Effects of Selection Agent and Leader Origin on Leader Influence and Group Member Perceptions

Performance Organization Name and Address

Department of Psychological Sciences
Purdue University
West Lafayette, IN 47907

Controlling Office Name and Address

Organizational Effectiveness Research Programs
Office of Naval Research
Arlington VA 22217

Report Date

November, 1979

Number of Pages

14

Distribution Statement

Approved for public release: distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Abstract

The effects of the expertise of the agent of leader selection (expert vs. non-expert) and leader origin (internal promotion vs. external appointment) on leader effectiveness were examined in a laboratory setting. Results showed that leaders chosen by a competent agent of selection were themselves seen as having greater task expertise and were better able to influence the decisions of group members than were leaders selected by a less competent agent. The origin of the leader had no effect upon...
either perceptions of the leader or the leader's influence. These results are discussed in terms of their implications for leader selection in organizations and the importance of analyzing extra dyadic factors which influence leader–subordinate relations.
Effects of Selection Agent and Leader Origin on Leader Influence and Group Member Perceptions

Patrick A. Knight
and
Howard M. Weiss
Purdue University

Prepared for
Organizational Effectiveness Research Program
Office of Naval Research

Contract N00014-78-C0609
NR 170-876

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
Abstract

The effects of the expertise of the agent of leader selection (expert vs. non-expert) and leader origin (internal promotion vs. external appointment) on leader effectiveness were examined in a laboratory setting. Results showed that leaders chosen by a competent agent of selection were themselves seen as having greater task expertise and were better able to influence the decisions of group members than were leaders selected by a less competent agent. The origin of the leader had no effect upon either perceptions of the leader or the leader's influence. These results are discussed in terms of their implications for leader selection in organizations and the importance of analyzing extra dyadic factors which influence leader-subordinate relations.
Effects of Selection Agent and Leader Origin on Leader Influence and Group Member Perceptions

Only a few studies have focused on the effects of the methods by which leaders are chosen. Yet, judging from this research, it is clear that the circumstances surrounding the selection of a leader can influence the leader's effectiveness and group members' behaviors and attitudes. In a study by Goldman and Fraas (1965), groups with elected leaders performed better than groups with appointed leaders. Raven and French (1958, a, b) compared group elected leaders with leaders who had usurped authority. The elected leaders had more influence over group members, in terms of both public compliance and private acceptance. They were also better liked and accepted. Similarly, Read (1974) found that leaders who usurped authority had less influence than leaders either elected or appointed and were perceived as less likeable, legitimate and competent. Finally, in a series of studies, Hollander and his associates (Hollander and Julian, 1970; Julian, Hollander and Regula, 1969; Hollander, Fallon and Edwards, 1977) compared elected leaders with leaders appointed from within the group by an experimenter. Their findings indicated complex interactions among selection method, group success and initial leader competence. Interpreting these interactions, Hollander suggests that election produces greater demands upon the leader resulting from higher expectations among group members.

In total, these studies demonstrate that the way in which a leader is chosen does have an effect. However, the selection methods which have been examined have little relevance to the manner in which leaders are generally
chosen in work organizations. Those methods which most frequently appear in the literature are very rarely found at work, while issues common to the selection of leaders in organizations have generally been ignored. Research comparing elected leaders with usurping or appointed leaders may provide insight to the functioning of democratic and nondemocratic institutions. However, supervisors and managers are rarely elected and even less frequently attain their roles by usurping authority. Leaders are generally appointed (hired) by a person or group in the organization. Yet the effects of the characteristics of the people who do the appointing have never been examined. Further, despite studying different methods of leader selection, in all previous research eventual leaders came from within their own groups. However, in work organizations, new leaders are only sometimes promoted to head their own units. More frequently, leaders are appointed from outside the group, yet no research exists which examines the relative effectiveness of promoted and appointed leaders.

This study was designed to explore issues of leader selection more relevant to the choice of leaders in work organizations. Specifically, we examined the effects that differences in the competence of the agent of selection and the origin of the leader (internal promotion versus external appointment) have on group members' perceptions of leaders and leaders' abilities to influence members' behaviors.

