous day's survivors. Curve b represents the case in which none of the vehicles are initially ready; all are in storage with n being removed each day. In this case as time progresses, more and more vehicles are ready on each successive day. Curve c represents the critical case of precisely the correct number of vehicles being initially ready that only enough vehicles need be removed from storage each day to replace the attrited vehicles. Finally, curve d depicts the situation where vehicles are withdrawn from storage for only d_s days. In the event that the removal rate from storage just replaces the losses for each of the d_s days as illustrated, then such cases will also be called critical cases.

1. A constant probability of survival is associated with all sorties.
It is obvious that each of these cases potentially has a different cost. The different launch and recovery rates, storage retrieval rates, storage costs, and so forth which are implied strongly indicate different system costs because of differing requirements for personnel, equipment, and facilities. Additionally, each different case will, in general, require a different total number of vehicles with a different acquisition cost. The equations of this section address the total vehicles required in storage \((N_s)\) and in readiness \((N_r)\) on the first day to do \(E_0\) in \(d_0\) days if \(n\) vehicles are retrieved from storage each day for \(d_s\) days, beginning the first day. Each ready vehicle is assumed to maintain a sortie rate \(r_s\). Equations giving the maximum required launch rate are also given.\(^1\)

\[
N_r = \frac{1}{1-P_s} \left(\frac{E_0 (1-P_s)}{r_s d_0} - d_s + \frac{r_s (d_0 - d_s)}{1-P_s} \right) \]

(1)

where

\[
P_s = \frac{1}{r_s} p_s p_{sl} p_{c1} p_{c2} p_{t2} p_{c2} = \text{single sortie survival probability of a vehicle}^2
\]

and

\[
P_{ls} = \text{the daily probability that a vehicle on the ground or its ground facilities are not destroyed.}
\]

\[
P_{sl} = \text{conditional probability that a vehicle survives ingress area defenses given that it reaches the ingress area defenses.}
\]

1. See Anderson, Richard H., The Effects of Force Augmentation on Launch Rate and Force Size Requirements for Recoverable Vehicles, DAS-WP-79-1, Directorate of Aerospace Studies, Kirtland AFB, NM, Jan 1979, for a complete discussion of the following equations.

2. The reference of footnote 1 does not consider terminal survival separately from area survival in the definition of \(P_s\), and also combines \(p_{c1} p_{c2} = p_c\).
P_{s2} = conditional probability that a vehicle survives egress area defenses given that it reaches the egress area defenses.

P_{t1} = conditional probability that a vehicle survives ingress terminal defenses given that it reaches the ingress terminal defenses.

P_{t2} = conditional probability that a vehicle survives egress terminal defenses given that it reaches the egress terminal defenses.

P_{c1} = conditional probability that a vehicle is not lost to a system failure during ingress given that it does not abort and is not destroyed by the ingress defenses.

P_{c2} = conditional probability that a vehicle is not lost to a system failure during egress (= P_{c1}) given that it does not abort and is not destroyed by ingress or egress defenses.

P_r = probability that a vehicle does not abort during ingress.

In the computer code the values of P_{s1} and P_{s2} are calculated from the input quantity PSS which represents the total mission attrition due to area defenses. It is assumed that ingress area attrition is twice egress area attrition whence

$$P_{s1} = \frac{-1 + \sqrt{1 + 8 \times PSS}}{2} \quad (2)$$

$$P_{s2} = \frac{1}{2} (1 + P_{s1}) \quad (3)$$

Similarly, P_{t1} and P_{t2} are calculated from the input quantity TPS representing total mission attrition due to terminal defenses.
\[P_{t1} = \frac{-1 + \sqrt{1 + 8 \times TPS}}{2} \]

\[P_{t2} = \frac{1}{2} (1 + P_{t1}) \]

The product is input as PC.

The number of vehicles required in storage at the start of the war is given by

\[N_s = \frac{d_s}{(1-P_{ls}^s)(1-P_s^s)} \]

(4)

Finally, the maximum number of launches required on a single day is given by

\[L_{max} = \frac{1}{1-P_s^s} \left\{ N_s (1-P_s^s) \right\} \]

(5)

in the case that the removal rate from storage is less than or equal to the critical removal rate associated with curve c of figure 1, and by

\[L_{max} = \frac{1}{1-P_s^s} \left\{ N_r P_s^s d_s r_s^s (1-P_s^s) + n_s (1-P_s^s) \right\} \]

(6)

otherwise. Unless raid size is a factor, the maximum required hourly launch rate may be calculated directly from \(L_{max} \) by dividing by the number of hours in an operational day. However, unmanned vehicle employment tactics may require the vehicles to be sent in raids of multiple penetrators. If the launching of the vehicles in a raid is required to take place in a short interval of time, then the implied instantaneous launch rate may exceed the nominal hourly rate. In this case, the higher instantaneous launch rate will be taken as the required hourly launch rate in the evaluation of the cost equations of the next section.
Using these equations, the model distinguishes two cases with regard to the nature of E_0, the job to be done. The first case requires only that E_0 be done in d_0 days. It represents a "target-rich" environment in which a sortie on any day can accomplish p of the E_0 subtasks. The second case requires that E_0/d_0 subtasks be accomplished daily for d_0 days, i.e., the job to be done is constant. This second case is identically the critical case associated with curve c of figure 1. These classifications are not truly representative of any mission, but they are a suitable approximation in most instances. For example, strike of fixed targets is represented by the first instance with E_0 representing the number of targets to be killed. Reconnaissance of "located targets" is an example of the second situation. The number of targets to be reconnoitered each day, E_0/d_0, is approximately constant.

2.1 THE CONCEPT AND EQUATIONS FOR COST OPTIMIZATION FOR THE TARGET RICH CASE

For the target rich case, given E_0, d_0, p, A, and r_s, there are as many ways of performing E_0 subtasks in d_0 days as there are possible choices of n and d_s. Associated with each choice is a cost. For a given value of d_s, the minimum cost can be found approximately by calculating the cost associated with various values of n. Rather than input individual values of n, however, the program automatically varies n from the case of curve a (all vehicles initially ready, $n=0$) to the case of curve b (no vehicles initially ready, $n=n_{\text{max}}$) in steps of $0.05 n_{\text{max}}$. The cost determination is treated in the next section. The value of n_{max} can be found from equation (2) by equating the right side to zero. The result is

$$n_{\text{max}} = \left(\frac{E_0(1-p_s)}{p_sLp_r^C}\right) \left(\frac{d_s - p_s(d_0 - d_s)}{r_s} - \left(\frac{1-p_s^L}{1-p_s^R}\right)\right)$$ \hspace{1cm} (7)

The cost is also evaluated for n corresponding to the critical case (attrition equal to removal rate). This value of n, n_{cr}, often gives the minimum

1. There is no reason to exceed the data reduction capabilities of the intelligence system but there is always pressure for the maximum amount of intelligence possible.
cost. \(n_{cr} \) may be found by multiplying equation (1) by \((1-P^r_s)\), the probability of loss of a ready vehicle on the first day assuming a sortie rate of \(r_s \). This gives the losses for the first day, which in the critical case equals \(n_{cr} \). Solving the resulting equation for \(n_{cr} \) gives

\[
n_{cr} = \frac{E_o(1-P^r_s)(1-P^r_s)}{\rho P_0^r P_1^r P_c^l (1 + d_s - d_s P^r_s - P^r_s (d_0 - d_s))}
\]

(8)

2.2 THE EQUATIONS FOR THE CONSTANT LEVEL OF EFFORT CASE

Assuming the constant rate \(E_0/d_0 \) subtasks each day, equation (1) is simplified. This can most readily be seen by considering the job done the first day, viz., \(E_0/d_0 = e_0 \), and setting \(d_0 = 1 \). Since \(e_0 \) can be done without removing vehicles from storage, \(d_s = 0 \) and

\[
N_r = \frac{1}{1-P^r_s} \left\{ \frac{e_0 (1-P^r_s)}{\rho P_0^r P_1^r P_c^l} \right\} = \frac{1}{1-P^r_s} \left\{ \frac{E_0(1-P^r_s)}{\rho P_0^r P_1^r P_c^l d_0} \right\}
\]

(9)

In the constant rate case, equation (4) remains unchanged; however, the value of \(n \) must be calculated. Since the number of ready vehicles attrited is simply

\[
n_{cr} = (1-P^r_s)N_r = \frac{E_o(1-P^r_s)}{\rho P_0^r P_1^r P_c^l d_0}
\]

(10)

that many vehicles must be removed from storage each day. The same result is obtainable from equation (8) by setting \(d_s = d_0 - 1 \).

The equations presented allow the total vehicles required to do \(E_o \) in \(d_0 \) days to be determined by summing equations (1) and (4) or (9) and (4) in the case of a constant daily job. Additionally, equations (5) and (6) give the maximum launch rate required which is equal to the maximum necessary recovery rate. (Equal launch and recovery rates are desirable from common sense arguments.) This information is necessary input to the cost equations presented in the next section.
3. THE COST EQUATIONS

The COEFUV cost equations for unmanned vehicles are presented in this section. These equations were developed at the Directorate of Aerospace Studies to provide an orderly method for considering all cost elements associated with unmanned vehicles. They are based on the ARPV operational concepts of Boeing and Rockwell, but should be general enough to cover almost any cases of unmanned vehicle operation. The eight areas considered for costing in the model are:

1. Vehicle
2. Operating location (areas not specifically covered elsewhere)
3. Launch
4. Recovery
5. Maintenance
6. Operations
7. Vehicle storage
8. Training

The general form of the equations describing the various areas are:

Vehicle:

\[\text{COST} = [\text{VEHICLES}] + [\text{SPARES}] + [\text{RDT&E}] + [\text{PAYLOAD}] \]

Operating Location:

\[\text{COST} = [\text{SECURITY}] + [\text{PAYLOAD STORAGE FACILITIES}] + [\text{LOCATION START-UP}] \]

Launch:

\[\text{COST} = [\text{PERSONNEL}] + [\text{EQUIPMENT}] + [\text{RDT&E}] \]

Recovery, Maintenance, Operations, Storage, Training:

\[\text{COST} = [\text{PERSONNEL}] + [\text{FACILITIES}] + [\text{EQUIPMENT}] + [\text{RDT&E}] \]
Each equation is presented below with a definition of each quantity appearing in it. All equations are based on providing a 10 year cost for the area in question. A very brief discussion of each equation is given to provide assistance in understanding the basis of each term. For clarity and brevity, the equations are presented with their original symbology. The variable names assigned in the program are generally close derivatives of the original symbol. Quantities expressing rates are indicated with a dot symbolizing a derivative. Quantities marked with asterisks are obtained from the evaluation of the theoretical equations discussed in the previous section. Quantities marked with \oplus are calculated from other equations in the program. The derivation of some of these quantities are discussed. The notation $[.]^+$ designates the next greater integer. It is used in evaluating facility, equipment, and personnel costs in those cases where the amount being purchased must be treated in discrete units. It is part of the methodology of the program to always buy complete equipment sets and facilities whenever a fractional part is indicated. However, the corresponding fractional crews which are indicated are not increased to the next whole crew, but the number of men indicated by the fraction is increased to the next whole man.\footnote{These choices are not necessarily the most realistic in all situations, but they represent a compromise which appears better than the alternatives.\footnote{All costs are given in millions of dollars or millions of dollars per unit except the mission payload storage cost which is given in dollars per pound.}} All costs are given in millions of dollars or millions of dollars per unit except the mission payload storage cost which is given in dollars per pound.

A discussion following the presentations of the individual equations indicates the method by which the final cost is assembled in the program.

\footnote{This technique is exemplified by

$\left[\left(\frac{\text{men/crew}}{\text{events/hr}}\right) \cdot \left(\frac{\text{events/hr/crew}}{.}\right)\right]^+ = \left[\text{men}\right]^+$

rather than the alternative

$\left(\frac{\text{men/crew}}{\text{events/hr}}\right) \cdot \left(\frac{\text{events/hr/crew}}{.}\right)^+ = \left(\frac{\text{men/crew}}{\text{crews}}\right)^+$

If the crew sizes are small, the nature of the compromise is relatively unimportant since it will not drive costs. If crew sizes are large, then costs will be strongly affected by the compromise adopted, with the one selected seeming the most reasonable to the authors.}
3.1 VEHICLE COSTS

\[C_{VT} = [\text{VEHICLES}] + [\text{SPARES}] + [\text{RDT&E}] + [\text{PAYLOAD}] \]

\[= \left[N_{VT} C_{V1}(N_{VT} + N_{TV})^{1/2} \right] + \left[C_{V2} N_{VT} \right] + \left[C_{V3} \right] + \left[C_{V4} N_{VT} + C_{V5} \frac{E_0}{\lambda} \right] \]

where

\(C_{V1} \) = theoretical first vehicle unit cost (\$M).

\(C_{V2} \) = 10-year spare and special maintenance cost per vehicle (\$M/vehicle).

\(C_{V3} \) = RDT&E cost for vehicles (\$M).

\(C_{V4} \) = recoverable payload cost per vehicle (\$M/vehicle).

\(C_{V5} \) = expendable payload cost per sortie (\$M/sortie).

\(E_0 \) = total number of successful events to be accomplished in \(d_0 \) days (events).

\(*N_{VT}\) = total vehicles purchased minus training vehicles (vehicles).

\(*N_{TV}\) = number of training vehicles (vehicles).

\(\gamma \) = learning curve slope.

\(+\lambda \) = expected number successful events accomplished per sortie (events/sortie).

1. \(\lambda \) is derived from \(\rho \) (see section 2) by consideration of attrition.
The first term of the vehicle cost equation gives the cost of the operational vehicles. It does not include the cost of the training vehicles which are accounted for in the training costs. The per vehicle cost is based on a log-linear cumulative average curve\(^1\) which gives the average cost of a vehicle in a buy of \(x\) vehicles as

\[
C_n = ax^b
\]

where

\(x\) = total vehicles produced.
\(a\) = theoretical first vehicle unit cost.
\(b\) = \(\frac{\log \gamma}{\log 2}\) where \(\gamma\) is the slope of the learning curve

Total cost is generated by multiplying both sides of equation (1) by the number of vehicles being costed, in this case the number of operating vehicles. Note that the \(x\) of equation (1) includes the training vehicles since the average cost is based on the total buy.

The payload term embodies the assumption that recoverable payloads are purchased on a one-for-one basis with vehicles and that only enough expendable payloads are purchased to do \(E_0\).

