METHODOLOGIES FOR COMPUTER PROGRAM TESTING

B. Chandrasekaran and L. J. White
Department of Computer and Information Science

For the Period
July 1, 1977 - June 30, 1979

U.S. AIR FORCE
Air Force Office of Scientific Research
Bolling AFB, D.C. 20332

Grant No. 77-3416

August 10, 1979

Approved for public release; distribution unlimited.
This report summarizes our research, over a two-year period, on computer program testing, in particular the development of a strategy called the Domain Testing Strategy. For a large and important class of programs, this strategy enables the generation of test data which can test, in principle, for all errors in the control flow of a program. Among the constraints for practical application of the strategy is that the predicates that affect the control flow are linear in the input variables. The extension of the strategy (continued on back)
20. Abstract (continued)

A modular testing of programs is presented. The sensitivity of the strategy to changes in certain parameters is discussed. The implementation of a pilot system to generate test data using this strategy is outlined.
FINAL TECHNICAL REPORT
AFOSR GRANT - 77-3416

FOR PERIOD
1 July 77 - 30 June 79

PRINCIPAL INVESTIGATORS:
B. Chandrasekaran
Lee J. White
Department of Computer & Information Science
The Ohio State University
Columbus, Ohio 43210

CONTENTS

I. INTRODUCTION 1
II. THEORETICAL ISSUES 1
II.1. Domain Testing Strategy 1
II.2. Error Analysis 2
II.3. Summary of Basic Results 3
II.4. Extension of Strategy to Modules 4
III. IMPLEMENTATION OF A PROTOTYPE TESTING SYSTEM 8
IV. OTHER TECHNICAL ACTIVITIES 9
V. PUBLICATIONS FROM THIS RESEARCH 9

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b)*
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer
I. INTRODUCTION

Most of the emphasis in our work during the two years has been on reliable software in general, and program testing in particular. We have developed a testing strategy called Domain Testing Strategy which is very promising for a large class of data processing programs. Our efforts have been devoted to both theoretical and practical aspects of the strategy. At the theoretical level, we have delineated the precise conditions under which the strategy is guaranteed to detect certain classes of errors, specified the sensitivity of the strategy to certain error parameters in the choice of test data, and obtained preliminary results on extending the strategy to large programs constructed out of modules of small programs. At the practical level, we have been developing a prototype test system based on the strategy.

In this Report, we shall take the approach of presenting the main results obtained in brief, intuitively meaningful terms and leave the technical details to several appendices. Some of these appendices are copies of papers published in the open literature, and some are technical reports.

II. THEORETICAL ISSUES

II. 1. Domain Testing Strategy

Computer programs contain two types of errors which have been identified as computation errors and domain errors. A domain error occurs when a specific input follows the wrong path due to an error in the control flow of the program. A path contains a computation error when a specific input follows the correct path, but an error in some assignment statement causes the wrong function to be computed for one or more of the output variables. A testing strategy has been designed to detect domain errors, and the conditions under which this strategy is reliable are given and characterized. A by-product of this domain strategy is a partial ability to detect computation errors. It is the objective of this study to provide an analytical foundation upon which to base practical testing implementations.

There are limitations inherent to any testing strategy, and these also constrain the proposed domain strategy. One such limitation might be termed coincidental correctness, which occurs when a specific test point follows an incorrect path, and yet the output variables coincidentally are the same as if that test point were to follow the correct path. This test point would then be of no assistance in the detection of the domain error which caused the control flow change. No test generation strategy can circumvent this problem. Another inherent testing limitation has been previously identified as a missing path error, in which a required predicate does not appear in the given program to be tested. Especially if this predicate were an equality, no testing strategy could systematically determine that such a predicate should be present.

The control flow statements in a computer program partition the input space into a set of mutually exclusive domains, each of which corresponds to a particular program path and consists of input data points which cause that path to be executed. The testing strategy generates test points to examine the boundaries of a domain to detect whether a domain error has occurred, as either one or more of these boundaries will have shifted or else the corresponding
predicate relational operator has changed. If test points can be chosen within
ϵ of each boundary, the strategy is shown to be reliable in detecting domain
errors of magnitude greater than ϵ subject to the following assumptions:

(1) coincidental correctness does not occur;
(2) missing path errors do not occur;
(3) predicates are linear in the input variables;
(4) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing process,
and cannot be entirely eliminated. However, recognition of these potential
problems can lead to improved testing techniques. The domain testing method
has been shown to be applicable for nonlinear boundaries but the number of
required test points may become inordinate and there are complex problems
associated with processing nonlinear boundaries in higher dimensions. The
continuous input space assumption is not really a limitation of the proposed
testing method, but allows the parameter ϵ to be chosen arbitrarily small.
An error analysis for discrete spaces is available and the testing strategy
has been proved viable as long as the size of the domain is not comparable
to the discrete resolution of the space.

Next let us consider two further assumptions:

(5) predicates are simple; and
(6) adjacent domains compute different functions.

If assumptions (5) and (6) are imposed, the testing strategy is considerably
simplified, as no more than one domain need be examined at one time in order
to select test points. Moreover, the number of test points required to test
each domain grows linearly with both the dimensionality of the input space
and the number of predicates along the path being tested.

The only completely effective testing strategy is an exhaustive test which
is totally impractical. The domain testing strategy offers a substantial
reduction in the high cost of computer program testing, and yet can reliably
detect a major class of errors which have been characterized. In addition,
other types of errors can be detected, such as computation errors and missing
path errors, but this detection cannot be guaranteed.

The domain strategy is currently being implemented, and will be utilized as
an experimental facility for subsequent research. A most important contribu-
tion would be to indicate both programming language constructs and program-
mation techniques which are easier to test, and thus produce more reliable soft-
ware.

The most comprehensive presentation of results to date is available in [1], [3],
and [6]. [1] and [3] are attached as appendices to this report.

II. 2. Error Analysis

The objective is to provide an error analysis of the domain testing strategy.
It has been shown that some border shifts will escape detection by the strategy;
this occurs because either the test points are not selected appropriately, or
else the border shift is too close to the given border to be detected by the
selected test point. An error analysis will indicate the best locations for the
test points.
The strategy was developed for continuous spaces, but computer representation may have to be examined as a discrete space in order to assure us that roundoff will not introduce unacceptable errors. It has been shown that there are some domains in a discrete space which cannot be tested by the strategy, but these are pathological cases where one of the domain dimensions is on the order of the lattice resolution. Moreover, a simple computation can be made to indicate when this condition exists for a given domain.

An error analysis of domain borders is needed to resolve the following questions:

1) How small should ϵ be chosen in selecting an OFF test point for linear borders, and where are optimal locations for the test points?

2) We required the OFF test point for a given border to satisfy all inequality borders except that being tested; how do potential errors in other borders of the domain affect this requirement?

3) What are the difficulties in applying domain testing in a discrete space or in a space in which numerical values can only be represented with finite resolution, and can these difficulties be circumvented by taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in reference [2] (see list of publications from existing research, Section V.) Chapter 6 of Appendix A gives a capsule summary of the error analysis results.

II. Summary of Basic Results

The basic goal of this research is to replace the intuitive principles behind current testing procedures by a methodology based on a formal treatment of the program testing problem. By formulating the problem in basic geometric and algebraic terms, we have been able to develop an effective testing methodology whose capabilities can be precisely defined. In addition, since program testing cannot be completely effective, we have identified the limitations of the strategy. In several cases these limitations have proven to be theoretical problems inherent to the general program testing process.

The main contribution of this research is the development of the domain testing strategy. Under certain well-defined conditions the methodology is guaranteed to detect domain errors in linear borders greater than some small magnitude ϵ. Furthermore, the cost, as measured by the number of required test points, is reasonable and grows only linearly with both the dimensionality of the input space domain and the number of path predicates. Domain testing also detects transformation errors and missing path errors in many cases, but the detection of these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of nonlinear borders, and we have shown that the methodology generalizes to any class of functions which can be described by a finite number of parameters. Unfortunately, nonlinear predicates pose problems of extra processing which probably preclude testing except for restricted cases. For example, just finding intersection points of a set of linear and nonlinear borders can require an inordinate amount of processing.

Coincidental correctness is a theoretical limitation inherent to the program testing process, and we have argued that it prevents any reasonable finite testing procedure from being completely reliable. In particular, the possibility of coincidental correctness means that an exhaustive test of all points in an input domain is theoretically required to preclude the existence of computation errors on a path. Within the class of all computable functions
there exist functions which coincide at an arbitrarily large number of points, but if there is sufficient resolution in the output space, coincidental correctness should be a rare occurrence for functions commonly encountered in data processing problems.

The class of missing path errors, particularly those of reduced dimensionality, has proven to be another theoretical limitation to the reliability of any finite testing strategy. Although our methodology cannot be guaranteed to detect all instances of this type or error, it can be extended to detect some well-defined subclasses of missing path errors. Unfortunately, the extra cost of this modification may be unacceptably high. Our analysis of missing path errors has shown that the cause of the difficulty is that the program does not contain any indication of the possible existence of a missing path error. Therefore, without additional information, a reasonable testing strategy for this class of errors cannot be formulated.

The domain testing strategy requires a reasonable number of test points for a single path, but the total cost may be unacceptable for a large program containing an excessive number of paths. In particular, this may occur for large programs with complicated control structures containing many iteration loops. Additional research is needed to substantially reduce the number of potential paths.

II. Extension of Strategy to Modules

The major drawback of the Domain Testing Strategy in its current state of development is that it requires testing all of the possible paths thru the program being tested. As programs increase in complexity the number of possible paths increases dramatically. This presents a severe practical constraint on the ability to test programs of reasonable size. (It should be noted that this problem is inherent in all path oriented testing strategies, and not just the Domain Testing Strategy.)

One possible approach to reducing this testing problem is motivated by considering the problem of program development. Here, too we may be faced with a large, complicated, unmanageable task when the problem is considered in its entirety. The suggested methodology in this case is to consider the overall problem as a set of related units, and to develop the details of the solution around this modular structure. In a similar manner, a testing strategy could make use of the notion of modular structure.

If different segments of the program are developed and tested independently, and later integrated to form the final version of the program (a kind of "bottom up" approach), it would be nice if the validation information obtained through these "unit tests" can be used to substantially reduce the amount of testing that needs to be done when considering the entire program at integration time. Thus, the primary justification for the development of a method of integrating independently tested program modules into a single tested program is to cut down the total number of paths that need be tested, and to keep the total number of paths reasonable as programs increase in complexity. A secondary justification for an independent testing strategy is to make the testing procedure for a program conform to the way programs are developed. By modularizing the testing procedure the overall task of testing a large program becomes more manageable.
We define a module as a block of single entry single exit code, which can contain an arbitrary amount of computation and internal control structure. Using this characterization of module, we address the problem of integrating independently tested modules into the testing of a program which incorporates the Domain Testing Strategy. It will be useful to consider the following two components of this problem separately.

1. Given an untested program that uses one or more modules that are known to be correct, how can the Domain Testing Strategy be applied to the program in order to take maximum advantage of the correctness of these modules.

2. Given an untested module, how much testing need be done on the module in order to incorporate it into the Domain Testing of a complete program with a minimum of testing overhead. Specifically, is it enough to Domain Test the modules which are to be incorporated into the testing strategy developed in the solution of the first problem.

In examining the first problem it is clear that the ideal solution would allow the testing of the program to be performed without having to consider the complexity of the correct modules. If this can be accomplished, then when testing the program the correct module can be treated as a form of assignment statement. The actual control structure of the module wouldn't need to be considered. This type of solution is intuitively appealing because it wouldn't require additional testing of a block of code that is already known to be correct. However, such a solution would only be acceptable if it didn't result in the loss of a large amount of the testing confidence that would have been obtained if each path through the program had been tested using the Domain Testing Strategy.

Therefore, we shall assume that the above technique of integrating independently tested modules will be used, and to analyze the types of errors which this technique will allow to go undetected. Instead of looking at all types of undetectable errors, however, we will only be concerned with the types of errors that a complete Domain Testing of each path would have detected, but the integrated approach would miss. The types of errors that complete Domain Testing wouldn't detect will be assumed to be undetected using the integrated approach also. We therefore next examine the types of errors that can occur in a program which the Domain Testing Strategy will detect.

The purpose of the Domain Testing Strategy is to detect errors in the control structure of a program. There are two ways that an error can occur in a program's control structure: the actual predicate could be incorrect, or a computation that occurs along some path in the program and is then used in a predicate could be incorrect. Given these two types of errors the following five cases can occur when integrating a correct module into a program being tested. (In this context, we mean by "program" the integrated code excluding the correct module.)

1. A predicate in the program could be incorrect.
2. A computation in the program could be incorrect, and that computation is used in a predicate later in the program.
3. A computation in the program is incorrect, and the computation is used in a predicate of the correct module, but isn't used later in a program predicate.
4. A computation in the program is incorrect, and the result of the computation is not used in a predicate in either the module or the program, but is used in a computation in the module.
5. A computation in the program is incorrect, and the result of the computation is used in a later program computation but is not used at all in the module.

In the first and second cases Domain Testing will detect these errors as a shift in the input domain of the program. Since neither type of error would affect the correct module, using the integrated testing approach would also detect these types of errors. Case 5 also does not affect the correct module, so the error would be detected to the extent that Domain Testing is lucky enough to catch computation errors. However, since not as many points are being tested with the integrated strategy we would expect some degradation in testing confidence.

In the third case there is a possibility that the error would go undetected using the integrated approach, yet would have been detected if all paths had been Domain Tested. The problem occurs because the predicate in the correct module that would have detected the error may not be executed since only one of an arbitrarily large number of paths through the correct module will be executed. The fourth case might also go undetected with the integrated approach. However, even if the computation in the correct module that uses the incorrect computation from the program lies on the path that is taken through the correct module, the error might still go undetected. This is a case in which both the integrated approach and Domain Testing might miss the error, but once again it is important to note that, using the integrated approach, it appears that there is even less chance of catching the error than with Domain Testing.

The types of errors that might go undetected using the integrated approach, but would be detected by Domain Testing each path, are sufficiently serious to require some modification to the method of testing programs that contain correct modules. The common feature of both types of errors (cases 3 and 4 above) is that there is a computation error which is actually in the program, but only shows up because of its effect on the correct module. One method of avoiding this problem would be to require that in testing the program both the output from the program, and the values that are generated in the program and used by the correct module, be validated. This in effect corresponds to validating the inputs to the correct module, and could be accomplished in two ways. First, an additional burden could be placed on the oracle while testing the program, that burden being the validation of the inputs to the correct module. A second, more appealing approach would be to treat the section of code preceding the correct module as a separate module which itself would be tested independently. While this section was being tested independently its outputs would be validated, thereby validating the inputs to the correct module.

For this second approach to work it must be shown that the independent testing of this section is sufficient to detect the types of computation errors that might cause integration test problems. This leads to consideration of the second problem, identified earlier, of developing a method of separately testing program modules to be integrated into the testing of the complete program.