In most organizations, when a new supervisor or manager is hired someone who is not a member of the group generally makes the final decision. Group members almost always have opinions about the competence of this agent of selection, and we are suggesting that the new leader will either benefit or suffer from these judgments. That is, when a new leader is chosen by an individual with a reputation for competence or expertise relevant to the group's activities, the new leader will also initially be perceived as competent. However, if the agent of selection lacks such competence...
or expertise the new leader will bear the burden of the agent's reputation and
his own task relevant expertise will be questioned.

The advantages which accrue to a leader chosen by an expert agent extend
beyond favorable competence judgments by subordinates. Task expertise has
been discussed as a source of power in numerous theories of social influence
(Hollander and Julian, 1970; Raven, 1974; Schopler, 1965), with frequent
demonstrations of empirical support (Ebert and Mitchell, 1974; Schopler, 1965). It follows, therefore, that if leaders chosen by expert agents of selection
are themselves perceived as more competent, they will have more influence over
the task related behavior of group members.

In sum, the competence of the agent of selection will be an important
determinant of the group's initial reaction to its new leader. Leaders
selected by an expert agent will have the advantage of higher perceived
competence and therefore greater influence over group members than will
leaders chosen by agents whose expertise is suspect.

Hypothesis 1

Leaders chosen by expert agents of selection will be perceived by
group members as more competent than will leaders chosen by non-expert
agents of selection.

Hypothesis 2

Leaders chosen by expert agents of selection will have more
influence over group members than will leaders chosen by non-expert
agents of selection.

When selecting supervisors or managers, organizations either promote
a current group member or appoint someone from outside the group. However,
virtually all previous research on selection method and leader effectiveness
has focused on methods whereby the leadership role is assumed by an
individual already in the group. Daum (1975) found more cohesion in groups with promoted leaders than in groups where the leader was appointed from outside. Although Daum did not examine leader influence or members' reactions to the leader, his study documents that the decision to promote or appoint does have an effect.

The attractiveness of the new leader to the group members may be one factor which is affected by whether the leader was promoted or appointed. Researchers have often documented the relationships between various aspects of similarity and interpersonal attraction (Aronson, 1969; Berscheid and Walster, 1969; Byrne, 1971). One might expect that the shared experience of group membership would lead group members to find promoted leaders more attractive and likeable than appointed leaders. Further, it has frequently been shown that interpersonal attraction increases the prospects of social influence. Individuals are more likely to be influenced by people they like than people they do not like. (Sampson and Inske, 1964; Schopler, 1965; Walster and Abrahams, 1972). If promotion produces greater leader attractiveness, it should also produce greater leader influence.

Hypothesis 3

Leaders promoted from within a group will be seen as more attractive and be better liked than leaders appointed from outside the group.

Hypothesis 4

Leaders promoted from within a group will have more influence over group members than will leaders appointed from outside the group.
Method

Overview

Eleven groups, with an average of six subjects per group, met for two sessions each and worked on group survival problems. The first session was intended to familiarize subjects with the task and to develop some sense of group identity. In the second session a leader (confederate) was either promoted from within the group or appointed from outside the group by an experimenter who was described as either an expert or a non-expert on the task. Each group member then individually worked on a second survival problem. While the leader analyzed their solutions, members completed a questionnaire asking their opinions about the group and the leader. The leader then returned with a summary of the group's solutions to the survival problem and his own judgments about the correct responses. Members again worked on the second problem and were given the opportunity to change their original judgments if they desired. Subjects then completed a second questionnaire, were debriefed and dismissed. This procedure produced a 2 (leader origin) x 2 (selection agent expertise) design with leader influence over group members' judgments and members' perceptions of leader expertise and attractiveness serving as the dependent variables.

Subjects

Subjects were 64 male students enrolled in the introductory psychology course at Purdue University. Their participation was in partial fulfillment of course requirements.

Task

Subjects worked on a survival problem similar to the NASA moon survival task. They were asked to imagine that the group had survived a disaster and were given a list of items to rank in terms of their value for the group's
ultimate survival. In the first session, group members were told they had survived a plane crash and were given ten items to rank. In the second session they were told they had survived a ship wreck and were given fifteen items to rank.

Manipulations

Confederate - The same person served as the confederate throughout the study. He was trained to behave consistently in all groups and to conceal the fact that he was working with the experimenter. Obviously, because of the nature of the promotion and appointment procedures, the confederate could not be blind to these experimental conditions. However, he was purposely kept uninformed about the hypotheses of the study.