3.2 OPERATING LOCATION COSTS

\[C_{SU} = [\text{SECURITY}] + [\text{PAYLOAD STORAGE FACILITIES}] + [\text{START-UP}] \]

\[= \left[C_{I1} n_{\text{SEC}} \right] + \left[C_{I2} M_{\text{LBS}} \frac{E_o}{10^6} \right] + \left[C_{I3} \right] \]

where

\[C_{I1} = 10\text{-year cost per man for security personnel including overhead for command, support, and administrative personnel ($M/\text{man})}. \]

\[C_{I2} = 10\text{-year cost per pound for storing mission payload ($/\text{lb})}. \]

\[C_{I3} = \text{initial cost to start-up one operating location (M).} \]

\[n_{\text{SEC}} = \text{number of security personnel per operating location (men).} \]

\[M_{\text{LBS}} = \text{pounds of mission payload per sortie (lb).} \]

\[E_o = \text{total number of successful subtasks to be accomplished in} \ d_o \ \text{days.} \]

\[\lambda = \text{expected number of successful events to be accomplished per sortie (events/sortie).} \]

The operating location costs are composed of costs not more appropriately given in other categories. Each cost is on a per operating location basis.
3.3 LAUNCH COSTS

\[C_L = \text{[PERSONNEL COST]} + \text{[EQUIPMENT COST]} + \text{[RDT&E]} \]

\[= C_{L1} \left(\frac{n_{LC}^{\text{max}}}{n_{LC}} \right)^+ + \left(\frac{n_{LCC}^{\text{max}}}{n_{LCC}} \right)^+ \]

\[+ C_{L2} \left(\frac{i_{\text{max}}}{i_{e}} \right)^+ + C_{L3} \left(\frac{i_{\text{max}}}{n_{LS}^{i_{e}}} \right)^+ + C_{L4} \left(\frac{i_{\text{max}}}{i_{\text{HE}}} \right)^+ + \left(\frac{C_{LS}}{N_{OL}} \right) \]

where

\[C_{L1} = \text{10-year cost per man for launch personnel including overhead for command, support, and administrative personnel (}SM/man)\].

\[C_{L2} = \text{10-year cost of ownership of a launcher including spares and redundancy (}SM/launcher)\].

\[C_{L3} = \text{10-year cost of ownership of launcher accessories including spares and redundancy (}SM/accessory)\].

\[C_{L4} = \text{10-year cost of ownership of a set of mobile launch handling equipment including spares and redundancy (}$\text{SM/mobile launch handling equipment}$)\].

\[C_{L5} = \text{RDT&E cost for launcher equipment (}SM)\].

\[n_{LC} = \text{number of people per launch crew (men/crew)}\].

\[n_{LC}^{i_{e}} = \text{launch rate per launch crew (vehicles/hr/crew)}\].

\[n_{LCC} = \text{number of people per launch control crew (men/crew)}\].
\(\hat{n}_{LCC} \) = vehicle control rate per launch control crew (vehicles/hr/crew).

\(n_{LS} \) = number of launchers serviced by each set of launcher accessories (launcher/accessory).

\(\ast \hat{L}_{\text{max}} \) = maximum required launch rate per operating location (vehicles/hr).

\(\dot{i}_e \) = launch rate per launcher (vehicles/hr/launcher).

\(M_{HE} \) = number of vehicles launched per hour per set of mobile launch handling equipment (vehicles/hr/mobile launch handling equipment).

\(+ S \) = number of shifts of launch personnel per day (shifts/day).

\(+ N_{OL} \) = number of operating locations.

The equation for launch costs gives the launch costs per operating location. The quantity \(C_L \) representing the total RDT&E costs must consequently be divided by the number of operating locations. It should be noted that \(S \), the number of shifts of launch personnel, is normally calculated as

\[S = \max(1, \frac{T_0}{T_s}) \]

where

\(T_0 \) = number of operating hours per day (input as TO)

and

\(T_s \) = number of hours per shift (input as TS).
This formulation is correct in the case where maximum launch rate is established by the job to be done, E_0. However, the maximum launch rate may be established by the need to form a raid in a given time (see the definitions of the inputs RAID and TMASS in section 4). In this case, the instantaneous launch rate required may be higher than the average launch rate dictated by E_0. This causes the program to adjust T_0 downward to account for the higher launch rate. This adjustment is noted in the program output and applies also to recovery and operations costing.

3.4 RECOVERY COSTS

$$C_R = [\text{PERSONNEL COST}] + [\text{FACILITY COST}] + [\text{EQUIPMENT COST}] + [\text{RDT&E}]$$

$$= C_{R1} \left[\frac{n_{RC} L_{\text{max}}}{n_{RC}} \right]^{+} + \left[\frac{n_{RCC} L_{\text{max}}}{n_{RCC}} \right]^{+} + \left[C_{R2} \frac{L_{\text{max}}}{r_e} \right]^{2} + \left[C_{R3} \frac{L_{\text{max}}}{n_{RS e}} \right]^{+} + C_{R4} \left[\frac{L_{\text{max}}}{n_{RE}} \right]^{+} + \left[C_{R5} \frac{L_{\text{max}}}{n_{OL}} \right]^{+}$$

where

$C_{R1} = 10$-year cost per man for recovery personnel including overhead for command, support, and administrative personnel (SM/man).

$C_{R2} = 10$-year cost of ownership of recovery area (SM/area).

$C_{R3} = 10$-year cost of ownership of recovery accessories including spares and redundancy (SM/accessory).

1. For a job E_0 and a particular strategy of removing vehicles from storage to do E_0 in d days, there is a corresponding maximum number of launches required on at least one day (see section 2, equations (5) and (6)).
\(C_{R4} \) = 10-year cost of ownership of mobile recovery handling equipment including spares and redundancy ($M/mobile recovery handling equipment).

\(C_{R5} \) = RDT&E cost for recovery equipment ($M).

\(n_{RC} \) = number of people per recovery crew (men/crew).

\(h_{RC} \) = recovery rate per recovery crew (vehicles/hr/crew).

\(n_{RCC} \) = number of people per recovery control crew (men/crew).

\(h_{RCC} \) = vehicle control rate per recovery control crew (vehicles/hr/crew).

\(n_{RS} \) = number of recovery areas serviced by each set of accessories (recovery areas/accessory).

\(* c_{max} \) = maximum required launch rate per operating location (vehicles/hr).

\(M_{RE} \) = number of vehicles per hour serviced per unit of mobile handling equipment (vehicles/hr/mobile recovery handling equipment).

\(r_{e} \) = recovery rate per recovery area (vehicles/hr/area).

\(S \) = number of shifts.

\(N_{OL} \) = number of operating locations.

As with launch costs, RDT&E recovery costs are input as a total cost and must be divided by the number of operating locations so that they are reflected only once in the final recovery cost. All other aspects of recovery costs are based upon meeting the maximum recovery rate.
3.5 MAINTENANCE COSTS

\[C_M = \text{[PERSONNEL COST]} + \text{[FACILITY COST]} + \text{[EQUIPMENT COST]} + \text{[RDT&E]} \]

\[= C_{M1} \left(\frac{n_{MC}}{n_{MC}} \right)^{\text{max}} + \left(\frac{n_{MCR} n_{MR}}{n_{MCR}} \right)^{\text{max}} + \left(\frac{i_{\text{max}}}{n_{RF}} \right)^{\text{max}} \]

\[+ \left(\frac{n_{\text{TR}}^{\text{max}}}{n_{\text{TR}}} \right)^{\text{max}} + C_{M4} \left(\frac{i_{\text{max}}}{n_{RE}} \right)^{\text{max}} + \left(\frac{C_{M5}}{N_{OL}} \right) \]

where

- \(C_{M1} \) = 10-year cost per man for maintenance personnel which includes an overhead factor for command, support, and administrative personnel ($/man).
- \(C_{M2} \) = 10-year cost of maintenance facilities to maintain a given launch rate per crew ($/facility/crew).
- \(C_{M3} \) = 10-year cost of turnaround equipment for a given turnaround rate per crew, including spares and redundancy ($/turnaround equipment set/crew).
- \(C_{M4} \) = 10-year cost of repair equipment to maintain a given repair rate per crew, including spares and redundancy ($/repair equipment set/crew).
- \(C_{M5} \) = RDT&E cost for maintenance equipment ($/M).
- \(n_{MC} \) = number of people per turnaround crew (men/crew).
- \(i_{MC} \) = turnaround rate per turnaround crew (vehicles/hr/crew).
- \(n_{MCR} \) = number of people per repair crew (men/crew).
\(\hat{n}_{MCR} \) = repair rate per repair crew (vehicles/hr/crew).

\(n_{RE} \) = number of vehicles/hr in repair serviced by repair equipment set (vehicles/hr/repair equipment set/crew).

\(n_{RF} \) = number of vehicles/hr handled per maintenance facility (vehicles/hr/facility/crew).

\(n_{TR} \) = number of vehicles/hr in turnaround serviced by turnaround equipment set (vehicles/hr/turnaround equipment set/crew).

\(\epsilon_{\text{max}} \) = maximum required launch rate per operating location (vehicles/hr).

\(R_{MR} \) = ratio of returning vehicles needing repair to total returning vehicles.

\(S_M \) = number of shifts of maintenance personnel.

Maintenance personnel costs are based on the turnaround and repair functions. Each vehicle recovered must be processed by a turnaround crew before being sent out again. In addition, some vehicles must be repaired before going through turnaround. The fraction of returning vehicles requiring repair is given by \(R_{MR} \). The turnaround and repair functions involve entirely different personnel. The quantity \(S_M \), the number of shifts of maintenance personnel (turnaround and repair) required, is given by

\[
S_M = \frac{T_m}{T_s}
\]

where

\(T_m \) = length of a maintenance day in hours (input as TM).

and

\(T_s \) = number of hours per shift (input as TS).
Maintenance facility and equipment costs are based on the quantity of facilities and equipment needed to handle the maximum launch rate.

3.6 OPERATIONS COST

\[C_0 = [\text{PERSONNEL COST}] + [\text{FACILITY COST}] + [\text{EQUIPMENT COST}] + [\text{RDT&E}] \]

\[= \left[C_{o1} \left(\frac{n_{OC} \cdot c_{\text{max}}}{n_{OC}} \right) \right] + \left[C_{o2} \left(\frac{l_{\text{max}}}{o_F} \right) \right] + \left[C_{o3} \left(\frac{l_{\text{max}}}{o_e} \right) \right] + \left[\frac{C_{o4}}{N_{OL}} \right] \]

where

- \(C_{o1} = 10\text{-year cost per man for operations personnel which includes an overhead factor for command, support, and administrative personnel (} \text{SM/man} \).\)

- \(C_{o2} = 10\text{-year cost of a unit of operations facilities (} \text{SM/facility} \).\)

- \(C_{o3} = 10\text{-year cost of a unit of operations equipment including spares and redundancy (} \text{SM/equipment} \).\)

- \(C_{o4} = \text{RDT&E cost for operations equipment (} \text{SM} \).\)

- \(n_{OC} = \text{number of people per operations crew (men/crew).}\)

- \(n_{OC} = \text{number of vehicles controlled simultaneously per operations crew (vehicles/crew).}\)

- \(l_{\text{max}} = \text{maximum required launch rate per operating location (} \text{vehicles/hr} \).\)

- \(o_e = \text{vehicles/hr serviced per unit of operations equipment (} \text{vehicles/hr/equipment} \).\)

- \(o_F = \text{vehicles/hr serviced per unit of operations facility (} \text{vehicles/hr/facility} \).\)
$T_C \quad = \quad \text{average time a vehicle is controlled per sortie (hrs).}$

$s \quad = \quad \text{number of shifts.}$

Each vehicle is controlled or monitored for a period after takeoff and prior to landing. It is the job of the operations personnel to perform this function, and the number of people required to do this is used to determine the total number of operations personnel. However, operations people also perform other jobs such as mission planning which must be done in parallel with the control. This fact must be reflected in n_{OC}, the number of people per operations crew.

As with launch, recovery, and maintenance costs, numbers of personnel, facilities, and equipment are determined by the maximum launch rate.

3.7 VEHICLE STORAGE COSTS

$$C_S \quad = \quad [\text{PERSONNEL COST}] + [\text{FACILITY COST}] + [\text{EQUIPMENT COST}] + [\text{RDT&E}]$$

$$= \left[C_{S1} S_M \left(\frac{n_{SC} N_{OL}}{N_{OL}} \right)^{\alpha_{SC}} \right] + \left[C_{S2} N_{VS} + C_{S3} N_{VR} \right] + \left[C_{S4} \left(\frac{N_{OL}}{N_{OL}} \right)^{\alpha_{SC}} \right] + \left[C_{S5} \right]$$

where

$C_{S1} \quad = \quad 10\text{-year cost per man for storage crew including overhead for command, support, and administrative personnel (M/man).}$

$C_{S2} \quad = \quad 10\text{-year cost of building to store one vehicle in the "not ready" condition (M/vehicle).}$

$C_{S3} \quad = \quad 10\text{-year cost of building to store one vehicle in the "ready" condition (M/vehicle).}$

$C_{S4} \quad = \quad 10\text{-year cost of mobile handling equipment including spares and redundancy for one crew (M/crew).}$
\[C_{SS} = \text{RDT&E cost for vehicle storage ($M).} \]
\[n_{SC} = \text{number of people per storage retrieval crew (men/crew).} \]
\[\dot{n}_{SC} = \text{removal rate from storage per storage retrieval crew (vehicles/hr/crew).} \]
\[\dot{n}_S = \text{required removal rate per operating location (vehicles/hr).} \]
\[N_{OL} = \text{number of operating locations.} \]
\[N_{VS} = \text{total vehicles stored at all operating locations (vehicles).} \]
\[N_{VR} = \text{total vehicles in ready condition stored at all operating locations (vehicles).} \]
\[S_M = \text{number of shifts of maintenance personnel.} \]

The vehicle storage cost equation applies to a single operating location. Costs are based on the maximum rate at which vehicles must be removed from storage and the number of vehicles stored and ready in peacetime. The most demanding requirement for people occurs when vehicles are being removed from storage. Hence, this function drives the personnel cost. Facility cost is dependent upon the cost of facilities required to maintain vehicles either in storage or in a ready condition. Equipment cost like personnel cost is driven by the maximum required rate of removing vehicles from storage.

3.8. TRAINING COST

\[C_T = [\text{PERSONNEL COST}] + [\text{FACILITY COST}] + [\text{EQUIPMENT COST}] + [\text{RDT&E}] \]

\[= [C_{1R}P + N_{PT} + C_{2R}P + N_{PT}] + [C_{OF\text{FRAC}}] + \]

\[[\text{FRAC}(C_{LE} + C_{RE} + C_{ME} + C_{OE}) + N_{TV}C_{V1}(N_{VT} + N_{TV})^{\log 2}] + [C_{T3}] \]
where

\[C_{T1} = 10\text{-year cost per man for instructor personnel including overhead for command, support, and administration (}$M/\text{man}). \]

\[C_{T2} = 10\text{-year cost per man for pipeline trainees including overhead for command, support, and administration, plus the cost of travel to training center and to theater (}$M/\text{man}). \]

\[C_{T3} = \text{RDT&E cost for training} (M). \]

\[C_{LE}, C_{RE}, C_{ME}, C_{OE} = \text{cost of launch, recovery, maintenance, and operations equipment per operating location (}$M) \]

\[C_{OF} = \text{cost of facilities for operations per operating location (}$M). \]

\[C_{V1} = \text{first unit vehicle cost (}$M). \]

\[FRAC = \text{ratio of training operating location manning to operating location manning}. \]

\[Y = \text{learning curve coefficient}. \]

\[N_{PT} = \text{total number of mission personnel for launch, recovery, maintenance, storage, and operations per operating location (men).} \]

\[N_{TV} = \text{number of training vehicles purchased (vehicles).} \]

\[P_{T} = \text{percent of total manpower in training at one time}. \]

\[R_{A} = \text{instructor/student ratio}. \]

The training costs are based generally on the assumption that the training operation is a scaled down version of an actual operating location. This is clearly seen in the facility costs and the first term of the equipment
costs where a fraction of the corresponding operating location cost is used. The fraction is simply the ratio of the number of people in training to the number manning an operating location. The personnel cost is based on instructor personnel costs plus student personnel costs including travel. The number of instructors is determined by the instructor/student ratio.

