THE FACT MODEL

VOLUME I

C. W. Spofford

November 1974

ACOUSTIC ENVIRONMENTAL SUPPORT DETACHMENT

OCEAN SCIENCE PROGRAM

MAURY CENTER FOR OCEAN SCIENCE
Department of the Navy
Washington, D.C.
The FACT (Fast Asymptotic Coherent Transmission) Model is the new Navy Interim Standard Transmission Model for ocean environments which may be treated within the context of a single sound-speed profile and a flat bottom. It is a ray-acoustics model designed for the computation of transmission loss as a function of range and frequency at fixed depth. The classical ray treatment has been augmented with higher order asymptotic...
corrections in the vicinity of caustics, and the phased addition of selected paths experiencing significant, predictable coherence effects. The computer program is fully automated requiring only the specification of the environment and the essential parameters.

This report consists of two volumes, the first describing the physics and mathematics contained in the FACT model as well as comparisons of FACT and normal-mode results, the second describing the program structure and flow with complete samples of input and output. Volume I is being distributed to a broad community of both technical and application-oriented users as a Maury Center Report. Volume II is intended primarily for programmers attempting to implement the model on their computers and has been distributed as an AESD Technical Note only to recipients of the FACT program. Volume II as well as the complete program listing and punched-card deck will be provided by AESD to qualified users upon request.
PREFACE

In April 1973, the FACT model was designated as the Navy Interim Standard Model for the prediction of transmission loss in an environment which can be characterized by a flat bottom and a single sound speed profile. At that time, preliminary documentation was distributed to Navy laboratories and other qualified users.

These volumes contain a detailed description of the physics, mathematics, and computer implementation of the FACT program. Questions concerning the model or suggestions for its improvements should be addressed to the Acoustic Environmental Support Detachment of the Office of Naval Research.

J. B. HERSEY
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>ix</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>x</td>
</tr>
<tr>
<td>1.0 INTRODUCTION AND BACKGROUND</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Acknowledgments</td>
<td>1-4</td>
</tr>
<tr>
<td>2.0 SUMMARY OF BASIC CAPABILITIES OF THE FACT MODEL</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 The Ocean Environment</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 The Basic FACT Model</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.1 Coherent Summation of Paths</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2 Caustic Processing</td>
<td>2-7</td>
</tr>
<tr>
<td>2.2.2.1 Smooth Caustics (2-Ray Systems)</td>
<td>2-7</td>
</tr>
<tr>
<td>2.2.2.2 Cusped Caustics (3-Ray Systems)</td>
<td>2-9</td>
</tr>
<tr>
<td>2.2.2.3 Smooth and Cusped Caustics (4-Ray Systems)</td>
<td>2-9</td>
</tr>
<tr>
<td>2.2.3 Low-Frequency Cut-Off Effects</td>
<td>2-10</td>
</tr>
<tr>
<td>2.2.4 Axis-to-Axis Propagation</td>
<td>2-11</td>
</tr>
<tr>
<td>2.2.5 Modeling Surface-Ducted Propagation</td>
<td>2-13</td>
</tr>
<tr>
<td>2.2.6 Special-Purpose Shallow-Water Model</td>
<td>2-15</td>
</tr>
<tr>
<td>2.2.7 Special-Purpose Half-Channel Model</td>
<td>2-15</td>
</tr>
<tr>
<td>3.0 MATHEMATICAL DESCRIPTION OF THE FACT MODEL</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Selection and Tracing of Rays</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2 Smoothing θ-R Curves</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3 Computing Ray Intensities</td>
<td>3-7</td>
</tr>
<tr>
<td>3.4 Treatment of Cusped Caustics</td>
<td>3-8</td>
</tr>
<tr>
<td>3.5 Coherent Summation of Paths</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6 Low-Frequency Cut-Off Effects</td>
<td>3-14</td>
</tr>
<tr>
<td>3.7 Axis-to-Axis Propagation</td>
<td>3-15</td>
</tr>
<tr>
<td>3.8 Surface-Ducted Propagation</td>
<td>3-16</td>
</tr>
<tr>
<td>3.9 Shallow-Water Module</td>
<td>3-17</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>R-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Typical Pair of Paths Experiencing Long-Range Surface-Image Interference</td>
<td>2-17</td>
</tr>
<tr>
<td>2-2</td>
<td>Comparison of FACT ("RAY THEORY") with Normal Modes for an RSR Convergence Zone at 25 Hz</td>
<td>2-17</td>
</tr>
<tr>
<td>2-3</td>
<td>Comparison of FACT ("RAY THEORY") with Normal Modes for an RSR Convergence Zone at 50 Hz</td>
<td>2-17</td>
</tr>
<tr>
<td>2-4</td>
<td>Comparison of FACT ("RAY THEORY") with Normal Modes for an RSR Convergence Zone at 100 Hz</td>
<td>2-17</td>
</tr>
<tr>
<td>2-5</td>
<td>Comparison of FACT ("RAY THEORY") with Normal Modes for an RSR Convergence Zone at 200 Hz</td>
<td>2-17</td>
</tr>
<tr>
<td>2-6</td>
<td>"Semi-Coherence" - Automatic Smoothing of Surface-Image Interference with Sampling Interval ΔR (nm)</td>
<td>2-18</td>
</tr>
<tr>
<td>2-7</td>
<td>Development of a Smooth Caustic in a Pressure-Gradient Profile</td>
<td>2-19</td>
</tr>
<tr>
<td>2-8</td>
<td>Development of a Cusped Caustic in a Pressure-Gradient Profile</td>
<td>2-19</td>
</tr>
<tr>
<td>2-9</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Cusped Caustics at 25 Hz</td>
<td>2-20</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2-10</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Cusped Caustics at 50 Hz.</td>
<td>2-20</td>
</tr>
<tr>
<td>2-11</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Cusped Caustics at 100 Hz.</td>
<td>2-20</td>
</tr>
<tr>
<td>2-12</td>
<td>Development of a Four-Ray System (Smooth Caustic Near a Cusped Caustic)</td>
<td>2-21</td>
</tr>
<tr>
<td>2-13</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Four-Ray Systems at 25 Hz.</td>
<td>2-22</td>
</tr>
<tr>
<td>2-14</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Four-Ray Systems at 50 Hz.</td>
<td>2-22</td>
</tr>
<tr>
<td>2-15</td>
<td>Comparison of FACT ("RAY TRACING") with Normal Modes for Four-Ray Systems at 100 Hz.</td>
<td>2-22</td>
</tr>
<tr>
<td>2-16</td>
<td>Ray Paths between Axial Source and Receiver for a Bilinear Profile</td>
<td>2-23</td>
</tr>
<tr>
<td>2-17</td>
<td>Ray Paths from a Source on Axis for an Asymmetric Quadratic Profile</td>
<td>2-24</td>
</tr>
<tr>
<td>2-18</td>
<td>Comparison of Surface-Duct Predictions Using Three Models; z_s=300', z_R=90', F=300Hz</td>
<td>2-25</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>3-1</td>
<td>Typical Ray Families in FACT</td>
<td>3-21</td>
</tr>
<tr>
<td>3-2</td>
<td>(\theta)-R Curves for Typical Arrival Order of Ray Families in Figure 3-1</td>
<td>3-21</td>
</tr>
<tr>
<td>3-3</td>
<td>Comparison of Traced (___) and Fitted (---) Angle and Intensity vs Range Curves for Family 1 of Figure 3-2</td>
<td>3-22</td>
</tr>
<tr>
<td>3-4</td>
<td>Comparison of Full-Asymptotic and FACT-Approximation Treatments of Intensity Near a Smooth Caustic</td>
<td>3-23</td>
</tr>
<tr>
<td>3-5a</td>
<td>(\theta)-R Curves for Cusped Caustics, Three-Ray System of Figure 2-8</td>
<td>3-23</td>
</tr>
<tr>
<td>3-5b</td>
<td>(\theta)-R Curves for Cusped Caustics, Four-Ray System of Figure 2-12</td>
<td>3-23</td>
</tr>
<tr>
<td>3-6</td>
<td>Comparison of Full-Asymptotic and FACT-Approximation Treatments of Intensity Near a Cusped Caustic</td>
<td>3-24</td>
</tr>
<tr>
<td>3-7</td>
<td>Conditions Requiring Coherent Addition at Low Frequencies</td>
<td>3-25</td>
</tr>
<tr>
<td>3-8</td>
<td>Definition of Axial Region for Fitting with Smooth Profile</td>
<td>3-26</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESD</td>
<td>Acoustic Environmental Support Detachment</td>
</tr>
<tr>
<td>ASRAP</td>
<td>Acoustic Sensor Range Prediction</td>
</tr>
<tr>
<td>BTL</td>
<td>Bell Telephone Laboratories</td>
</tr>
<tr>
<td>FACT</td>
<td>Fast Asymptotic Coherent Transmission</td>
</tr>
<tr>
<td>FNWC</td>
<td>Fleet Numerical Weather Central</td>
</tr>
<tr>
<td>LRAPP</td>
<td>Long Range Acoustic Propagation Project</td>
</tr>
<tr>
<td>NOO</td>
<td>Naval Oceanographic Office</td>
</tr>
<tr>
<td>NUC</td>
<td>Naval Undersea Center</td>
</tr>
<tr>
<td>RBR</td>
<td>Refracted-Bottom Reflected</td>
</tr>
<tr>
<td>RP70</td>
<td>Ray-tracing Program (1970)</td>
</tr>
<tr>
<td>RR</td>
<td>Refracted-Refracted</td>
</tr>
<tr>
<td>RSR</td>
<td>Refracted (at depth) -Surface Reflected</td>
</tr>
<tr>
<td>SRBR</td>
<td>Surface Reflected-Bottom Reflected</td>
</tr>
<tr>
<td>SUDS</td>
<td>Surface Duct Sonar</td>
</tr>
<tr>
<td>WKB</td>
<td>Wentzel-Kramers-Brillouin</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Arrival</td>
<td>When a ray traced from the source of rays crosses the receiver depth.</td>
</tr>
<tr>
<td>Arrival Order</td>
<td>Set of arrivals of all rays which have the same number of deep reversals (refracted at depth or bottom reflected).</td>
</tr>
<tr>
<td>Asymptotic</td>
<td>Converging to the exact result in the high-frequency limit.</td>
</tr>
<tr>
<td>Caustic</td>
<td>Envelope of a family of rays; a smooth caustic may develop a cusp at certain points.</td>
</tr>
<tr>
<td>Coherent</td>
<td>Adding path amplitudes on a phased basis.</td>
</tr>
<tr>
<td>Convergence zone</td>
<td>Region of focusing or convergence of rays.</td>
</tr>
<tr>
<td>False caustic</td>
<td>Caustic which is an artifact of the linearly segmented sound-speed profile.</td>
</tr>
<tr>
<td>Half channel</td>
<td>Sound-speed profile increasing monotonically from surface to bottom; usually, though not necessarily, isothermal.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Incoherent</td>
<td>Adding path intensities without phase.</td>
</tr>
<tr>
<td>Layered medium</td>
<td>Sound speed varies only with depth, and water depth is independent of range.</td>
</tr>
<tr>
<td>Leakage</td>
<td>Loss of energy from a surface duct to the main sound channel (analogous to quantum-mechanical tunneling through a potential barrier).</td>
</tr>
<tr>
<td>Low-frequency cut-off</td>
<td>Frequency below which no trapped normal mode may exist for a given channel or duct.</td>
</tr>
<tr>
<td>Ray class</td>
<td>Set of rays distinguished by their having the same histories at their reversals or turning points (i.e. RR, RSR, SRBR, RBR).</td>
</tr>
<tr>
<td>Ray family</td>
<td>Subset of rays of the same class which are processed together to compute arrival intensities, for a given arrival order of a family the range of arrival may be assumed to be a continuous smooth function of ray angle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ray-equivalent</td>
<td>The "ray-equivalent" of the m-th normal mode for a given sound-speed satisfies the relation: (\int k_z dz = 2\pi m + \delta \phi) where (k_z) is the vertical wave number of the ray ((k_z = 2\pi fsin\theta/c(z))), the integral is taken over the full ray cycle, and (\delta \phi) corresponds to the discrete phase shifts accumulated by the ray ((\pi) at surface reflections, (\pi/2) at caustics).</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>Fact that ray paths and ray amplitudes are independent of the direction of propagation (permits interchange of source and receiver).</td>
</tr>
<tr>
<td>rms</td>
<td>Root mean square or incoherent summation of paths.</td>
</tr>
<tr>
<td>Semi-coherent</td>
<td>Adding ray paths on a partially coherent basis when the degree of coherence is governed by the resolution of the resulting interference pattern as specified by the range sampling.</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS (Continued)