Selection agent expertise - For all groups the experimenter served as the agent of leader selection. In the expert agent conditions, the experimenter stated that he had had formal training in survival techniques and these exercises had been part of the instruction. He also stated that he had used the survival problems in research before, and had chosen them for the current study because of his familiarity with them. In the non-expert agent conditions, the experimenter stated that the survival problems were chosen because they lent themselves well to the design of the study, but that he himself had difficulty in determining the utility of the various items.

Groups were randomly assigned to agent expertise conditions. Six groups, containing 33 subjects, were in the expert agent condition and 5 groups, with 31 subjects, were in the non-expert agent condition.

In the second questionnaire, subjects indicated the extent of their agreement with the following statement using a six point Likert type scale: "The experimenter knows quite a bit about emergency survival". Analysis of
variance of their responses showed that subjects in the expert agent conditions rated the experimenter as having more expertise ($\bar{x} = 4.45$) than did subjects in the non-expert agent conditions ($\bar{x} = 3.48$) ($F=17.78$, $p < .01$).

Promotion vs. Appointment - In promoted leader conditions, the confederate attended the first group meeting, posing as a subject. At the second meeting, the experimenter announced that he had chosen a leader (the confederate) based upon his opinion of the group members' solutions to the first session's survival problem. In the appointed leader conditions, the confederate did not attend the first session. At the second session, the experimenter announced that a subject who, in his opinion, had performed well on the task in an earlier study would serve as the leader. The confederate was then introduced.

Again groups were randomly assigned to conditions of promotion or appointment. Five groups, with 33 subjects, were in the promoted leader condition and 6 groups, with 31 subjects, were in the appointed leader condition.

Dependent Variables

Perceived Leader Expertise - Subjects were asked to indicate the extent of their agreement (6 point scale) with the following two statements: "The leader of my group knows more about emergency survival than do the group members" and "The leader of my group would do a better job leading survivors in an actual emergency then would the members of the group." The responses to the two items correlated $r=.71$ and were summed to form the measure of Leader Expertise ($\bar{x} = 7.82$, s.d. = 1.96). The expertise of the leader relative to the subjects evaluation of his own expertise was also assessed. Subjects were asked to indicate their agreement (6 point scale) with the following: "I know more about emergency survival than do the other group members" and "I would do a better job in leading survivors in an actual survival emergency.
than would the other members of my group". These items (r=.50) were summed and the sum was subtracted from the index of Leader Expertise to form the Relative Leader Expertise measure (\(\bar{x} = .77\), s.d. = 2.14).

Leader Attractiveness - Leader Attractiveness was assessed by asking subjects to indicate the extent of their agreement (6 point scale) with the following statement: "I like the leader of my group". This index had a mean of 4.86 and a standard deviation of .75.

Leader Influence - The leader's actual influence on group members' judgments was assessed in the following manner. After the leader had been chosen at the beginning of the second session, subjects individually ranked the fifteen items for the shipwreck survival problem. The leader left the room with their responses and when he returned he distributed to each subject three sets of rankings: the subjects' rankings, a bogus set of average group rankings and the leader's own rankings. For each subject, the group's average rankings were very similar to his own while the leader's were substantially different. Specifically, for 10 items the group's average ranks were identical to the subject's. For four items, the group and the subject differed by one rank and for one item they differed by two ranks. The leader's ranks were identical to the subject's on only seven of the fifteen items. For four items, the leader and the subject differed by 7 to 12 ranks, while for four other items they were 1 or 2 ranks apart. This procedure kept the discrepancy between the subjects' rankings and the bogus group and leader rankings constant across all subjects in spite of the fact that subjects initially ranked the items differently.

After receiving the three sets of ranks, subjects were asked to review the problem and the rankings and were told that they were free to either keep or change their initial responses. Leader influence was measured by the number of ranks changed in the direction of the leader's responses for the eight discrepant items.
Procedure

First Meeting - The first meeting was intended to describe the apparent purpose of the study, familiarize the subjects with the survival task and develop some sense of group identity. Each group of subjects entered a medium size room, were seated at tables, and spaced about four feet apart. The experimenter told the subjects that they were participating in a study on communication networks and group problem solving. They were informed that during the second meeting, the group would be working on a problem, but all communication would be funneled through a group leader. Daum (1975) has argued that in previous leader selection research interaction among group members has confounded leader selection methods. The description of the traditional "wheel" communication network was intended to eliminate this problem without raising the suspicions of subjects.