The number of training vehicles purchased is calculated from the equation

\[N_{TV} = \frac{\text{FRAC} \times L_{\text{max}}}{\text{PR}} \left[1 + 10 \times \text{PL} \times \text{TT} \times \text{NEXI} \right] \]

where

- \(L_{\text{max}} \) = maximum required launch rate per operating location (vehicles/hour).
- \(\text{PR} \) = probability that a vehicle does not abort due to a system failure.
- \(\text{PL} \) = number of training vehicles lost per hour of training vehicles flight (losses/hour).
- \(\text{TT} \) = number of flying hours per training exercise (hours/exercise).
- \(\text{NEXI} \) = number of training exercises per year (exercises/year).

The 10 which appears accounts for the 10 years which are being costed.

An understanding of the training vehicle cost term may be obtained from the discussion of the vehicle cost equation in section 3.1.

3.9 SYSTEM COST

All the cost equations except those for vehicle and training costs apply to a single operating location. The system cost must take into account the costs for all operating locations. The final cost equation becomes
TOTAL COST = [VEHICLES] + N_{OL}\{[OPERATING LOCATION] + [LAUNCH] + [RECOVERY] + [MAINTENANCE] + [OPERATIONS] + [VEHICLE STORAGE]\} + [TRAINING]

where N_{OL} is the number of operating locations and the brackets indicate the cost from the equations just discussed.
4. INPUT TO PROGRAM COEFUV

Input to program COEFUV is accomplished entirely by punched cards which are handled by subroutine INPUT. Input cards fall into two groups: those which result in numerical and alphanumerical data on the cards being assigned to variables in the program, and those which control various aspects of program flow with regard to input and output. The former group will be discussed first. In a limited number of instances there will be an interdependence between cards of the two groups. These interdependences will be made clear in the definitions of the input quantities.

4.1 DATA INPUTS

All input to program COEFUV is based upon the function of individual cards or groups of cards being specified by an alphanumeric identifier appearing on the card or the first card of the group. For the data inputs being discussed here, the identifier is used to associate the remaining data on the card or the data on the following cards to the appropriate program variables. This identifier begins in column 1 and is limited to a maximum of 10 characters. It is usually identical to the name of the program variable to be defined. If the input value appears on the card with the identifier, it is read from an E20.8 field beginning in column 11. In those instances when the input values appear on the following cards, the data is read with an 8F10.0 format if numeric and an 8A10 format if alphanumeric.

The inputs constituting this group are defined below. Most of them are related to the cost equations of section 3, a lesser number to the theoretical equations of section 2. In a few cases, the inputs relate to yet other aspects of the program. The use of this last group of inputs should be clear from the definitions. The default value of all numerical data quantities is zero. The case title is preset to blanks. The order of these cards in the input deck is arbitrary except for the associated groups of cards which must appear together in the proper order.

Cl1 10-year cost per man for security personnel including overhead for command, support, and administrative personnel ($M/man).
CI2 10-year cost per pound for storing mission payload ($/pound).

CI3 Initial cost to start up one operating location ($M).

CL1 10-year cost per man for launch personnel including overhead for command, support, and administrative personnel ($M/man).

CL2 10-year cost of ownership of a launcher including spares and redundancy ($M/launcher).

CL3 10-year cost of ownership of launcher accessories including spares and redundancy ($M/accessory).

CL4 10-year cost of ownership of a set of mobile launch handling equipment including spares and redundancy ($M/mobile launch handling equipment).

CL5 RDT&E cost for launcher equipment ($M).

CM1 10-year cost per man for maintenance personnel including overhead for command, support, and administrative personnel ($M/man).

CM2 10-year cost of maintenance facilities to maintain a given launch rate per crew ($M/facility/crew).

CM3 10-year cost of turnaround equipment for a given turnaround rate per crew including spares and redundancy ($M/turnaround equipment set/crew).

CM4 10-year cost of repair equipment to maintain a given repair rate per crew including spares and redundancy ($M/repair equipment set/crew).

CM5 RDT&E cost for maintenance equipment ($M).
CO1 10-year cost per man for operations personnel including overhead for command, support, and administrative personnel ($M/man).

CO2 10-year cost of a unit of operations facilities ($M/facility).

CO3 10-year cost of a unit of operations equipment including spares and redundancy ($M/equipment).

CO4 RDT&E cost for operations equipment ($M).

CR1 10-year cost per man for recovery personnel including overhead for command, support, and administrative personnel ($M/man).

CR2 10-year cost of ownership of recovery area ($M/area).

CR3 10-year cost of ownership of recovery accessories including spares and redundancy ($M/accessory).

CR4 10-year cost of ownership of mobile recovery handling equipment including spares and redundancy ($M/mobile recovery handling equipment).

CR5 RDT&E cost for recovery equipment ($M).

CS1 10-year cost per man for storage crew including overhead for command, support, and administration ($M/man).

CS2 10-year cost of building to store one vehicle in the "not ready" condition ($M/vehicle).

CS3 10-year cost of building to store one vehicle in the "ready" condition ($M/vehicle).

CS4 10-year cost of mobile handling equipment including spares and redundancy for one crew ($M/crew).

CS5 RDT&E cost for vehicle storage ($M).
CT1 10-year cost per man for instructor personnel including overhead for command, support, and administration ($M/man).

CT2 10-year cost per man for pipeline trainees including overhead for command, support, and administration, plus the cost of travel to training center and theater ($M/man).

CT3 RDT&E cost for training ($M).

CV1 Theoretical first vehicle unit cost ($M).

CV2 10-year spare and special maintenance cost per vehicle ($M/vehicle).

CV3 RDT&E cost for vehicles ($M).

CV4 Recoverable payload cost per vehicle ($M/vehicle).

CV5 Expendable payload per sortie ($M/sortie).

D For the cost optimization case, the number of days in which to accomplish EO. For the constant level of effort case, the total number of days during each of which EO is to be accomplished.

DS The number of days unmanned vehicles are removed from storage.

EO For the cost optimization case, the total number of subtasks to be dealt with in D days. For the constant level of effort case, the total number of subtasks to be dealt with each day.

GAMMA Learning curve slope for the vehicle cost equation.
INNER Follows a CHGD, CHGDS, CHGEO, CHGA, or CHGRHO card to designate that D, DS, etc., is to be varied in the inner program loop. The number in the data field defines how many values (≤ 50) of the variable are to be read from the following cards with format 8F10.0. (See discussion of CHGD in section 4.2 also.)

LDOTE Launch rate per launcher (vehicles/hour/launcher).

MHE Number of vehicles launched per hour per set of mobile launch handling equipment (vehicles/hour/mobile launch handling equipment).

MINL The minimum number of operating locations allowed by constraints external to the program, e.g., geographic constraints.

MLBS Pounds of mission equipment per sortie (pounds).

MLOL Maximum allowable launch rate per operating location based on considerations exterior to the program (vehicles/hour).

MRE Number of vehicles per hour serviced per unit of mobile handling equipment (vehicle/hour/mobile recovery handling equipment).

NDOTLC Launch rate per launch crew (vehicles/hour/crew).

NDOTLCC Vehicle control rate per launch control crew (vehicles/hour/crew).

NDOTMC Turnaround rate per turnaround crew (vehicles/hour/crew).

NDOTMCR Repair rate per repair crew (vehicles/hour/crew).

NDOTOC Number of vehicles controlled simultaneously per operation crew (vehicles/crew).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDOTRC</td>
<td>Recovery rate per recovery crew (vehicles/hour/crew).</td>
</tr>
<tr>
<td>NDOTRCC</td>
<td>Vehicle control rate per recovery control crew (vehicles/hour/crew).</td>
</tr>
<tr>
<td>NDOTSC</td>
<td>Removal rate from storage per storage retrieval crew (vehicles/hour/crew).</td>
</tr>
<tr>
<td>NEX1</td>
<td>Number of full scale training exercises per year.</td>
</tr>
<tr>
<td>NI</td>
<td>Number of inner loop variations. (See discussion in section 4.2 also.)</td>
</tr>
<tr>
<td>NLC</td>
<td>Number of people per launch crew (men/crew).</td>
</tr>
<tr>
<td>NLCC</td>
<td>Number of people per launch control crew (men/crew).</td>
</tr>
<tr>
<td>NLS</td>
<td>Number of launchers serviced by each set of launcher accessories (launchers/accessory).</td>
</tr>
<tr>
<td>NMC</td>
<td>Number of people per turnaround crew (men/crew).</td>
</tr>
<tr>
<td>NMCR</td>
<td>Number of people per repair crew (men/crew).</td>
</tr>
<tr>
<td>NO</td>
<td>Number of outer loop variations. (See discussion in section 4.2 also.)</td>
</tr>
<tr>
<td>NOC</td>
<td>Number of people per operations crew (men/crew).</td>
</tr>
<tr>
<td>NRC</td>
<td>Number of people per recovery crew (men/crew).</td>
</tr>
<tr>
<td>NRCC</td>
<td>Number of people per recovery control crew (men/crew).</td>
</tr>
<tr>
<td>NRE</td>
<td>Number of vehicles per hour in repair serviced by a repair equipment set (vehicles/hour/repair equipment set/crew).</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>NRF</td>
<td>Number of vehicles per hour handled per maintenance facility (vehicles/hour/facility/crew).</td>
</tr>
<tr>
<td>NRS</td>
<td>Number of recovery areas serviced by each set of accessories (recovery areas/accessory).</td>
</tr>
<tr>
<td>NSC</td>
<td>Number of people per storage retrieval crew (men/crew).</td>
</tr>
<tr>
<td>NSEC</td>
<td>Number of security personnel per operating location (men).</td>
</tr>
<tr>
<td>NTR</td>
<td>Number of vehicles per hour in turnaround serviced by a turnaround equipment set (vehicles/hour/equipment set).</td>
</tr>
<tr>
<td>ODOTE</td>
<td>Number of vehicles per hour serviced per unit of operations equipment (vehicles/hour/equipment).</td>
</tr>
<tr>
<td>ODOTF</td>
<td>Number of vehicles per hour serviced per unit of operations facility (vehicles/hour/facility).</td>
</tr>
<tr>
<td>OUTER</td>
<td>Follows a CHGD, CHGDS, CHGEO, CGHA, or CHGRHO card to designate that D, DS, etc., is to be varied in the outer program loop. The number in the data field defines how many values (<50) of the variable are to be read from the following cards with format 8F10.0. (See discussion of CHGD, etc., in section 4.2 also.)</td>
</tr>
<tr>
<td>PC</td>
<td>Probability that a vehicle is not lost on a mission due to a system failure. Contrast with PR.</td>
</tr>
<tr>
<td>PL</td>
<td>Training vehicles lost per hour of training vehicle flight.</td>
</tr>
<tr>
<td>PLS</td>
<td>Prelaunch survival probability per day.</td>
</tr>
<tr>
<td>PR</td>
<td>Probability that a vehicle does not abort due to a system failure. Contrast with PC.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PSS</td>
<td>Total ingress/egress probability of survival relative to area defenses. Note that if attrition is being varied under control of CHGA that PSS has no effect. Both area and terminal attrition are contained in the values following CHGA.</td>
</tr>
<tr>
<td>PT</td>
<td>Percent of total operational manpower in training at one time.</td>
</tr>
<tr>
<td>RA</td>
<td>Instructor to student ratio used in training costing.</td>
</tr>
<tr>
<td>RAID</td>
<td>For the cost optimization case, the desired raid size; automatically set to one for the constant level of effort case.</td>
</tr>
<tr>
<td>RDOOTE</td>
<td>Recovery rate per recovery area (vehicles/hour/area).</td>
</tr>
<tr>
<td>RHO</td>
<td>The number of subtasks dealt with by a single sortie given that it arrives "on target."</td>
</tr>
<tr>
<td>RMR</td>
<td>Ratio of returning vehicles needing repair to total returning vehicles.</td>
</tr>
<tr>
<td>RS</td>
<td>Vehicle sortie rate (sorties/day).</td>
</tr>
<tr>
<td>TC</td>
<td>Average time an unmanned vehicle is under control of an operations controller (hours).</td>
</tr>
<tr>
<td>TCYCLE</td>
<td>The number of training cycles per year.</td>
</tr>
<tr>
<td>TITLE</td>
<td>Case title. The following card contains the case title which will be read with an 8A10 format.</td>
</tr>
<tr>
<td>TM</td>
<td>Length of a maintenance day (hours).</td>
</tr>
<tr>
<td>TMASS</td>
<td>The time required to assemble a raid of unmanned vehicles into a group of size RAID (hours).</td>
</tr>
</tbody>
</table>
TO The length of the operational day (hours).

TPS Total ingress/egress probability of survival relative to terminal defenses. Note that if attrition is being varied under control of CHGA that TPS has no effect. Both area and terminal attrition are contained in the values following CHGA.

TS Length of a work shift (hours).

TT Length of a full scale exercise (hours).

TYPE = 1 for the cost optimization case; = 2 for the constant level of effort case.

4.2 CONTROL INPUTS

The control inputs determine printing options, indicate the end of input for cases and for the run, and in five instances specify input options. As with the data inputs, the function of the card is determined by the alphanumeric identifier appearing left justified in columns 1-10. However, unlike the data cards, no other data is associated with the identifier. All but the ENDCASE and ENDJOB identifiers are used to set the values of logical variables within the program. The identifiers occur in pairs with one used to set a variable true and the other false. Five pairs of control inputs are used to specify different printing options. These options are illustrated in section 5 which shows a sample input deck and the corresponding output with all possible print statements employed. Five other pairs of identifiers are used to alter the usual input method for the data inputs D, DS, EO, RHO, and PSS (see definitions above).

D, DS, EO, RHO, and PSS are the pivotal parameters for investigation once the cost inputs have been determined. They may be entered as normal data inputs as discussed earlier, or they may be input as a series of values by use of the CHGD, CHGDS, CHGEO, CHGRHO, or CHGA cards in conjunction with the INNER and OUTER data cards also defined above. When this option is chosen, the program user may input up to 50 values of one or two of the five inputs at once. These values are then selected sequentially in the program by two do-loops,
one parameter per do-loop. One do-loop is logically within the other and hence called the inner loop. The program logic is executed once for each value of the parameter assigned to the inner loop. If a parameter is also assigned to the outer loop, the inner loop is completely executed for each value of the outer loop parameter. Thus, if m values of the inner loop parameter are input and n values of the outer loop parameter are input, m times n cases will be evaluated. Return to normal input is achieved by using the CONSTD, CONSTDS, CONSTEo, CONSTRHO, and CONSTA cards.

CHGA Causes the logical program variable CHGA to be set true, which in turn alters the method of inputing PSS. CHGA is false by default. See the discussion in the text above. (See also CONSTA.)

CHGD Causes the logical program variable CHGD to be set true, which in turn alters the method of inputing D. CHGD is false by default. See the discussion in the text above. (See also CONSTD.)

CHGDS Causes the logical program variable CHGDS to be set true, which in turn alters the method of inputing DS. CHGDS is false by default. See the discussion in the text above. (See also CONSTDS.)