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface-image interference</td>
<td>Interference pattern observed between the direct and surface-reflected pair of paths for shallow source or receiver depths.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION AND BACKGROUND

On April 1, 1973, the Acoustic Environmental Modeling Coordinator, Dr. J. B. Hersey, designated a new Navy Interim Standard Transmission Model (FACT - Fast Asymptotic Coherent Transmission) for ocean environments which may be treated within the context of a single sound-speed profile and a flat bottom. This model resulted from a three-year effort in acoustic modeling sponsored by the Long Range Acoustic Propagation Project (LRAPP) within several Navy and industrial laboratories. As a part of this program LRAPP hosted in March 1971 a workshop on acoustic modeling by ray-tracing techniques. Sixteen different organizations active in the field of ray tracing participated, and a by-product of the workshop was a "consensus model" consisting of components drawn from several models. Subsequent to the workshop Bell Telephone Laboratories (BTL) developed for LRAPP a special purpose program based upon this consensus model and oriented specifically to the Airborne Sensor Range Prediction (ASRAP) program at Fleet Numerical Weather Central (FNWC, Monterey, Cal.) where speed was crucial. In October 1972, a preliminary version of this model was turned over to AESD which in turn delivered to FNWC on March 15 a fully automated upgraded model. For a typical deep-water ASRAP case the transmission loss is computed every 0.5 nm to 125 nm at four frequencies for each pair of source and receiver depths in 4 to 8 seconds.

While the FACT model was originally designed for ASRAP, it is sufficiently general for many other applications. Since turning it over to FNWC, AESD has distributed it to 37 other Navy and industrial activities in six different countries. The documentation of this model has to date
consisted of four RTL publications (Spofford, 1972a, 1972b, 1972c and 1973a) and descriptive material generated by AESD and included as part of a fully annotated listing. This report represents the final technical documentation of the FACT model as of 1 December 1973. As with any computer representation of a complex physics problem substantive modifications and improvements in the physics are likely, as are some bugs in the code which have eluded initial testing. The FACT model has been extensively tested and is run several hundred times daily by FNWC. As bugs are uncovered, however, AESD will provide correction sets to all users. In addition, when any improvements in physics are made, technical addenda to this report will be issued.

The FACT model is a ray-acoustics model designed for the computation of transmission loss as a function of range and frequency at fixed source and receiver depths. The classical ray treatment has been augmented with higher order asymptotic corrections and the phased addition of selected paths. These improvements yield a more complete model of diffraction and coherence effects, respectively, found to be important in long-range low-frequency propagation. The basic physics package has been fully automated so that the only inputs required are the specification of the environment and the parameters of the case desired. While programs incorporating more precise ray tracing may exist (involving curvilinear sound speed profiles, ray targeting, etc.), none appears to contain as complete and automated a treatment of the diffraction and coherence effects so important at low frequencies. The program has been constructed in an extremely modular form which should accommodate both the incorporation of new physics packages as well as the needs of the R&D community for a
flexible basic framework within which new theories and techniques may be investigated.

This report consists of four basic sections in two volumes:

Volume I

1. A summary of the capabilities of the FACT model, its strengths and weaknesses, and those areas in which future improvements are planned as part of a detailed description of the physics represented by the program. Examples are provided comparing normal-mode computations and FACT output to illustrate several of its novel features.

2. A description of the mathematical implementation of the model with all relevant equations.

Volume II (Provided routinely to all recipients of the FACT Program, available upon request, and taken nearly verbatim from a report issued by Ocean Data Systems, Inc., documenting the FACT program (Danei, 1973))

1. A description of the program structure and the program flow including readable flow charts of all routines.

2. A copy of the original FACT documentation prepared by AESD and normally included with a full program listing ("FACT Handout"). This documentation included samples of the complete input and output for three test cases to assist new users in implementing and debugging the program on their computers. The full program listing has not been included
in this report. Upon request, a punch card deck, a FACC listing and a punched-card deck are available.

1.1 Acknowledgments

This program was developed in its original form by the author while at Bell Telephone Laboratories. The initial idea for such a program resulted from discussions with Captain W. S. Houston, Commanding Officer FNWC, Monterey. Its development at BTL was encouraged by Drs. J. A. Polak and U. F. Gianola and supported under contract N00014-69-C-0088 by the Long Range Acoustic Propagation Project of the Office of Naval Research. Its implementation at FNWC and ultimate adoption as a Navy Standard Model would not have been possible without the enthusiastic support of CDR P. R. Tatro and LCDR T. J. McCloskey of LRAPP, and Mr. J. R. Clark of FNWC.

The advances in propagation modeling contained in the program represent the research efforts of several people. Mr. M. A. Pedersen's work at the Naval Undersea Center (NUC) on false caustics and convergence-zone ranging formed the basis for the intensity-processing algorithms and demonstrated the applicability of the Brekhovskikh caustic corrections. Three of the author's co-workers at BTL deserve special recognition for their contributions to propagation modeling: Dr. F. M. Labianca for recognizing the applicability to underwater propagation of Ludwig's uniform treatment of caustics; Dr. R. L. Holford for applying Ludwig's work to the analysis of three- and four-ray systems; and Dr. J. S. Hanna for demonstrating the importance of long-range surface-image interference. Several useful discussions with Dr. J. B. Hersey (ONR) during the preparation of this report are greatfully acknowledged.
Finally, the author is especially indebted to Mr. C. L. Baker of Ocean Data Systems, Incorporated, who upgraded the original computer code to a product with considerably fewer bugs and in a form which is sufficiently modular to be useful to a wide community. Mr. Baker converted a program written by scientists and engineers into a computer program, and is entirely responsible for the more lucid portions of the FACT code.
2.0 SUMMARY OF BASIC CAPABILITIES OF THE FACT MODEL

This section is intended to familiarize the reader with the basic capabilities and limitations of FACT, in terms of the physical model it represents. A discussion is also included of those areas of the program which will be improved and extended in the future. It should be re-emphasized that the modularity of the program will permit modelers to test new theories and approaches quite easily using the basic FACT framework. The discussion in this section has been divided into two major parts addressing:

1. The model used for the ocean environment;

2. The ray treatment of this environment.

2.1 The Ocean Environment

The model used for the ocean environment is "layered"; that is, neither the sound-speed profile nor the bottom depth are range dependent. The sound-speed profile, \(c(z) \), is approximated by a continuous piecewise-linear function of depth \(z \) so that within each layer the sound-speed gradient, \(c' (\frac{dc}{dz}) \), is a constant and at layer boundaries \(c' \) is discontinuous. (The effects of such discontinuities have been well studied (Pedersen, 1961) and will be addressed in sections 3.1 and 3.2.) Within the water column a frequency-dependent volume attenuation \(\alpha \) (or absorption) is included of the form

\[
\alpha = \begin{cases}
2f^2 \left[\frac{.1}{1 + f^2} + \frac{40}{4100 + f^2} \right] & f > 1 \\
.125 f^2 & f < 1
\end{cases}
\]

(2-1)
where \(f \) is the frequency in kilohertz and \(a \) is a loss in dB per nautical mile. This expression corresponds to Thorp’s absorption (Thorp, 1965) above 1 kHz and is an empirical result derived by FNWC (Parka I, 1969) below 1 kHz.