The experimenter then told the subjects that another important influence on the effectiveness of problem solving groups was the group's cohesiveness or ability to get along. He distributed a bogus personality questionnaire and informed the subjects that their response would enable him to determine the group's potential cohesiveness. After the personality questionnaires were completed the subjects were given the first survival problem. It was at this point that the expertise of the selection agent was manipulated. While describing the problem, the experimenter also described his own experiences with the task (as previously discussed). He then left the room to allow the subjects to work on the problem while he ostensibly scored the personality questionnaire.

When the experimenter returned to the room, he told the subjects that the personality questionnaire indicated that their group had a particularly high level of potential cohesiveness. This cohesiveness feedback was intended
to aid the group in developing some sense of group identity. (Byrne, 1971 has successfully used this procedure to influence group member attraction.) Before the first session ended, the subjects were told they would be working on a longer survival problem at their next meeting.

Second Meeting - The second meeting was held within two or three days of the first meeting. The experimenter again described the communication network and selected the group leader. The experimenter stated that the leader would be analyzing the group's responses, presenting his own judgments and facilitating a final group decision. The shipwreck survival problem was then distributed. After completing their rankings, subjects were given the questionnaire asking their attitudes about the group and the task. Within this questionnaire were the items measuring leader expertise and attractiveness. Meanwhile the leader was ostensibly analyzing the group's problem solutions. Actually, the experimenter and the confederate were preparing the bogus rankings. After the questionnaires had been completed these rankings were distributed to the subjects who were then given the opportunity to review their initial solution.

After changes were made the subjects completed the second short questionnaire, which contained the manipulation check and other questions about the task and the group. Finally, the experimenter entered the room and told subjects that the study was over. They were debriefed and dismissed.

Results

Selection Agent's Expertise

Hypotheses 1 and 2 focused on the effects of the selection agent on the leader's perceived expertise and influence over group members. Specifically, hypothesis 1 stated that leaders chosen by an expert agent would themselves be...
seen by group members as having more expertise than leaders chosen by a non-expert agent. Since perceptions of the leader's expertise should correlate positively with the leader's influence over group members hypothesis 2 stated that leaders chosen by an expert agent would have greater influence over members of their groups. Both hypotheses were supported.

As can be seen in Tables 1 and 2, subjects in the expert agent condition rated their leaders as having significantly more knowledge and ability on the survival task than did subjects in the non-expert agent condition. In addition, these perceptions of the leader's expertise were significantly related to the leader's influence over group members ($r=.23$, $p < .05$). Similar and somewhat stronger results were obtained when relative expertise was analyzed. Relative expertise was also significantly influenced by selection agent expertise ($F=8.46$, $p < .01$) and was significantly correlated with leader influence ($r=.32$, $p < .01$).

Results presented in Tables 3 and 4 indicate that hypothesis 2 was also supported. Leaders were able to exert greater influence over group members when they were selected by an expert than when they were selected by a non-expert.

In sum, it is clear that leaders chosen by expert agents have a significant advantage over leaders chosen by individuals who have less task competence. Such leaders are themselves seen as having greater expertise and have more influence over the judgments of group members.

Leader Origin

Hypotheses 3 and 4 compared leaders promoted from within the group with leaders appointed from outside the group. Specifically, it was argued that
promoted leaders would be seen as more attractive, that attraction would relate to influence and therefore promoted leaders would be more influential.

Results indicate that unlike being appointed by an expert agent, being promoted did not produce any advantage for the leader. Promoted leaders were not more attractive to group members nor were they more influential than leaders appointed from outside the group. Further, a perception of leader attractiveness was not significantly correlated with leader influence ($r = .11$, n.s.).

Discussion

This study has demonstrated that the effectiveness of a new leader is significantly influenced by the reputation of the individual who selected him. Leaders chosen by a competent agent of selection were themselves perceived by group members as having more task expertise and were better able to influence the behavior of their groups than were leaders chosen by a non-expert agent.

It should be noted that leaders chosen by expert agents were able to change the judgments of subjects in spite of subjects receiving feedback that their initial judgments were by and large supported by the other members of the group. Neither member perceptions nor leader influence however, were affected by whether the leader had been internally promoted or externally appointed.