CHGEO Causes the logical program variable CHGEO to be set true, which in turn alters the method of inputing EO. CHGEO is false by default. See the discussion in the text above. (See also CONSTEo.)

CHGRHO Causes the logical program variable CHGRHO to be set true, which in turn alters the method of inputing RHO. CHGRHO is false by default. See the discussion in the text above. (See also CONSTRHO.)

CONSTA Causes the logical program variable CHGA to be set false, which in turn alters the method of inputing PSS. CHGA is false by default. See the discussion in the text above. (See also CHGA.)
CONSTD Causes the logical program variable CHGD to be set false, which in turn alters the method of inputing D. CHGD is false by default. See the discussion in the text above. (See also CHGD.)

CONSTDS Causes the logical program variable CHGDS to be set false, which in turn alters the method of inputing DS. CHGDS is false by default. See the discussion in the text above. (See also CHGDS.)

CONSTEO Causes the logical program variable CHGEO to be set false, which in turn alters the method of inputing EO. CHGEO is false by default. See the discussion in the text above. (See also CHGEO.)

CONSTRHO Causes the logical program variable CHGRHO to be set false, which in turn alters the method of inputing RHO. CHGRHO is false by default. See the discussion in the text above. (See also CHGRHO.)

COSTS Causes the logical program variable COSTS to be set true, which in turn results in the cost subroutine being exercised and the results printed. COSTS is true by default. (See also NOCOSTS.)

DATA Causes the logical program variable DAT1 to be set true, which in turn causes the inputs discussed in the previous subsection to be printed for each case. DAT1 is true by default. (See also NODATA.)

DEBUG Causes the logical program variable DEBUG to be set true, which in turn results in the printing of various intermediate results. DEBUG is false by default. (See also NODEBUG.)

ENDCASE The last card of each case; used to terminate input for a case.

ENDJOB The last card of a data deck; used to terminate a run.
NOCOSTS Causes the logical program variable COSTS to be set false, which in turn suppresses cost output. COSTS is true by default. (See also COSTS.)

NODATA Causes the logical program variable DAT1 to be set false, which in turn suppresses printing of the inputs discussed in the previous subsection. DAT1 is true by default. (See also DATA.)

NODEBUG Causes the logical program variable DEBUG to be set false, which in turn suppresses the printing of various intermediate results. DEBUG is false by default. (See also DEBUG.)

NOPRINT Causes the logical program variable PRINT to be set false, which in turn causes the suppression of printing of results for each value of DNS in the cost optimization case. PRINT is true by default. (See also PRINT.)

PRINT Causes the logical program variable PRINT to be set true, which in turn causes the printing of results in the cost optimization case for each value of DNS. PRINT is true by default. (See also NOPRINT.)

PRINTOFF Causes the logical program variable PRINTOFF to be set true, which in turn causes the suppression of printing of various intermediate results. PRINTOFF is false by default. (See also PRINTON.)

PRINTON Causes the logical program variable PRINTOFF to be set false, which in turn causes the printing of various intermediate results. PRINTOFF is false by default. (See also PRINTOFF.)
5. SAMPLE INPUTS AND OUTPUTS

This section illustrates some examples of program input and output to assist the user. Pages have been reproduced from a sample cost optimization case (TYPE=1) in figures 3-7 and a sample constant level of effort case (TYPE=2) in figures 8-11.

Figure 3 shows the input values as printed by the program. Inputs are organized by category for easy reference. The symbols < and > are used to indicate (1) whether or not specific variables were defined for this case (a corresponding input card actually read) or (2) whether the variable has not been defined at all. The absence of either symbol indicates it was previously defined for another case. This page is printed unless a NODATA card has been read.

Figure 4 shows a summary of some important inputs as well as some intermediate calculations. The name of the output-controlling logical variables are identified in the figure. The variables associated with the DEBUG controlled printout are not discussed in this report. Figure 5 similarly shows the results of intermediate calculations including some designed for debugging. The logical variables controlling the printing of this information are also shown in the figure. Note that the maximum launch rate in this case is determined by the raid size requirements rather than the total launches required per day. The output page depicted in figure 5 immediately precedes the output page depicted in figure 6.

Figure 6 shows one of the pages of intermediate cost results given for various values of n, the retrieval rate of vehicles from storage. This page illustrates the retrieval rate value giving the minimum total cost for doing the input specified job (kill 3000 targets in 15 days). Although not indicated in figures 5 or 6, this retrieval rate corresponds to the critical retrieval rate, n_{CR}. The cost breakout lists all eight cost areas discussed in section 3. The printing of this page is controlled by the logical variable PRINT.

Figure 7 presents the results for the most cost effective option.

45
The last four figures, 8-11 show similar pages from a TYPE=2 case, the constant level of effort case. For this case there is only one possible retrieval rate, hence only one set of cost figures. Print options are similar to a TYPE=1 case, although there are no DEBUG controlled outputs for a TYPE=2 case.
Test Case for Documentation

<table>
<thead>
<tr>
<th>Values for Input Variables</th>
<th>Indicates the Variable Was Defined for This Case</th>
<th>Indicates the Variable Is Undefined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Requirements/Constraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>EO</td>
<td>15.000</td>
</tr>
<tr>
<td>RM</td>
<td>RA1D</td>
<td>10.000</td>
</tr>
<tr>
<td>TS</td>
<td>TR</td>
<td>24.000</td>
</tr>
<tr>
<td>MINL</td>
<td>THASS</td>
<td>500</td>
</tr>
<tr>
<td>Probabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>PL5</td>
<td>980</td>
</tr>
<tr>
<td>TPS</td>
<td>PC</td>
<td>980</td>
</tr>
<tr>
<td>Launch Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL1</td>
<td>CL2</td>
<td>.017</td>
</tr>
<tr>
<td>CL5</td>
<td>NLCC</td>
<td>19.200</td>
</tr>
<tr>
<td>NDOTLCC</td>
<td>LDOE</td>
<td>1.000</td>
</tr>
<tr>
<td>Recovery Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1</td>
<td>CR2</td>
<td>.457</td>
</tr>
<tr>
<td>CH5</td>
<td>NRC</td>
<td>4.800</td>
</tr>
<tr>
<td>NDOTRC</td>
<td>RDOE</td>
<td>6.000</td>
</tr>
<tr>
<td>Operations Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>CO2</td>
<td>.893</td>
</tr>
<tr>
<td>TC</td>
<td>NOC</td>
<td>12.000</td>
</tr>
<tr>
<td>CO4</td>
<td>ODOTTE</td>
<td>16.000</td>
</tr>
<tr>
<td>Maintenance Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM1</td>
<td>CH2</td>
<td>.376</td>
</tr>
<tr>
<td>MRC</td>
<td>NDOTMC</td>
<td>8.000</td>
</tr>
<tr>
<td>MRF</td>
<td>RHR</td>
<td>1.000</td>
</tr>
<tr>
<td>CMS</td>
<td>NMCR</td>
<td>42.000</td>
</tr>
<tr>
<td>Storage Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1</td>
<td>CS2</td>
<td>.006</td>
</tr>
<tr>
<td>NSC</td>
<td>NDOTSC</td>
<td>8.000</td>
</tr>
<tr>
<td>Initial Startup Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>CI2</td>
<td>.000</td>
</tr>
<tr>
<td>MLUS</td>
<td>CI3</td>
<td>1.630</td>
</tr>
<tr>
<td>Training Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>CT1</td>
<td>.180</td>
</tr>
<tr>
<td>PL</td>
<td>TI</td>
<td>4.000</td>
</tr>
<tr>
<td>CT3</td>
<td>NEX1</td>
<td>4.000</td>
</tr>
<tr>
<td>Vehicle Cost Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV1</td>
<td>CV2</td>
<td>.040</td>
</tr>
<tr>
<td>CV5</td>
<td>GAMMA</td>
<td>.926</td>
</tr>
</tbody>
</table>

Figure 3. A Sample Input Case for TYPE = 1
TEST CASE FOR DOCUMENTATION

SORTIE RATE IS 2.4000 SORTIES / DAY

THIS IS A STRIKE MISSION

TARGETS TO BE KILLED 3000
NUMBER OF DAYS 15
SORTIE RATE + SORTIES/DAY 2.4
PROBABILITY OF LAUNCH 0.900
PROBABILITY OF SURVIVAL 1.000
INGRESS PSI 1.000
OVERALL SURVIVAL PROBABILITY 0.972
TARGET KILLS/SORTIE 2.00
RAID SIZE, VEHICLES 10

POK 0.020215
PSTRS 0.93617
PSHSD 0.354886
PSHS05 0.392262
PSHSDS 0.93617
PLS05 0.753642
LANDA 1.080984
SL 1595.0

MAXIMUM RETRIEVAL RATE 0.47
CRITICAL RETRIEVAL RATE 3.00

Figure 4. Results of Intermediate Calculations
TEST CASE FOR DOCUMENTATION

FOR A RETRIEVAL RATE OF 2.97 \{ PRTOFF \\
MNY = 94. \quad MNS = 49. \quad MVR = 45. \}
SLR = 168.4211 \quad SLAVG = 107.0135 \quad SLHAA = 168.4211 \} DEBUG

OPERATING LOCATIONS REQUIRED 3 \} PRINT

LAUNCH RATE DETERMINED BY RAID SIZE (LAUNCHES/HR/OL)
LAUNCH RATE DETERMINED BY MAXIMUM SORTIES REQUIRED/DAY TO DO JOB (LAUNCHES/HR/OL)
MAXIMUM LAUNCH RATE REQUIRED (LAUNCHES/DAY/SYSTEM)

HOURS/DAY WAGE MUST OPERATE
SHIFT LENGTH (HR)-INPUT
NUMBER OF SHIFTS/DAY RESET TO

\(\{ \text{FRAC=} \quad \text{NIV=} \quad .110e02 \} \) DEBUG

DATE: 01/08/79 \quad TIME: 16:40:01.

Figure 5. Results of More Intermediate Calculations
Figure 6. Intermediate Cost Results for \(n_{CR} \)

<table>
<thead>
<tr>
<th>Personnel Per Operating Location</th>
<th>Equipment Per Operating Location</th>
<th>Facilities Per Operating Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAUNCH</td>
<td>LAUNCHERS</td>
<td>MAINT BUILDINGS</td>
</tr>
<tr>
<td>LAUNCH</td>
<td>51</td>
<td>22</td>
</tr>
<tr>
<td>LAUNCH CONTROL</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>RECOVERY AREAS</td>
<td></td>
</tr>
<tr>
<td>RECOVERY</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>RECOVERY CONTROL</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>ACCESSORIES</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>REPAIR PENS</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>STORAGE</td>
<td>HANDLING EQUIP</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>CONTROL EQUIP</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>OL STARTUP</td>
<td>ROD + E</td>
<td></td>
</tr>
<tr>
<td>SECURITY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS PER OP</td>
<td>144</td>
<td>11.09</td>
</tr>
<tr>
<td>TOTALS FOR ALL OP</td>
<td>432</td>
<td>33.28</td>
</tr>
<tr>
<td>TRAINING</td>
<td>SPECIAL EQUIP</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTORS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TRAINEES</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>VEHICLES</td>
<td>TRAINING VEHICLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.64</td>
<td>3.33</td>
</tr>
<tr>
<td>ACQUISITION</td>
<td>SPARES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>3.76</td>
</tr>
<tr>
<td>ROD + E</td>
<td>RECOVERABLE PAYLOAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>123.00</td>
<td>0.90</td>
</tr>
<tr>
<td>EXPENDABLE PAYLOAD</td>
<td></td>
<td>6.30</td>
</tr>
<tr>
<td>TOTALS FOR ENTIRE SYSTEM</td>
<td>444</td>
<td>267.71</td>
</tr>
<tr>
<td>TOTAL SYSTEM COST</td>
<td>368.74</td>
<td></td>
</tr>
</tbody>
</table>
TEST CASE FOR DOCUMENTATION

THE MOST COST - EFFECTIVE OPTION IS:

<table>
<thead>
<tr>
<th>ITERATION NUMBER</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL COST</td>
<td>368.74</td>
</tr>
<tr>
<td>STORAGE REMOVAL RATE - UHS</td>
<td>3.0</td>
</tr>
<tr>
<td>TOTAL VEHICLES - NVT</td>
<td>94</td>
</tr>
<tr>
<td>NUMBER OF READY VEHICLES - NVR</td>
<td>45</td>
</tr>
<tr>
<td>NUMBER OF STORRED VEHICLES - NWS</td>
<td>44</td>
</tr>
<tr>
<td>MAX AVERAGE SORTIE RATE - SLAVG</td>
<td>107.0</td>
</tr>
<tr>
<td>MAXIMUM SORTIE RATE - SMAX</td>
<td>108.4</td>
</tr>
<tr>
<td>RAID SORTIE RATE - SLR</td>
<td>108.4</td>
</tr>
<tr>
<td>NO. OF OPERATING LOCATIONS - NOL</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSONNEL REQUIREMENTS FOR THIS OPTION</th>
<th>EQUIPMENT REQUIREMENTS FOR THIS OPTION</th>
<th>FACILITY REQUIREMENTS FOR THIS OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAUNCH</td>
<td>LAUNCHERS</td>
<td>ACCESSORIES</td>
</tr>
<tr>
<td>LAUNCH CONTROL</td>
<td>12</td>
<td>2.26</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>RECOVERY AREAS</td>
<td>ACCESSORIES</td>
</tr>
<tr>
<td>STORAGE</td>
<td>PERSONNEL</td>
<td>HANDLING EQUIP</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>PERSONNEL</td>
<td>CONTROL EQUIP</td>
</tr>
<tr>
<td>TRAINING</td>
<td>TRAINEES</td>
<td>SPECIAL EQUIP</td>
</tr>
<tr>
<td>VEHICLES</td>
<td>2</td>
<td>3.38</td>
</tr>
<tr>
<td>VEHICLES</td>
<td>30</td>
<td>5.64</td>
</tr>
</tbody>
</table>

TOTALS FOR ENTIRE SYSTEM: 464 | 87.23 | 267.71 | 13.80 |

TOTAL SYSTEM COST: 368.74

Figure 7. The Final Results - The Most Cost Effective Option
TEST CASE FOR DOCUMENTATION

<table>
<thead>
<tr>
<th>VALUES FOR INPUT VARIABLES</th>
<th>INDICATES THE VARIABLE WAS DEFINED FOR THIS CASE</th>
<th>INDICATES THE VARIABLE IS UNEVALUATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSION REQUIREMENTS/CONSTRAINTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>PHO</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>MINL</td>
<td>3.000</td>
<td></td>
</tr>
<tr>
<td>PROBABILITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>.950</td>
<td></td>
</tr>
<tr>
<td>TPS</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>LAUNCH COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL1</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td>CL2</td>
<td>.017</td>
<td></td>
</tr>
<tr>
<td>NDOTFCC</td>
<td>16.000</td>
<td></td>
</tr>
<tr>
<td>RECOVERY COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>.188</td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>.457</td>
<td></td>
</tr>
<tr>
<td>OPERATIONS COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>.500</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>MAINTENANCE COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td>NMC</td>
<td>57.000</td>
<td></td>
</tr>
<tr>
<td>STORAGE COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>NSC</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>INITIAL STARTUP COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL1</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td>ML65</td>
<td>2500.000</td>
<td></td>
</tr>
<tr>
<td>TRAINING COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT1</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>CT3</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>VEHICLE COST COEFFICIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV1</td>
<td>1.044</td>
<td></td>
</tr>
<tr>
<td>CV2</td>
<td>.044</td>
<td></td>
</tr>
<tr>
<td>CV3</td>
<td>123.000</td>
<td></td>
</tr>
<tr>
<td>CV4</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

Figure B. A Sample Input Case for TYPE = 2
TEST CASE FOR DOCUMENTATION

SORTIE RATE IS 2,4000 SORTIES / DAY

THIS IS A RECC Mission

TARGETS FOR RECCE 10
NUMBER OF DAYS 15
SORTIE RATE, SORTIES/DAY 2.4
PROBABILITY OF LAUNCH .990
PROBABILITY OF SURVIVAL 1.000
INSPRESS PS1 1.000
OVERALL SURVIVAL PROBABILITY .972
TARGETS ACQUIRED/SORTIE 2.00
RAID SIZE, VEHICLES 1
CRITICAL RETRIEVAL RATE .15

Figure 9. Results of Intermediate Calculations
Figure 10. Results of More Intermediate Calculations
TEST CASE FOR DOCUMENTATION

THE MOST COST - EFFECTIVE OPTION IS

ITERATION NUMBER	1.
TOTAL COST	196.65
STORAGE: REMOVAL RATE - DNS	2.
TOTAL VEHICLES - NVT	9.
NUMBER OF READY VEHICLES - NVR	2.
NUMBER OF STORED VEHICLES - NVS	2.
MAX AVERAGE SORTIE RATE - SLAVG	5.3
MAXIMUM SORTIE RATE - SLHAX	5.3
PAID SORTIE RATE - SLH	0.0
NO. OF OPERATING LOCATIONS - NOL	3.