Up to this point it has been assumed that the module that is being integrated into the program being tested is completely correct. In general this will not be the case, especially if the module has been validated through testing, since no practical testing strategy can guarantee the correctness of a program of module. Ideally we would like to be able to use the Domain Testing Strategy on the module, and then use the method described previously for testing the (integrated) program without having to retest the paths through the module.
Since the ultimate goal is to Domain Test the program, it is necessary for the independent testing of the module to identify all errors in a predicate, as well as all errors in computations that will be used later in a predicate in either the module being tested or in the integrated program. By Domain Testing the module, the errors in the predicates in the module as well as computation errors which affect predicates in the module, will be detected as they will cause a shift in a border in the domain of the module. However, in general many types of errors in the computations performed in the module might go undetected if they aren't subsequently used in a predicate in the module.

If the programs under consideration contained only linear predicates (when viewed with respect to the entire program) then a good deal of the problem with computation errors can be eliminated by Domain Testing. This is due to the fact that if only linear predicates are being tested then all linear computations in the module can be validated. If the module is Domain Tested then for each subdomain in the module a sufficient number of test points are generated by the testing strategy to span the space of the subdomain. Therefore, if the linear computations are shown to be correct on these test points then these computations can be assumed to be correct for any point in the subdomain. This means that there can be no computation errors in a Domain Tested module that can affect a predicate in the integrated program, so that an integration test which ignored the paths in the Domain Tested module will be just as effective as a test which didn't ignore them, with respect to these kind of errors.

There can, however, still be errors in nonlinear computations of a Domain Tested module which affect later computations in the program. If the integration test ignored the paths in the Domain Tested module, then it is certainly possible for the error not to show up, for those paths exercised in the integration test may not contain the error and the set of points chosen in the unit test may not have been sufficient to detect the error. Even if the integration test considered all of the paths in the module, this kind of error might still go undetected (depending on the kind of nonlinearity in the computation and the number of points tested), though the increased number of test points reduce the chances that this will happen.

If there were linear predicates in each module (with respect to the module's inputs) but these predicates weren't necessarily linear when viewed with respect to the entire program, then it is no longer the case that there can be no computation errors in the earlier module which affect a predicate in the later module. This is because there must be a nonlinear computation in the earlier module, and if all of the predicates in that module were linear, we may not have tested enough points to guarantee the correctness of the nonlinear computation. When integrating the Domain Tested module and ignoring its paths (i.e. treating it as an assignment statement), we may find that the resulting output for the test points chosen is correct because not enough points were chosen to make the nonlinear computation error affect the predicate (which looked linear when it was tested). However, if we Domain Tested the complete program (ignoring modularity), this predicate would have shown up as nonlinear and enough points would have been required by the testing strategy to detect this error.

It therefore makes a difference, when considering independent module testing using the Domain Testing Strategy, as to the kind of linearity restrictions placed on the program being tested. Of course, the severity of this problem with respect to Domain Testing is not clear, since there are serious practical problems associated with the strategy when nonlinear borders are involved.
One additional bit of overhead that would arise in the independent testing of a module would be in identifying the input space of the module. Since the module lies within the program, its input domain could consist of both input variables and program variables. The oracle would have to be sufficiently knowledgeable to be able to determine the correctness of the results of the module for any values in the module's (as opposed to the program's) input space. But this requirement doesn't appear unreasonable in view of its consistency with current views on program development.

In conclusion it appears that a method of testing modules independently can prove to be effective with little loss of confidence in the testing procedure. The major limitations are in the restriction of the Domain Testing procedure to only linear borders, and in the additional burden that is placed on the oracle that determines the correctness of the testing results.

III. IMPLEMENTATION OF A PROTOTYPE TESTING SYSTEM

We are currently implementing a prototype system as an experimental facility. This will continue to be a major focus of research during the next year.

The system is composed of five phases, the first three are written in PL/I, and the other two in Fortran. The system accepts a user program written in a subset of PL/C and performs the Domain Testing Strategy on this program.

There are several restrictions on the user PL/C program for theoretical implementational reasons. Work is being done to relax these restrictions by expanding the system and studying the theoretical problems. The current restrictions are: no arrays, no subroutines, no alphanumeric variables, single entry/single exit blocks, and only two input variables.

Once the user program is submitted to the system, Phase One parses the user program and loads the parsed program into a large array, with each record containing approximately one statement. Phase One recognizes the type of statement, and through recursion it realizes the range of each type of control structure. Pointers in the table are set to indicate the end of the control structure. There are three types of control structures:

1. DO loops.
2. IF THEN ELSE statements.
3. IF THEN statement.

Once Phase One is finished, Phase Two steps through the parsed program checking the type of statement. If the statement contains some kind of arithmetic computation, this phase then checks the linearity of the statement in terms of the variables. If the statement is linear then the statement is put in a standard form for further processing. If the statement is non-linear, the statement is flagged.

Phase Three takes a path through the program specified by the user, and symbolically executes the path to produce a set of predicates that describe the path. The predicates are in terms of the input variables as the result of the symbolic execution, and the predicates together form the domain of the path in the input space.

Phase Four takes the set of predicates generated for the path, and performs a Gaussian elimination to get a description of the actual domain by way of the constraints.
Phase Five takes the domain generated in phase four and plots the path domain when there are only two input variables. Also test points are generated based on the border of the domain. For each border there are two ON points and one OFF point generated. These test points can then be used as inputs to test the output and detect shifts in the domain borders.

Future extensions of the system deal with restrictions on the user language, and the scope of the system. These extensions are:

1. Allow subroutine.
2. Allow more than two input variables.
3. Allow the use of arrays and non-linear expressions.
4. Study compound predicates.
5. Allow alphabetic and alphanumeric variables and study their effects on input domains.
6. Change the user and system language to allow for portability and more flexible use.

IV. OTHER TECHNICAL ACTIVITIES

We have regarded participation in national and international professional activities on computer program testing as an important component of our research under this Grant. The following activities in this connection are worth mentioning.

(a) Professor Chandrasekaran, one of the Principal Investigators, was an organizer, panelist and session chairman at the Workshop on Software Testing and Test Documentation, held during December 1978 in Ft. Lauderdale, Fla., under the auspices of the IEEE.

(b) Professor Chandrasekaran has undertaken to edit a Special Issue of the IEEE Transactions on Software Engineering devoted to papers on program testing. Most of the editorial work was done under the auspices of the Grant. The issue itself will appear either in late 1979 or early 1980.

V. PUBLICATIONS FROM THIS RESEARCH

APPENDIX A

A DOMAIN STRATEGY FOR
COMPUTER PROGRAM TESTING

by

Lee J. White, Edward I. Cohen
and B. Chandrasekaran

Work performed under
Air Force Office of Scientific Research
Grant 77-3416

Computer and Information Science Research Center
The Ohio State University
Columbus, Ohio 43210

August 1978
A DOMAIN STRATEGY
FOR COMPUTER PROGRAM TESTING

Lee J. White, Edward I. Cohen, and B. Chandrasekaran

EXTENDED ABSTRACT

Computer programs contain two types of errors which have been identified as computation errors and domain errors. A domain error occurs when a specific input follows the wrong path due to an error in the control flow of the program. A path contains a computation error when a specific input follows the correct path, but an error in some assignment statement causes the wrong function to be computed for one or more of the output variables. A testing strategy has been designed to detect domain errors, and the conditions under which this strategy is reliable are given and characterized. A by-product of this domain strategy is a partial ability to detect computation errors. It is the objective of this study to provide an analytical foundation upon which to base practical testing implementations.

There are limitations inherent to any testing strategy, and these also constrain the proposed domain strategy. One such limitation might be termed coincidental correctness, which occurs when a specific test point follows an incorrect path, and yet the output variables coincidentally are the same as if that test point were to follow the correct path. This test point would then be of no assistance in the detection of the domain error which caused the control flow change. No test generation strategy can circumvent this problem. Another inherent testing limitation has been previously identified as a missing path error, in which a required predicate does not appear in the given program to be tested. Especially if this predicate were an equality, no testing strategy could systematically determine that such a predicate should be present.

The control flow statements in a computer program partition the input space into a set of mutually exclusive domains, each of which corresponds to a particular program path and consists of input data points which cause that path to be executed. The testing strategy generates test points to examine the boundaries of a domain to detect whether a domain error has occurred, as either one or more of these boundaries will have shifted or else the corresponding predicate relational operator has changed. If test points can be chosen within ϵ of each boundary, the strategy is shown to be reliable in detecting domain errors of magnitude greater than ϵ, subject to the following assumptions:

1. coincidental correctness does not occur;
2. missing path errors do not occur;
3. predicates are linear in the input variables;
4. the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing process, and cannot be entirely eliminated. However, recognition of these potential problems can lead to improved testing techniques. The domain testing method has been shown to be applicable for nonlinear boundaries, but the number of required test points may become inordinate and there are complex problems associated with processing nonlinear boundaries in higher dimensions. The continuous input space assumption is not really a limitation of the proposed testing method, but allows the parameter ϵ to be chosen arbitrarily small. An error analysis for discrete spaces is available.
and the testing strategy has been proved viable as long as the size of the domain is not comparable to the discrete resolution of the space.

Next let us consider two further assumptions:

(5) predicates are simple; and
(6) adjacent domains compute different functions.

If assumptions (5) and (6) are imposed, the testing strategy is considerably simplified, as no more than one domain need be examined at one time in order to select test points. Moreover, the number of test points required to test each domain grows linearly with both the dimensionality of the input space and the number of predicates along the path being tested.

The only completely effective testing strategy is an exhaustive test which is totally impractical. The domain testing strategy offers a substantial reduction in the high cost of computer program testing, and yet can reliably detect a major class of errors which have been characterized. In addition, other types of errors can be detected, such as computation errors and missing path errors, but this detection cannot be guaranteed.

The domain strategy is currently being implemented, and will be utilized as an experimental facility for subsequent research. A most important contribution would be to indicate both programming language constructs and programming techniques which are easier to test, and thus produce more reliable software.
PREFACE AND ACKNOWLEDGMENTS

The Computer and Information Science Research Center of The Ohio State University is an interdisciplinary research organization consisting of staff, graduate students, and faculty of many University departments and laboratories. This report describes research undertaken in cooperation with the Department of Computer and Information Science. This research was supported in part by AFOSR 77-3416.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Abstract</td>
<td>11</td>
</tr>
<tr>
<td>Preface and Acknowledgments</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 1.</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Chapter 2.</td>
<td>5</td>
</tr>
<tr>
<td>Background and Preliminaries</td>
<td></td>
</tr>
<tr>
<td>2.1 Programming Language Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Program and Path Predicates</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Importance of Linear Predicates</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Input Space Structure</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 3.</td>
<td>18</td>
</tr>
<tr>
<td>Error Classification and Theoretical Limitations</td>
<td></td>
</tr>
<tr>
<td>3.1 Definitions of Types of Error</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Fundamental Limitations</td>
<td>20</td>
</tr>
<tr>
<td>Chapter 4.</td>
<td>23</td>
</tr>
<tr>
<td>The Domain Testing Strategy</td>
<td></td>
</tr>
<tr>
<td>4.1 The Two-Dimensional Linear Case</td>
<td>25</td>
</tr>
<tr>
<td>4.2 N-Dimensional Linear Inequalities</td>
<td>32</td>
</tr>
<tr>
<td>4.3 Equality and Nonequality Predicates</td>
<td>34</td>
</tr>
<tr>
<td>4.4 An Example of Error Detection Using the Domain Strategy</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 5.</td>
<td>46</td>
</tr>
<tr>
<td>Extensions of the Domain Testing Strategy</td>
<td></td>
</tr>
<tr>
<td>5.1 The General Nonlinear Case</td>
<td>46</td>
</tr>
<tr>
<td>5.2 Adjacent Domains Which Compute the Same Function</td>
<td>49</td>
</tr>
<tr>
<td>5.3 Domain Testing for Compound Predicates</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 6.</td>
<td>57</td>
</tr>
<tr>
<td>Error Analysis of Domain Borders and Discrete Spaces</td>
<td></td>
</tr>
<tr>
<td>6.1 An Error Measure for Test Point Selection</td>
<td>59</td>
</tr>
<tr>
<td>6.2 Interacting Border Segments</td>
<td>60</td>
</tr>
<tr>
<td>6.3 Discrete Space Analysis</td>
<td>62</td>
</tr>
<tr>
<td>6.4 Extensions of Error Analysis to Higher Dimensions</td>
<td>63</td>
</tr>
<tr>
<td>Chapter 7.</td>
<td>66</td>
</tr>
<tr>
<td>Conclusions and Future Work</td>
<td></td>
</tr>
<tr>
<td>List of References</td>
<td>69</td>
</tr>
</tbody>
</table>

v
INTRODUCTION

Program testing is an inherently practical activity, since every computer program must be tested before any confidence can be gained that the program performs its intended function. Some of the best designed software has required that nearly as much effort be spent planning and implementing the testing process as was invested in the actual coding. What the practitioner needs are better guidelines and systematic approaches in the design of the testing process to replace the ad hoc approach which is now so prevalent in the testing of computer software.

It would be ideal if there existed a "theory of testing" which could be used to rigorously select program test points. The problem has unfortunately proven so intractable that no comprehensive testing theory exists. Research by Goodenough and Gerhart [7] and Howden [8,9] has resulted in an accepted body of theory concerning testing, and has provided a rigorous basis for further research in this area.

The objective of this paper is to present a methodology for the automatic selection of test data. Under appropriate assumptions, this methodology will generate test data which will detect a particular class of errors in a program, viz., "domain errors" as defined by Howden [9]. The proposed methodology is also described in greater detail in Cohen and White [3] and in Cohen [4].

The goal of the testing process is limited to the successful detection of
a program error if any exists. Any attempt to identify the error, its cause, or an appropriate correction is properly categorized as debugging, and is beyond the scope of our goal in the testing process. Thus testing is essentially error detection, while debugging is the more difficult process of error correction. Of course, in practice these two activities usually overlap and are frequently combined into a single testing/debugging phase in the software development cycle.

An important assumption in our work is that the user (or an "oracle") is available who can decide unequivocally if the output is correct for the specific input processed. The oracle decides only if the output values are correct, and not whether they are computed correctly. If they are incorrect, the oracle does not provide any information about the error and does not give the correct output values.

The organization of the report is as follows. In Chapter 2, some preliminary concepts are defined and discussed. Some assumptions must be made concerning the language in which the given computer program is written, and the ramifications of certain language constructs are explored. The important concepts of program path and path predicates, together with domains, are defined and characterized. The case of linear predicates is given particular emphasis, since, in that situation, the domains assume the simple form of convex polyhedra in the input space.