Whenever groups are studied in laboratory settings, external validity is a concern (Shaw, 1976). In this study, two particular issues need to be addressed. First, the experimental conditions provided the group with few pieces of information to judge the competence of the leader. When other information is limited, the importance of the agent of expertise will be magnified. While this was definitely characteristic of our laboratory setting, it might also be characteristic of work settings. Although work groups may have more information to judge the competence of an incoming leader, it is rare
that this information, at least initially, will be extensive. In real life as in the laboratory the less the availability of other cues, the more influential will be the reputation of the agent of selection.

Second the transiency of laboratory groups generally precludes analyses of effects over time. Although the expertise of the agent of selection may have a substantial initial impact, it is possible that continued interaction between the leader and the group might provide members with more competence information and reduce the effect of the agent. It is also possible, however, that processes might work to perpetuate the initial advantage of leaders chosen by expert agents. Since such leaders are initially more influential, they may also be more effective, reinforcing their groups' perceptions of their competence. In addition, different group perceptions of leaders chosen by expert and non-expert agents may lead to different attributions for group successes and failures. Leaders perceived as competent may be held less responsible for group failures and more responsible for group successes than those perceived as less competent. Obviously, these speculations suggest research on the effects of selection agent expertise over time.

This temporary nature of laboratory groups may have been responsible for the failure to find any differences between promoted and appointed leaders. As suggested in the introduction, such differences are likely to be dependent upon some sense of group identity. Although an attempt was made to develop group cohesiveness by meeting for two sessions and providing bogus personality feedback, it is obvious that this is a far cry from what would be expected in real work groups. It is also possible that the task precluded finding a promotion effect. The advantages of prior group membership and a more personal relationship with group members which should accrue to promoted leaders may be most useful on tasks where group cooperation and smooth group interaction are necessary.
The benefits of being selected by an expert agent and the disadvantages of being selected by a non-expert agent have important implications for the management of leader selection processes in organizations. Obviously an organization always hopes to have competent individuals making hiring decisions. But, even if an organization were populated by only competent managers, it would still be difficult to insure that they would be so perceived by workers at lower levels. Therefore, a new leader should be aware of the reputation of the individual who hired him and its influence on his own initial effectiveness. A new leader who enters the role knowing that he was selected by an individual who enjoys a reputation of competence among group members might be able to use the situation to his advantage. On the other hand, if a new leader understands that problems may be arising from his association with a less than competent selection agent, he may be able to deal with these problems more effectively. Obviously, attempting to disassociate oneself from the selection agent without alienating superiors requires formidable political and interpersonal skills, something an individual might want to consider when deciding whether or not to accept a leadership position. Organizations may wish to reduce the risks of associating new leaders with their selectors by having other people, including the new leader's subordinates, more than superficially involved in the selection process.

The results of this study also suggest avenues of future leadership research. Specifically, research which examines other ways in which selection agents influence the effectiveness of new leaders and other characteristics of selection agent which generalize to the people they hire should be useful. In a broader sense, these results illustrate that an adequate conceptualization of leadership must take into account extra dyadic influences. The nature of the interaction between a leader and a follower will be affected by their relationships with other members of the organization. In this regard Hunt, Hill and
Reaser (1971) found that the consideration behavior of higher level managers affected the relationship between the consideration of lower level workers and their subordinates' satisfaction. House, Filley and Gujarati (1971) and Herold (1972) found that the relationship between supervisor consideration and subordinate satisfaction is moderated by the supervisor's upward influence. These studies and the current study make it clear that a full understanding of the influence of leaders requires that we look beyond the leader-follower dyad.

The results of this study have shown that the success or failure of a new leader is at least partially influenced by the circumstances surrounding his selection. New leaders are not totally free to develop their own reputations but are, at least initially, constrained by the reputations of their selector. Future research should extend these laboratory results to leader succession in ongoing work groups, examining the long range effects of selection agent characteristics and the factors which lead to the continued association or disassociation of the leader's and agent's reputations. In the interim, leaders and organizations would be well advised to recognize the ties between the leader and the person who selected him.
References

Table 1
ANOVA for Perceived Leader Expertise

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Expertise</td>
<td>15.81</td>
<td>1</td>
<td>15.81</td>
<td>4.18*</td>
</tr>
<tr>
<td>Leader Origin</td>
<td>.00</td>
<td>1</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Expertise X Origin</td>
<td>.35</td>
<td>1</td>
<td>.35</td>
<td>.09</td>
</tr>
<tr>
<td>Residual</td>
<td>222.92</td>
<td>59</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239.08</td>
<td>62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .05
Table 2
Cell Means for Leader Expertise