PERSONNEL REQUIREMENTS FOR THIS OPTION

| LAUNCH | LAUNCH | 3. | .56 |
| LAUNCH CONTROL | 3. | .56 |

| RECOVERY | RECOVERY | 3. | .56 |
| RECOVERY CONTROL | 3. | .56 |

| MAINTENANCE | PERSONNEL | 9. | 1.69 |
| REPAIR PERS | 9. | 1.69 |

| STORAGE | PERSONNEL | 9. | 1.69 |

| OPERATIONS | PERSONNEL | 3. | .56 |

| OIL STARTUP | SECURITY | 0. | 0.00 |

| TRAINING | INSTRUCTORS | 1. | .19 |
| TRAINEES | 3. | .56 |

VEHICLES	ACQUISITION	5.	4.05
SPARES	1.9		
ROT + E	123.00		
RECOVERABLE PAYLOAD	.00		
EXPENDABLE PAYLOAD	.02		

EQUIPMENT REQUIREMENTS FOR THIS OPTION

LAUNCHERS	3.	.05
ACCESSORIES	3.	4.67
MORTAR EQUIP	3.	.02
ROT + E	1.23	

RECOVERY ARCAS	3.	1.37
ACCESSORIES	3.	4.43
MORTAR EQUIP	3.	.02
ROT + E	1.35	

TURNAROUND EQUIP	3.	4.55
REPAIR EQUIP	3.	.92
ROT + E	10.00	

| HANDLING EQUIP | 3. | .10 |
| ROT + E | 10.00 |

| CONTROL EQUIP | 3. | .65 |
| ROT + E | 0.00 |

SPECIAL EQUIP	3.	1.35
TRAINING VENIC	3.	.99
ROT + E	10.00	

FACILITY REQUIREMENTS FOR THIS OPTION

MAINT BUILDINGS	3.	1.11
COLD STORAGE	2.	.01
READY STORAGE	2.	.04
CONTROL FACILITY	3.	2.68
MISS. FAC ST	1.	.05
INITIAL ACTIVATION	3.	.89
TRAINING LOCATION	1.	.22

TOTALS FOR ENTIRE SYSTEM

| 46. | 8.05 |
| 178.99 |

TOTAL SYSTEM COST

| 196.65 |

Figure 11. The Final Results
APPENDIX

PROGRAM CoEFUV(INPUT,OUTPUT)

THIS PROGRAM IS USED TO COMPUTE THE SYSTEM OF U/V REQUIRED TO MEET
A SPECIFIC EFFECTIVENESS AND THEN TO COMPUTE THE COST OF THE SYSTEM
BASED ON DIFFERENT CONCEPTS OF OPERATIONS

THE SPECIFIC EFFECTIVENESS OF THE U/V FORCE CAN BE CHARACTERIZED BY
THE FOLLOWING
TYPE = (1=STRIKE), (2=RECCE), (3=DEFENSE SUPPRESSION)
EO*TOTAL EFFECTIVENESS REQUIRED WHICH DEPENDS ON THE MISSION
TYPE
RHO = NUMBER OF TASKS ACCOMPLISHED PER SUCCESSFUL SORTIE
PS = SINGLE SORTIE SURVIVAL PROBABILITY OF AN U/V
RAID = RAID SIZE
RS = INDIVIDUAL VEHICLE SORTIE RATE
O = NUMBER OF DAYS AVAILABLE TO ACCOMPLISH MISSION

IMPLICIT REAL(L,M,N)
INTEGER MUL,NO
COMMON /CHANGE/ NO,VARYD(50),NI,VARY(50)
COMMON /INPUTS/ TYPE,EO,DS,RHO,RAID,RS,TO,TM,TM;T;MA559
110L,M,DLI(M)-10,PL=PC,PS,PS,TPS,TPS-DUM1(15)+CL1+CL2+CL3+CL
24+CLS+CLC+NLCC+NOTC+CLC+LOTE+NLN+MHE,DU(N3)-10,CR1,CR2,CR
33+CR4+CRS+NRC+NOTPC,NOTRC+NOTR
PRINT ON PRINTING OF RESULTS AT EACH ONS ITERATION
COSTS ON CALLS TO SURROUTINE COST
DEBUG OFF PRINTING OF INTERMEDIATE CALCULATIONS
DATI ON PRINTING OF VALUES IN COMMON /INPUTS/
PRTOFF OFF SUPPRESSES INTERMEDIATE OUTPUT

IF (PRTOFF) GO TO 20
PRINT 350, TITLE, TODAY, CLOCK, RS

CALCULATE RAID LAUNCH RATE
20 CONTINUE
SLR = RAID * TO / (PR * TM1SS)
SLRMAX = RAID / (TM1SS * PR)
IF (SLRMAX .LE. MLOL) GO TO 30
PRINT 360, SLRMAX, MLOL
GO TO 10
TYPE = (1=COST OPTIMIZATION), (2=CONSTANT LEVEL OF EFFORT)
CALCULATE PROBABILITY OF SUCCESSFUL LAUNCH

30 PCI = SQRT(PC)

CALCULATE INGRESS SURVIVAL PROBABILITY
PSI = (SQRT(1.0 + 8.0 * PSS) - 1.0) * 0.5
TERMINAL SURVIVAL IS TPS, INGRESS TERMINAL SURVIVAL IS TPS1

TPS1 = (SQRT(1.0 + 8.0 * TPS) - 1.0) * 0.5
TOTAL INGRESS SURVIVAL

PSI = PSI * TPS1

CALCULATE OVERALL MISSION SURVIVAL PROBABILITY
PST = PC * PSS * PLS ** (1.0 / RS)
TOTAL SURVIVAL CONSIDERING TERMINAL DEFENSES
PST = PST * TPS

SET UP LOOP ON VALUE TO BE VARIED
IF (PRTOFF) PRINT 620
IF (CMGD) OSAVE=OS

SET UP OUTER AND INNER LOOPS

OUTER LOOP
DO 340 K2=1,NO
IF (CMGD,AND,OD) D=VARY0(K2)
IF (CMGD,AND,OD) PRINT 640, D
IF (CM6DS,AND,ODS) DS=VARY0(K2)
IF (CM6DS,AND,ODS) PRINT 650, DS
IF (CMRHO,AND,ORHO) RHO=VARY0(K2)
IF (CMRHO,AND,ORHO) PRINT 660, RHO
IF (CMGEO,AND,OEO) EO=VARY0(K2)
IF (CMGEO,AND,OEO) PRINT 670, EO
IF (CMGA,AND,OA) A=VARY0(K2)
IF (CMGA,AND,OA) PRINT 680, A

INNER LOOP

IF (PROFF) PRINT 620
DO 330 K1=1,NI
IF (CMGD,AND,ID) D=VARY(K1)
IF (CMRD,AND,IDS) DS=VARY(K1)
IF (CMRHO,AND,IRHO) RHO=VARY(K1)
IF (CMGEO,AND,IEO) EO=VARY(K1)
IF (CMGA,AND,IA) A=VARY(K1)

CHECK FOR VARY ATTRITION
IF (CMGA) 40,50
40 PSI=5RT((1.0+6.0*PSS)-1.0)**.5
PST=PC*PSS*PLS**(1.0/RS)
50 CONTINUE

TEST FOR MISSION TYPE
GO TO (60,150), TYPE

//
// COST OPTIMIZATION //
//

60 CONTINUE
IF (PROFF) GO TO 70
PRINT 170
PRINT 380, EO,IO,RS,PC1,PSS,PS1,PST, RHO, RAID
70 CONTINUE

CALCULATE BOUNDS ON NS NS MAX AND NS CRITICAL
POX=1.0-PST
PSTRS=PST**RS
PSTRSD=PST**(RS*0)
PSTPSOS=PST**(RSOOS)
PSRSODSzPSTe
4
(RS* (0-OS))
PLSOS=PLS.*S
LAMOA=RHO*PS1*PR*PCI
SL=EO/LAMOA
IF (DEBUG) PRINT 390, POK,PSTRS,PSTRSD,PSTRSOPSTPSODSPLSOSLAMOA
1,SL
DNSMAX=(EO*POK/LAMOA)/(OS-PSRSDOS*(1.0-PSTPSODS)/(1.0-PSTRS))
DNSC=EO*POK*(1.0-PSTRS)/(LAMOA*(1.0+OS*PSRSODS-PSTPSODS))
IF (PRINT) GO TO 80
PRINT 400, DNSMAX,DNSC
80 CONTINUE
C
C SETUP LOOP ON NS
C
IF (PRINT) PRINT 410
CTMIN=1.0E100
TNS=DNSMAX/20.0
DNS=0.
DNSLAST=DNS
MULT=0
DO 140 ITER8=1,22
DNS=MULT*TNS
IF (DNSLAST.LT.DNSC.AND.DNS.GT.DNSC) GO TO 90
IF (PRINT) PRINT 420, TITLE,TODAY,CLOCK,DNS
MULT=MULT-1.
GO TO 100
90 DNS=DNSC
IF (PRINT) PRINT 430, TITLE,TODAY,CLOCK,DNS
100 CONTINUE
C
C CALCULATE NVS*NVRiNVT
C
NVR=EO*POK/(LAMOA*(1.0-PSTRS))-(OS-PSRSDOS*(1.0-PSTPSODS)/(1.0-PSTRS))
IF (PLS.F'l.1.0) NVS=DNS*OS
IF (PLS.NE.1.0) NVS=DNS*(1.0-PLSOS)/(PLSDS*(1.0-PLS))
NVT=NVR+NVS
C
C CALCULATE LAUNCH RATE AVERAGE MAXIMUM AND MAXIMUm
C
IF (DNSGT.DNSC) GO TO 110
SLAVG=NVR*(1.0-PSTRS)/POK
GO TO 120
110 SLAVG=NVR*PSTRSD
SLAVG=SLAVG+DNS*(1.0-PSTRSDS)/(1.0-PSTRS)
SLAVG=SLAVG*(1.0-PSTRS)/POK
120 SLMAX=MAX1(SLAVG,SL9)

59
IF (DEBUG) PRINT 440, NVT, NVS, NVR, SLR, SLAVG, SLMAX

 COMPUTE COSTS

 IF (.NOT. COSTS) GO TO 140
 CALL COST (TOTAL)

 STORE DATA

 IF (TOTAL.GE.CTMIN) GO TO 140
 CTMIN=TOTAL
 ST(1)=ITER8
 ST(2)=TOTAL
 ST(3)=DNS
 ST(4)=NVT
 ST(5)=NVR
 ST(6)=NV
 ST(7)=SLAVG
 ST(8)=SLMAX
 ST(9)=SLR
 ST(10)=NOL
 DO 130 I=1,8
 DO 130 J=1,5
 DO 130 K=1,2
 FOLK(I,J,K)=FOLK(I,J,K)
 EQUIM(I,J,K)=EQUIP(I,J,K)
 130 FACIM(I,J,K)=FACIL(I,J,K)
 140 DNSLAST=DNS

 THE MOST COST EFFECTIVE SYSTEM IS

 IF (.NOT. COSTS) GO To 10
 GO To 260

 ///
 / CONSTANT LEVEL OF EFFORT /
 ///

 150 CONTINUE
 ITER8=1
 SAVRAID=RAID
 RAID=1.0
 IF (PRTOFF) GO TO 160
 PRINT 450
 160 CONTINUE

 CALCULATE CRITICAL REMOVAL RATE (DNSC)

 PST=RSS*PC*PLS**(1.0/RS)
TOTAL SURVIVAL CONSIDERING TERMINAL DEFENSES

PST = PST * TPS
PS1 = SQRT(1.0 - 0.5 * PSS) * (1.0) * 0.5

INGRESS SURVIVAL CONSIDERING TERMINAL DEFENSES

PSS = 1.0 - A
PS1 = SQRT(1.0 - 0.5 * PSS) * (1.0) * 0.5
PST = PSS * PC * PLS ** (1.0 / RS)

170 CONTINUE
POK = 1.0 - PST
LAMDA = RHO * PS1 * PC * PC1
DS = 0.0 - 1.0
PSTRS = PST ** RS
PLS = PL5DS ** DS
SL = EO * D/LAMDA
IF (PRINT) GO TO 190
PRINT 460, EO, O + RS, PC1, PSS, PS1, PST, RHO, RAID

190 CONTINUE
DNSC = EO * POK / LAMDA
IF (PRINT) GO TO 200
PRINT 470, DNSC

200 CONTINUE

CALCULATE THE LAUNCH RATE AVERAGE MAXIMUM AND MAXIMUM FOR THE RECCE MISSION SLR AND SLAVG ARE CONSTANTS

SLAVG = EO / LAMDA
SLR = 0
SLRMAX = 0
SLMAX = SLAVG
DNS = DNSC
IF (PRINT) PRINT 427, TITLE, TODAY, CLOCK, DNS

CALCULATE NVS, NVR, NVT

NVR = EO * POK / ((1.0 - PSTRS) * LAMDA)
NVS = DNS * (1.0 - PL5DS) / (PL5DS * (1.0 - PLS))
NVT = NVR + NVS
IF (.NOT. PRINT) GO TO 210
PRINT 440, NVT, NVS, NVR, SLR, SLAVG, SLMAX
PRINT 480