Logical errors in a computer program can be viewed as belonging to one of two classes of errors, viz., "domain errors" and "computation errors". Informally, a domain error occurs when a specific input follows the wrong path due to an error in the control flow of the program. A path contains a computation error when a specific input follows the correct path, but an error in some assignment statement causes the wrong function to be computed for one or more of the output variables.
The third chapter rigorously defines these error classes, and explores the ways in which they might arise. The proposed methodology, called the domain strategy, is designed specifically to detect domain errors. In this chapter, we will discuss two fundamental limitations inherent to any finite test strategy. Once such limitation might be termed coincidental correctness. This occurs when the computation for a specific test point is incorrect, but the output value happens to coincide with the correct value. This test point would then be of no assistance in the detection of the domain error which caused the change in control flow. Another inherent testing limitation has been identified by Howden [9], and might be called a missing path error, in which a required predicate does not appear in the given program to be tested. This could result in a situation where no testing strategy can systematically determine that such a predicate should be present.

The domain strategy is examined in Chapters 4 and 5. This strategy is developed by utilizing the structure of the input space corresponding to the program. More specifically, the control flow partitions the input space into a set of mutually exclusive domains. Each domain corresponds to a particular path in the program in the sense that the set of input data points in that domain will cause the corresponding path to be executed. The strategy proposed is path-oriented; in testing a particular path, we are actually testing the computations performed by the program over a specific input space domain.

Given a particular path, the form of the boundary of the corresponding domain is completely determined by the predicates in the control statements encountered in the path. Thus, an error in such a predicate will be reflected as a shift in the boundary of the corresponding domain. The
testing strategy to be described tests a path for domain errors, i.e., detects domain boundary shifts by observing the output values for a finite number of test data having a prescribed geometrical relationship to the entire domain and its boundary. These output values are computed by executing the sequence of assignment statements constituting the path. The method requires no information other than the successfully compiled program for selecting effective test data. Thus the problem has been converted from its usual form as an informal study of programs and programming to a more formal investigation of the geometry of input space domains.

The strategy is initially described for the case of linear predicates and a two-dimensional input space. For the linear case, it is shown that, under appropriate assumptions, the number of test points to reliably test a domain grows only linearly with the number of predicates along the path and with the dimensionality. The techniques are then extended to N dimensions, and various other extensions are considered, including nonlinear predicates.

A domain boundary error analysis is presented in Chapter 6, which is helpful in choosing the best locations for test points. The application of the domain strategy in discrete spaces is analyzed to study the effect of roundoff error in selecting test points.

In the concluding Chapter 7 a number of open questions generated by this investigation are presented, and the prospects for the practical application of the domain testing strategy are evaluated.
BACKGROUNDS AND PRELIMINARIES

2.1 Programming Language Assumptions

In order to investigate domain errors, we need to consider the language in which programs will be written. The control structures should be simple and concise, and should resemble those available in most procedure-oriented languages. For simplicity we assume a single real-valued data type, and this is converted to integer values for use as DO-loop indices. Because this is a path-oriented approach, no extra control flow problems are introduced by block structure. Thus no provision is made for block structure, as it would only add extra bookkeeping to keep track of local variables and block invocation or exit.

A number of programming language features are assumed not to occur in the programs we are to analyze for domain errors. The first feature is that of arrays; despite the fact that arrays commonly occur in programs, a predicate which refers to an element of an input array can cause major complications (Ramamoorthy [11]). A second class of language features which will be excluded in our analysis is that of subroutines and functions. The problems of side effects and of parameter passing pose difficulties for domain testing. The third class of features which are not currently analyzed by domain testing include nonnumerical data types such as character data and pointers. These are admittedly very important features, and further research is needed to investigate whether these features pose any fundamental limitations to the domain testing strategy.

Since input/output processing is so closely linked to a machine or compiler environment, we will assume that all I/O errors have previously been eliminated. Thus only the most elementary I/O capabilities are provided; input is provided by a simple READ statement, and output is accomplished with a simple WRITE statement.
The types of control flow constructs investigated in this research include sequence, alternation, and iteration control. Since the analysis is path-oriented, GO-TO statements could be included without adversely affecting any results, except that program paths could become quite complex.

All computation is accomplished by means of arithmetic assignment statements which also provide the basic sequential flow of control. In each statement a single variable is assigned a value. The right hand side of an assignment statement is an arithmetic expression using variables, constants, and a set of basic arithmetic operators (+, -, *, /).

The general predicate form used for control flow is a Boolean combination of arithmetic relational expressions. The logical operators OR and AND are used to form these Boolean combinations. Each arithmetic relational expression contains a relational operator from the set (<, >, =, ≤, ≥, ≠). These operators form a complete set, and thus the logical operator NOT is unnecessary. If a predicate consists of two or more relational expressions with Boolean operators, then it is a compound predicate. A simple predicate consists of just a single relational expression.

The alternation type of control flow is achieved by using the IF-THEN-ELSE-ENDIF construct. The conditional associated with the IF statement is a general predicate. Any well-formed program segment, including the null program segment, can be used in the THEN and ELSE portions of the IF construct. The ENDIF statement is just a delimiter for the IF construct, which clarifies the nesting structure and eliminates any potentially ambiguous ELSE clause.

A general iteration construct is included which consists of a DO statement, loop body, and ENDDO delimiter. The DO statement can be in one of three forms:

1) DO I = INIT, FINAL, INCR;
2) DO WHILE (general predicate);
3) DO I = INIT, FINAL, INCR WHILE (general predicate).
The loop body can be any well-formed program segment, and the ENDDO is just a delimiter to clarify the scope of the iteration.

The variables used in a program are divided into three classes. If a variable appears in a READ or WRITE statement, it is classified as an input or output variable respectively; all other variables are called program variables. In order to produce a clear delineation between the three types of variables, we assume that a given variable belongs to only one of the above three classes.

2.2 Program Paths and Path Predicates

A program can be represented as a directed graph \(G = (V,A) \), where \(V \) is a set of nodes and \(A \) is the set of arcs or directed edges between nodes. In the language discussed in Section 2.1, we have defined a set of basic program elements which consists of a READ, WRITE, assignment, IF, and DO statement, together with the ENDF and ENDDO delimiters. The directed graph representation of a program will contain a node for each occurrence of a basic program element, and an arc for each possible flow of control between these elements. While THEN and ELSE statements do not explicitly appear in the digraph, the actions associated with them will be represented as nodes in the digraph.

A walk in a digraph is defined as an alternating sequence of nodes and arcs \((v_1, A_{12}, v_2, A_{23}, \ldots, A_{k-1,k}, v_k)\) such that each arc \(A_{i,i+1} \) is directed from node \(v_i \) to node \(v_{i+1} \). A control path is then defined to be a walk in the directed graph beginning with the node for the initial statement and terminating with the node for the final statement. It should be noted that two walks which differ only in the number of times a particular loop in the program is executed will be defined as two distinct control paths. Thus the number of control paths in a program can be infinite.

Every branch point of the program is associated with a general predicate. This predicate evaluates to true or false, and its value determines which outcome of the branch will be followed. A predicate is generated each time control reaches an IF or DO statement in the given language. The path condition is the
compound condition which must be satisfied by the input data point in order for the control path to be executed. It is the conjunction of the individual predicate conditions which are generated at each branch point along the control path. Not all the control paths that exist syntactically within the program are executable. If input data exist which satisfy the path condition, the control path is also an execution path and can be used in testing the program. If the path condition is not satisfied by any input value, the path is said to be infeasible, and is of no use in testing the program.

A simple predicate is said to be linear in variables V_1, V_2, \ldots, V_n if it is of the form

$$A_1 V_1 + A_2 V_2 + \ldots + A_n V_n \ ROP \ K,$$

where K and the A_i are constants, and ROP represents one of the relational operators ($<,>,=,\leq,\geq,\neq$). A compound predicate is linear when each of its component simple predicates is linear.

In general, predicates can be expressed in terms of both program variables and input variables. However, in generating input data to satisfy the path condition we must work with constraints in terms of only input variables.

If we replace each program variable appearing in the predicate by its symbolic value in terms of input variables, we get an equivalent constraint which we call the predicate interpretation. A particular interpretation is equivalent to the original predicate in that input variable values satisfying the interpretation will lead to the computation of program variables which also satisfy the original predicate. A single predicate can have many different interpretations depending upon which path is selected, for each path will in general consist of a different sequence of assignment statements. The following program segment provides example predicates and interpretations.
READ A,B;

IF A > B
 THEN C = B + 1;
 ELSE C = B - 1;
ENDIF;
D = 2*A + B;
IF C ≤ 0
 THEN E = 0;
 ELSE
 DO I = 1,B;
 E = E + 2*I;
 ENDDO;
ENDIF;
IF D = 2
 THEN F = E + A;
 ELSE F = E - A;
ENDIF;
WRITE F;

In the first predicate, A > B, both A and B are input variables, so there is only one interpretation. The second predicate, C ≤ 0, will have two interpretations depending on which branch was taken in the first IF construct. For paths on which the THEN $C = B + 1$ clause is executed the interpretation is $B + 1 ≤ 0$ or equivalently $B ≤ -1$. When the ELSE $C = B - 1$ branch is taken, the interpretation is $B - 1 ≤ 0$, or equivalently $B ≤ 1$. Within the second IF-THEN-ELSE clause, a nested DO-loop appears. The DO-loop is executed:

no times if $B < 1$

once if $1 ≤ B < 2$

twice if $2 ≤ B < 3$

etc.

Thus the selection of a path will require a specification of the number of times that the DO-loop is executed, and a corresponding predicate is applied which selects those input points which will follow that particular path. Even though the third predicate, D = 2, appears on four different paths, it only has one interpretation, $2*A + B = 2$, since D is assigned the value $2*A + B$ in the same statement in each of the four paths.
2.3 Importance of Linear Predicates

The domain testing strategy becomes particularly attractive from a practical point of view if the predicates are assumed to be linear in input variables. It might seem to be an undue limitation to require that predicate interpretations be linear for the proposed strategy. In fact, however, as the following discussion shows, this represents no real limitation for many important applications.

A number of authors have provided data to show that simple programming language constructs are used more often than complex constructs. Knuth [10] studied a random sample of FORTRAN programs and found that 86% of all assignment statements were of the forms

\[V_1 = V_2, \]
\[V_1 = V_2 + V_3, \]
\[\text{or } V_1 = V_2 - V_3. \]

Also 70% of all DO loops in the programs contained less than four statements.

Elshoff [5,6] studied 120 production PL/I programs and showed similar results, including the fact that 97% of all arithmetic operators are + or -, and 98% of all expressions contain fewer than two operators.

An experiment of particular relevance to the present context is reported in Cohen [4] using typical data processing programs, since program functions and programming practice tend to be reasonably uniform in this area. A random sample of 50 COBOL programs was taken directly from production data processing applications for this study. In this static analysis each predicate is classified according to whether it is linear or nonlinear, and the number of input variables used in the predicate has also been recorded. In addition, the number of input-independent predicates were tabulated, since these predicates do not produce any input constraints. The number of equality predicates is also reported since these predicates are very beneficial in reducing the number of test points required for a domain. These data are summarized in Table I.
<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>AVG.</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lines</td>
<td>12,628</td>
<td>253</td>
<td>31-1,287</td>
</tr>
<tr>
<td>Procedure Division Lines</td>
<td>8,139</td>
<td>163</td>
<td>13-822</td>
</tr>
<tr>
<td>Total Predicates</td>
<td>1,225</td>
<td>25</td>
<td>0-115</td>
</tr>
<tr>
<td>Linear Predicates</td>
<td>1,070</td>
<td>21</td>
<td>0-104</td>
</tr>
<tr>
<td>Nonlinear Predicates</td>
<td>1</td>
<td>0.02</td>
<td>0-1</td>
</tr>
<tr>
<td>Input-Independent Predicates</td>
<td>154</td>
<td>3</td>
<td>0-28</td>
</tr>
<tr>
<td>Predicates with 1 Variable</td>
<td>945</td>
<td>19</td>
<td>0-97</td>
</tr>
<tr>
<td>Predicates with 2 Variables</td>
<td>125</td>
<td>2.5</td>
<td>0-20</td>
</tr>
<tr>
<td>Equality Predicates</td>
<td>779</td>
<td>15.5</td>
<td>0-76</td>
</tr>
</tbody>
</table>

TABLE I Predicate Statistics for 50 COBOL Programs
The most important result is that only one predicate out of the 1225 tabulated in the study can possibly be a nonlinear predicate. The predicates are also very simple since most of them refer to only one input variable, and no predicate in this sample uses more than two input variables.

In conclusion, while this study by no means represents an exhaustive survey, we believe the sample is large enough to indicate that nonlinear predicate interpretations are rarely encountered in data processing applications. It is clear that any testing strategy restricted to linear predicates is still viable in many areas of programming practice.

2.4 Input Space Structure

A program which has N input variables and produces M output variables computes a function which maps points in the N-dimensional input space to points in the M-dimensional output space. The input space is partitioned into a set of domains. Each domain corresponds to a particular executable path in the program and consists of the input data points which cause the path to be executed. More formally, an input space domain is defined as a set of input data points satisfying a path condition, consisting of a conjunction of predicates along the path. In this discussion, these predicates are assumed to be simple; compound predicates will be discussed later in Section 5.3.

We assume that the input space is bounded in each direction by the minimum and maximum values for the corresponding variable. These min-max constraints do not appear in the program but are automatically appended to each path condition. Since a single data type is used for all variables in our language, each variable will have the same min-max constraints.

The boundary of each domain is determined by the predicates in the path condition and consists of border segments, where each segment is the section of the boundary determined by a single simple predicate in the path condition. Each border segment can be open or closed depending on the relational operator
in the predicate. A **closed border segment** is actually part of the domain and is formed by predicates with \leq, \geq, or $=$ operators. An **open border segment** forms part of the domain boundary but does not constitute part of the domain, and is formed by $<$, $>$, and \neq predicates. We shall find it convenient to use the term **border operator** to refer to the relational operator for the corresponding predicate.

Since border segments in the input space are determined by the particular predicate interpretations on the path, the form of the segment may be different from that of the original predicate. For example, with input variables A and B, the linear predicate $A < C + 2$ can lead to a nonlinear border segment, $A < B^2B + 2$, when $C = B^2B$. Similarly, a nonlinear predicate, $C > A^2A + B$, will produce a linear border segment, $A > B$, when $C = A^2A + A$. Since a predicate can appear on many paths and each path can execute a different sequence of assignment statements for the variables used in the predicate, a single predicate can have many different interpretations and can form many discontinuous border segments for various domains.

The total number of predicates on the path is only an upper bound on the number of border segments in the domain boundary since certain predicates in the path condition may not actually produce border segments. An **input-independent predicate interpretation** is one which reduces to a relation between constants, and since it is either true or false regardless of the input values, it does not further constrain the domain. A **redundant predicate interpretation** is one which is superceded by the other predicate interpretations, i.e., the domain can be defined by a strict subset of the predicate interpretations for that path.