<table>
<thead>
<tr>
<th></th>
<th>Non-expert Agent</th>
<th>Expert Agent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoted Leader</td>
<td>7.37</td>
<td>8.24</td>
<td>7.82</td>
</tr>
<tr>
<td>Appointed Leader</td>
<td>7.21</td>
<td>8.37</td>
<td>7.84</td>
</tr>
<tr>
<td>Total</td>
<td>7.30</td>
<td>8.31</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
ANOVA for Leader Influence

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Expertise</td>
<td>473.37</td>
<td>1</td>
<td>473.37</td>
<td>9.13*</td>
</tr>
<tr>
<td>Leader Origin</td>
<td>.27</td>
<td>1</td>
<td>.27</td>
<td>.00</td>
</tr>
<tr>
<td>Expertise X Origin</td>
<td>13.55</td>
<td>1</td>
<td>13.55</td>
<td>.18</td>
</tr>
<tr>
<td>Residual</td>
<td>5532.80</td>
<td>60</td>
<td>92.21</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6019.99</td>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Table 4
Cell Means for Leader Influence

<table>
<thead>
<tr>
<th></th>
<th>Expert Agent</th>
<th>Non-expert</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoted Leader</td>
<td>9.65</td>
<td>3.31</td>
<td>6.58</td>
</tr>
<tr>
<td>Appointed Leader</td>
<td>8.63</td>
<td>4.13</td>
<td>6.46</td>
</tr>
<tr>
<td>Total</td>
<td>9.16</td>
<td>3.71</td>
<td></td>
</tr>
</tbody>
</table>
LIST 1

MANDATORY

Office of Naval Research (3 copies)
(Code 452)
800 N. Quincy St.
Arlington, Virginia 22217

Commanding Officer
Naval Research Laboratory (6 copies)
Code 2627
Washington, D. C. 20375

Defense Documentation Center (12 copies)
Accessions Division
ATTN: DUC-TC
Cameron Station
Alexandria, Virginia 22314

Science and Technology Division
Library of Congress
Washington, D. C. 20540

LIST 2

NAVRFIELD

Commanding Officer
ONR Branch Office
Bldg. 114, Section D
606 Summer St.
Boston, Massachusetts 02210

Psychologist
ONR Branch Office
Bldg. 114, Section D
606 Summer St.
Boston, Massachusetts 02210

Commanding Officer
ONR Branch Office
536 S. Clark St.
Chicago, Illinois 60605

Psychologist
ONR Branch Office
1030 E. Green St.
Pasadena, California 91106

Commanding Officer
ONR Branch Office
1030 E. Green St.
Pasadena, California 91106

LIST 3

ARPA

Director (3 copies)
Program Management
ARPA, Room B13
1400 Wilson Blvd.
Arlington, Virginia 22209

Director
Cybernetics Technology Office
ARPA, Room 625
1400 Wilson Blvd.
Arlington, Virginia 22209
LIST 4

PRINCIPAL INVESTIGATORS

Dr. Earl A. Alluissi
Performance Assessment Laboratory
Old Dominion University
Norfolk, Virginia 23508

Dr. James A. Bayton
Department of Psychology
Howard University
Washington, D. C. 20001

Dr. H. Russell Bernard
Department of Sociology
and Anthropology
West Virginia University
Morgantown, West Virginia 26506

Dr. Arthur Blaiwes
Human Factors Laboratory
Code N-71
Naval Training Equipment Center
Orlando, Florida 32813

Dr. Milton R. Blood
College of Industrial Management
Georgia Institute of Technology
Atlanta, Georgia 30332

Dr. David G. Bowers
Institute for Social Research
P. O. Box 1248
University of Michigan
Ann Arbor, Michigan 48106

Dr. Joseph V. Brady
The Johns Hopkins University
School of Medicine
Division of Behavioral Biology
Baltimore, Maryland 21205

Dr. C. Brooklyn Derr
Visiting Associate Professor
325-C Milton Bennion Hall
University of Utah
Salt Lake City, Utah 84112

Dr. Norman G. Dingess
The Institute of Behavioral Sciences
250 Ward Avenue - Suite 226
Honolulu, Hawaii 96814