The ocean bottom is modeled as a reflecting surface where each ray suffers a reflection loss which is dependent upon grazing angle, frequency, and bottom class. The loss suffered as a function of these parameters is given by the FNWC bottom-loss tables (Bassett and Wolff, 1970) for frequencies less than 1 kHz or greater than 3.1 kHz, and by the newly Naval Oceanographic Office (NOO) Navy Standard curves from 1 kHz to 3.5 kHz (Christensen, Frank and Kaufman, 1972).

The ocean surface is modeled as a perfect reflector (with a 180-degree phase shift) for all rays considered. For propagation in a surface duct rays are not used and the surface-duct module (to be described subsequently) includes a rough-surface loss which is dependent on frequency, sea state and mixed layer depth (i.e. duct thickness).

In the three areas of volume absorption, bottom reflectivity, and rough-surface loss improvements are expected. The volume absorption is currently added to the total transmission loss as a function of horizontal range. Ideally volume absorption should be computed on a ray-by-ray basis using the arc length of the ray for the appropriate distance. It is expected that this more accurate computation may be available in the near future, though it will increase the
running time somewhat. More significantly, the low-frequency absorption will be updated as soon as the R&D community agrees on appropriate values applicable to individual ray paths. A more consistent merger of the FNWC and NOO bottom-loss types is needed as well as considerably more data on low-frequency reflectivity. Similarly a good surface-reflectivity model (dependent presumably on grazing angle, frequency, and some measure of surface roughness) is needed, again directly applicable to the coherent, specular scatter of individual rays.

2.2 The Basic FACT Model

This section contains a qualitative description of the basic physics in the FACT model—what effects it does and does not treat; what the relative levels of accuracy of the various approximations employed are; and where treatments might be extended or refined in the future. The detailed discussion of how these computations are performed (equations, approximations, algorithms, etc.) are reserved for Section 3.

Acoustic propagation in the ocean is governed by the wave equation. Ray tracing is a convenient and powerful technique for approximating the exact wave solution. The traditional ray solutions determine all relevant ray paths connecting the source and receiver and sum the geometric intensities of these paths to obtain the total transmission loss. This traditional approach is already an approximation to rigorous ray theory which requires the phased sum of the ray amplitudes. The justification for this approximation is that the phased sum oscillates quite rapidly with range, and
that uncertainties in the geometry and environment preclude an accurate estimate of phase. Hence the phased sum is replaced by the rms sum as an average over the uncertainties in position and environment. As will be shown subsequently, in many significant cases this rms sum is not representative of these or any other meaningful averages.

A second area where traditional ray tracing requires improvements is in the computation of individual ray intensities. According to classical ray theory the intensity of a ray (or, more appropriately, a ray bundle) is inversely proportional to the geometric spreading or divergence of the bundle. In the ocean environment focal points and surfaces occur where the ray divergence is zero and infinite ray intensities are predicted, usually accompanied by immediately adjacent areas of zero intensity (i.e. no rays). The acoustic field associated with these focusing regions, or caustics, is improperly modeled by classical ray theory. The error at low frequencies may be substantial over large regions.

Recent advances in ray theory and the analysis of acoustic measurements have permitted these two major deficiencies of classical ray theory to be overcome. The FACT-model treatment of these improvements as well as algorithms for approximating low-frequency cut-off effects and axis-to-axis propagation are described in the following subsections.

2.2.1 Coherent Summation of Paths

At even very low frequencies, the coherent summation of all ray paths produces very rapid oscillations in the
transmission loss as a function of range. For most applications these oscillations are too rapid to be useful in detail and should be smoothed. Also uncertainties in the environment are sufficient to preclude the prediction of the precise position of these peaks and nulls. What is needed then is a range-averaging technique which smooths these rapid fluctuations while preserving long-term significant departures from the rms sum of all paths.

The long-term departures from the rms sum are primarily due to long-range surface-image interference effects. Figure 2-1 illustrates a typical pair of RSR paths which differ only in the vicinity of the source. The phase difference between these paths consists of the travel-time difference and a phase reversal of π for the path with the additional surface reflection. For shallow sources and low frequencies this phase difference changes quite slowly with range and may, over entire convergence zones, change by considerably less than 1 full cycle (DeAngelis and Spofford, 1970 and Hanna, 1976). Hence the phased sum of these two paths may potentially differ by a uniform amount from the rms sum over significant range intervals.

Fortunately the phase difference may be estimated quite accurately from the ray geometry in the immediate vicinity of the source and detailed travel-time calculations are not necessary. Since the two ray amplitudes are essentially equal a rapidly computed, local phased sum may be obtained. This approach has been incorporated into the FACT model.
Figures 2-2, 2-3, 2-4 and 2-5 compare predictions for an RSR convergence zone using FACT ("RAY THEORY") with an exact normal-mode result for frequencies of 25, 50, 100 and 200 Hz respectively. (The leading edge of this convergence zone contains a caustic which will be discussed subsequently.)

The shallow source experiences very strong surface-image interference. As the frequency increases the net effect shifts from uniform near cancellation at 25 Hz to uniform enhancement at 50 and 100 Hz. At 200 Hz the first null in the Lloyd's Mirror interference pattern occurs at 33 miles and is predicted fairly accurately by FACT. It should be noted that the more rapid oscillations in these mode predictions are being intentionally smoothed by FACT.

In addition to either this fully coherent combination of the two paths or the incoherent rms sum, a third "semi-coherent" option is available. The FACT program computes transmission loss at discrete range points, and for deeper sources and/or higher frequencies than those of Figures 2-2, 2-3, 2-4 and 2-5, the interference pattern may be undersampled yielding an apparently random structure. Since the range step is indicative of the amount of detail usually desired in a prediction, the semi-coherent option provides an automated, smooth transition from the fully coherent two-path sum to the incoherent sum as the number of range points per cycle of interference decreases from 6 to $2^2/3$. This option is recommended for general use, keeping in mind, however, that it may yield range-step dependent transmission loss. Figure 2-6 illustrates the smoothing process in the first bottom-bounce region for varying sampling rates. Finally, these coherence effects are possible at both source and receiver if the receiver is sufficiently shallow, and
where appropriate are included at one or both ends of the ray path.

2.2.2 Caustic Processing

There are three types of focusing regions which are treated by FACT: smooth caustics, cusped caustics, and combined smooth/cusped caustics. The treatments of the first two are based upon thorough analyses of the ray geometries, and the errors associated with any approximations are known. The third case has not been thoroughly analyzed, and the errors associated with its treatment are less well defined.

2.2.2.1 Smooth Caustics (Two-Ray Systems)

Figure 2-7 depicts a family of rays in a simple pressure-gradient profile which form a smooth caustic after the first surface reflection. The caustic is the envelope of this family of rays and forms the classical boundary between the illuminated region (with two rays through each point) and the shadow zone (with no rays present). The classical field increases in the illuminated region to infinity on the caustic surface and is zero in the shadow zone. The actual field as given by wave theory reaches a finite maximum value just inside the illuminated region and decays exponentially into the shadow zone. The key questions left unresolved by classical ray theory are the values of this peak amplitude and the rate of decay (which at low frequencies may be quite gradual).

Higher order asymptotic estimates for these quantities may be obtained (Brekhovskikh, 1960a, Sachs and Silbiger.

2-7
1971 and Ludwig, 1966) from the local ray geometry near the caustic. FACT computes these expressions and yields the shadow-zone field, the peak field, and a range average of the very rapid two-ray interference in the illuminated region. The convergence zone comparisons of Figures 2-2, 2-3, 2-4 and 2-5 correspond to the geometry of Figure 2-8, where the receiver ("SOURCE" invoking the usual reciprocity assumptions) is deep and the source is located 50 feet below the surface. At the source depth the caustics of the direct and surface-reflected rays combine on a phased basis and the resulting surface-image interference effects must be included. The primary effect of the caustic corrections in Figures 2-2, 2-3, 2-4 and 2-5 is seen in the increase in slope of the leading edge of the zone as the frequency increases. The changes in peak level with frequency are dominated by coherence effects in this case and do not reflect the weaker frequency dependence of the caustic itself.

At very low frequencies, or for caustics which cross the receiver depth nearly horizontally,* the shadow-zone fall-off is quite slow and, in the approximation of the local caustic geometry, may be computed to extend to great range. Smooth caustics typically originate or terminate in a cusp (point C in Figure 2-8 which will be discussed in more detail in the following section). Since the shadow-zone field essentially extends no farther than the cusp, FACT tapers the field to be fully decayed at the range of the cusp, preserving its initial behavior at the smooth caustic.

* FACT is unable to include the effects of fields associated with caustics which do not reach the receiver (or source) - for example leakage into or out of a surface duct.
2.2.2.2 Cusped Caustics (Three-Ray Systems)

Just as the geometrical acoustics amplitude is invalid at smooth caustics, the smooth-caustic amplitude breaks down at cusped caustics. The cusped caustic C, illustrated in Figure 2-8 occurs where two smooth caustics terminate. Inside the cusp there are three rays through any point and, as with smooth caustics, the field near the cusp may be determined from the local ray geometry (Holford, 1972). An automated computation of the field for general cusped caustics is quite involved; however, the observation that in layered media a cusp always forms at the same depth as the source simplifies the calculation significantly. This case is of particular interest for shallow-source, shallow-receiver geometries (e.g. sonobuoys) and has been accounted for in FACT (averaging over the rapid three-ray interference inside the cusp as in the smooth-caustic interference region).