The general form of a simple linear predicate interpretation is

$$A_1 X_1 + A_2 X_2 + \ldots + A_n X_n \text{ ROP } K$$
where ROP is the relational operator, \(X_1 \) are input variables, and \(A_1, K \) are constants. However, the border segment which any of these predicates defines is a section of the surface defined by the equality
\[
A_1 X_1 + A_2 X_2 + \ldots + A_n X_n = K,
\]
since this is the limiting condition for the points satisfying the predicate.

In an \(N \)-dimensional space this linear equality defines a hyperplane which is the \(N \)-dimensional generalization of a plane.

Consider a path condition composed of a conjunction of simple predicates. These predicates can be of three basic types: equalities (=), inequalities (<, >, \(\leq \), \(\geq \)), and nonequalities (#). The use of each of the three types results in a markedly different effect on the domain boundary. Each equality constrains the domain to lie in a particular hyperplane, thus reducing the dimensionality of the domain by one. The set of inequality constraints then defines a region within the lower dimensional space defined by the equality predicates.

The nonequality linear constraints define hyperplanes which are not part of the domain, giving rise to open border segments as mentioned earlier. Observe that the constraint \(A \neq B \) is equivalent to the compound predicate \((A < B) \text{ OR } (A > B)\). In this form it is clear that the addition of a nonequality predicate to a set of inequalities can split the domain defined by those inequalities into two regions.

The following example should clarify the concepts discussed above,

```
READ I, J;
C = I + 2*J - 1;

(P1) IF C > 6
    THEN D = C - I;
    ELSE D = C + I - J + 2;
ENDIF;

(P2) IF D = C + 2
    THEN E = I;
    ELSE E = 3;
ENDIF;

(P3) IF E < D - 2*J
    THEN F = I;
    ELSE F = J;
ENDIF;

WRITE F;
```
Figure 1 shows the corresponding input space partitioning structure for this program. The input space is in terms of inputs I and J, and is arbitrarily constrained by the following min-max conditions:

\[-3 \leq I \leq 4, \quad -2 \leq J \leq 6.\]

Each border in Figure 1 is labelled with the corresponding predicate, and each domain is labelled with the corresponding path. The path notation is based upon which branch (T or E) is taken in each of the three IF constructs, e.g., TEE.

The first predicate \(P_1, C > 6, \) will be interpreted as \(I + 2J > 7 \) since \(C = I + 2J - 1. \) This single interpretation \(P_1 \) is seen in Figure 1 as a single continuous border segment across the entire input space. The second predicate \(P_2 \) demonstrates the effects of both equality and nonequality predicates. Domains for paths through the THEN branch are constrained by the equality, and this reduction in dimensionality is seen in the fact that these domains consist of the points on the solid line segments ETT and TTT. Paths through the ELSE branch are constrained by a nonequality predicate, and the corresponding domains consist of the two regions on either side of the solid line segments (e.g., EEE). This predicate has two interpretations depending upon the value assigned to \(D \) and produces two discontinuous border segments ETT and TTT.

The third predicate \(P_3 \) might have four different interpretations, but only one border segment appears in the diagram. The other three interpretations do not produce borders since they are either redundant, input-independent, or correspond to infeasible paths. With three IF constructs we have eight control paths, but the diagram contains only five domains since three of the paths are infeasible. Also many of these domains have fewer than three border segments because of redundant and input-independent interpretations. From this example we can conclude that the input space partitioning structure of a program with many predicates and a larger dimensional input space can be extremely complicated.
FIGURE 1 Input Space Partitioning Structure
The foregoing definitions and the example allow us to characterize more precisely domains which correspond to simple linear predicate interpretations. For a formal statement of the characterization, we need the following definitions. A set is convex, if for any two points in the set, the line segment joining these points is also in the set. A convex polyhedron is the set produced by the intersection of the set of points satisfying a finite number of linear equalities and inequalities.

Proposition 1

For an execution path with a set of simple linear equality or inequality predicate interpretations, the input space domain is a single convex polyhedron. If one or more simple linear nonequality predicate interpretations are added to this set, then the input space domain consists of the union of a set of disjoint convex polyhedra.
ERROR CLASSIFICATION AND THEORETICAL LIMITATIONS

3.1 Definitions of Types of Error

The basic ideas behind the classification of errors that we use are due to Howden [9], but our approach to defining them is somewhat more operational than that given in his paper.

From the previous sections, it is clear that a program can be viewed as

1) establishing an exhaustive partition of the input space into mutually exclusive domains each of which corresponds to an executable path, and
2) specifying, for each domain, a set of assignment statements which constitute the domain computation.

Thus we have a canonical representation of a program, which is a (possibly infinite) set of pairs \((D_1; f_1), (D_2; f_2), \ldots (D_i; f_i), \ldots\), where \(D_i\) is the \(i\)-th domain, and \(f_i\) is the corresponding domain computation function.

Given an incorrect program \(P\), let us consider the changes in its canonical representation as a result of modifications performed on \(P\). It is assumed that these modifications are made using only permissible language constructs and results in a legal program.

Definition: A domain boundary modification occurs if the modification results in a change in the \(D_i\) component of some \((D_i; f_i)\) pair in the canonical representation.

Definition: A domain computation modification occurs if the modification results in a change in the \(f_i\) component of some \((D_i; f_i)\) pair in the canonical representation.
Definition: A **missing path modification** occurs if the modification results in the creation of a new \((D_1; f_1)\) pair such that \(D_1\) is a subset of \(D_j\) occurring in some pair \((D_j; f_j)\) in the canonical representation of \(P\), and \(f_j\) differs from \(f_1\).

Notice that a particular modification (say a change of some assignment statement) can be a modification of more than one type. In particular, a missing path modification is also a domain boundary modification.

The errors that occur in a program can be classified on the basis of the modifications needed to obtain a correct program and consequent changes in the canonical representation. In general, there will be many correct programs, and multiple ways to get a particular correct program. Hence, the error classification is not unique, but relative to the particular correct program that would result from the series of modifications.

Definition: An incorrect program \(P\) can be viewed as having a **domain error** (computational error) (missing path error) if a correct program \(P^*\) can be created by a sequence of modifications at least one of which is a domain boundary modification (domain computation modification)(missing path modification).

Several remarks are in order. The operational consequence of the phrase "can be viewed as" in the above definition is that the error classification is relative not only to a particular correct program, but also to a particular sequence of modifications. For instance, consider an error in a predicate interpretation such that an incorrect relational operator is employed, e.g., use of \(>\) instead of \(<\). This could be viewed as a domain error, leading to a modification of the predicate, or as a computation error, leading to a modification of the functions computed on the two branches. The fact that it might be more profitable to change the relational operator rather than the function computations is a consequence of the language constructs, and is not directly
captured in the definitions of the types of error. In this paper we would regard an error due to an incorrect relational operator as a domain error; it is a simpler modification to change the relational operator in the predicate than to interchange the set of assignment statements.

More specific characterizations of these errors can be made in the context of the specific programming language which we have introduced. In particular, the following informal description directly relates the domain and missing path errors to the predicate constructs allowed in the language.

A path contains a domain error if an error in some predicate interpretation causes a border segment to be "shifted" from its correct position or to have an incorrect border operator. A domain error can be caused by an incorrectly specified predicate or by an incorrect assignment statement which affects a variable used in the predicate. An incorrect predicate or assignment statement may affect many predicate interpretations and consequently cause more than one border to be in error.

A path contains a missing path error when a predicate is missing which would subdivide the domain and create a new execution path for one of the subdomains. This type of error occurs when some special condition requiring different processing is omitted.

3.2 Fundamental Limitations

Finite testing strategies are fundamentally limited by their inability to detect phenomena occurring in regions which have zero volume or measure relative to the input space or domain. The first of these limitations we shall define as coincidental correctness. In testing each domain for the correctness of its boundaries, if the output for a test case is correct, it
could be either that the test point was in the correct domain, or that it was in a wrong domain but the computation in that domain coincidentally yielded a correct value for the test point. Similarly, a domain computation could correspond to an incorrect function, but its output may coincide with the correct value for a particular test point. To be absolutely certain that the values are not coincidentally correct, it would be necessary to exhaustively test all the points of the domain.

The essence of the coincidental correctness problem is the same as that of the problem of deciding if two arbitrary computations are equivalent; the latter problem is known to be generally undecidable. However, in practice, the severity of the problem is related to the probability that for an arbitrary point this coincidence would occur. If the set of points for which the two functions have the same value is of measure zero, then this probability is zero, even though coincidental correctness is still possible. So, even with coincidental correctness as a possibility, a testing strategy can be almost reliable in the sense of Howden [9], if it would be reliable in the absence of coincidental correctness, and the set of points which are coincidentally correct has zero volume relative to the domain being tested.

Another basic limitation relates to missing path errors. When the subdomain associated with a missing path is a region of lower dimensionality than the original domain, a missing path error of reduced dimensionality occurs. This typically happens when the missing predicate is an equality. If all that is available is just the (incorrect) program to be tested, then the probability that a finite set of test points would detect the missing predicate is zero, since the volume of the subdomain is zero relative to that of the original domain.
The proposed approach is capable of detecting many kinds of missing path errors, but for some of them the number of required test points is inordinate. Hence, in the next section, where we describe the testing strategy, we will simply assume that no missing path errors are associated with the path being tested.
THE DOMAIN TESTING STRATEGY

The domain testing strategy is designed to detect domain errors and will be effective in detecting errors in any type of domain border under certain conditions. Test points are generated for each border segment which, if processed correctly, determine that both the relational operator and the position of the border are correct. An error in the border operator occurs when an incorrect relational operator is used in the corresponding predicate, and an error in the position of the border occurs when one or more incorrect coefficients are computed for the particular predicate interpretation. The strategy is based on a geometrical analysis of the domain boundary and takes advantage of the fact that points on or near the border are most sensitive to domain errors. A number of authors have made this observation, e.g., Boyer et al. [1] and Clarke [2].

As stated in Proposition 1, a domain defined by simple linear predicates is a convex polyhedron, and each point can be classified according to its position within the domain. An interior point is defined as one which is surrounded by an ε-neighborhood containing only points in the domain. Similarly, a boundary point is one for which every ε-neighborhood contains both points in the domain and points lying outside of the domain. Finally, an extreme point is a boundary point which does not lie between any two distinct points in the domain.

In the previous section, a comparison was made between the given program and a corresponding correct program; indeed domain errors were defined in terms of this correspondence. It should be emphasized that the domain strategy does not require that the correct program be given for the selection of test
points, since only information obtained from the given program is needed. However, it will be convenient to be able to refer to a "correct border", although it will not be necessary to have any knowledge about this border. Define the given border as that corresponding to the predicate interpretation for the given program being tested, and the correct border as that border which would be calculated in some correct program.

The domain testing strategy is first developed, explained, and validated in detail under a set of simplifying assumptions:

1) Coincidental correctness does not occur for any test case. If correct output results are produced, we can assume that the test point is in the correct domain rather than being coincidentally correct in another domain.

2) A missing path error is not associated with the path being tested. Missing path errors of reduced dimensionality pose a theoretical limitation to the reliability of any program testing methodology.

3) Each border is produced by a simple predicate.

4) The path corresponding to each adjacent domain computes a different function than the path being tested.

5) The given border is linear, and if it is incorrect, the correct border is also linear.

6) The input space is continuous rather than discrete.

7) Each border is produced by an inequality predicate.

8) The input space is two-dimensional, corresponding to a program which reads at most two input variables.

The first two assumptions were thoroughly explored in the previous section.
Assumptions 3) through 8) are for convenience in the initial exposition, and we shall investigate later the conditions under which each can be relaxed. Also, references [3] and [4] discuss both the domain strategy and these assumptions in greater detail.

4.1 The Two-Dimensional Linear Case

Given assumptions 1) - 8), a set of test points is first defined for detecting border shifts, and then we shall show that this set of points also detects all possible relational operator errors. Since the present analysis is limited to linear borders in a two-dimensional input space, each border is a line segment. Therefore, the correct border can be determined if we know two points on that border.

The test cases selected will be of two types, defined by their position with respect to the given border. An ON test point lies on the given border, while an OFF test point is a small distance \(\epsilon \) from, and lies on the open side of, the given border. Therefore, we observe that when testing a closed border, the ON test points are in the domain being tested, and each OFF test point is in some adjacent domain. Conversely, when testing an open border, each ON test point is in some adjacent domain, while the OFF test points are in the domain being tested.

Figure 2 shows the selection of three test points A, B, and C for a closed inequality border segment. In this and subsequent figures the small arrows are used to indicate the domain which contains the border segment. The three points must be selected in an ON-OFF-ON sequence. Specifically, if test point C is projected down on line AB, then the projected point must lie strictly between A and B on this line segment. Also point C is selected a distance \(\epsilon \) from the given border segment, and will be chosen so that it satisfies all the inequalities defining domain \(D \) except for the inequality being tested.
FIGURE 2 Test Points for a Two-Dimensional Linear Border
It must be shown that test points selected in this way will reliably detect domain errors due to boundary shifts. If any of the test points lead to an incorrect output, then clearly there is an error. On the other hand, if the outputs of all these points are correct, then either the given border is correct or we have gained considerable information as to the location of a correct border. Figure 2 shows that the correct border must lie on or above points A and B, and must lie below point C, for by assumptions (1) and (4), each of these test points must lie in its assumed domain. So if the given border is incorrect, the correct border can only belong to a class of line segments which intersect both closed line segments AC and BC.

Figure 2 indicates a specific correct border from this class which intersects line segments AC and BC at P and Q respectively. Define the domain error magnitude for this correct border to be the maximum of the distances from P and from Q to the given border. Then it is clear that the chosen test points have detected domain errors due to border shifts except for a class of domain errors of magnitude less than \(\varepsilon \). In a continuous space \(\varepsilon \) can be chosen arbitrarily small, and as \(\varepsilon \) approaches zero, the line segments AC and BC become arbitrarily close to the given border, and in the limit, we can conclude that the given border is identical to the correct border. However, the continuity of the space also implies that regardless of how small \(\varepsilon \) is chosen, border shifts of magnitude less than \(\varepsilon \) may not be detected, and therefore we must correspondingly qualify our results.

Figure 3 shows the three general types of border shifts, and will allow us to see how the ON-OFF-ON sequence of test points works in each case. In Figure 3(a), the border shift has effectively reduced domain \(D_1 \). Test points A and B yield correct outputs, for they remain in the correct domain \(D_1 \) despite the shifted border. However, the border has shifted past
FIGURE 3 The Three Types of Border Shifts
test point C, causing it to be in domain D_2 instead of domain D_1. Since the program will now follow the wrong path when executing input C, incorrect results will be produced. In Figure 3(b), the domain D_1 has been enlarged due to the border shift. Here test point C will be processed correctly since it is still in domain D_2, but both A and B will detect the shift since they should also be in domain D_2. Finally in Figure 3(c), only test point B will be incorrect since the border shift causes it to be in D_1 instead of D_2. Therefore, the ON-OFF-ON sequence is effective since at least one of the three points must be in the wrong domain as long as the border shift is of a magnitude greater than ϵ.