Dr. Carson K. Eoyang
Naval Postgraduate School
Department of Administrative Sciences
Monterey, California 93940

Dr. John R. P. French, Jr.
Institute for Social Research
University of Michigan
Ann Arbor, Michigan 48106

Dr. Paul S. Goodman
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr. J. Richard Hackman
School of Organization and Management
56 Hillhouse Avenue
Yale University
New Haven, Connecticut 06520

Dr. Asa G. Hilliard, Jr.
The Urban Institute for Human Services, Inc.
P. O. Box 15068
San Francisco, California 94115

Ms. Kirsten Hinsdale
Vice-President, Research & Development
Validated Instruction Associates, Inc.
P. O. Box 386
Albion, Michigan 49224

Dr. Edwin Hollander
Department of Psychology
State University of New York at Buffalo
4230 Ridge Lea Rd.
Buffalo, New York 14226

Dr. Charles L. Hulin
Department of Psychology
University of Illinois
Champaign, Illinois 61820

Dr. Faris Kirkland
University City Science Center
Center for Social Development
3624 Science Center
Philadelphia, Pennsylvania 19104
LIST 4 (cont'd.)

Dr. Kudi Klauss
Syracuse University
Public Administration Department
Maxwell School
Syracuse, New York 13210

Dr. Arthur L. Korotkin
Vice President and Director
Washington Office
Richard A. Gibboney Associates, Inc.
10605 Concord St. - Suite 203 A
Kensington, Maryland 20795

Dr. Edward E. Lawler
Battelle Human Affairs Research Centers
4000 N.E., 41st St.
P.O. Box 5395
Seattle, Washington 98105

Dr. Arie Y. Lewin
Duke University
Duke Station
Durham, North Carolina 27706

Dr. Morgan W. McCall, Jr.
Center for Creative Leadership
P.O. Box P-1
Greensboro, North Carolina 27402

Dr. Terence R. Mitchell
School of Business Administration
University of Washington
Seattle, Washington 98195

Dr. William H. Mobley
College of Business Administration
University of South Carolina
Columbia, South Carolina 29208

Dr. Robert Morrison
Navy Personnel R&D Center
San Diego, California 92152

Dr. John M. Neale
State University of New York at Stony Brook
Department of Psychology
Stony Brook, New York 11794

Dr. Peter G. Nordlie
Human Sciences Research, Inc.
7710 Old Springhouse Rd.
McLean, Virginia 22101

Dr. Robert D. O'Connor
Behavior Design, Inc.
11212 N. May Ave. - Suite 111
Oklahoma City, Oklahoma 73120

Dr. Manuel Ramirez
Systems and Evaluations
232 Swanton Blvd.
Santa Cruz, California 95060

Dr. Irwin Sarason
Department of Psychology
University of Washington
Seattle, Washington 98195

Dr. Saul B. Sells
Institute of Behavioral Research
Drawer C
Texas Christian University
Fort Worth, Texas 76129

Dr. H. Wallace Sinaiko
Program Director
Manpower Research & Advisory Services
Smithsonian Institution
801 N. Pitt St. - Suite 120
Alexandria, Virginia 22314

Mrs. Alice I. Snyder
Anthropological Inquiry Services
1749 Navaja Lane
El Cajon, California 92020

Dr. Bertram I. Spector
CACI, Inc. - Federal
Ann Arbor Office
1325 S. Maple Rd.
Ann Arbor, Michigan 48103

Dr. Richard Steers
Graduate School of Management and Business
University of Oregon
Eugene, Oregon 97403

Dr. Philip G. Zimbardo
Department of Psychology
Stanford University
Stanford, California 94305
LIST 4 (cont'd.)

Dr. Robert J. Anderson
MATHTECH, Inc.
P.O. Box 2392
Princeton, New Jersey 08540

Dr. Les Cohen
Information Spectrum, Inc.
1745 S. Jefferson Davis Highway
Arlington, Virginia 22202

Dr. Richard Morey
Duke University
Graduate School of Business
Administration
Durham, North Carolina 27706
LIST 5
MISCELLANEOUS

Air Force
AFOSR/NL (Dr. Fregly)
Building 410
Bolling AFB
Washington, D. C. 20332

Military Assistant for Human Resources
OAD (E&LS) ODDR&E
Pentagon 3D129
Washington, D. C. 20301