Figures 2-9, 2-10 and 2-11 compare FACT ("RAY TRACING") with a normal-mode result for the geometry of Figure 2-8 at 25, 50 and 100 Hz respectively. The first cusp occurs at ~ 21 nm and repeats every 21 nm. Each cusp is preceded at 35, 58 and 80 nm by a smooth caustic which originates at the preceding cusp and is reflected from the surface. For these convergence zones the smooth and cusped caustics are part of the same ray aperture and a potential four-ray system exists. The treatment of such cases is described in the next section.

2.2.2.3 Smooth and Cusped Caustics (Four-Ray Systems)

Figure 2-12 illustrates the canonical cusped-caustic geometry for a shallow source in a warm-water profile. For
a receiver at the source depth the cusp, C, is preceded immediately by a smooth caustic (emanating from the cusp at C'). For more typical, stronger thermocline gradients the separation is considerably less. Also for deeper water than shown in the figure the up-going rays associated with the smooth caustic would penetrate the cusp resulting in four rays through points within the cusp.

In principle, this is a basic four-ray system for which the necessary asymptotic expressions are not available. In practice, the smooth- and cusped-caustic fields may be superimposed to yield reasonable results. For well-separated systems as in Figures 2-9, 2-10 and 2-11 the smooth- and cusped-caustic fields may be added on an rms basis. This is the technique currently incorporated in FACT. For very tight geometries a phased sum of the two fields has been required on occasion (Holford and Spofford, 1972); however, this is a difficult computation to automate. Figures 2-13, 2-14 and 2-15 compare FACT ("RAY TRACING") and normal-mode predictions for a simplified Pacific profile at frequencies of 25, 50 and 100 Hz respectively. The ray geometry is similar to that in Figure 2-12, however, the cusped and smooth caustics are much closer. Only the paths corresponding to the RR rays have been included in the computations except for the FACT predictions from 5 to 30 miles which include bottom-reflected paths. The frequency dependence of the agreement between these predictions suggests that a fully phased combination might yield better agreement. This modification is currently under investigation.

2.2.3 Low-Frequency Cut-Off Effects

In the FACT model the total transmission loss is computed by summing on an incoherent or rms basis the intensities
of sets of rays which contribute to the field at each range/depth point of interest. Within each set (to be described subsequently) certain coherent combinations of paths may have already been performed either explicitly (for surface-image interference) or implicitly (near caustics). The subsequent incoherent combination of these sets assumes that the relative phase differences between sets are both unpredictable and rapidly changing with range. For very low frequencies (geometries with dimensions of several wavelengths) both of these assumptions may be incorrect. Most importantly, as frequencies decrease to near cut-off for the first trapped mode, large-scale cancellations occur resulting in significant uniform degradations from the rms intensity.

In the FACT model this effect is approximated by reducing the amplitudes of rays which would experience uniform destructive interference. The rays expected to experience this interference are those with angles shallower than the ray-equivalent of the first propagating mode as determined by the standard WKB approximations (Brekhovskikh, 1960b). This approach is admittedly approximate and attempts only to capture very gross features. The extension of ray theory to a situation so clearly in the domain of wave techniques is speculative at best. Further study is underway; however, until a thoroughly substantiated technique is developed, wave programs should be used wherever possible for these cases.

2.2.4 Axis-to-Axis Propagation

A persistent problem in ray tracing has been modeling so-called "axis-to-axis" transmission. The difficulty is
illustrated in Figure 2-16 where rays are traced from a source located on the axis of a bilinear profile. At any range on the axis there exists an infinite number (as the ray angle approaches zero) of refracted rays (each of non-zero intensity) connecting the source and receiver. Hence, the rms summation of these paths yields an infinite intensity and the ray solution is invalid. Ignoring low-frequency cut-off effects, this problem is an undesirable by-product of the linearly segmented velocity profile. For profiles with a continuous first derivative of $c(z)$ at the axis (and non-zero second derivative); the near-axial rays focus periodically at cusped caustics along the axis where the focal distance is determined by the second derivative of $c(z)$.

The linearly segmented profile is an approximation to the smoother profile which is usually modeled as having a discontinuous second derivative across the axis. This model simulates the basic asymmetry of the sound-channel axis where the decrease in sound speed associated with the thermocline gradient is overtaken by the increase in sound speed associated with the "pressure gradient". The discontinuous second derivative gives two weak focal points along the axis (F_1 and F_2 in Figure 2-17) between each strong focal point (F_0). All rays about the axis are focussed at F_0, whereas only upgoing and only downgoing rays are focused at F_1 and F_2 respectively.

The motivation for this model for the sound-channel axis is to capture the character of transmission associated with the near-axial rays. The prominent feature of these rays is the strong focus F_0. The implementation of this approach in FACT is accomplished by:
1. Estimating the second derivatives of \(c(z) \) above and below the axis and establishing an equivalent smooth profile;

2. Computing the corresponding period (distance to \(F_0 \)) for the axial ray in the smooth profile;

3. Finding the ray of minimum angle in the linearly segmented profile with this period;

4. If source and receiver are between the upper and lower turning points of this ray, moving both the source and receiver to the depth of either the upper or lower turning point.

The resulting transmission loss for this set of near-axial rays will then exhibit the strong focusing of a cusped caustic (simulating the focusing at \(F_0 \)) at the appropriate range. By moving the source and receiver to the same depth whenever they are both between the turning points, the gross features of the near-axial wave field are assumed to be essentially independent of depth for a near-axis source.

2.2.5 **Modeling Surface-Ducted Propagation**

FACT presently contains the same surface-duct module as the Navy Standard Long-Range Transmission Model, RP70. The model was developed for NAVOCEANO by Clay and Tatro (Clay, 1968) to characterize the gross features of ducted propagation. The intensity in the surface duct is found from conservation of energy modified by additional losses (proportional to range) caused by duct leakage and rough-surface
scattering of energy from the duct (Marsh and Schulkin, 1967). This basic intensity is independent of source or receiver depth so long as both are in the duct. For cross-duct cases (only one in the duct) the intensity is reduced by 10 dB, and for neither in the duct no ducted contribution is computed.

A preliminary analysis of this model (Labianca, 1972) has shown that the leakage term does not correspond to the mechanism which dominates duct leakage and, in particular, has the wrong dependence on the below-layer (thermocline) gradient. An intensive investigation of all available surface duct models has been completed recently by NUC for LRAPP (Morris, 1974). This study compared several models with each other and the SUDS transmission-loss data (Cummins, 1972). Since none of the candidate models emerged as clearly superior, AESD is currently studying possible modifications to the surface-duct equations.

In the normal operating mode no rays are traced in the surface duct and the intensity associated with ducted paths is computed by the duct module. The user has the option of tracing rays in the duct and computing intensities using the standard FACT algorithms. This procedure is not recommended in general for several reasons:

1. Long-range computations require excessive computer time;

2. No leakage, or surface-scattering effects are included;
3. Cross-layer coupling is not computed.

Nevertheless comparisons of rays versus mode calculations can be informative in cases where the above considerations are not crucial. Such a case is illustrated in Figure 2-18 where transmission losses are compared for a 500-foot surface duct at 300 Hz (Spotford, 1973). The three predictions were generated using the Clay/Tatro model, FACT tracing rays in the duct, and the NUC surface-duct normal-mode model (Bucker, 1970) (considered to be the exact solution for this case). Since the surface was assumed to be flat, and leakage was not significant to the range shown, the agreement is perhaps not that surprising.

2.2.6 Special-Purpose Shallow-Water Model

While the FACT model was designed for deep-water problems, several of the FNWC ASRAP areas have bottom depths less than 1000 feet. When low-loss bottom classes are specified (i.e. no loss up to some apparent critical angle), a very large number of bottom-bounce paths must be computed with an attendant increase in running time. For these low loss cases an option has been provided which approximates the contributions of the surface-reflected bottom-reflected paths with a rapid computable analytical expression. This expression approximates the summation of all paths by an integral which includes the surface-image interference effects. The resulting transmission-loss curve corresponds to a running range average of the FACT prediction.

2.2.7 Special-Purpose Half-Channel Model

Another case which requires excessive computing time for ASRAP forecasts is "half-channel" transmission; that is,
the case in which the sound speed increases monotonically from the surface to the bottom. For shallow sources and receivers in this environment (essentially a very deep surface duct) considerable computer time is consumed in obtaining a transmission loss curve for the RSR paths which is quite smooth (due to the considerable overlap of the arrival orders). In such cases, the water is nearly isothermal, and the key parameters for RSR propagation are the source, receiver, and water depths and the frequency. Hence for the four frequencies and three source-receiver depth combinations used in ASRAP the FACT RSR intensities (excluding volume attenuation) were fitted with functions of the form \((A + B \log(D/1000.))/R\) where \(A\) and \(B\) depend upon the frequency/source/receiver depth combination in question, \(D\) is the water depth, and \(R\) the range. A simple look-up table is then used in actual runs and this RSR intensity is added to the direct-path and bottom-bounce contributions which are computed in the usual way. This routine should only be used for precise ASRAP geometries and frequencies since it is not necessarily representative of other cases.
Figure 2-1. Typical Pair of Paths Experiencing Long-Range Surface-Image Interference

Comparison of FACT ("RAY THEORY") with Normal Modes for an RSR Convergence Zone
Figure 2-6. "Semi-Coherence" - Automatic Smoothing of Surface-Image Interference with Sampling Interval ΔR (nm)
Figure 2-7. Development of a Smooth Caustic in a Pressure-Gradient Profile

Figure 2-8. Development of a Cusped Caustic in a Pressure-Gradient Profile
Figure 2-9. 25 Hz

Figure 2-10. 50 Hz

Figure 2-11. 100 Hz

Comparison of FACT ("RAY TRACING") with Normal Modes for Cusped Caustics
Figure 2-12. Development of a Four-Ray System (Smooth Caustic Near a Cusped Caustic)
Comparison of FACT ("RAY TRACING") with Normal Modes for Four-Ray Systems
Figure 2-16. Ray Paths between Axial Source and Receiver for a Bilinear Profile
Figure 2-17. Ray Paths from a Source on Axis for an Asymmetric Quadratic Profile
Figure 2-18. Comparison of Surface-Duct Predictions
Using Three Models; $z_s=300'$, $z_R=90'$, $f=300$ Hz

NUC NORMAL MODES
CLAY/TATRO (FACT)
RAYS (FACT)
3. MATHEMATICAL DESCRIPTION OF THE FACT MODEL

The previous section contains the background physics and the rationale for the approach employed in FACT. This section documents the mathematical implementation of the approach and Section 4 contains a detailed flow chart of the resulting computer code.