Recall in Figure 2 that we required the OFF point C to satisfy all the inequalities defining domain D except for the inequality being tested. The reason for this requirement is that some correct border segment may terminate on the extension of an adjacent border, rather than intersecting both line segments AC and BC as we have argued. Since we have assumed a continuous space, C could always be chosen closer to the given border in order to satisfy the adjacent border inequalities. An analysis of this situation will be presented in Section 6.2.

We must also demonstrate the reliability of the method for domain errors in which the predicate operator is incorrect. If the direction of the inequality is wrong, e.g., \leq is used instead of \geq, the domains on either side of the border are interchanged, and any point in either domain will detect the error. A more subtle error occurs when just the border itself is in the wrong domain, e.g., \leq is used instead of $<$. In this case the only points affected lie on the border, and since we always test ON points, this type of error will always be detected. If the correct predicate is an equality, the OFF point will detect the error.
The domain testing strategy requires at most $3P$ test points for a domain, where P, the number of border segments on this boundary, is bounded by the number of predicates encountered on the path. However, we can reduce this cost by sharing test points between adjacent borders of the domain. The requirement for sharing an ON point is that it is an extreme point for two adjacent borders which are both closed or both open. In the example in Figure 4, the points that can be shared are A_1, A_2, and A_3. The number of ON points needed to test the entire domain boundary can be reduced by as much as one half, i.e., the number of test points, TP, required to test the complete domain boundary lies in the following range:

$$2P \leq TP \leq 3P.$$

Even more significant savings are possible by sharing the test points for a common border between two adjacent domains. If both domains are tested independently, the common border between them is tested twice, using a total of six test points. If this border has shifted, both domains must be affected, and the error will be detected by testing either domain. Therefore, the second set of test points can safely be omitted. However, the cost savings in such sharing should be balanced against the additional processing required.

We now formally summarize the results of this section in the following proposition.

Proposition 2

Given assumptions (1) through (8), with the OFF test point chosen a distance c from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than c. Moreover, the cost is no more than $3P$ test points per domain, where P is the number of predicates along the corresponding path.
FIGURE 4 Domain Test Points for Closed and Open Borders
4.2 N-Dimensional Linear Inequalities

The domain testing strategy developed for the two-dimensional case can be extended to the general N-dimensional case in a straightforward manner. The central property used in the previous analysis was the fact that a line is uniquely determined by two points. We can easily generalize this property since an N-dimensional hyperplane is determined by N linearly independent points. So, whereas in the two-dimensional case we had to identify only two points on the correct border, in general we have to identify N points on the correct border, and in addition, these points must be guaranteed to be linearly independent.

The validation of domain testing for the general linear case is based on the same geometric arguments used in the two-dimensional case. The key to the methodology is that the correct border must intersect every OFF-ON line segment, assuming that the test points are all correct. Since we must identify a total of N points on the correct border, we need N OFF-ON line segments, and we can achieve this by testing N linearly independent ON test points on the given border and a single OFF test point whose projection on the given border is a convex combination of these N points. In addition, as in the two-dimensional case, the OFF point must also satisfy the inequality constraints corresponding to all adjacent borders.

Even though we do not know these specific points at which the correct border intersects the ON-OFF segments, we do know that these points must be linearly independent since the ON points are linearly independent. The OFF point is a distance \(c \) from the given border, and in the limit as \(c \) approaches zero, each OFF-ON line segment becomes arbitrarily close to the given border. However, as in the two-dimensional case, the \(c \)-limitation means that only border shifts of magnitude greater than \(c \) will be detected.
The domain testing strategy requires at most \((N+1)P\) test points per domain, where \(N\) is the dimensionality of the input space in which the domain is defined and \(P\) is the number of border segments in the boundary of the specific domain. However, we again can reduce this testing cost by using extreme points as ON test points. Each extreme point is formed by the intersection of at least \(N\) border segments, and therefore one point can be used to test up to \(N\) borders. In addition, extreme points are also linearly independent. Each border must be tested by \(N\) ON points, and any points beyond this are redundant, and so not all extreme points on each border are required. As a result of this kind of sharing, the number of test points can be as few as \(2^P\). As in the two-dimensional case, there can be further savings if test points are shared between adjacent domains. Finally, since some of the \(P\) border segments may be produced by the min-max constraints which define the bounds of the input space, the number of test points can be reduced still further, if we can assume that these constraints are predetermined and need not be tested.

This generalization to \(N\) dimensions is significant since very few nontrivial programs have only two input variables. We summarize the results so far in the following proposition:

Proposition 3

Given assumptions (1) - (7), with the OFF test point chosen a distance \(\epsilon\) from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than \(\epsilon\) regardless of the dimensionality of the input space. Moreover, the cost is not more than \((N+1)P\) test points per domain.
4.3 Equality and Nonequality Predicates

Equality predicates constrain the domain to lie in a lower dimensional space. If we have an N-dimensional input space and the domain is constrained by L independent equalities, the remaining inequality and nonequality predicates then define the domain within the (N-L)-dimensional subspace defined by the set of equality predicates.

In Figure 5 we see the equality border and the proposed set of test points. In a general N-dimensional domain, let us first consider a total of N ON points on the border and two OFF points, one on either side of the border. As before, the ON points must be independent, and the projection of each OFF point on the border must be a convex combination of the ON points.

Given an incorrect equality predicate, the error could be either in the relational operator or in the position of the border or both. The proposed set of test points can be shown to detect an operator error or a position error by arguments analogous to those previously given. This set of points is also adequate for almost all combinations of operator and position errors, except for the following pathological possibility. Let us assume that the border has shifted and the correct predicate is a nonequality. If both OFF points happen to lie on the correct border while none of the ON points belong to this border, the error would go undetected. This singular situation is diagrammed as the dashed border in Figure 6, where A₁ and A₂ are the ON points, and C₁ and C₂ are the OFF points. This problem can be solved by testing one additional point selected so that it lies both on the given border and the correct border for this case, i.e., at the intersection point of the given border with the line segment connecting the two OFF points. This additional point is denoted by B in the figure.

Each equality predicate can thus be completely tested using a total of (N+3) test points. By sharing test points between all the equality predicates,
FIGURE 5 Test Points for an Equality Border

FIGURE 6 A Pathological Case in Domain Testing for an Equality Predicate
this number can be considerably reduced, but the reduction depends upon values of \(N \) and \(L \). In addition, since testing the equality predicates reduces the effective dimensionality to \((N-L)\) for each of the inequality and nonequality borders, and the equality ON test points can be shared, even further reductions are possible.

For the case of a nonequality border, the testing strategy is identical to that of the equality border just discussed. The arguments for the validity of the strategy are analogous to those in previous cases. Again in this case, the pathological possibility discussed in connection with the equality predicate can occur, and can be handled in the same way. The major difference is that while test points can be extensively shared between equality and inequality borders, in general such sharing is not possible between nonequality and inequality borders. The following proposition summarizes the situation for testing linear borders in \(N \)-dimensions.

Proposition 4

Given assumptions (1) through (6), with each OFF point chosen a distance \(c \) from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than \(c \) using no more than \(P(N+3) \) test points per domain.

4.4 **An Example of Error Detection Using the Domain Strategy**

The domain testing strategy has been described and validated using somewhat complicated algebraic and geometric arguments. In this section we hope to complement those discussions by demonstrating how a set of domain test points for a short sample program actually detects specific examples of different types of programming errors. In discussing each error we will focus on a specific domain affected by the error, and a careful analysis of its effect on the domain will allow us to identify those domain test points which detect the error.
The short example program reads two values, I and J, and produces a single output value M. Therefore, the input space is two-dimensional, and the following min-max constraints have been chosen so that the input space diagram would not be too large or complicated.

\[-8 \leq I \leq 8 \quad -5 \leq J \leq 5.\]

In addition, since this is a two-dimensional space, we will also test extreme points for the border segments produced by the min-max constraints in order to be able to detect as many missing path errors as possible.

Even though the input space is assumed to be continuous, the coordinates of each test point are specified to an accuracy of 0.2 in order to simplify the diagrams and discussions. Of course, in an actual implementation each OFF point would be chosen much closer to the border.

The sample program is listed below, and it consists of three simple IF constructs, the first two of which are inequalities and the last of which is an equality. The input space structure is diagrammed in Figure 7, where the solid diagonal border across the entire space is produced by the first predicate, the dashed horizontal border and short vertical border at I=0 are produced by the second predicate, and the vertical equality border at I=5 corresponds to the third predicate. In addition, domain test points have been indicated for the two domains which we will discuss, viz., TTE and ETT.

```
Statement Number
READ I,J;
1  IF I < J + 1
2    THEN K = I + J - 1;
3    ELSE K = 2*I + 1;
4 ENDIF;
5  IF K > I + 1
6    THEN L = I + 1;
7    ELSE L = J - 1;
8 ENDIF;
9  IF I = 5
10    THEN M = 2*L + K;
11    ELSE M = L + 2*K - 1;
12 ENDIF;
13 WRITE M;
```
Table II illustrates two types of errors we would like to consider. The first is an error in the inequality predicate in statement #4 of the above program, \((K > I+1)\), where it is assumed that the correct predicate should be \((K > I+2)\). This corresponds to an inequality border shift, and the modified domain structure is shown in Figure 8. Three points have been selected to test this border, and it can be seen in Table II that the two ON points detect this error, where \(M\) and \(M'\) represent the output variables for the given program and for the assumed correct program respectively. Note that as a result of this error, the vertical border at \(I=0\) in Figure 7 has also shifted to \(I=1\) in Figure 8, and if tested, would also reveal this error.

Table II also shows the effect of an error in an equality predicate in statement #7 of the given program. It is assumed that the correct predicate should be \((I=5-J)\) rather than the \((I=5)\) predicate which occurs in the given program. Figure 9 shows the modified input space structure, and it can be seen that equality borders TTT and ETT have shifted. Table II shows the five points which test the ETT border, and note that two ON points both detect this shift.

Table III indicates that the domain strategy can also detect a computation error and a missing path error, even though we have previously noted that reliability cannot be proven for these cases. The computation error arises from statement #6 in the given program, where it is assumed that the correct assignment statement for this ELSE clause is \((L=I-2)\) instead of \((L=J-1)\) which actually appears in the given program. Since \(L\) is not used in any subsequent predicate, this corresponds to a computation error rather than a domain error. Thus the input space structure in Figure 7 is applicable for both the given and the correct programs. Table III shows the six test points which have been chosen to test domain TEE which is affected by this computation error. Four of the points should indicate the error, but note the test results at \((-4, -5)\) are coincidentally correct; the remaining three points detect the error.
<table>
<thead>
<tr>
<th>Domain in Error</th>
<th>Given Statement in Error</th>
<th>Given Predicate Interpretation</th>
<th>Assumed Correct Statement</th>
<th>Correct Predicate Interpretation</th>
<th>Test Points for this Border Point</th>
<th>M</th>
<th>M'</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE</td>
<td>#4 IF(K > I + 1)</td>
<td>J > 2</td>
<td>IF(K > I + 2)</td>
<td>J > 3</td>
<td>ON (-8, 2)</td>
<td>-22</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(Inequality Predicate)</td>
<td></td>
<td></td>
<td></td>
<td>OFF (-3, 1.8)</td>
<td>-4.6</td>
<td>-4.6</td>
</tr>
<tr>
<td></td>
<td>(See Figure 8)</td>
<td></td>
<td></td>
<td></td>
<td>ON (3, 2)</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>ETT</td>
<td>#7 IF(I = 5)</td>
<td>I = 5</td>
<td>IF(I = 5 - J)</td>
<td>I = 5 - J</td>
<td>two ON points ((5, -5))</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(Equality Predicate)</td>
<td></td>
<td></td>
<td></td>
<td>two OFF points ((4.8, 0))</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(See Figure 9)</td>
<td></td>
<td></td>
<td></td>
<td>two OFF points ((5.2, 0))</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>extra ON point ((5, 0))</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Table II Detection of Domain Errors for Inequality and Equality Predicates
<table>
<thead>
<tr>
<th>Domain in Error</th>
<th>Given Statement in Error</th>
<th>Assumed Correct Statement</th>
<th>Test Points for this Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE</td>
<td>#6 ELSE(L=J-1);</td>
<td>ELSE (L=I-2);</td>
<td></td>
</tr>
<tr>
<td>(Computation Error)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(See Figure 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEE</td>
<td>#2 THEN(K=I+J-1);</td>
<td>THEN IF(2J<-5I -40)</td>
<td></td>
</tr>
<tr>
<td>(Missing Path Error)</td>
<td></td>
<td>THEN K=3;</td>
<td></td>
</tr>
<tr>
<td>(See Figure 10)</td>
<td></td>
<td>ELSE K=I+J-1;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENDIF;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-8,-5)</td>
<td>-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4,-5)</td>
<td>-27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-3,1.8)</td>
<td>-4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1,-2.2)</td>
<td>-6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-8,2)</td>
<td>-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,2)</td>
<td>12</td>
</tr>
</tbody>
</table>

* Note this point is coincidentally correct.

Table III Detection of a Computation Error and Missing Path Error
Suppose in program statement #2 the THEN clause is replaced by the following code.

```
THEN IF 2*J < -5*I - 40
THEN K = 3;
ELSE K = I + J - 1;
ENDIF;
```

This corresponds to a missing path error and is indicated as such in Table III. Figure 10 shows how the domain TEE is modified by this missing path error, but note that only test point (-8,-5) detects this error. If the < inequality in the missing predicate had been an equality, this would have produced a missing path error of reduced dimensionality, corresponding to a domain consisting of just the line segment in Figure 10, and would have gone undetected.
FIGURE 10 Correct Input Space for a Missing Path Error
EXTENSIONS OF THE DOMAIN TESTING STRATEGY

Many assumptions were required in presenting the previous results, but to some extent these assumptions were made to allow a simple exposition of the domain testing strategy. This section will discuss assumptions (3), (4), and (5) which deal with compound predicates, adjacent domains which compute the same function, and nonlinear borders, respectively. The treatment of these cases will certainly require additional test points, and in some instances will demand extra processing which may render this testing approach impractical. However, one of the main objectives of this section is to illustrate that none of the assumptions (3), (4), or (5) pose a theoretical limitation to the domain testing strategy which cannot be dealt with in some fashion.

5.1 The General Nonlinear Case

A finite domain testing strategy cannot be effective for the universal class of nonlinear borders, but we must determine whether this is caused by some fundamental difference between linear and nonlinear functions. If the problem is that we are considering too general a class of borders, then we should be able to extend the methodology to cover well-defined subclasses of nonlinear functions. However, if the problem is caused by some basic characteristic of nonlinear borders, we will not be able to extend domain testing to any class of nonlinear functions.