COMPUTF COSTS

210 IF (.NOT. COSTS) GO TO 230
CALL COST (TOTAL)
STORE DATA

CIMIN=TOTAL
ST(1)=ITER8
ST(2)=TOTAL
ST(3)=DNS
ST(4)=NVT
ST(5)=NVR
ST(6)=NVS
ST(7)=SLAVG
ST(8)=SLMAX
ST(9)=SLR
ST(10)=NOL
DO 220 I=1,8
DO 220 J=1,5
DO 220 K=1,2
FOLKM(I,J,K)=FOLKS(I,J,K)
EQUIM(I,J,K)=EQUIP(I,J,K)
220 FACIM(I,J,K)=FACIL(I,J,K)
230 CONTINUE
RAID=SAVRAID
THE MOST COST EFFECTIVE SYSTEM IS

IF (.NOT.COSTS) GO TO 10

C

100 IF (PRTOFF) GO TO 270
PRINT 520, TITLE=TOOAYCLOCK,(ST(I),I=1,10)
NOL=ST(10)
PRINT 530
PRINT 640, FOLKM(1,1,1),FOLKM(1,1,2),EQUIM(1,1,1),FOQUIM(1,1,2),FOL
1KM(1,2,1),FOLKM(1,2,2),EQUIM(1,2,1),FOQIIM(1,2,2),EQUIM(1,3,1),EQUI
2M(1,3,2),CLS
PRINT 550, FOLKM(2,1,1),FOLKM(2,1,2),EQUIM(2,1,1),FOUIM(2,1,2),FOL
1KM(2,2,1),FOLKM(2,2,2),EQUIM(2,2,1),FOUIM(2,2,2),EQUIM(2,3,1),EQUI
2M(2,3,2),CLR
PRINT 560, FOLKM(3,1,1),FOLKM(3,1,2),EQUIM(3,1,1),FOUIM(3,1,2),FAC
1M(3,1,1),FACIM(3,1,2),FOLKM(3,2,1),FOLKM(3,2,2),EQUIM(3,2,1),EQUI
2M(3,2,2),CMS
PRINT 570, FOLKM(4,1,1),FOLKM(4,1,2),EQUIM(4,1,1),FOUIM(4,1,2),FAC
1M(4,1,1),FACIM(4,1,2),CMS,FACIM(4,2,1),FACIM(4,2,2)
PRINT 580, FOLKM(5,1,1),FOLKM(5,1,2),EQUIM(5,1,1),FOUIM(5,1,2),FAC
1M(5,1,1),FACIM(5,1,2),C04
PRINT 590, FOLKM(6,1,1),FOLKM(6,1,2),FACIM(6,1,1),FACIM(6,1,2),FAC
C COMPUTE TOTALS

NPERS=PERSC=0.0
DO 280 I=1,8
DO 280 J=1,5
NPERS=NPERS+FOLKM(I,J,1)
280 PERSC=PERSC+FOLKM(I,J,2)
EQUPC=0.0
DO 290 I=1,8
DO 290 J=1,5
290 EQUPC=EQUPC+EQUIM(I,J,2)
EQUPC=EQUPC+CLS+CRS+CSS+C04+CT3+CMS
FACLC=0.0
DO 300 I=1,8
DO 300 J=1,5
300 FACLC=FACLC+FACIM(I,J,2)
TOTAL=PERSC+EQUPC+FACLc
IF (PRTOFF) GO TO 310
PRINT 510, NPERS,PERSC,EQUPC,FACLc,TOTAL
310 CONTINUE
IF (.NOT.PRTOFF) GO TO 320
ST(1)=TOTAL
ST(2)=FO/RHO
IF (TYPE.EQ.2) ST(2)=(E0*D)/RHO
ST(3)=TOTAL*RHO/E0
IF (TYPE.EQ.2) ST(3)=TOTAL*RHO/(E0*D)
ST(4)=E0
IF (TYPE.EQ.2) ST(4)=E0*O
ST(5)=RHO
ST(6)=1.0-PSS
ST(7)=TOTAL*RHO
PRINT 630, (ST(I),I=1,7)
320 CONTINUE
C END INNER LOOP K1
330 CONTINUE
C END OUTER LOOP K2
340 CONTINUE
C IF (CMGD) DS=DSAVE
GO TO 10
350 FORMAT (1X,T10.8,A10,T10.5,SHDATE: = A10.5,SHTIME: = A10.16= SORTIE RATE IS = F7.4,4=OH SORTIES / DAY/)
360 FORMAT (4=H,IMAX LAUNCH RATE EXCEEDS OL CAPABILITY, T50,9HSLRMA
1X = ,F8.2=T50,9HMLOL = ,F8.2/)
370 FORMAT (2SH THIS IS A STRIKE MISSION/)
380 FORMAT (2SH TARGETS TO BE KILLED, T30=F10.0/15H NUMBER OF DAYS, T30
1X=F10.0/25H SORTIE RATE, SORTIES/DAY, T30=F11.1/22H PROBABILITY OF
2 LAUNCH=T30=F13.3/24H PROBABILITY OF SURVIVAL, T30=F13.3/12H INGR
3ESS PS1=T30=F13.3/29H OVERALL SURVIVAL PROBABILITY, T30=F13.3/20H
4 TARGET KILLS/SORTIE=T30=F12.2/20H RAID SIZE, VEHICLES=T30=F10.0/
5/)
390 FORMAT (T10.3=MP0K=T20,F8.6=T10.6=HPSTRS=T20,F8.6=T10.6=MP0KSDS=T20,F8.6=T10.6=2=HSL=T15.6=FR.=17/)
400 FORMAT (2SH MAXIMUM RETRIEVAL RATE, T30=F12.2/24H CRITICAL RETRIE
VAL RATE OF = F8.2/)
410 FORMAT (IHI)
420 FORMAT (IHI)
430 FORMAT (IHI)
440 FORMAT (T10.5=NVNVT =,F9.0,T30.5=N=,F9.0,T50.5=NHNVT =,F9.0/10.5=SHS
1LR =,F13.4,T30.7=SLAVG =,F11.4,T50.7=SLAVG =,F11.4/)
450 FORMAT (2SH THIS IS A PEACE MISSION/)
460 FORMAT (1H TARGETS FOR RECCF, T30=F10.0/15H NUMBER OF DAYS, T30=F1
10.0/25H SORTIE RATE, SORTIES/DAY, T30=F11.1/22H PROBABILITY OF LA
UNCH=T30=F13.3/26H PROBABILITY OF SURVIVAL, T30=F13.3/12H INGRESS
3PS1=T30=F13.3/29H OVERALL SURVIVAL PROBABILITY, T30=F13.3/24H TA
4GETS ACQUIRED/SORTIE=T30=F12.2/20H RAID SIZE, VEHICLES=T30=F10.0/
5/)
470 FORMAT (2SH CRITICAL RETRIEVAL RATE, T30=F12.2/)
480 FORMAT (T10.6=HVNVVT, SLR, SLAGV, SLAVG OR SLMAX ARE CONSTANT FOR THE RE
CCE MISSION/)
490 FORMAT (3SH THIS IS A DEFENSE SUPPRESSION MISSION/)
500 FORMAT (2SH THIS IS AN EW MISSION/)
510 FORMAT (T10.135.1H=,F8.0/3H ** TOTALS FOR ENTIRE SYSTEM **,T34=F7.0=F1
12.2=T79=F16.2=T119=F16.2/24H ** TOTAL SYSTEM COST **,T37=F16.2/)
520 FORMAT (1H=T10.8=A10.5=SHDATE: = A10.5=SHTIME: = A10.16= THE MOST
1COST EFFECTIVE OPTION IS: =,T5.16=H,ITERATION NUMBER, T42=F4.0/T5.10
2HTOTAL COST=T33=F15.2/T5.26H STORAGE REMOVAL RATE = NNS=T41.6.1/T5
3.20H TOTAL VEHICLES = NVT=T38.8/F8.0/T5.30H NUMBER OF READY VEHICLES =
4 NVR=T8.8/F8.0/T5.31H NUMBER OF STORED VEHICLES = NYS=T38.8/0/T5.31
5SLMAX AVERAGE SORTIE RATE = SLAVG=T34.9.1/T5.27M MAXIMUM SORTIE RATE
6E = SLMAX=T34.9.1/T5.22HRAID SORTIE RATE = SLR=T34.9.1/T5=32HNO.
7 OF OPERATING LOCATIONS = NOL=T41.6.0/)
530 FORMAT (T17.3H PERSONNEL REQUIREMENTS FOR THIS OPTION, T53.3H PER
SONNEL REQUIREMENTS FOR THIS OPTION, T99.3H FACILITY REQUIREMENTS FOR
OPTION 2R THIS OPTION=T17.3H=,T58.3H=,T99.3H=)
540 FORMAT (7H LAUNCH T19, 6H LAUNCH T37, F4.0, F12.2, T60, 9H LAUNCHERS: T78, 1F4.0, F12.2/ T19, 16H LAUNCH CONTROL T37, F4.0, F12.2, T60, 11H ACCESSORIES T2, T79, F4.0, F12.2/ T60, 12H MOBILE EQUIP, T78, F4.0, F12.2, T60, 7H ROT + E, T19, F12.2)

550 FORMAT (9H RECOVERY T19, 8H RECOVERY T37, F4.0, F12.2, T60, 14H RECOVERY 1AREA: T78, F4.0, F12.2, T19, 16H RECOVERY CONTROL T37, F4.0, F12.2, T60, 11H ACCESSORIES T78, F4.0, F12.2, T60, 12H MOBILE EQUIP T78, F4.0, F12.2, T60, 3H ROT + E, T19, F12.2)

570 FORMAT (8H STORAGE T19, 9H PERSONNEL T35, F6.0, F12.2, T60, 14H HANDLING 1EQUIP, T78, F4.0, F12.2, T101, 12H COLD STORAGE, T78, F4.0, F12.2, T60, 7H ROT + E, T19, F12.2, T101, 13H READY STORAGE T78, F4.0, F12.2)

580 FORMAT (11H OPERATIONS T19, 9H PERSONNEL T37, F4.0, F12.2, T60, 13H CONTR 10LEQUIP, T78, F4.0, F12.2, T101, 16H CONTROL FACILITY T119, F4.0, F12.2, T260, 7H ROT + E, T19, F12.2)

590 FORMAT (11H OIL STARTUP T19, 8H SECURITY T37, F4.0, F12.2, T101, 14H MISS 1FAC STOR, T113, F10.0, F12.2, T101, 18H INITIAL ACTIVATION T119, F4.0, F122.2)

610 FORMAT (9H VEHICLES T60, 11H ACQUISITION T74, F8.0, F12.2, T60, 6H SPARES 1T104, F14.2, T60, 7H ROT + E, T104, F14.2, T60, 19H RECOVERABLE PAYLOAD T80, 2F14.2, T60, 18H EXPENDABLE PAYLOAD T80, F14.2)

620 FORMAT (1H T16, 6H COST T41, 6H EOS/RH0 T58, 4H RH0 EOS T70, 2HE0 T87, 3HRH 10, T102, 4H ATTR T116, 5HR RH0)

640 FORMAT (/T10, 14H OUTER LOOP D=F10.1)

650 FORMAT (/T10, 15H OUTER LOOP D=F10.1)

660 FORMAT (/T10, 16M OUTER LOOP RH0=F10.2)

670 FORMAT (/T10, 15H OUTER LOOP F0=F10.1)

680 FORMAT (/T10, 14H OUTER LOOP A=F10.3)

END
SUBROUTINE INPUT
COMMON /CHANGE/ N0,VARY(50),N1,VARY(50)
COMMON /INPUTS/ TYPF,E0,DNS,RHO,RAID,RS,T0,TS,TH,TMASS,N
1LOL,MINL,UMU(7),PRL,PLS,PC,PSS,TPS,UMU2(15),CL1,CL2,CL3,CL4
24,CL5,NLC,NDOTLC+NLCC,NDOTLC+LDTF*NLS+HKE,DUM3(3),CR1,CR2,CR
33,CR4,CR5,NHC,NDOTRC+NRCC,NDOTRC+RDTF+NRSC+DUM5(3),C01,C02
42,HC5,NDOCTC+TC+CO3,TDOTF+CD4,DUMB(1),CM1,CM2,CM3,CM4+NHC+N
50,DMTC,NP,NP,RMP,NHMR,NMOTCR+CM5,CM5+DUM6(7),CS1,C52,C53,C54+
6NSC,NDOTSC+CSS+DUM7(3),C11,C12,C13,NSEC,MLHS+DUM8(5),CT1,CT2,RA,PT
7,PT,TT,MAX,TCYCLE,TC3,DUMQ(6),CV1,VC2,VC3,VC4,VC5,GMMA,DUM10(4)
COMMON /RESULT/ FOLS(R,5,2),EQUIP(R,5,2),FACIL(R,5,2)
COMMON /HEADER/ TITLE(A),TODAY,CLOCK,ITERB
COMMON /SWITCH/ PRINT,COSTS,DEBUG,DAT1,CHGD,CHGOS,CHGRO,CHGO,CHG
1A,PRTOFF,00,ODS,0600,OE0,OA,10,IDS,IRMO,IEO,IA
LOGICAL OD0,ODS,ORHO,OE0,OAI,10,IDS,IRMO,IEO,IA
LOGICAL PRINT,COSTS,DEBUG,DAT1
LOGICAL CHGD,CHGOS,CHGRO,CHGO,CHGA,PRTOFF
DIMENSION VAR(145),NAMES(145),FLAG(I45)
EQUIVALENCE (VAR(I),TYPF)

MISSION REQUIREMENTS
DATA (NAMES(I),I=1,20)/4HTYME,2HEO,1HO,2HDS,3HRHO,4HRAID,2HRS,
12HTO,2HTS,2HTM,5HTM,2HTM,4HML0L,4HMINL,7*7H$UNUSED/

PROBABILITIES
DATA (NAMES(I),I=21,40)/2HPR,3HPLS,2HPC,3HPSS,3HTPS,15*7H$UNUSED/

LAUNCH COST COEFFICIENTS
DATA (NAMES(I),I=41,55)/3HCL1,3HCL2,3HCL3,3HCL4,3HCL5,3HCL6,3HCL7,
1LC,4HNLCC,7HDOTLCC,5HDLTCC,5HNLSS,3HMM,3*7H$UNUSED/

RECOVERY COST COEFFICIENTS
DATA (NAMES(I),I=56,70)/3HCR1,3HCR2,3HCR3,3HCR4,3HCR5,3HCR6,3HCR7,
1RC,4HNHCC,7HDOTRC5,5HDTDC5,3HNR,3HMM,3*7H$UNUSED/

OPERATIONS COST COEFFICIENTS
DATA (NAMES(I),I=71,80)/3HC01,3HC02,3HC03,6HDDOTC,2HMC,3HC03,5HDD
10T,5HDTDCF,3HC04,7H$UNUSED/

MAINTENANCE COST COEFFICIENTS
DATA (NAMES(I),I=81,100)/3HMC1,3HMC2,3HMC3,3HMC4,3HMC5,6HDDOTMC,3H
INTR,3HMM,3HNR,4HMMR,7HDDOTMC,3HMC5,7*7H$UNUSED/