In this section some specific terms are introduced from the jargon of ray tracing. While many of them also appear in the measurement literature, the definitions differ somewhat and are repeated here for conciseness. In ray solutions for transmission loss one attempts to find all significant rays or paths connecting the source and receiver. The precise rays can, in principle, be determined by iterative targeting procedures, however, the excessive running time is unacceptable. More typically a number of rays is traced from the starting point (or receiver) and the ranges at which each ray crosses the source depth are noted. The source-depth crossings of these rays are, in ray jargon, arrivals. If the ray density is adequate, the ray through the desired range is determined by interpolating between arrivals of adjacent rays bracketing the range of interest. Such interpolations are justified when rays are in the same family and of the same arrival order. The arrival order refers to the number of deep cycles the ray has experienced (either refracting at depth or bottom reflecting). Within an arrival order rays are subdivided into classes (RR, RSR, etc.). Within classes additional subdivisions into ray families may be required to assist the interpolation algorithms.
(family 3); and one surface-reflected bottom-reflected or SRBR (family 4). In each family except the last, two or more rays are specified within each layer encompassed by a family. The extreme effects of false caustics are excluded by avoiding rays with horizontal turning points that are just beyond a level where the gradient increases in magnitude. For example, the ray θ_c in Family 1 is traced, but the slightly steeper ray, θ'_c is avoided. The final family (SRBR) includes only the first ray to strike both the surface and the bottom and the steeper of the following two rays:

1. The ray five degrees steeper at the receiver than the first ray;

2. The ray striking the bottom at the effective critical angle of the low-frequency bottom-reflectivity function.

More families may be formed than those described in the example above if the gradient, from one layer to the next, decreases in absolute value as the sound speed increases, thus allowing for maximum-range caustics associated with points of inflection in the velocity profile. In such a case the rays equivalent to θ_c and θ'_c in Figure 3-1 become bounding rays of the new families.

When the rays have been selected, they are traced for half a cycle and three quantities are computed: the range to the first intersection of the source depth for a ray traced upward at angle θ, the range to the second intersection for the same ray, and the period of the ray. From these quantities the ranges to the first and second source-depth intersections for the downgoing ray, as well as the
ranges of all subsequent arrivals, may be computed using the periodicity of the ray in a layered environment.

The range is accumulated as the ray traverses through each layer making use of the well-known fact that within each layer the ray trajectory is the arc of a circle. The expression used for the incremental range, ΔR, within a layer between depths y_1 and y_2 (with ray angles θ_1 and θ_2 respectively) is:

$$ \Delta R = \frac{(y_2 - y_1) \cdot (\cos\theta_2 + \cos\theta_1)}{(\sin\theta_2 + \sin\theta_1)} $$ \hspace{1cm} (3-1)

This is identical to the more traditional expressions and avoids the numerical problems associated with small gradients. Snell's Law, of course, gives θ_k where

$$ \cos\theta_k = \frac{c_k}{c_R} \cos\theta_R $$ \hspace{1cm} (3-2)

When a ray turns within a layer with gradient g, the range increment to the horizontal turning point is

$$ \Delta R = \left| \frac{c \tan^2 \theta_1}{1 - g} \right| $$ \hspace{1cm} (3-3)

3.2 Smoothing θ-R Curves

After the rays are traced the arrival ranges of all the rays within a family are grouped to form an arrival order. The range to the arrival as a function of the source angle,
0, is then fit with one of several functions depending upon the family. The purpose of this fitting is to remove false caustics, obtain the relevant parameters of true caustics, and provide continuous analytical functions for \(R(\theta) \) which may subsequently be inverted and differentiated to obtain the intensities of all rays through all points of interest.

For all families but the SRBR (and a portion of families containing a cusped caustic) \(R(\theta) \) is fitted with one of two types of second order functions:

\[
R(\theta) = a + b \left(\theta - \theta_L \right)^{1/2} + c \left(\theta - \theta_L \right)
\]

(3-4)

or families in which the minimum ray, \(\theta_L \), just grazes either the surface, the bottom, a local maximum in sound speed, or a decrease in magnitude of the gradient: or

\[
R(\theta) = a + b \tan \theta + c \tan^2\theta
\]

(3-5)

if the minimum ray does not meet one of the above criteria.

The first form is chosen for the appropriate families since it permits the presence of one caustic \((R' = 0)\) and goes to the proper limiting intensity \((0)\) as \(\theta = \theta_L \) \((R' \to \infty)\). This behavior is characteristic of all families except occasionally the first (shallowest). The second form may be required for the first family when the minimal ray just grazes the arrival depth, in which case the intensity is finite for this ray.

The coefficients \(a, b\) and \(c\) are determined by requiring the function to pass through the two points at the angular
extremes of the family and through one of the following three interior points (in preferential order):

1. The minimum range for the family if less than the range at both endpoints;

2. The maximum range if greater than the range at the endpoints;

3. The second point in the family.

For the last (SRBR) family, \(R(\theta) \) is given by

\[
R(\theta) = \begin{cases}
 a + b (\theta - \theta_L)^{1/2} + c (\theta - \theta_L) \\
 \frac{1}{d \tan \theta + e}
\end{cases}
\] \quad (3-6)

The first expression is used for angles less than the critical ray on the bottom, and the second is used for steeper rays. The coefficients \(a \) through \(e \) are determined by requiring \(R(\theta) \) to pass through the ranges of the two traced rays, continuity of \(R'(\theta) \) (and hence intensity) at the critical ray, and the proper limiting form (isovelocity medium) for \(R'(\theta) \) as \(\theta \rightarrow 90 \) degrees. (Arrivals of rays striking the bottom at more than the critical ray are ignored after the fourth bottom bounce.) A subsequent section is devoted exclusively to the treatment of cusped caustics since it depends upon much of the next section.
3.3 Computing Ray Intensities

The intensity of an arrival is given by:

\[I = \frac{\cos \theta}{R \sin \theta' \left(\frac{dR}{d\theta} \right)^{1/3}} \]

where \(\theta(R) \) is given by the above functional forms, \(\theta'(R) \) (the angle of the ray at the receiver) by Snell's Law, and \(\left(\frac{dR}{d\theta} \right)^{1/3} \), by differentiating the functions for \(R(\theta) \). Modifying this intensity are volume-absorption and bottom-reflection losses where appropriate. The \(\theta-R \) curves for the typical arrival order in the example of Figure 3-1 are shown in Figure 3-2. The corresponding fitted curves used in the program would differ only for the first family (Figure 3-3a). In this instance the rigorous ray result (solid curve) contains a true caustic, \(C \), and a false caustic, \(C' \), whereas the fitted curve (dashed) contains only one caustic. The corresponding I-R and total I-R curves (Figures 3-3b and 3-3c) indicate a significant change in intensities when the false caustic is removed.

The asymptotic intensity at a smooth caustic is given by

\[I_c = \frac{2^{5/3} \times A_i^2(0) \left(\frac{d^2 R}{d\theta'^2} \right)^{1/3}}{c^{1/3} R \sin \theta' \left(\frac{dR}{d\theta} \right)^{1/3}} \cos \theta \]

where \(A_i(0) \) is the Airy function evaluated at zero, \(c \) is the sound speed at the source, and \(\omega \) is the angular frequency. The field in the vicinity of the caustic is then
\[I(R) = I_c \cdot \frac{R_c}{R} \frac{Ai^2(-x)}{Ai^2(0)} \quad (3-9) \]

where

\[x = \pm |a(R-R_c)| \quad (3-10) \]

and

\[a = \frac{2^{1/3}}{\left(\frac{3^2 R}{\partial \theta^2} \right)^{1/3}} \frac{\sin^{2/3} \Theta}{\left(\frac{\omega}{c} \right)^{2/3}} \quad (3-11) \]

The sign of \(x \) is chosen as positive for points in the illuminated region and negative for those in the shadow-zone. The field in the illuminated region is rapidly oscillatory because of the two-ray interference (solid curve in Figure 3-4). The full description of the field is used near the caustic, while in the oscillatory region the intensity is given by the rms summation of the two paths using their actual computed intensities (dashed curve in Figure 3-4).

The transition point corresponds to the first point (\(x = 1.77 \)) of 90-degree phase difference (allowing for the -90 degree phase shift of the one ray which has touched the caustic). In practice the caustic field is extended into the shadow zone until it is 40 dB below the caustic value (\(x = -3.5 \)). The shadow-zone field is considered to be propagating at the angle of the caustic ray at the source depth (and to have an angle at the receiver corresponding to the same ray).