For linear borders, we have assumed that if the given border is linear, and if there is a domain error, then the correct border is also linear. In order to extend our testing results to particular subclasses of nonlinear functions, such
as quadratic or cubic polynomials, we must assume that if the given nonlinear border is in error, then the correct border is in the same nonlinear class. This nonlinear class will be specified by K parameters; for example, consider the general form of a two-dimensional quadratic in terms of variables X and Y, where A, B, C, ..., are coefficients, and $K = 6$:

$$AX^2 + BY^2 + CXY + DX + EY + F = 0.$$

Then $(K-1)$ points can be chosen in order to solve for these K coefficients. For the example above, the five points $[X_i, Y_i]$, $i = 1, \ldots, 5$, should satisfy the following system of equations:

$$
\begin{bmatrix}
X_1^2 & Y_1^2 & X_1Y_1 & X_1 & Y_1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
X_5^2 & Y_5^2 & X_5Y_5 & X_5 & Y_5 & 1 \\
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D \\
E \\
F \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
\vdots \\
0 \\
\end{bmatrix}
$$

Define an independent set of $(K-1)$ points $[X_i, Y_i]$ as a set which can be used to solve for the coefficients, and thus determine a specific member of the nonlinear class.

We can now formulate the general nonlinear domain testing strategy in terms of these observations. $(K-1)$ ON-OFF pairs of points are chosen such that the $(K-1)$ ON points are independent and each OFF point is chosen a distance ϵ from the corresponding ON point. This requires $2*(K-1)$ test points per nonlinear border. The $(K-1)$ ON-OFF line segments formed by this set of pairs have been chosen so that the only correct borders which yield correct test results must intersect each of these ON-OFF line segments. For any particular correct border, there are $(K-1)$ independent intersection points, which determines the border completely. Note that the intersection points are independent if ϵ is chosen sufficiently small, since
the ON points are independent for the given border. A further requirement, as in
the linear case, is that all OFF points satisfy all inequality borders other than
the one being tested.

While a single OFF point was sufficient in the linear case, the independence
criterion requires \((K-1)\) OFF points for each nonlinear border. In the former case
linearity allowed the OFF point to be shared by all the ON points, since the linear
independence of the points identified as lying on the true border is guaranteed
by the linear independence of the ON points themselves. If we were to test a non-
linear border with \((K-1)\) ON points and a single OFF point, we would be able to
conclude that the correct and given borders intersect at \((K-1)\) points. However,
we cannot conclude that these \((K-1)\) points are independent. We know of no
selection criterion for the ON points which would guarantee the independence
of the intersection points using only one OFF point. So an effective strategy
requires the full set of \(2K\) test points, and unfortunately \(K\) grows very rapidly
as the dimensionality and degree of nonlinearity of the border increases.

A two-dimensional nonlinear border is a very special case. and even though
the general strategy is effective, a slightly different testing strategy can be
formulated to reduce the number of required test points. The basic difference is
that the intersection between two-dimensional nonlinear borders from the same
class is a finite set of points, the maximum number of which can be determined
from the form of the function. For example a pair of two-dimensional quadratic
curves can intersect in at most four points. This means that any set of more than
four points cannot possibly lie on two distinct quadratics, and any five points
uniquely determines a specific quadratic. Therefore, we do not have to worry
about independence in the two-dimensional case, since any set of \((K-1)\) distinct
points will produce a system of independent linear equations. For example,
any three distinct points can lie on at most one circle, since two circles
cannot have more than two points in common.
We test a two-dimensional nonlinear border with K points, e.g., six for a quadratic selected in an ON-OFF-ON-OFF... sequence along the border as diagrammed for the closed border in Figure 11. Since the correct border must pass on or above the given border at each ON point, and must pass below each OFF point, the two borders must intersect an odd number of times, let us assume once, in each ON-OFF and OFF-ON interval along the border. The K test points define (K-1) intervals on the border, each of which must contain at least one intersection point. We have shown that these (K-1) points must be independent, and since they cannot lie on two distinct borders, the given border must be correct within ε. As a technical detail, it is also possible that the correct border may be tangent to the given border at an ON point, but if this occurs, an argument involving the derivatives of the two borders at that point can be invoked to justify the choice of the test points for this two-dimensional case.

Although the domain strategy has been extended to nonlinear boundaries, points must be generated in a domain defined by nonlinear boundaries, requiring the solution of nonlinear systems of equations. Since this probably requires excessive processing for arbitrary nonlinear borders, it does not represent a very practical approach.

5.2 Adjacent Domains Which Compute the Same Function

If two adjacent domains compute the same function, any test point selected for their common border is ineffective, since the same output values are computed for the test point regardless of the domain in which it lies. We will demonstrate how domain testing can be modified to deal with this problem.

In Figure 12(a), assuming domain D₁ were being tested, we must compare the functions calculated in domains D₁ and D₂ for test point A, D₁ and D₄ for B, and D₁ and D₃ for C. One of the major problems to be solved is the identification of these adjacent domains. We assume that when testing domain
FIGURE 11 Testing a Two-Dimensional Nonlinear Border
the partitioning structure of the adjacent domains and the program paths
associated with these domains is not known. It would be very complicated
to have to generate the domains which are adjacent to the border being tested.

Figure 12(b) illustrates an approach to this problem. The border being
tested is shifted parallel by a small distance \(\varepsilon \), so that test points A and B
now belong to adjacent domains, \(D_2 \) and \(D_4 \), respectively. The modified program
is then retested using test points A and B, which will as a by-product identify
the paths associated with these two adjacent domains. We can then compare
the output for each test point before and after the shift. If it is different,
then we can definitely conclude that the adjacent domain computes a different
function, and this test point can safely be used. If the output is the same
for that test point, then we can conclude that either assumption (1)
or (4) is violated. However, there is no way to decide this, and the only
practical approach is to use further test points. If we know that coincidental
correctness cannot occur, then we could conclude on the basis of a single point
that the adjacent domain computes the same function.

If two adjacent domains such as \(D_1 \) and \(D_2 \) in Figure 12(a) are found to
compute the same function, then in order to carry out the domain testing strategy
on the given border, new test points may have to be selected. For example,
point A can no longer be used, and this requires ascertaining the border structure
between \(D_1 \) and \(D_2 \). Thus a considerably amount of processing is required which
is probably not practical.

In summary, a technique of testing each point twice will assure us that
assumption (4) is valid, and this redundancy might be viewed as a reasonable price
to pay to eliminate this restriction. However, if an instance is found where the
assumption is not valid, a basic theoretical problem exists.
FIGURE 12 The Identification of Adjacent Domains
5.3 Domain Testing for Compound Predicates

Assumption (3) stated that a path contained only simple predicates, and this implied that the set of input points could be characterized quite simply as a single domain. We must consider what complications can occur for compound predicates, and how the domain strategy can be generalized to test paths containing these predicates.

The set of inputs corresponding to a path is defined by the path condition, consisting of the conjunction of the predicates encountered along the path. If a compound predicate of the form \(C(i) \text{ AND } C(i+1) \) is encountered on the path, the path condition is still a single conjunction of simple predicates, and the only difference is that two of the simple predicates are produced as a single branch point on the path. No modifications of the domain testing strategy are required in this case.

However, compound predicates using the Boolean operator OR are more complicated. Consider a path containing the following predicates:

\[C_1, C_2, \ldots, [C_i \text{ OR } C_{i+1}], \ldots C_t \]

The path condition in this case is the conjunction of these predicates, and in standard disjunctive normal form:

\[[C_1 \text{ AND } C_2 \text{ AND } \ldots \text{ AND } C_{i} \text{ AND } \ldots \text{ AND } C_t] \]

\text{OR} \quad [C_1 \text{ AND } C_2 \text{ AND } \ldots \text{ AND } C_{i+1} \text{ AND } \ldots \text{ AND } C_t]

The set of input data points following this path consists of the union of two domains, each defined by the conjunction of simple predicates, and in general any number of these domains are possible.

Assuming linear predicates, each of these domains is a convex polyhedron, but the domains may overlap in arbitrary ways. The major problem caused by these compound predicates is that the domains correspond to the same path, and the assumption that adjacent domains do not compute the same function is violated. We identify three cases of importance: domains which do not overlap, domains which partially overlap, and domains which totally overlap.
The first case is indicated in Figure 13(a), where domains \(D_1 \) and \(D_2 \) are defined by the compound predicate \([C_1 \text{ OR } C_2]\), and domain \(D_3 \) corresponds to some other path. In this case our methodology can be applied to each domain separately, since the two domains for this path are not adjacent.

In Figure 13(b), the domains partially overlap, where \(D_1 \cup D_2 \) is the domain defined by \(C_1 \), and \(D_1 \cup D_3 \) is the domain defined by \(C_2 \). In the example we cannot test the domains separately, since they are adjacent and the same function is computed in each. For example, any test point for \(C_1 \), selected along that part of the border between \(D_1 \) and \(D_3 \), is ineffective since the same results are computed for it in both of these regions. So, in this case we must insure that the adjacent domain assumption is satisfied by selecting test points for \(C_1 \) and \(C_2 \) which lie in that part of the border adjacent to a domain for some other path.

In order to deal effectively with this case, some extra analysis will have to be made, first in order to identify this second case, and also to identify the actual domain, which is no longer convex. The borders of this domain are shown in bold face in Figure 13(b). This is probably no longer a practical approach, especially for higher dimensions.

The third case is shown in Figure 13(c), where the domain \(D_1 \) for predicate \(C_1 \) is a subset of the other domain, \(D_1 \cup D_2 \), which is obtained for predicate \(C_2 \). This presents a serious problem since there are no test points for border \(B \) of domain \(D_1 \) which can satisfy the adjacent domain assumption, and therefore \(B \) cannot be tested effectively. The technique developed in the previous section should help to identify this case. However, even if this case could be identified, testing for border \(B \) is no longer a practical procedure.

So, in summary, a compound predicate of the form \([C_1 \text{ AND } C_2]\) is the same as two simple predicates, and domain testing can be applied to a domain defined with this type of compound predicate. In addition, if the compound predicate
FIGURE 13 Domains Defined With Compound OR Predicates

(a) Domains D_1, D_3, D_2.

(b) Domain D_1 and D_3.

(c) Domain D_1 and D_2.
is of the form \([C_1 \text{ OR } C_2]\) and the domains are distinct, domain testing can be applied to each domain separately. However, if the domains overlap, this introduces the problem of adjacent domains which compute the same function. Although we may not find effective test points for domains which overlap in arbitrary ways, we can recognize this situation and identify it as a border which cannot be tested effectively.
CHAPTER 6

ERROR ANALYSIS OF DOMAIN BORDERS AND DISCRETE SPACES

An error analysis of domain borders is needed to resolve the following questions:

i) How small should \(\epsilon \) be chosen in selecting an OFF test point for linear borders, and where are optimal locations for the test points?

ii) We required the OFF test point for a given border to satisfy all inequality borders except that being tested; how do potential errors in other borders of the domain affect this requirement?

iii) What are the difficulties in applying domain testing in a discrete space or in a space in which numerical values can only be represented with finite resolution, and can these difficulties be circumvented by taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in reference [13]. It is interesting to observe that the answers to questions i), ii), and iii) all involve the same worst-case situation: when two adjacent linear borders of the same domain are nearly parallel. Figure 14 indicates the two cases which can arise from adjacent linear borders which are nearly parallel. Figure 14(a) shows a given border segment EF in which the two adjacent border segments EF and FQ both make large external angles \(\theta_1 \) and \(\theta_2 \), near 180°, with the given border EF. This leads to very small supplementary internal angles \(\theta_1 \) and \(\theta_2 \), and especially for \(\theta_2 \), this results in a very sharp "corner" of the domain. In Figure 14(b), the adjacent borders PE and FQ are again nearly parallel to the given border EF, but a different case is created. In this case, external angles \(\theta_1 \) and \(\theta_2 \) are very small, and the internal angles \(\theta_1 \) and \(\theta_2 \) are both near 180°.
FIGURE 14 Adjacent Border Segments Which are Nearly Parallel
We will briefly argue in this report that one of these two situations is the key to the analysis of questions i), ii), and iii), and we refer the reader to reference [12] for further details and proofs. Section 6.1 introduces an error measure which will indicate the best location for each of the three test points. Section 6.2 will deal with the problem of how interacting border changes may affect the location of the test points. Section 6.3 briefly introduces the problem of domain testing in discrete spaces, and gives a sufficient condition to guarantee effective test points can always be chosen. Since all the above arguments are given only for two dimensions, Section 6.4 will show that the same basic approach is effective for higher dimensions.

1.1 An Error Measure for Test Point Selection

In Figure 14(a), consider the selection of three test points A, B, and C for testing border segment EF. It is shown in reference [12] that the best positions for two of them, say A and B, are points E and F, so the remaining problem is the location of test point C. We have observed that if the given border EF is in error, then test points A, B and C will fail to detect errors if the correct border is one which intersects line segments AC and BC. Thus given C which is at a distance c from the given border and halfway between A and B, an appropriate error criterion could be the "number" of erroneous points which would be undetected, i.e., the area between the two borders, possibly limited by either or both of the extensions of the adjacent borders EP and FQ. It can be shown that this area measure can be bounded by the expression

$$\frac{c(\text{EF})^2}{\text{EF} + 2c \cot \theta},$$

where θ is the larger of θ_1 and θ_2.
In order for this error measure to be finite, it is necessary that both \(\theta_1\) and \(\theta_2\) are not too close to 180° for given \(\epsilon\). If \(|\cot \theta_1| \ll \frac{EF}{\epsilon}\), then the error measure is on the order of \(\epsilon \cdot EF\). This gives some guidance as to the choice of \(\epsilon\) for point C.

6.2 Interacting Border Segments

In presenting the domain strategy, we required the OFF test point to satisfy all inequality borders except the border being tested. Usually this does not impose much of a constraint on the choice of the OFF point, but Figure 14(b) illustrates a situation in which a severe constraint exists. We can show that

\[
h = \frac{EF}{(\cot \theta_1 + \cot \theta_2)},
\]

and since \(\epsilon < h\) for choosing the OFF test point, this again shows the effect if either \(\theta_1\) or \(\theta_2\) or both are very small.

The same situation applies for interacting adjacent borders, and is illustrated in Figure 15. As long as the OFF points \(C_1\) and \(C_2\) for each of the adjacent borders are chosen sufficiently close to those borders, and the external angles \(\theta_1\) and \(\theta_2\) are not too small, then the adjacent borders have a minimal influence on the selection of the OFF point C for border EF. For example, point C must lie inside triangle EFU determined by given borders EP and FQ. The correct borders which pose the worst case in limiting the selection of point C are shown as dashed lines in Figure 15; these limiting correct borders are determined by how close \(C_1\) and \(C_2\) have been chosen to their respective test borders. As a result of these conditions, point C is constrained to lie within triangle EFV, a more restrictive condition than presented by triangle EFU. It should be clear that if either \(\theta_1\) or \(\theta_2\) is too small, or either \(C_1\) or \(C_2\) is chosen too far from its respective test border, the region from which C could be chosen would become restrictively small.
FIGURE 15 Effect of Interacting Adjacent Borders on Test Point C
6.3 Discrete Space Analysis

The previous several sections have indicated that if adjacent borders are nearly parallel, then test point C is required to lie very close to the border being tested. But in a discrete space this could cause a severe problem, for no discrete point may exist that close to the border. Similar problems exist for the ON test points A and B, for it may not be possible to choose them at extreme points of the border.