STORAGE COST COEFFICIENTS

66
DATA (NAMES(I),I=101,110)/3HCS1,3HCS2,3HCS3,3HCS4,3HNSC,6HNDOTSC,3
1HCS5,*7H$UNUSED/

INITIAL STARTUP COST COEFFICIENTS

DATA (NAMES(I),I=111,120)/3HCI1,3HCI2,3HCI3,4HNSEC,4HMLRS,5*7H$UNUSED/

TRAINING COST COEFFICIENTS

DATA (NAMES(I),I=121,135)/3HCT1,3HCT2,2HRA,2HPL,2HTT,4HNEG1,6
1HTCYCLE,3HCT3,6*7H$UNUSED/

VEHICLE COST COEFFICIENTS

DATA (NAMES(I),I=136,145)/3HCV1,3HCV2,3HCV3,3HCV4,3HCV5,5H$GAMMA,4*
17H$UNUSED/

DATA FLAG /145*1H*, /VAR/145=0,0/, /DATA PRINT=COSTS,DEBUG,DAT1,CH6D,CH6DS,CHGRHO,CMGE0,CHGA,PRTOFF/, /T
1TRUE...TRUE...FALSE...TRUE...FALSE...FALSE...FALSE...FALSE...FALSE...FALSE...
2...FALSE.../

DATA OD:ODS,ORHO,OE0,OA,ID,IDS,IRHO,IE0,IA/*FALSE...FALSE...FALSE...FALSE...
1...FALSE...FALSE...FALSE...FALSE...FALSE...FALSE...FALSE...FALSE.../

DATA TITLE/8*1H /

ISTOP=1

PRINT 340

CALL DATE (TODAY)

CALL TIME (CLOCK)

NO 10 I=1,145

10 IF (FLAG(I).EQ.100) STOP

IF (NAME.EQ.100MENDJOB) STOP

IF (NAME.EQ.100MPRINT) STOP

IF (NAME.EQ.100MNOTPRINT) STOP

IF (NAME.EQ.100MHCOSTS) STOP

IF (NAME.EQ.100MHDATA) STOP

IF (NAME.EQ.100MNDATA) STOP

IF (NAME.EQ.100MNCOSTS) STOP

IF (NAME.EQ.100MNDERUG) STOP

IF (NAME.EQ.100MNDTITLE) STOP

IF (NAME.EQ.100MNOTITLE) STOP

IF (NAME.EQ.100MENDCASE) STOP

IF (NAME.EQ.100MCHGDO) STOP

IF (NAME.EQ.100MCHGDS) STOP

IF (NAME.EQ.100MCHGSTD) STOP

IF (NAME.EQ.100MCHGSTRH) STOP

IF (NAME.EQ.100MCHGGRHO) STOP

IF (NAME.EQ.100MCHGGRHS) STOP

67
IF (NAME.EQ.10MCHGEO) GO TO 200
DO 30 I=1,1145
IF (NAME.EQ.NAMES(1)) GO TO 280
30 CONTINUE
PRINT 360, ISTOP+NAME+DATA
PRINT 370
ISTOP=0
GO TO 20
40 PRINT=.TRUE.
GO TO 20
50 PRINT=.FALSE.
GO TO 20
60 COSTS=.TRUE.
GO TO 20
70 COSTS=.FALSE.
GO TO 20
80 DEBUG=.TRUE.
GO TO 20
90 DEBUG=.FALSE.
GO TO 20
100 DAT1=.TRUE.
GO TO 20
110 DAT1=.FALSE.
GO TO 20
120 READ 360+, TITLE
GO TO 20
130 CMGD=.TRUE.
GO TO 250
140 CMGD=.FALSE.
IF (OD) NO=1
IF (OD) NT=1
OD=.FALSE.
ID=.FALSE.
GO TO 20
150 CMGD=.TRUE.
GO TO 250
160 CMGD=.FALSE.
IF (IDS) NO=1
ODS=.FALSE.
IF (IDS) NI=1
IDS=.FALSE.
GO TO 20
170 CMGD=.TRUE.
GO TO 250
180 CHGRHO=.FALSE.
 IF (ORHO) NO=1
 ORHO=.FALSE.
 IF (IRHO) NI=1
 IRHO=.FALSE.
 IF (NAME.EQ.'IOHC$4GRHO') GO TO 180
GO TO 20
190 CHGEO=.TRUE.
GO TO 250
200 CHGEO=.FALSE.
 IF (OEO) NO=1
 OEO=.FALSE.
 IF (IEO) NI=1
 IEO=.FALSE.
 IF (NAME.EQ.'IOHC$4CHGEO') GO TO 190
GO TO 20
210 CHGA=.TRUE.
GO TO 250
220 CHGA=.FALSE.
 IF (OA) NO=1
 OA=.FALSE.
 IF (IA) NI=1
 IA=.FALSE.
 IF (NAME.EQ.'IOHC$4CHGA') GO TO 210
GO TO 20
230 PRTOFF=.TRUE.
GO TO 20
240 PRTOFF=.FALSE.
GO TO 20
250 READ 350, NAME, DATA
 IF (NAME.EQ.'IOHC$4OUTER') GO TO 260
 IF (NAME.EQ.'IOHC$4INNER') GO TO 270
PRINT 390, NAME
ISTOP=0
GO TO 20
260 CONTINUE
NO=DATA
 IF (CMG0.AND..NOT.ID) OD=.TRUE.
 IF (CMGDS.AND..NOT.IDS) ODS=.TRUE.
 IF (CHGRHO.AND..NOT.TRHO) ORHO=.TRUE.
 IF (CHGED.AND..NOT.IEO) OEO=.TRUE.
 IF (CMGA.AND..NOT.IA) OA=.TRUE.
READ 400, (VARY0(I), I=1, NO)
PRINT 410, (VARY0(I), I=1, NO)
GO TO 20
270 CONTINUE
NI=DATA
 IF (CMG0.AND..NOT.ID) ID=.TRUE.
 IF (CMGDS.AND..NOT.IDS) IDS=.TRUE.
IF (CHGRMO .AND. .NOT. ORHO) IRHO = .TRUE.
IF (CHGEO .AND. .NOT. OEO) IE0 = .TRUE.
IF (CHFA .AND. .NOT. OAF) IA = .TRUE.
READ 400, (VARY(I), I = 1, NI)
PRINT 420, (VARY(I), I = 1, NI)
GO TO 20

280 VAR(I) = DATA
FLAG(I) = IMH
GO TO 20

290 IF (.NOT. NATI) GO TO 300
PRINT 430, TITLE, TODAY, CLOCK
PRINT 440
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 1, 13)
PRINT 450
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 21, 25)
PRINT 460
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 41, 52)
PRINT 470
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 56, 67)
PRINT 480
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 71, 79)
PRINT 490
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 81, 93)
PRINT 500
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 101, 107)
PRINT 510
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 111, 115)
PRINT 520
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 121, 129)
PRINT 530
PRINT 550, (FLAG(I), NAMES(I), VAR(I), I = 136, 141)

300 DO 310 I = 1, 8
DO 310 J = 1, 5
DO 310 K = 1, 2
310 FOLKS(I, J, K) = EQUIP(I, J, K) = FACIL(I, J, K) = 0.0
IF (ISTOP = EQ. 0) GO TO 330
IF (DATI) RETURN
DO 320 I = 1, 14
IF (FLAG(I) = EQ. 1) PRINT 540, NAMES(I), VAR(I)
320 CONTINUE
RETURN
330 CONTINUE
PRINT 560
STOP *- INPUT ERRORS

C

340 FORMAT (1H1)
350 FORMAT (A10 = E20.8)
360 FORMAT (I1, 9X, A10, 5X, F10.3)
370 FORMAT (1H1, I40, 46H**** VARIABLE NAME IS NOT IN DICTIONARY ****)
380 FORMAT (8A10)
390 FORMAT (T10,A10,T25,3HIS NOT INNER OR OUTER INPUT ERROR)
400 FORMAT (8F10.0)
410 FORMAT (T10,24HOUTER LOOP VALUES VARIED/(AF1.2.3))
420 FORMAT (T10,24HINNER LOOP VALUES VARIED/(BF1.2.3))
430 FORMAT (14H2,4M10.5,5HMATE1,A10,5X,5HTIME1,A10/27HM0VALUES FOR
1R INPUT VARIABLES+T40,51M+ INDICATES THE VARIABLE WAS DEFINED FOR
2 THIS CASE/T40,38M< INDICATES THE VARIABLE IS UNDEFINED)
440 FORMAT (3HM0MISSION REQUIREMENTS/CONSTRAINTS)
450 FORMAT (14H0PROBABILITIES)
460 FORMAT (2HM0LAUNCH COST COEFFICIENTS)
470 FORMAT (2HM0RECOVERY COST COEFFICIENTS)
480 FORMAT (2HM0OPERATIONS COST COEFFICIENTS)
490 FORMAT (3HM0MAINTENANCE COST COEFFICIENTS)
500 FORMAT (2HM0STORAGE COST COEFFICIENTS)
510 FORMAT (3HM0INITIAL STARTUP COST COEFFICIENTS)
520 FORMAT (2HM0TRAINING COST COEFFICIENTS)
530 FORMAT (2HM0VEHICLE COST COEFFICIENTS)
540 FORMAT (T10,A10,F10.3)
110,F10.3)
560 FORMAT (16H0ERRORS IN INPUT)
END
SUBROUTINE COST (TOTAL)

C
C THIS ROUTINE CALCULATES THE SYSTEM COST BASED ON THE REQUIRED
C LAUNCH RATES AND NUMBER OF VEHICLES-TOTAL, IN STORAGE AND READY
C COSTS ARE DIVIDED INTO EIGHT TASK AREAS: LAUNCH, RECOVERY,
C MAINTENANCE, STORAGE, OPERATIONS, STARTUP, TRAINING, AND
C VEHICLE ACQUISITION
C
C RESULTS FROM THE COST EQUATIONS ARE PLACED IN THE ARRAYS
C FOLKS(8,5,2) PERSONNEL REQUIREMENTS
C EQUIP(8,5,2) EQUIPMENT REQUIREMENTS
C FACIL(8,5,2) FACILITIES REQUIREMENTS
C
C THE SUBSCRIPTS FOR THESE ARRAYS ARE ARRANGED AS FOLLOWS:
C ARRAY(TASK,SUBTASK,UNITS), WHERE
C
C TASK = 1 LAUNCH
C 2 RECOVERY
C 3 MAINTENANCE
C 4 STORAGE
C 5 OPERATIONS
C 6 OPERATING LOCATION STARTUP
C 7 TRAINING
C 8 VEHICLE ACQUISITION
C
C SUBTASK = 1+N FOR THE SUB-PORTIONS OF THE
C COST ESTIMATING RELATIONSHIP
C
C UNITS = 1 NUMBER REQUIRED
C 2 COST
C
C IMPLICIT REAL (L, M, N)
C COMMON /INPUTS/ TYPE, EO, DS, RHO, RAID, AS, TO, TS, TM, TMSS, M
C 1LOL, MIN, MUM(7), PR, PLS, PC, PSS, TPS, DUM2(15), CL, CL2, CL3, CL
C 24* CL5, NLC5, NDOTLC5, NLC6, NDOTLC6, LDOTE, NLS, MHE, DUM3(3), CR1, CR2, CR
C 33* CR4, CR5, NHC, NDOTRC, NRC5, NDOTRC5, RDO, NRE, DUM4(3), C0, C0
C 42* N0C, NDOT0C, TC0, CD0, OD0TE, ODTF, CO4, OUMS(1), CM1, CM2, CM3, CM4, NMC, N
C 5D0TM, NTP, NRE, NRF, RMR, NMC, ND0TMC, CMS, DUM6(7), CS1, CS2, CS3, CS4
C 6N5C, ND0T5C, CS5, OUM7(1), CI, CI2, CI3, NSEC, MLS, NIM8(5), CT1, CT2, RA, PT
C 7PL, TT, NEXI, TCYCLE, CT3, OUMR(6), CV1, CV2, CV3, CV4, CV5, GAMMA, DUM10(4)
C COMMON /WORKER/ PC1, PS1, PST, DSS, NVS, NVT, SLAVG, SLMAX, SLR, NO
C 1L, LAMDA, SL, SLMAX
C COMMON /RESULT/ FOLKS(8,5,2), EQUIP(8,5,2), FACIL(8,5,2)
C COMMON /HEADER/ TITLE(S), TOVAY, PCLOCK, ITER
C COMMON /SWITCH/ PRINT, COSTS, DEBUG, DAT1, CMGO, CMGOS, CMGRHO, CMGEO, CHG
C IA, PTOFF, NO, ODS, ORHO, OFO, OA, ID, IDS, IRM0, IEO, IIA
C LOGICAL 00, ODS, ORHO, OEO, OA, ID, IDS, IRHO, IEO, IIA
C LOGICAL PRINT, COSTS, DEBUG, DAT1

72
LOGICAL CHGD,CHGDS,CHGRO,CHGEO,CHGA,PRTOFF
INTEGER NOL
ROUND(ARG)=AINT(ARG+0.99999999999999)

CALCULATE NUMBER OF OPERATING LOCATION REQUIRED
MLOL = MAXIMUM LAUNCH RATE PER OPERATING LOCATION
NOL = NUMBER OF OPERATING LOCATION

NOL=MAYI(ROUND(SLV/G/(TO*NOL)),MINL)

IF (PRINT) PRINT 90, NOL

COMPUTE THE NUMBER OF SHIFTS

SAVE$=$SLMAX
SSLMAX=SLAVG/(TO*NOL)
SLMAX=SLAVG
IF (SLRMAX.GT.*SSLMAX) SLMAX=SLR*NOL
IF (PRINT) PRINT 100, SLRMAX,SSLMAX,SLMAX
S=TO/TS
S=AMAX1(1.,S)
SM=TM/TS
IF (SLPMAx.GT.*SSLMAX) 10
10 TIME=(SLAVG*TMSS/(NOL*RAIN))
S=AMAX1(1.,TIME/TS)
IF (PRINT) PRINT 110, TIME, TS, S
20 CONTINUE

// LAUNCH COSTS //
// LAUNCHERS //

DL=SLMAX/(TO*NOL)

EQUIP(1,1,1)=ROUND(DL/LOLTE)
EQUIP(1,1,2)=CL2*EQUIP(1,1,1)

LAUNCH CONTROL PERSONNEL

FOLKS(1,1,1)=S*ROUND(NLC*DL/NDOTLC)
FOLKS(1,1,2)=CL1*FOLKS(1,1,1)
FOLKS(1,2,1)=S*ROUND(NLC*DL/NDOTLCC)
FOLKS(1,2,2)=CL1*FOLKS(1,2,1)

LAUNCHER ACCESSORIES
MOBILE LAUNCH HANDLING EQUIPMENT

EQUIP(1,2,1) = ROUND(DL/(NLS*LOOTE))
EQUIP(1,2,2) = CL3*EQUIP(1,2,1)
EQUIP(1,3,1) = ROUND(DL/MHE)
EQUIP(2,2,1) = ROUND(DL/(NRS*POOTE))
EQUIP(1,3,2) = CL4*EQUIP(1,3,1)

/ RECOVERY COSTS /
DL = SLMAX/(T0*NOL)

RECOVERY AREAS
EQUIP(2,1,1) = ROUND(DL/ROOTF)
EQUIP(2,1,2) = CR2*EQUIP(2,1,1)

RECOVERY PERSONNEL
FOLKS(2,1,1) = S*ROUND(NRC*DL/NDTRCC)
FOLKS(2,1,2) = CR1*FOLKS(2,1,1)