3.4 Treatment of Cusped Caustics

For cases where the source and receiver are at the same depth a cusped caustic forms on the zero-degree ray at
each return to the receiver depth. Two types of (smoothed) θ-R curves are possible corresponding to simple three-ray systems (Figures 3-5a) or four-ray systems (Figure 3-5b). In the latter case the rays corresponding to those in the one-ray region of Figure 3-5a, form a smooth caustic of their own at (R'_c, θ'_c).

In both cases the three-ray region is treated by fitting the branch with a smooth extremal (connecting points a and b)

$$R(\theta) = R_c + \frac{\theta^2}{\beta}$$ \hspace{1cm} (3-12)

and the branch joining the cusp with finite slope by

$$R(\theta) = R_c + \frac{\theta}{\gamma}$$ \hspace{1cm} (3-13)

β and γ are determined by the extremals of the family. For the case of Figure 3-5a a similar fit is obtained for the one-ray region using a possibly different value of γ.

The nonuniform approximation used for calculating the intensity of the field near the cusped caustic is given by

$$I = \frac{1}{\pi} \left(\frac{2\pi R}{\lambda} \right)^{1/2} \left(\frac{\cos \theta}{R} \right) |\text{Pe}(0,Y)|^2,$$ \hspace{1cm} (3-14)

where λ is the wavelength, θ is the ray angle at the source or receiver (which are at the same depth), β is the "cusp parameter", and $\text{Pe}(0,Y)$ is the rms average of the Pearcey function $\text{Pe}(X,Y)$ along its axis ($X=0$). The argument Y is
Between $Y = \sqrt[4]{\pi}$ and $Y = 2$, the square of the modulus of $\text{Pe}(0, Y)$ is used in tabular form. The resultant curve for $(\text{Pe}(0, Y))^2$ is plotted in Figure 3-6b.

In the case of a four-ray system, the field associated with the two intersecting branches of the θ-R curve for points interior to the cusp is computed as above. For the branch forming the smooth caustic at θ'_c (Figure 3-5b), the smooth-caustic parameters are computed and the field associated with each portion of this branch is estimated. For the portion of the branch corresponding to rays steeper than the smooth-caustic ray ($\theta > \theta'_c$), and in the shadow zone ($R < R'_c$), the smooth-caustic fields are used. For the portion of the branch between $\theta = \theta'_c$ and $\theta = 0$, the maximum of either the smooth-caustic field or the cusped-caustic field (as given by Equation 3-14) is used. The result is a continuous transition from the peak field associated with the cusp to the rapidly attenuated field associated with the shadow-zone of the smooth caustic.

For severe cases where the smooth and cusped caustics are separated by fractions of a wavelength a more accurate evaluation of the field requires that the smooth- and cusped-caustic fields be added on a phase basis rather than on the rms basis used here. Such an approach is currently beyond the scope of FACT and in such instances one might expect fields slightly stronger (as much as 3 dB) than predicted.

While this completes the computation of the field, the arrival-structure option requires the angle and intensity of each path from a given range. In the three-ray region,
it is assumed that each of the three paths has the same intensity and that the angles are obtained from Equations 3-12 and 3-13. For a simple cusped caustic the single ray carries all the energy. For four-ray systems the angles for the branch outside the cusp are computed as for any smooth caustic with the corresponding partitioning of energy.

3.5 Coherent Summation of Paths

There are two situations in which low-frequency coherence effects are expected (Figure 3-7). In the first situation (only one depth of interest is shallow), the total intensity, \(I_2 \), is given by the phased sum of the intensities of the two rays shown, and may be approximated by

\[
I_2 = 4I_1 \sin^2 \left(\frac{\omega D \sin \theta}{c} \right), \quad (3-19)
\]

where \(I_1 \) is the single-path intensity (assumed equal for both paths), and \(D \) the depth of interest.

When both depths of interest are shallow (Figure 3-7b), four paths must be phase-summed and

\[
I_4 = 16I_1 \sin^2 \left(\frac{\omega D_1 \sin \theta}{c} \right) \sin^2 \left(\frac{\omega D_2 \sin \theta}{c} \right). \quad (3-20)
\]

For large \(D \) and/or \(\omega \) the variation in angle, \(\theta \), with range may produce oscillations which are inadequately sampled by the specified range step. Rewriting the two-path sum as

\[
I_2 = 2I_1 \left(1 - \delta \cos \left(\frac{2\omega D \sin \theta}{c} \right) \right). \quad (3-21)
\]
we see that $\delta=1$ yields the previous expression whereas $\delta=0$ yields the standard incoherent sum. δ then plays the role of a coherence factor, and without inferring any physical significance, it may be used to provide a smooth transition from a fully coherent to incoherent sum as the sampling interval becomes inadequate. For a given family the number of cycles of the interference pattern of frequency f is given by

$$N_c = \frac{2Df}{c} (\sin \theta_{\text{max}} - \sin \theta_{\text{min}}) \quad (3-21)$$

where θ_{max} and θ_{min} are the bounding rays of the family. The number of range points (at interval δR) sampled per cycle of interference for a given arrival order of total range-span ΔR is then

$$N_p = \frac{\Delta R}{N_c \delta R} \quad (3-22)$$

The smoothing, or coherence, factor δ is then determined by

$$\delta = \begin{cases}
0 & N_p \leq 8/3 \\
\frac{N_p - 8/3}{6-8/3} & 8/3 < N_p < 6 \\
1 & 6 \leq N_p
\end{cases} \quad (3-23)$$

The net effect when applied to the 2 or 4-path cases is a smooth transition from fully coherent to incoherent summation as, for example, the sampling interval or the frequency increases.
It should be noted that the accuracy of the basic approximation is degraded as the ray angle becomes very shallow or the source (receiver) becomes very deep. In such cases the approximation for the phase difference becomes poorer as does the assumption of equal ray amplitudes. Also since the calculation takes two or four families in an arrival order and replaces them with one modified family the range extent of the order is reduced somewhat. To prevent significant errors this approximation is permitted only if the up- and down-going arrivals at the source (receiver) of the shallowest ray in the family are separated by no more than 2 nautical miles.

3.6 Low-Frequency Cut-Off Effects

The ray equivalent of the first propagating mode satisfies the phase-integral relationship

\[\oint k_z \, dz = \Phi \] \hspace{1cm} (3-24)

where the integral is taken over a full ray cycle,

\[k_z = \frac{2\pi}{\lambda} \sin \theta(z) \] \hspace{1cm} (3-25)

and \(\Phi \) corresponds to the discrete phase shifts accumulated by the ray over a cycle (\(n \) for surface reflections plus \(\pi/2 \) for each horizontal reversal). At the relevant sound-channel axis (which will be the surface for half-channel propagation), this ray has angle \(\theta_0 \). The intensities of all rays shallower than \(\theta_0 \) are reduced by the factor \(\sin^2 \theta / \sin^2 \theta_0 \) where \(\theta \) is the ray angle at the axis.
3.7 Axis-to-Axis Propagation

The "period" of the axial ray in a sound-speed profile with a discontinuous second derivative at the smooth axis (i.e. the distance to F_0 in Figure 2-17) is given by

$$P_0 = \pi \left(\left(\frac{c_0}{c_-} \right)^{1/2} + \left(\frac{c_0}{c_+} \right)^{1/2} \right)$$

(3-26)

where c_0 is the axial sound speed, and c_- and c_+ are the values of the second derivative of $c(z)$ just above and just below the axis.

These derivatives are estimated by the following procedure (illustrated in Figure 3-8):

1. Determine whether or not the source and receiver are contained in the two layers defining the axis (z_x), and if they are, in the smaller region defined by z_- and z_+.

2. If z_S and $z_R \notin (z_-, z_+)$ exit without applying axis corrections. Otherwise compute c_- and c_+ from

$$c_\star = \frac{2(c(z_\star) - c(z_x))}{(z_\star - z_x)^2} \quad \star = - , +$$

(3-27)

i.e. fit $c(z)$ with two parabolas, one through z_- and z_x, the other through z_+ and z_x, both with their minima at z_x.

3. Determine the ray which when traced in the segmented profile has period P_0, from

$$\tan \theta_x = \frac{P_0}{2\left(\frac{1}{g_+} - \frac{1}{g_-} \right) c_x}$$

(3-28)
where q_- and q_+ are the gradients above and below the axis respectively.

4. If z_S and z_R are both between the turning points of this ray, move both z_S and z_R to the nearer of the two turning points.

In this procedure the important characteristics of the axis are governed by the two closes. layers; and the user should bear this in mind when selecting points for the input profile.*

3.8 Surface-Ducted Propagation

The transmission loss as a function of range R (in nm) in the surface duct (excluding volumetric absorption) is given by

$$TL(R) = 22 + 10 \log_{10} (R \cdot \theta) + b \cdot R$$

(3-29)

where θ is the angle at the surface of the ray just grazing the bottom of the duct and b contains the duct-leakage and rough-surface losses

$$b = 14.88 \times 10^3 \left(\frac{f_k^{-5/3}}{q_+^{-1/3} z_D^{-1}} \right)$$

(3-30)

where f_k is the frequency in kilohertz, q_+ the magnitude of the below-duct gradient, z_D the duct depth (in ft), and W the wave-height factor which is sea-state (SS) dependent:

* This approach to axis-to-axis propagation differs somewhat from that originally incorporated in FACT thanks to several helpful comments from Mr. C. L. Bartberger.
3.9 Shallow-Water Module

The special-purpose shallow-water module computes the loss for cases where ray computations would be too lengthy because of the combination of very shallow water and a bottom which is perfectly reflecting below critical angle. The approximation assumes a homogeneous medium and replaces the summation of all paths by an approximate integral. Surface-image interference effects are included where their range-averaged effect leads to a result appreciably different from the incoherent combination of paths. The bottom is treated as having an intensity reflection coefficient of unity up to the critical angle, θ_c, and a uniform loss given by the loss at normal incidence, L_0, at steeper angles. The contributions of rays steeper than θ_c are included for only one bottom-reflected order since for higher orders they are always negligible compared to the other available paths. The intensity at any range then consists of the contributions of the direct and bottom-reflected paths.