For the discrete space we shall consider a two dimensional lattice, with uniform spacing \(\Delta \) in both dimensions. This models the situation where the same data representation, integer or fixed-point, is used for two input variables.

For simplicity, let us again assume that points A and B can be chosen as points E and F. We shall present a sufficient condition for a given domain within this discrete lattice which guarantees that an OFF point C can be chosen as a lattice point for each border so that the area criterion of Section 6.1 is finite. The result is based upon the following two observations. First, any circle of diameter \(\sqrt{2} \Delta \) always contains at least one lattice point. Second, from Figure 14(a), note that if either external angles \(\theta_1 \) or \(\theta_2 \) are too near \(180^\circ \), then the "width" of the domain will tend to be very small in terms of the lattice resolution \(\Delta \).

More formally, define the diameter \(d \) of a convex polygonal domain to be the shortest distance from any extreme point to any domain edge not adjacent to that extreme point; this corresponds to our informal argument about domain "width". The sufficient condition can then be stated as:
Proposition 5

Given a domain with diameter d in a lattice with resolution Δ, if

$$d > \left(\frac{3}{\sqrt{2}} \right) \Delta = (2.12) \Delta,$$

then a lattice OFF point can be chosen for every border, and moreover all external angles θ_1 and θ_2 are constrained by

$$|\cot \theta_1 + \cot \theta_2| < \frac{\sqrt{2}}{3} \Delta.$$

It is clear that there are some domains in a discrete space which cannot be tested, but these are pathological cases where one of the domain dimensions is on the order of the lattice resolution. Moreover, the result indicates a simple computation in terms of the domain diameter to determine when such domains are presented for testing. For domains which can be tested in a discrete space, the important result from Proposition 5 is that a restriction has been obtained on angles θ_1 and θ_2 which precludes both angles which are close to 180° and angles which are too small.

6.4 Extensions of Error Analysis to Higher Dimensions

The previous arguments have all been made for two dimensions, so it is important that the essential ideas can be generalized to higher dimensions. We can observe that if two border segments are adjacent, they are intersecting hyperplanes. Again, problems may arise if these two hyperplanes H_1 and H_2 are nearly parallel, and this can be measured by taking the inner product of their unit normal vectors \hat{n}_1 and \hat{n}_2, yielding the cosine of the angle α between them:

$$\cos \alpha = \hat{n}_1 \cdot \hat{n}_2$$
Consider Figure 16 which indicates the testing strategy for three dimensions. H₁ is assumed to be the border to be tested by ON points A₁, A₂, A₃ and C is the OFF point. H₂ is an adjacent border nearly parallel to H₁, and H₁ intersects H₂ at line L. If it is suspected that C may not be chosen close enough to H₁, only those borders which make an angle α of 10° or less with H₁ need to be investigated further.

To determine a test point C, we need to select that correct border hyperplane which is the worst case relative to border H₂, and then determine whether or not these two hyperplanes intersect. This computation is quite straightforward, and the following algorithm together with Figure 16 should indicate how it can be accomplished:

(a) select the ON point A₁ furthest from line L (this is A₃ in Figure 16); the worst case correct border hyperplane H₃ is then determined by line L and line segment A₁C;

(b) drop a perpendicular line segment from A₁ to line L; this makes an angle β with line segment A₁C', where C' is the projection of point C down on the hyperplane H₁ being tested; recall that C' is known, for point C is obtained by first finding C';

(c) the angle φ between H₁ and H₃ can be found by

\[
\tan \phi = \frac{ε}{A₁C' \cos β} ;
\]

(d) if φ < α, then hyperplanes H₂ and H₃ do not intersect; otherwise, ε should be chosen smaller so that this condition is satisfied.

Again, in this analysis, the fact that adjacent borders H₁ and H₂ are nearly parallel proves to be the key point in selecting test point C. Yet, the above algorithm can be used to choose C so as to compensate for this condition.
LOOKING ALONG LINE L:

Hyperplane H_1

Hyperplane H_2

Hyperplane H_3

FIGURE 16 Error Analysis in Three Dimensions
CONCLUSIONS AND FUTURE WORK

The basic goal of this research is to replace the intuitive principles behind current testing procedures by a methodology based on a formal treatment of the program testing problem. By formulating the problem in basic geometric and algebraic terms, we have been able to develop an effective testing methodology whose capabilities can be precisely defined. In addition, since program testing cannot be completely effective, we have identified the limitations of the strategy. In several cases these limitations have proven to be theoretical problems inherent to the general program testing process.

The main contribution of this research is the development of the domain testing strategy. Under certain well-defined conditions the methodology is guaranteed to detect domain errors in linear borders greater than some small magnitude ϵ. Furthermore, the cost, as measured by the number of required test points, is reasonable and grows only linearly with both the dimensionality of the input space domain and the number of path predicates. Domain testing also detects transformation errors and missing path errors in many cases, but the detection of these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of nonlinear borders, and we have shown that the methodology generalizes to any class of functions which can be described by a finite number of parameters. Unfortunately, nonlinear predicates pose problems of extra processing which probably preclude testing except for restricted cases. For example, just finding intersection points of a set of linear and nonlinear borders can require an inordinate amount of processing.

Coincidental correctness is a theoretical limitation inherent to the program testing process, and we have argued that it prevents any reasonable finite testing
procedure from being completely reliable. In particular, the possibility of coincidental correctness means that an exhaustive test of all points in an input domain is theoretically required to preclude the existence of computation errors on a path. Within the class of all computable functions there exist functions which coincide at an arbitrarily large number of points, but if there is sufficient resolution in the output space, coincidental correctness should be a rare occurrence for functions commonly encountered in data processing problems.

The class of missing path errors, particularly those of reduced dimensionality, has proven to be another theoretical limitation to the reliability of any finite testing strategy. Although our methodology cannot be guaranteed to detect all instances of this type of error, it can be extended to detect some well-defined subclasses of missing path errors. Unfortunately, the extra cost of this modification may be unacceptably high. Our analysis of missing path errors has shown that the cause of the difficulty is that the program does not contain any indication of the possible existence of a missing path error. Therefore, without additional information, a reasonable testing strategy for this class of errors cannot be formulated.

The domain testing strategy requires a reasonable number of test points for a single path, but the total cost may be unacceptable for a large program containing an excessive number of paths. In particular, this may occur for large programs with complicated control structures containing many iteration loops. Additional research is needed to substantially reduce the number of potential paths. One area being investigated takes advantage of the fact that program modules are often independent in that the control flow of one does not depend upon variables defined in the other. In this way the combinatorial growth of the number of domains to be tested can be controlled, and the domain strategy can be made more practical. It remains to be shown to what extent this independence
property can be applied, and experimental evidence is needed of how frequently independent modules occur in widely available programs.

We have assumed that an "oracle" exists which can always determine whether a specific test case has been computed correctly or not. In reality, the programmer himself must make this determination, and the time spent examining and analyzing these test cases is a major factor in the high cost of software development. One possible avenue for future research would be to automate this process by using some form of input-output specification. If the user provides a formal description of the expected results, the correctness of each test case can be decided automatically by determining whether the output specification is satisfied. This would reduce the cost of testing tremendously, and these new testing techniques would gain acceptance more quickly since the tedious task of verifying test data would be eliminated. In addition, any extra information supplied by the user might be useful in specifying special processing requirements which would indicate the existence of a possible missing path error.

The domain test strategy is currently being implemented, and will be utilized as an experimental facility for subsequent research. Experiments should indicate what sort of programming errors are most difficult to detect, and should yield extensive dynamic testing data. A most important contribution would be to indicate both programming language constructs and programming techniques which are easier to test, and thus would produce more reliable software.
REFERENCES

APPENDIX B

L J White and E I Cohen

Department of Computer and Information Science
The Ohio State University
Columbus OH

ACKNOWLEDGEMENT

The authors would like to thank B Chandrasekaran for his assistance in preparing this paper and in particular, for his contribution concerning the definitions of domain and computation errors.

This research was supported in part by the Air Force Office of Scientific Research Grant 77-1414

© L J White and E I Cohen
L J WHITE received the BSEE degree in electrical engineering from the University of Cincinnati in 1962, and the PhD degree in electrical engineering from the University of Michigan in 1967. He is currently a Professor of Computer and Information Science and of Electrical Engineering at The Ohio State University. His current research interests deal with the analysis of algorithms and software analysis and testing. He has published in the areas of pattern recognition, automatic document classification, combinatorial computing and graph theory. He has served as a consultant for the Monsanto Research Laboratory and Rockwell International Corporation, and has had engineering work experience with the Dow Chemical Company, the Battelle Memorial Research Institute and the Lockheed Missle and Space Company. Dr White is a member of the IEEE Computer Society, ACM, SIAM, and Sigma Xi.

E COHEN was born in Boston, Massachusetts in 1950. He received the BS degree in Physics from Rensselaer Polytechnic Institute, Troy, NY, in 1972, and the MS and PhD degrees, both in Computer and Information Science, from The Ohio State University, Columbus, Ohio, in 1973 and 1978 respectively. He was a Research and Teaching Associate in The Department of Computer and Information Science of The Ohio State University from 1972 to 1978. He worked as a programmer for Neotronics, Inc. Columbus, Ohio, in 1974 and as a systems analyst for the State Data Centre, Columbus, Ohio, in 1977. He is currently with The Systems Products Division of IBM Corporation, Poughkeepsie, NY. His current interests include program testing, software reliability, and high performance system design. Dr Cohen is a member of ACM, IEEE, Sigma Xi, and Phi Kappa Phi.
INTRODUCTION

Program testing is an inherently practical activity, since every computer program must be tested before any confidence can be gained that the program performs its intended function. Some of the best designed software has required that nearly as much effort be spent planning and implementing the testing process as was invested in the actual coding. What the practitioner needs are better guidelines and systematic approaches in the design of the testing process to replace the ad hoc approach which is now so prevalent in the testing of computer software.

It would be ideal if there existed a 'theory of testing' which could be used to rigorously select program test points. The problem has unfortunately proven so intractable that no comprehensive testing theory exists. Research by Goodenough and Gerhart (007) and Howden (008, 009) has resulted in an accepted body of theory concerning testing, and has provided a rigorous basis for further research in this area.

The objective of this paper is to present a methodology for the automatic selection of test data. Under appropriate assumptions, this methodology will generate test data which will detect a particular class of errors in a program, viz. 'domain errors' as defined by Howden (009). The proposed methodology is also described in greater detail in Cohen and White (003) and in Cohen (004).

The goal of the testing process is limited to the successful detection of a program error if any exists. Any attempt to identify the error, its cause, or an appropriate correction is properly categorized as debugging, and is beyond the scope of our goal in the testing process. Thus testing is essentially error detection, while debugging is the more difficult process of error correction. Of course, in practice these two activities usually overlap and are frequently combined into a single testing/debugging phase in the software development cycle.

An important assumption in our work is that the user (or an 'oracle') is available, who can decide unequivocally if the output is correct for the specific input processed. The oracle decides only if the output values are correct, and not whether they are computed correctly. If they are incorrect, the oracle does not provide any information about the error and does not give the correct output values.

The organization of the paper is as follows. In the first section, some preliminary concepts are defined and discussed. Some assumptions must be made concerning the language in which the given computer program is written, and the ramifications of certain language constructs are explored. The important concepts of program path and path predicates, together with domains, are defined and characterized. The case of linear
predicates is given particular emphasis, since, in that situation, the domains assume the simple form of convex polyhedra in the input space.

Logical errors in a computer program can be viewed as belonging to one of two classes of errors:

1. 'Domain errors'
2. 'Computation errors'.

Informally, a domain error occurs when a specific input follows the wrong path due to an error in the control flow of the program. A path contains a computation error when a specific input follows the correct path, but an error in some assignment statement causes the wrong function to be computed for one or more of the output variables.

The proposed methodology, called the domain strategy, is designed specifically to detect domain errors. We will discuss two fundamental limitations inherent to any finite test strategy. One such limitation might be termed coincidental correctness. This occurs when the computation for a specific test point is incorrect, but the output value happens to coincide with the correct value. This test point would then be of no assistance in the detection of the domain error which caused the change in control flow.

Another inherent testing limitation has been identified by Howden (009), and might be called a missing path error, in which a required predicate does not appear in the given program to be tested. This could result in a situation where no testing strategy can systematically determine that such a predicate should be present.

The domain strategy is developed by utilizing the structure of the input space corresponding to the program. More specifically, the control flow partitions the input space into a set of mutually exclusive domains. Each domain corresponds to a particular path in the program, in the sense that the set of input data points in that domain will cause the corresponding path to be executed. The strategy proposed is path oriented; in testing a particular path, we are actually testing the computations performed by the program over a specific input space domain.

Given a particular path, the form of the boundary of the corresponding domain is completely determined by the predicates in the control statements encountered in the path. Thus, an error in such a predicate will be reflected as a shift in the boundary of the corresponding domain. The testing strategy to be described tests a path for domain errors, i.e., detects domain boundary shifts by observing the output values for a finite number of test data having a prescribed geometrical relationship to the entire domain and its boundary. These output values are computed by executing the sequence of assignment statements constituting the path. The method requires no information other than the successfully compiled program for selecting effective test data. Thus the problem has been converted from its usual form as an informal study of programs and programming to a more formal investigation of the geometry of input space domains.

The strategy is initially described for the case of linear predicates and a two-dimensional input space. For the linear case, it is shown that, under appropriate assumptions, the number of test points to reliably test a domain grows only linearly with the number of predicates along the path and with the dimensionality. The techniques are then extended to N dimensions, and various other extensions are considered, including non-linear predicates.

A domain boundary error analysis is presented, which is helpful in choosing the best locations for test points. The application of the domain strategy in discrete spaces
is analysed to study the effect of roundoff error in selecting test points.

In the concluding section a number of open questions generated by this investigation are presented, and the prospects for the practical application of the domain testing strategy are evaluated.

BACKGROUND AND PRELIMINARIES

Programming language assumptions

In order to investigate domain errors, we need to consider the language in which programs will be written. The control structures should be simple and concise, and should resemble those available in most procedure oriented languages. For simplicity we assume a single real-valued data type, and this is converted to integer values for use as DO-loop indices. Because this is a path oriented approach, no extra control flow problems are introduced by block structure. Thus no provision is made for block structure, as it would only add extra book-keeping to keep track of local variables and block invocation or exit.