RECOVERY CONTROL PERSONNEL
FOLKS(2,2,1) = S*ROUND(NRCC*DL/NDTRCC)
FOLKS(2,2,2) = CR1*FOLKS(2,2,1)

RECOVERY ACCESSORIES
EQUIP(2,2,1) = ROUND(DL/NRS)
EQUIP(2,2,2) = CR3*EQUIP(2,2,1)

MOBILE RECOVERY HANDLING EQUIPMENT
EQUIP(2,3,1) = ROUND(DL/MHE)
EQUIP(2,3,2) = CR4*EQUIP(2,3,1)

/ MAINTENANCE COSTS /

CALCULATE AVERAGE LAUNCH RATE
DL = SLAVG/(T0*NOL)

MAINTENANCE PERSONNEL
FOLKS(3,1,1) = SM*ROUND(NMC*DL/NDOTMC)

74
MAINTENANCE FACILITIES AND EQUIPMENT

EQUIP(3,1,1) = ROUND(DL/NTR)
EQUIP(3,2,1) = ROUND(DL/NRE)
EQUIP(3,1,2) = CM3 * EQUIP(3,1,1)
EQUIP(3,2,2) = CM4 * EQUIP(3,2,1)

FACIL(3,1,1) = ROUND(DL/NRF)
FACIL(3,1,2) = CM2 * FACIL(3,1,1)

STORAGE COSTS

STORAGE PERSONNEL

FOLKS(4,1,1) = ROUND(SM * ROUND(NSC * NDOTS/NDOTSC))
FOLKS(4,1,2) = CS1 * FOLKS(4,1,1)

STORAGE EQUIPMENT

EQUIP(4,1,1) = ROUND(NDOTS/NDOTSC)
EQUIP(4,1,2) = CS4 * EQUIP(4,1,1)

STORAGE FACILITIES

FACIL(4,1,1) = NOS/NOL
FACIL(4,2,1) = CS2 * FACIL(4,1,1)
FACIL(4,2,2) = NVR/NOL
FACIL(4,2,2) = CS3 * FACIL(4,2,1)

OPERATIONS COSTS

OPERATIONS PERSONNEL

FOLKS(5,1,1) = S * ROUND(NOC * DL * TC/NDOTOC)
FOLKS(5,1,2) = CO1 * FOLKS(5,1,1)

OPERATIONS EQUIPMENT
EQUIP(5,1,1)=ROUND(0L/000TE)
EQUIP(5,1,2)=CO2*EQUIP(5,1,1)

OPERATIONS FACILITIES
FACIL(5,1,1)=ROUND(0L/000TF)
FACIL(5,1,2)=CO2*FACIL(5,1,1)

/оля STARTUP COSTS /

SECURITY PERSONNEL
FOLKS(6,1,1)=NSEC
FOLKS(6,1,2)=C11*FOLKS(6,1,1)

STORAGE FACILITIES
FACIL(6,1,1)=MLBS*SL/1.0E6
FACIL(6,1,2)=C12*FACIL(6,1,1)

STARTUP
FACIL(6,2,1)=1.0
FACIL(6,2,2)=C13*FACIL(6,2,1)

/ TRAINING COSTS /

NOTE: THE COST OF TRAINING VEHICLES IS NOT COMPUTED UNTIL THE UNIT VEHICLE COST IS KNOWN.

NPT=FOLKS(1,1,1)*FOLKS(1,2,1)*FOLKS(2,1,1)*FOLKS(2,2,1)*FOLKS(3,1,1)*FOLKS(4,1,1)
NPT=NPT*NOL/TCYCLE
FRAC=MIN(1.0,PT*NPT/NOL/TCYCLE)
IF (DEBUG) PRINT 120; FRAC

INSTRUCTORS
FOLKS(7,1,1)=ROUND(9A*PT*NPT)
FOLKS(7,1,2)=C11*FOLKS(7,1,1)

TRAINNEES
FOLKS(7,2,1)=ROUND(PT*NPT)
FOLKS(7,2,2)=C12*FOLKS(7,2,1)
TRAINING FACILITIES

FACIL(7,1,1) = 1.0
FACIL(7,1,2) = FRAC*FACIL(5,1,2)

EQUIPMENT

EQUIP(7,1,1) = 1.0
EQUIP(7,1,2) = FRAC*EQUIP(1,1,2) + EQUIP(1,2,2) + EQUIP(1,3,2) + EQUIP(2,1,2) + EQUIP(2,2,2) + EQUIP(2,3,2) + EQUIP(3,1,2) + FRAC*(EQUIP(3,2,2) + EQUIP(5,1,2))

TRAINING VEHICLES

TEMP = MAX(RAID, SLAVG/(TO*NOL))
NTV = FRAC*TEMP/PR
NTV = NTV*(1.0*PL*TT*NEX1)
EQUIP(7,2,1) = NTV.
IF DEBUG PRINT 130, NTV

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/ VEHICLE ACQUISITION COSTS /
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ACQUISITION

EQUIP(9,1,1) = NVT
TEMP = CV1*(NVT+NTV)**(ALOG(GAMMA)/ALOG(2.))
EQUIP(9,1,2) = NVT*TEMP

COMPUTE COST OF TRAINING VEHICLES

EQUIP(7,2,2) = NTV*TEMP + CV2*NTV

SPARES

EQUIP(8,2,2) = CV2*EQUIP(8,1,1)

PAYLOADS

EQUIP(8,4,2) = CV4*EQUIP(8,1,1)
EQUIP(8,5,2) = CV5*EO/LAMDA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/ PRINT RESULTS /
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
IF (.NOT.PRT) GO TO 40
PRINT 140, TITLE, TODAY, CLOCK, ITER
PRINT 150, FOLKS(1,1,1), FOLKS(1,1,2), EQUIP(1,1,1), EQUIP(1,1,2), FOLS(1,2,1),
1K5(1,2,1), FOLKS(1,2,2), EQUIP(1,2,1), EQUIP(1,2,2), EQUIP(1,3,1), EQUIP(1,3,2),
2P(1,3,2), C5/NOL
PRINT 170, FOLKS(2,1,1), FOLKS(2,1,2), EQUIP(2,1,1), EQUIP(2,1,2), FOLS(2,2,1),
1K5(2,2,1), FOLKS(2,2,2), EQUIP(2,2,1), EQUIP(2,2,2), EQUIP(2,3,1), EQUIP(2,3,2),
2P(2,3,2), C5/NOL
PRINT 180, FOLKS(3,1,1), FOLKS(3,1,2), EQUIP(3,1,1), EQUIP(3,1,2), FOLS(3,2,1),
1K5(3,2,1), FOLKS(3,2,2), EQUIP(3,2,1), EQUIP(3,2,2), EQUIP(3,3,1), EQUIP(3,3,2),
2P(3,3,2), C5/NOL
PRINT 190, FOLKS(4,1,1), FOLKS(4,1,2), EQUIP(4,1,1), EQUIP(4,1,2), FOLS(4,2,1),
1K5(4,2,1), FOLKS(4,2,2), EQUIP(4,2,1), EQUIP(4,2,2), EQUIP(4,3,1), EQUIP(4,3,2),
2P(4,3,2), C5/NOL
PRINT 200, FOLKS(5,1,1), FOLKS(5,1,2), EQUIP(5,1,1), EQUIP(5,1,2), FOLS(5,2,1),
1K5(5,2,1), FOLKS(5,2,2), EQUIP(5,2,1), EQUIP(5,2,2), EQUIP(5,3,1), EQUIP(5,3,2),
2P(5,3,2), C5/NOL
PRINT 210, FOLKS(6,1,1), FOLKS(6,1,2), EQUIP(6,1,1), EQUIP(6,1,2), FOLS(6,2,1),
1K5(6,2,1), FOLKS(6,2,2), EQUIP(6,2,1), EQUIP(6,2,2), EQUIP(6,3,1), EQUIP(6,3,2),
2P(6,3,2), C5/NOL
PRINT TOTALS PER OPERATING LOCATION
PEPOL=0.
CPFPOL=0.
CEOPOL=0.
CFACOL=0.
DO 30 I=1,6
DO 30 J=1,5
PEPOL=PEPOL+FOLKS(I,J,1)
CPFPOL=CPFPOL+FOLKS(I,J,2)
CEOPOL=CEOPOL+EQUIP(I,J,1)
CFACOL=CFACOL+FACIL(I,J,2)
30 CONTINUE
PRINT 240, PEPOL, CPFPOL, CEOPOL, CFACOL
PRINT 250, PEPOL*NOL, CPFPOL*NOL, CEOPOL*NOL, CFACOL*NOL
PRINT 220, FOLKS(7,1,1), FOLKS(7,1,2), EQUIP(7,1,1), EQUIP(7,1,2), FACIL(7,1,1),
1K5(7,1,1), FOLKS(7,2,1), FOLKS(7,2,2), EQUIP(7,2,1), EQUIP(7,2,2), EQUIP(7,3,1),
2P(7,3,2), C5/NOL
PRINT 230, EQUIP(8,1,1), EQUIP(8,1,2), EQUIP(8,2,1), EQUIP(8,2,2), EQUIP(8,3,1),
1K5(8,3,2), EQUIP(8,5,2)
PRINT MULTIPLY BY NUMBER OF OPERATING LOCATIONS
40 DO 50 I=1,6
DO 50 J=1,5
DO 50 K=1,2
FOLKS(I,J,K)=FOLKS(I,J,K)*NOL
EQUIP(I,J,K)=EQUIP(I,J,K)*NOL
50 FACIL(I,J,K)=FACIL(I,J,K)*NOL
COMPUTE TOTALS

NPERS=NPERS+0.0
DO 60 I=1,8
 NPERS=NPERS+FOLKS(I,J)
60
 PERSC=PERSC*FOLKS(I,J)

EOUPC=0.0
00 70 1=1,8
 70 E(QuPC=EQUPC+E0UIP(19JP2)

EQUJPC=CM5.C04.CT3

FACIC=0.0
DO 80 I=1,8
 FACLC=FACLC+1(IJ)
80
 TOTAL=PERSC*EOUPC+FACLC*TOTAL

IF (PRINT) PRINT 260. NPERS,PERSC,EQUIPC,FACLC,TOTAL

RESTORF SLMAX.
SLMAX=SAVESL
RETURN

90 FORMAT (/T10,2HOPERATING LOCATIONS REQUIRED,T40,15/)
100 FORMAT (T10,52H24LAUNCH RATE DETERMINED BY RAID SIZE (LAUNCHES/HR/OL
1.),T90,F10.1/T10,4HLAUNCH RATE DETERMINED BY MAXIMUM SORTIES REQUIRED
2RED/DAY TO DO JOB (LAUNCHES/HR/OL),T91,F9.1 /T10,50HMAXIMUM LAUNCH
3 RATE REQUIRED (LAUNCHES/DAY/SYSTEM),T90,F10.1/)
110 FORMAT (T10,27HOURS/DAY BASE MUST OPERATE,T50,F10.2/T10,23HSHIFT
1LENGTH (HR)=INPUT,T50,F10.2/T10,29HNUMBER OF SHIFTS/DAY RESET TO,7
250,F10.2)
120 FORMAT (6H FRAC=F10.4)
130 FORMAT (5H NTV=F10.3)
140 FORMAT (1H1,T10,8A10,T100,5HDATE:+A10,5X,SHTIME:+A10/T67,9HITERATI
10N,15/)
150 FORMAT (/T20,32HPERSONNEL PER OPERATING LOCATION+T61,32HEQUIPMENT
1PER OPERATING LOCATION+T102,33HFACILITIES PER OPERATING LOCATION/T
21A,36(1H),T59,36(1H),T100,36(1H))
160 FORMAT (7H LAUNCH+T19,9HLOUNCH+T37,F4.0,F12.2,T60,9HLAUNCHERS+T78,
1F4.0,F12.2/T19,14HLOUNCH CONTROL+T37,F4.0,F12.2+T60,11HMAccessories
2+T78,F4.0,F12.2/T60,12HMOBILE EQUIP+T78,F4.0,F12.2/T60,7HRDT + E,T
382,F12.2)
170 FORMAT (9HRECOVERY,T19,9HRECOVERY+T37,F4.0,F12.2+T60,14HRECOVERY
1AFAS+T78,F4.0,F12.2/T19,16HRECOVERY CONTROL+T37,F4.0,F12.2+T60,11
2MAccessories+T78,F4.0,F12.2+T60,12HMOBILE EQUIP+T78,F4.0,F12.2/T6
30,7HRDT + E,T82,F12.2)
180 FORMAT (1HMAINTENANCE,T19,6HPERSONNFL+T36,F5.0+T12.2+T60,16HTURN
1AROUND EQUIP+T78,F4.0,F12.2/T101,15HMAINT BUILDINGS+T119,F4.0,F12.
22+T19,11HREPAIR PERS+T36,F5.0+T12.2+T60,12HREPAIR EQUIP+T78,F4.0+T
312.2/T60,7HRDT + E,T82,F12.2)
190 FORMAT (8HOSTORAGE,T19,9HPERSONNEL,T37,F4.0,F12.2,T60,14MHANDLING
1EQUIP,T78,F4.0,F12.2,T101,12HCOLD STORAGE,T116,F7.0,F12.2/T60,7HRD
2T*E,T82,F12.2,T101,13HREADY STORAGE,T116,F7.0,F12.2)
200 FORMAT (10OPERATIONS,T19,9HPERSONNFL,T37,F4.0,F12.2,T60,13MCONTROL
10LEQUIP,T78,F4.0,F12.2,T101,16HCONTROL FACILITY,T119,F4.0,F12.2/T
260,7HRD*E,T82,F12.2)
210 FORMAT (1)H00L STARTUP,T19,8MSECURITY,T37,F4.0,F12.2,T101,14MISS.
1FAC STOR.T113,F10.0,F12.2/T101,18HINITIAL ACTIVATION,T119,F4.0,F1
22.2)
220 FORMAT (9)TRAINING,T19,11HINSTRUCTORS,T77,F4.0,F12.2,T60,13HSPECI
1AL EQUIP,T78,F4.0,F12.2,T101,17TRAINING LOCATION,T119,F4.0,F12.2/
2T19,8HTRAINNEES,T35,F6.0,F12.2,T60,17TRAINING VEHICLES,T74,F8.0,F1
32.2/T60,7HRD*E,T82,F12.2)
230 FORMAT (9)VEHICLES,T60,11HACQUISITION,T74,F8.0,F12.2/T63,6HSPARES
1T80,F14.2,T60,7HRD*E,T80,F14.2/T60,19HRECOVERABLE PAYLOAD,T80*
2F14.2/T60,18HEXPENDABLE PAYLOAD,T80,F14.2)
240 FORMAT (/12H**TOTALS PER OL**,T34,F7.0,F12.2,T78,F16.2,T119,F1
1.2)
250 FORMAT (24**TOTALS FOR ALL OL**,T34,F7.0,F12.2,T78,F16.2,T119,
1F16.2)
260 FORMAT (1x,135(1H-)/31H**TOTALS FOR ENTIRE SYSTEM**,T34,F7.0,F1
12.2,T78,F16.2,T119,F15.2)/24H**TOTAL SYSTEM COST**,T37,F16.2)
END