$$I = I_D + I_{BB}$$

The direct-path contribution is computed by summing incoherently the direct and surface reflected paths out to the range, R_{rms}, where the phase difference between the two paths is $-\pi/2$, and summing coherently beyond:

$$W = \begin{cases}
9 & SS < 3 \\
13.5 & SS = 3 \\
18 & SS > 3
\end{cases} \quad (3-31)$$
\[
I = \begin{cases}
2/R^2 & \text{for } R < R_{\text{rms}} \\
4 \sin^2 \left(\frac{\Delta \phi}{2} \right) / R^2 & \text{for } R > R_{\text{rms}}
\end{cases}
\quad (3-33)
\]

where
\[
\Delta \phi = \frac{4\pi DD}{\lambda R}
\quad (3-34)
\]

and \(\Delta \phi = \pi/2 \) at \(R_{\text{rms}} \):
\[
R_{\text{rms}} = \frac{8DD}{\lambda}
\quad (3-35)
\]

For bottom-bounce paths the range is divided into two regions \(R < R_{BB} \) and \(R > R_{BB} \) where
\[
R_{BB} = 2z_B/\theta_C
\quad (3-36)
\]
is approximately the period of the critical ray in a homogeneous region of depth \(z_B \). For \(R < R_{BB} \)
\[
I = \frac{1}{R^2 + (2z_B)^2} \cdot L_{\theta 0} \cdot F^1
\quad (3-37)
\]

where \(F^1 \) contains the surface-image interference effects averaged over all rays between \(\theta_C \) and \(\pi/2 \):
\[
F^1 = \frac{16}{\pi/2-\theta_C} \int_{\theta_C}^{\pi/2} \sin^2 \left(\frac{\omega_D \sin \theta}{c} \right) \sin^2 \left(\frac{\omega_D \sin \theta}{c} \right) d\theta
\]
\[
= \frac{16}{\pi/2-\theta_C} \cdot \left(G(u_1, u_2, \pi/2) - G(u_1, u_2, \theta_C) \right)
\quad (3-38)
\]
where \(u_k = \omega D_k \sin \theta / c \) for \(k = 1, 2 \) and

\[
G(u_1, u_2, \theta) = \frac{\theta}{4} \left[1 - \frac{\sin u_1}{u_1} - \frac{\sin u_2}{u_2} \right] \\
+ \frac{\sin(u_1 - u_2)}{2(u_1 - u_2)} + \frac{\sin(u_1 + u_2)}{2(u_1 + u_2)} \right] u_1 \neq u_2, \quad (3-39)
\]

\[
= \frac{\theta}{4} \left\{ \frac{3}{2} - \frac{2 \sin u_1}{u_1} + \frac{\sin 2u_1}{4u_1} \right\}, \quad u_2 = u_1 \quad (3-40)
\]

For \(R \geq R_{BB} \)

\[
I_{BB} = \sum_{i=1}^{N} I_i F_i \quad (3-41)
\]

where \(F_i \) contains the surface-image interference effects on the \(i \)-th path, \(N \) is the maximum number of bottom bounces at range \(R \) of rays shallower than \(\theta_c \), and

\[
I_i = \frac{1}{R^2 + (2iz_B)^2} \quad (3-42)
\]

Replacing the summation by an integral over \(i \), and noting that for each range and value of \(i \) a ray of angle \(\theta \) may be identified:

\[
\tan \theta = \frac{2z_B i}{R} \quad (3-43)
\]
we obtain

\[
I_{BB} = \frac{8}{Rz_B} \int_0^\theta \sin^2\left(\frac{\omega D_1 \sin \theta}{c}\right) \sin^2\left(\frac{\omega D_2 \sin \theta}{c}\right) d\theta
\]

\[
= \frac{8}{Rz_B} G(u_1, u_2, \theta_c)
\]

(3-44)
Figure 3-1. Typical Ray Families in FACT

Figure 3-2. θ-R Curves for Typical Arrival Order of Ray Families in Figure 3-1
Figure 3-3. Comparison of Traced (---) and Fitted (----) Angle and Intensity vs Range Curves for Family 1 of Figure 3-2
Figure 3-4. Comparison of Full-Asymptotic and FACT Approximation Treatments of Intensity Near a Smooth Caustic

Figure 3-5a. Three-Ray System of Figure 2-8

Figure 3-5b. Four-Ray System of Figure 2-12

θ-R Curves for Cusped Caustics
Figure 3-6. Comparison of Full-Asymptotic and FACT-Approximation Treatments of Intensity Near a Cusped Caustic
Figure 3-7. Conditions Requiring Coherent Addition at Low Frequencies
Definition of Axial Region for Fitting with Smooth Profile
REFERENCES

C. G. Bassett and P. M. Wolff, Fleet Numerical Weather Central Bottom Loss Values (U), FNWC, PRT#2, August 1970. (CONFIDENTIAL)

___________, 1960b, pp 452-3.

R. E. Christensen, J. Frank and O. Kaufman, Proposed Navy Interim Standard Bottom Loss Curves at Frequencies From 1.0 to 3.5 kHz (U), NOO TN 9320-02-72, 7 September 1972. (CONFIDENTIAL)

REFERENCES (Continued)

R. L. Helford, Continuation of LRAPP (U), February 1972, Bell Laboratories on Contract N00014-69-C-0088 (CONFIDENTIAL), Reference 8, "Modification to Ray Theory Near Cusped Caustics". (UNCLASSIFIED)

F. M. Labianca, Continuation of LRAPP (U) 1972, (CONFIDENTIAL), Reference 8, "Critique of C. S. Clay's 'Sound Transmission in a Half Channel and Surface Duct'". (UNCLASSIFIED)

REFERENCES (Continued)

Sparka I Report, Maury Center Report 003, 1969, p 65. (SECRET)

C. W. Spofford, *Continuation of LRAPP (U)*, 1972b, (CONFIDENTIAL), Reference 6, "Ray-Tracing Program for Modeling Arrival Structure and Noise Directivity". (UNCLASSIFIED)

DISTRIBUTION LIST

AAI Corporation

Advanced Research Projects
Agency - 2 Copies

Air Antisubmarine
Squadron 21, 22, 24,
28, 29, 30, 31, 32, 33,
37, 38, 41, 71, 72, 73,
81, 82 and 83

Air Antisubmarine Wing
One

Air Test and Evaluation
Squadron 1, 4 and 5

Air Test and Evaluation
Squadron 5 - Detach-
ment Oceana

Andrulis Research Corp.

Antarctic Development
Squadron 6

Antisubmarine Warfare
Force - Detachment
Rota, Sigonella

Antisubmarine Warfare
Systems Project

Antisubmarine Warfare
Wing Pacific

Applied Research Lab.
Pa. State U.

Applied Research Lab.
U. of Texas

Arthur D. Little, Inc.

Assistant Secretary of
the Navy for Research
and Development

Atlantic Fleet ASW
Tactical School

Bell Telephone Laboratory

B-K Dynamics, Inc.

Bolt, Beranek and
Newman, Inc.

Bunker-Ramo Corporation

Carrier Antisubmarine
Air Group Reserve 70, 80

Central Intelligence Agency

Chesapeake Instruments
Corporation

Chief of Naval Material

Chief of Naval Operations

Commander Seventh Fleet

Commander Sixth Fleet

Commander Third Fleet

Commander-in-Chief
Atlantic

Commander-in-Chief
Atlantic Fleet

Commander-in-Chief
U.S. Naval Forces
Europe
Distribution List (Con't)

Defense Documentation
Center

Defense, Research and
Engineering

Destroyer Development
Group

Environmental Prediction
Research Facility

Fleet Air - Azores

Fleet Air - Caribbean

Fleet Air - Keflavik

Fleet Air - Mediterranean

Fleet Air - Western
Pacific

Fleet Air - Western
Pacific Detachment
Cubi Pt.

Fleet Air - Western
Pacific Detachment
Misawa

Fleet Air Wings - Atlantic

Fleet Air Wings - Pacific

Fleet Antisubmarine
Warfare School

Fleet Area Control and
Surveillance Facility

Fleet ASW School

Fleet Numerical Weather
Central

Fleet Ocean Surveillance
Information Facility

Fleet Training Group

Fleet Training Group
Charleston, Norfolk,
Pearl Harbor, San
Diego and Western
Pacific

Fleet Weather Central
Norfolk, Rota

Fleet Weather Facility
Jacksonville

General Dynamics

General Electric Co.

General Electric Co.
Ocean Science Lab.

General Motors Corp.