AFMPC/DPMYP
(Research and Measurement Division)
Randolph AFB, Texas 78148

Air University Library/LSE 76-443
Maxwell AFB, Alabama 36112

Air Force Institute of Technology
AFIT/LSGR (Lt. Col. Umstot)
Wright-Patterson AFB, Ohio 45433

Army
Office of the Deputy Chief of Staff
for Personnel, Research Office
ATTN: DAPE-PBR
Washington, D. C. 20310

Army Research Institute (2 copies)
5001 Eisenhower Ave.
Alexandria, Virginia 22333

ARI Field Unit - Leavenworth
P. O. Box 3122
Fort Leavenworth, Kansas 66027

Headquarters FORSCOM
ATTN: AFPR-HR
Ft. McPherson, Georgia 30330

CAPT Joseph Weker
Department of the Army
Headquarters, 32D Army Air
Defense Command
APO New York 09175

Marine Corps
Dr. A. L. Slafkosky
Code RD-1
HQ U. S. Marine Corps
Washington, D. C. 20380

Commandant of the Marine Corps
(Code MPI-20)
Washington, D. C. 20380

Coast Guard
Joseph J. Cowan
Chief, Psychological Research Branch
U. S. Coast Guard (G-P-1/2/62)
Washington, D. C. 20590

Navy
Bureau of Naval Personnel
Scientific Advisor (Pers Or)
Washington, D. C. 20370

Bureau of Naval Personnel (Pers 6)
Assistant Chief of Naval Personnel
for Human Resource Management
Washington, D. C. 20370

Bureau of Naval Personnel (Pers 6a3)
Human Resource Management
Washington, D. C. 20370

CAPT Paul D. Nelson, MSC, USN
Director of Manpower & Facilities
(Code 60)
Navy Medical R&D Command
Bethesda, Maryland 20014

CAPT H.J.M. Connery, MSC, USN
Navy Medical R&D Command
Bethesda, Maryland 20014

Superintendent (Code 1424)
Naval Postgraduate School
Monterey, California 93940
LIST 5 (cont'd.)

Professor John Senger
Operations Research & Admin. Science
Naval Postgraduate School
Monterey, California 93940

Training Officer
Human Resource Management Center
Naval Training Center (Code 9000)
San Diego, California 92133

Scientific Director
Naval Health Research Center
San Diego, California 92152

Navy Personnel R&D Center (5 copies)
San Diego, California 92152

Commanding Officer
Naval Submarine Medical Research Lab.
Naval Submarine Base
New London, Box 900
Groton, Connecticut 06340

Commanding Officer
Naval Training Equipment Center
Technical Library
Orlando, Florida 32813

NAMRL, NAS
Pensacola, Florida 32508

Lt. Rebecca G. Vinson, USN
Rating Assignment Officer
Bureau of Naval Personnel (Pers 5151)
Washington, D.C. 20370

Chief of Naval Technical Training
Code 0161
NAS Memphis (75)
Millington, Tennessee 38054

Human Resource Management Center
Box 23
FPO New York 09510

Human Resource Management Detachment
Naples
Box 3
FPO New York 09521

Human Resource Management Detachment Rota
Box 41
FPO New York 09540

Human Resource Management Center
Norfolk
5621-23 Tidewater Dr.
Norfolk, Virginia 23511

Human Resource Management Center
Building 304
Naval Training Center
San Diego, California 92133

Office of Naval Research (Code 200)
Arlington, Virginia 22217

ACOS Research & Program Development
Chief of Naval Education & Training (N-5)
Naval Air Station
Pensacola, Florida 32508

Human Resource Management Center
Naval Air Station Memphis (96)
Millington, Tennessee 38054

Bureau of Naval Personnel (Pers 65)
Washington, D.C. 20370

Director, Human Resource Training Dept.
Naval Amphibious School
Little Creek
Naval Amphibious Base
Norfolk, Virginia 23521

Naval Material Command
Management Training Center (NMAT 09M32)
Room 150 Jefferson Plaza, Bldg. #2
1421 Jefferson Davis Highway
Arlington, Virginia 20330

Commanding Officer
HRMC Washington
1300 Wilson Blvd.
Arlington, Virginia 22209

Head, Research & Analysis Branch
Navy Recruiting Command (Code 434)
801 N. Randolph St., Room 8001
Arlington, Virginia 22203