Gulf Universities
Research Consortium

Hawaii Inst. of Geophysics

Helicopter Antisubmarine
Squadron 1, 2, 3, 4,
5, 6, 7, 8, 10, 11,
15, 74, 75, 84 and 85

Helicopter Antisubmarine
Squadron, Light 30, 31,
32, 33 and 35

Helicopter Antisubmarine
Wing One

Honeywell, Inc.
Distribution List (Con't)

- Hydrospace Challenger, Incorporated
- Interstate Electronics Corporation
- Johns Hopkins Univ.
- Kappa Systems, Inc.
- Lulejian & Assoc., Inc.
- Marine Physical Lab.
- Mechanics Research, Inc.
- Meterology International, Incorporated
- NATO SACLANT Antisubmarine Warfare Research Centre
- Naval Air Development Center - 3 Copies
- Naval Air Force - Atlantic Fleet, Pacific Fleet
- Naval Air Systems Command - 2 Copies
- Naval Coastal Systems Lab. - Port Hueneme, Calif., Panama City, Florida
- Naval Electronic Systems Command
- Naval Facilities Engineering Command
- Naval Intelligence Support Center
- Naval Ocean Surveillance Information Center
- Naval Oceanographic Office - 5 Copies
- Naval Ordnance Lab.
- Naval Postgraduate School
- Naval Research Lab. - 3 Copies
- Naval Sea Systems Command
- Naval Ship Research and Development Center - 2 Copies
- Naval Surface Weapons Center
- Naval Undersea Center - 4 Copies
- Naval Underwater Systems Center - 2 Copies
- Naval War College
- Naval Weather Service Command
- Ocean Data Systems, Inc.
- Oceanographer of the Navy
Distribution List (Con't)

<table>
<thead>
<tr>
<th>Oceanographic Detachment</th>
<th>104, 105, 106, 108, 109, 114 and 115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanographic Development Squadron 8</td>
<td></td>
</tr>
<tr>
<td>Oceanographic Systems, Atlantic, Pacific</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>15 Copies</td>
</tr>
<tr>
<td>Office of Naval Research Boston Branch Office, Chicago Branch Office and Pasadena Branch Office</td>
<td></td>
</tr>
<tr>
<td>Operational Test and Evaluation Detachment, New London</td>
<td></td>
</tr>
<tr>
<td>Operational Test and Evaluation Force, Norfolk, Pacific</td>
<td></td>
</tr>
<tr>
<td>Operational Test and Evaluation Force, Component Activity, Moffett Field</td>
<td></td>
</tr>
<tr>
<td>Patrol Squadron Detachment, Lajes, Rota and Sigonella</td>
<td></td>
</tr>
<tr>
<td>Patrol Squadron 1, 4, 5, 6, 8, 9, 10, 11, 16, 17, 19, 22, 23, 24, 26, 30, 31, 40, 44, 45, 46, 47, 48, 49, 50, 56, 60, 62, 64, 65, 66, 67, 68, 69, 90, 91, 92 and 94</td>
<td>Patrol Wing 1, 2 and 11</td>
</tr>
<tr>
<td>Patrol Wing 1 - Detachment Agana, Cubi Pt, Iwakuni and Naha</td>
<td></td>
</tr>
<tr>
<td>Patrol Wings Atlantic, Pacific</td>
<td></td>
</tr>
<tr>
<td>Patrol Wings Pacific Detachment Adak</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State Univ.</td>
<td></td>
</tr>
<tr>
<td>Raff Associates, Inc.</td>
<td></td>
</tr>
<tr>
<td>Raytheon, Inc.</td>
<td></td>
</tr>
<tr>
<td>Reserve Patrol Wing, Atlantic, Pacific</td>
<td></td>
</tr>
<tr>
<td>Rockwell International Corporation</td>
<td></td>
</tr>
<tr>
<td>Sanders Associates</td>
<td></td>
</tr>
<tr>
<td>Santa Barbara Associates</td>
<td></td>
</tr>
<tr>
<td>Science Applications, Incorporated</td>
<td></td>
</tr>
<tr>
<td>Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>Sea Based Air ASW/ Commander Sea Control Group One</td>
<td></td>
</tr>
<tr>
<td>Singer Simulation Products Division</td>
<td></td>
</tr>
<tr>
<td>Sperry Rand Corporation</td>
<td></td>
</tr>
</tbody>
</table>
Distribution List (Cont')

Submarine Development Group 1, 2
Submarine Development Group 1 - Detach-
ment, Mare Island
Submarine Flotilla 8
Submarine Force Atlantic Fleet
Submarine Group 2, 5, 6, 7 and 8
Submarine Squadron 1, 2, 3, 4, 6, 10, 12, 14, 15, 16 and 18
Submarine Squadron 15, Rep. Pearl Harbor
Systems Applications, Incorporated
Tetra-Tech, Inc.
Texas A & M University
Texas Instruments, Inc.
Tracor, Inc.
Training Command, Atlantic Fleet, Pacific Fleet
TRW Systems - 2 Copies
U. S. Naval Academy
Underwater Systems, Incorporated
University of Miami
Vitro Laboratories
Western Electric Co.
Westinghouse Electric Corporation
Woods Hole Oceanographic Institution
Xonics, Inc.
U. S. Coast Guard
MEMORANDUM FOR DISTRIBUTION LIST

Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

Ref: (a) SECNAVINST 5510.36

Encl: (1) List of DECLASSIFIED LRAPP Documents

1. In accordance with reference (a), a declassification review has been conducted on a number of classified LRAPP documents.

2. The LRAPP documents listed in enclosure (1) have been downgraded to UNCLASSIFIED and have been approved for public release. These documents should be remarked as follows:

 Classification changed to UNCLASSIFIED by authority of the Chief of Naval Operations (N772) letter N772A/6U875630, 20 January 2006.

 DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution is unlimited.

3. Questions may be directed to the undersigned on (703) 696-4619, DSN 426-4619.

BRIAN LINK
By direction
Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

DISTRIBUTION LIST:
NAVOCEANO (Code N121LC – Jaime Ratliff)
NRL Washington (Code 5596.3 – Mary Templeman)
PEO LMW Det San Diego (PMS 181)
DTIC-OCQ (Larry Downing)
ARL, U of Texas
Blue Sea Corporation (Dr. Roy Gaul)
ONR 32B (CAPT Paul Stewart)
ONR 321OA (Dr. Ellen Livingston)
APL, U of Washington
APL, Johns Hopkins University
ARL, Penn State University
MPL of Scripps Institution of Oceanography
WHOI
NAVSEA
NAVAIR
NUWC
SAIC
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Personal Author</th>
<th>Title</th>
<th>Publication Source (Originator)</th>
<th>Pub. Date</th>
<th>Current Availability</th>
<th>Class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unavailable</td>
<td>Cornyn, J. J., et al.</td>
<td>AMBIENT-NOISE PREDICTION, VOLUME 2. MODEL EVALUATION WITH IOMEDEX DATA</td>
<td>Naval Research Laboratory</td>
<td>740701</td>
<td>AD0530983</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Unavailable</td>
<td>COHERENCE OF HARMONICALLY RELATED CW SIGNALS</td>
<td>Naval Underwater Systems Center</td>
<td>740722</td>
<td>ADB181912</td>
<td>U</td>
</tr>
<tr>
<td>3810</td>
<td>Unavailable</td>
<td>CONSTRUCTION AND CALIBRATION OF USRD TYPE F58 VIBROSEIS MONITORING HYDROPHONES SERIALS 1 THROUGH 7</td>
<td>Naval Research Laboratory</td>
<td>741002</td>
<td>ND</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Mitchell, S. K., et al.</td>
<td>QUALITY CONTROL ANALYSIS OF SUS PROCESSING FROM ACODAC DATA</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>741015</td>
<td>ADB000283</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Unavailable</td>
<td>MEDEX PROCESSING SYSTEM. VOLUME II. SOFTWARE</td>
<td>Bunker-Ramo Corp. Electronic Systems Division</td>
<td>741021</td>
<td>ADB000363</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Spofford, C. W.</td>
<td>FACT MODEL. VOLUME I</td>
<td>Maury Center for Ocean Science</td>
<td>741101</td>
<td>ADA078581</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Bucca, P. J., et al.</td>
<td>SOUND VELOCITY STRUCTURE OF THE LABRADOR SEA, IRMINGER SEA, AND BAFFIN BAY DURING THE NORLANT-72 EXERCISE</td>
<td>Naval Oceanographic Office</td>
<td>741101</td>
<td>ADC000461</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Anderson, V. C.</td>
<td>VERTICAL DIRECTIONALITY OF NOISE AND SIGNAL TRANSMISSIONS DURING OPERATION CHURCH ANCHOR</td>
<td>Scripps Institution of Oceanography Marine Physical Laboratory</td>
<td>741115</td>
<td>ADA011110</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Baker, C. L., et al.</td>
<td>FACT MODEL. VOLUME II</td>
<td>Office of Naval Research</td>
<td>741201</td>
<td>ADA078539</td>
<td>U</td>
</tr>
<tr>
<td>ARL-TR-74-53</td>
<td>Anderson, A. L.</td>
<td>CHURCH ANCHOR EXPLOSIVE SOURCE (SUS) PROPAGATION MEASUREMENTS (U)</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>741201</td>
<td>ADC002497; ND</td>
<td>U</td>
</tr>
<tr>
<td>MCR106</td>
<td>Cherkis, N. Z., et al.</td>
<td>THE NEAT 2 EXPERIMENT VOL 1 (U)</td>
<td>Maury Center for Ocean Science</td>
<td>741201</td>
<td>NS; ND</td>
<td>U</td>
</tr>
<tr>
<td>MCR107</td>
<td>Cherkis, N. Z., et al.</td>
<td>THE NEAT 2 EXPERIMENT VOL 2 - APPENDICES (U)</td>
<td>Maury Center for Ocean Science</td>
<td>741201</td>
<td>NS; ND</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Mahler, J., et al.</td>
<td>INTERIM SHIPPING DISTRIBUTION</td>
<td>Tetra, Tech, BB&N, & PSI</td>
<td>741217</td>
<td>ND</td>
<td>U</td>
</tr>
<tr>
<td>75-9M7-VERAY-R1</td>
<td>Jones, C. H.</td>
<td>LRAPP VERTICAL ARRAY- PHASE IV</td>
<td>Westinghouse Electric Corp.</td>
<td>750113</td>
<td>ADA008427; ND</td>
<td>U</td>
</tr>
<tr>
<td>AESD-TN-75-01</td>
<td>Spofford, C. W.</td>
<td>ACOUSTIC AREA ASSESSMENT</td>
<td>Office of Naval Research</td>
<td>750201</td>
<td>ADA090109; ND</td>
<td>U</td>
</tr>
</tbody>
</table>