A number of programming language features are assumed not to occur in the programs we are to analyse for domain errors. The first feature is that of arrays: despite the fact that arrays commonly occur in programs, a predicate which refers to an element of an input array can cause major complications (Ramamoorthy (011)). A second class of language features which will be excluded in our analysis is that of subroutines and functions. The problems of side effects and of parameter passing pose difficulties for domain testing. The third class of features which are not currently analysed by domain testing include non-numerical data types such as character data and pointers. These are admittedly very important features, and further research is needed to investigate whether these features pose any fundamental limitations to the domain testing strategy.

Since input/output (I/O) processing is so closely linked to a machine or compiler environment, we will assume that all I/O errors have previously been eliminated. Thus only the most elementary I/O capabilities are provided: input is provided by a simple READ statement, and output is accomplished with a simple WRITE statement.

The types of control flow constructs investigated in this research include sequence, alternation, and iteration control. Since the analysis is path oriented, GOTO statements could be included without adversely affecting any results, except that program paths could become quite complex.

All computation is accomplished by means of arithmetic assignment statements which also provide the basic sequential flow of control. In each statement a single variable is assigned a value. The right hand side of an assignment statement is an arithmetic expression using variables, constants, and a set of basic arithmetic operators (+, -, *, /).

The general predicate form used for control flow is a Boolean combination of arithmetic relational expressions. The logical operators OR and AND are used to form these Boolean combinations. Each arithmetic relational expression contains a relational operator from the set (, >, =, ≤, ≥). These operators form a complete set, and thus the
logical operator NOT is unnecessary. If a predicate consists of two or more relational expressions with Boolean operators, then it is a compound predicate. A simple predicate consists of just a single relational expression.

The alternation type of control flow is achieved by using the IF-THEN-ELSE-ENDIF construct. The conditional associated with the IF statement is a general predicate. Any well-formed program segment, including the null program segment, can be used in the THEN and ELSE portions of the IF construct. The ENDF statement is just a delimiter for the IF construct, which clarifies the nesting structure and eliminates any potentially ambiguous ELSE clause.

A general iteration construct is included which consists of a DO statement, loop body, and ENDDO delimiter. The DO statement can be in one of three forms:

- DO I = INIT, FINAL, INCR;
- DO WHILE (general predicate);
- DO I = INIT, FINAL, INCR WHILE (general predicate).

The loop body can be any well-formed program segment, and the ENDDO is just a delimiter to clarify the scope of the iteration.

The variables used in a program are divided into three classes. If a variable appears in a READ or WRITE statement, it is classified as an input or output variable respectively; all other variables are called program variables. In order to produce a clear delineation between the three types of variables, we assume that a given variable belongs to only one of the above three classes.

Program paths and path predicates

A program can be represented as a directed graph $G = (V,A)$, where V is a set of nodes and A is the set of arcs or directed edges between nodes. In the language just discussed, we have defined a set of basic program elements which consists of a READ, WRITE, assignment, IF, and DO statement, together with the ENDF and ENDDO delimiters. The directed graph representation of a program will contain a node for each occurrence of a basic program element, and an arc for each possible flow of control between these elements. While THEN and ELSE statements do not explicitly appear in the digraph, the actions associated with them will be represented as nodes in the digraph.

A walk in a digraph is defined as an alternating sequence of nodes and arcs $(V_1, A_1, V_1, A_2, \ldots, A_{n-1}, V_n)$ such that each arc A_{i+1} is directed from node V_i to V_{i+1}. A control path is then defined to be a walk in the directed graph beginning with the node for the initial statement and terminating with the node for the final statement. It should be noted that two walks which differ only in the number of times a particular loop in the program is executed will be defined as two distinct control paths. Thus the number of control paths in a program can be infinite.

Every branch point of the program is associated with a general predicate. This predicate evaluates to true or false, and its value determines which outcome of the branch will be followed. A predicate is generated each time control reaches an IF or DO statement in the given language. The path condition is the compound condition which must be satisfied by the input data point in order for the control path to be executed. It is the conjunction of the individual predicate conditions which are generated at each branch point along the control path. Not all the control paths that exist.
syntactically within the program are executable. If input data exist which satisfy the path condition, the control path is also an execution path and can be used in testing the program. If the path condition is not satisfied by any input value, the path is said to be infeasible, and is of no use in testing the program.

A simple predicate is said to be linear in variables \(V_1, V_2, \ldots, V_n \) if it is of the form:

\[A_1 V_1 + A_2 V_2 + \ldots + A_n V_n \overset{\text{ROP}}{\longrightarrow} K, \]

where \(K \) and the \(A_i \) are constants, and ROP represents one of the relational operators \((<,>,=,\leq,\geq) \). A compound predicate is linear when each of its component simple predicates is linear.

In general, predicates can be expressed in terms of both program variables and input variables. However, in generating input data to satisfy the path condition we must work with constraints only in terms of input variables. If we replace each program variable appearing in the predicate by its symbolic value in terms of input variables, we get an equivalent constraint which we call the predicate interpretation. A particular interpretation is equivalent to the original predicate in that input variable values satisfying the interpretation will lead to the computation of program variables which also satisfy the original predicate. A single predicate can have many different interpretations depending upon which path is selected, for each path will in general consist of a different sequence of assignment statements. The following program segment provides example predicates and interpretations.

```plaintext
READ A, B;

IF A > B
    THEN C = B + 1;
    ELSE C = B - 1;
ENDIF;
D = 2*A + B;
IF C <= 0
    THEN E = 0;
    ELSE
        DO I = 1, B;
        E = E + 2*I;
        ENDDO;
ENDIF;
IF D = 2
    THEN F = E + A;
    ELSE F = E - A;
ENDIF;
WRITE F;
```

In the first predicate, \(A > B \), both \(A \) and \(B \) are input variables, so there is only one interpretation. The second predicate, \(C \leq 0 \), will have two interpretations depending on which branch was taken in the first IF construct. For paths on which the THEN \(C = B + 1 \) clause is executed the interpretation is \(B + 1 \leq 0 \) or equivalently \(B \leq -1 \). When the ELSE \(C = B - 1 \) branch is taken, the interpretation is \(B - 1 \leq 0 \), or equivalently \(B \leq 1 \). Within the second IF-THEN-ELSE clause, a nested DO-loop appears. The DO-loop is executed:
Thus the selection of a path will require a specification of the number of times that the DO-loop is executed, and a corresponding predicate is applied which selects those input points which will follow that particular path. Even though the third predicate, \(D = 2 \), appears on four different paths, it only has one interpretation, \(2^*A + B = 2 \), since \(D \) is assigned the value \(2^*A + B \) in the same statement in each of the four paths.

Importance of linear predicates

The domain testing strategy becomes particularly attractive from a practical point of view if the predicates are assumed to be linear in input variables. It might seem to be an undue limitation to require that predicate interpretations be linear for the proposed strategy. In fact, however, as the following discussion shows, this represents no real limitation for many important applications.

A number of authors have provided data to show that simple programming language constructs are used more often than complex constructs. Knuth (010) studied a random sample of FORTRAN programs and found that 86% of all assignment statements were of the forms:

\[
\begin{align*}
V_1 &= V_2, \\
V_1 &= V_2 + V_3, \\
\text{or } V_1 &= V_2 - V_3.
\end{align*}
\]

Also 70% of all DO loops in the programs contained less than four statements. Elshoff (005,006) studied 120 production PL/1 programs and showed similar results, including the fact that 97% of all arithmetic operators are + or -, and 98% of all expressions contain fewer than two operators.

An experiment of particular relevance to the present context is reported in Cohen (004) using typical data processing programs, since program functions and programming practice tend to be reasonably uniform in this area. A random sample of 50 COBOL programs was taken directly from production data processing applications for this study. In this static analysis each predicate is classified according to whether it is linear or non-linear, and the number of input variables used in the predicate has also been recorded. In addition, the number of input-independent predicates were tabulated, since these predicates do not produce any input constraints. The number of equality predicates is also reported since these predicates are very beneficial in reducing the number of test points required for a domain. These data are summarised in Figure 1.

The most important result is that only one predicate out of the 1225 tabulated in the study can possibly be a non-linear predicate. The predicates are also very simple since most of them refer to only one input variable, and no predicate in this sample uses more than two input variables.

In conclusion, while this study by no means represents an exhaustive survey, we believe the sample is large enough to indicate that non-linear predicate interpretations are rarely encountered in data processing applications. It is clear that any testing
strategy restricted to linear predicates is still viable in many areas of programming practice.

Input space structure

A program which has \(N \) input variables and produces \(M \) output variables computes a function which maps points in the \(N \)-dimensional input space to points in the \(M \)-dimensional output space. The input space is partitioned into a set of domains. Each domain corresponds to a particular executable path in the program and consists of the input data points which cause the path to be executed. More formally, an input space domain is defined as a set of input data points satisfying a path condition, consisting of a conjunction of predicates along the path. In this discussion, these predicates are assumed to be simple; compound predicates will be discussed later.

We assume that the input space is bounded in each direction by the minimum and maximum values for the corresponding variable. These min-max constraints do not appear in the program but are automatically appended to each path condition. Since a single data type is used for all variables in our language, each variable will have the same min-max constraints.

The boundary of each domain is determined by the predicates in the path condition and consists of border segments, where each segment is the section of the boundary determined by a single simple predicate in the path condition. Each border segment can be open or closed depending on the relational operator in the predicate. A closed border segment is actually part of the domain and is formed by predicates with \(\leq, \geq \), or \(= \) operators. An open border segment forms part of the domain boundary but does not constitute part of the domain, and is formed by \(<, >\), and \(\neq \) predicates. We shall find it convenient to use the term border operator to refer to the relational operator for the corresponding predicate.

Since border segments in the input space are determined by the particular predicate interpretations on the path, the form of the segment may be different from that of the original predicate. For example, with input variables \(A \) and \(B \), the linear predicate \(A + C + 2 \) can lead to a non-linear border segment, \(A < B + B + 2 \), when \(C = B + B \). Similarly, a non-linear predicate, \(C > A^2 A + B \), will produce a linear border segment, \(A > B \), when

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lines</td>
<td>12,628</td>
<td>253</td>
<td>31-1287</td>
</tr>
<tr>
<td>Procedure division lines</td>
<td>8139</td>
<td>163</td>
<td>13-822</td>
</tr>
<tr>
<td>Total predicates</td>
<td>1225</td>
<td>25</td>
<td>0-115</td>
</tr>
<tr>
<td>Linear predicates</td>
<td>1070</td>
<td>21</td>
<td>0-104</td>
</tr>
<tr>
<td>Non-linear predicates</td>
<td>1</td>
<td>0.02</td>
<td>0-1</td>
</tr>
<tr>
<td>Input-independent predicates</td>
<td>154</td>
<td>3</td>
<td>0-28</td>
</tr>
<tr>
<td>Predicates with 1 variable</td>
<td>945</td>
<td>19</td>
<td>0-97</td>
</tr>
<tr>
<td>Predicates with 2 variables</td>
<td>125</td>
<td>2.5</td>
<td>0-20</td>
</tr>
<tr>
<td>Equality predicates</td>
<td>779</td>
<td>15.5</td>
<td>0-76</td>
</tr>
</tbody>
</table>

Figure 1: Predicate statistics for 30 COBOL programs
C = A*A + A. Since a predicate can appear on many paths and each path can execute a different sequence of assignment statements for the variables used in the predicate, a single predicate can have many different interpretations and can form many discontinuous border segments for various domains.

The total number of predicates on the path is only an upper bound on the number of border segments in the domain boundary since certain predicates in the path condition may not actually produce border segments. An input-independent predicate interpretation is one which reduces to a relation between constants, and since it is either true or false regardless of the input values, it does not further constrain the domain. A redundant predicate interpretation is one which is superseded by the other predicate interpretations, i.e., the domain can be defined by a strict subset of the predicate interpretations for that path.

The general form of a simple linear predicate interpretation is:

$$A_1 \cdot X_1 + A_2 \cdot X_2 + \ldots + A_n \cdot X_n \cdot \text{ROP} \cdot K,$$

where ROP is the relational operator, X_i are input variables, and A_i, K are constants. However, the border segment which any of these predicates defines is a section of the surface defined by the equality:

$$A_1 \cdot X_1 + A_2 \cdot X_2 + \ldots + A_n \cdot X_n = K,$$

since this is the limiting condition for the points satisfying the predicate. In an N-dimensional space this linear equality defines a hyperplane which is the N-dimensional generalization of a plane.

Consider a path condition composed of a conjunction of simple predicates. These predicates can be of three basic types: equalities (=), inequalities (<, >, ≤, ≥), and nonequalities (≠). The use of each of the three types results in a markedly different effect on the domain boundary. Each equality constrains the domain to lie in a particular hyperplane, thus reducing the dimensionality of the domain by one. The set of inequality constraints then defines a region within the lower dimensional space defined by the equality predicates.

The nonequality linear constraints define hyperplanes which are not part of the domain, giving rise to open border segments as mentioned earlier. Observe that the constraint $A ≠ B$ is equivalent to the compound predicate $(A < B) \text{ OR } (A > B)$. In this form it is clear that the addition of a nonequality predicate to a set of inequalities can split the domain defined by those inequalities into two regions.

The following example should clarify the concepts discussed above.

```plaintext
READ I,J;
C = I + 2*J - 1;

(P1) IF C > 6
    THEN D = C - I;
    ELSE D = C + I - J + 2;
ENDIF;
```
(P2) IF $D = C + 2$
 THEN $E = I$
 ELSE $E = J$
 ENDIF;

(P3) IF $E < D - 2*J$
 THEN $P = I$
 ELSE $P = J$
 ENDIF;

WRITE P;

Figure 2 shows the corresponding input space partitioning structure for this program.
The input space is in terms of inputs I and J, and is arbitrarily constrained by the following min-max conditions:

\[-3 \leq I \leq 4, \quad -2 \leq J \leq 6.\]

Each border in Figure 2 is labelled with the corresponding predicate, and each domain is labelled with the corresponding path. The path notation is based upon which branch (T or E) is taken in each of the three IF constructs, e.g., TEK.

The first predicate \(P_1, C > 6, \) will be interpreted as \(I + 2J > 7 \) since \(C = I + 2J - 1. \) This single interpretation \(P_1 \) is seen in Figure 2 as a single continuous border segment across the entire input space.

The second predicate \(P_2 \) demonstrates the effects of both equality and nonequality predicates. Domains for paths through the THEN branch are constrained by the equality, and this reduction in dimensionality is seen in the fact that these domains consist of the points on the solid line segments \(E'TT \) and \(TTT. \) Paths through the ELSE branch are constrained by a nonequality predicate, and the corresponding domains consist of the two regions on either side of the solid line segments (e.g., EEE). This predicate has two interpretations depending upon the value assigned to \(D \) and produces two discontinuous border segments \(E'TT \) and \(TTT. \)

The third predicate \(P_3 \) might have four different interpretations, but only one border segment appears in the diagram. The other three interpretations do not produce borders since they are either redundant, input-independent, or correspond to infeasible paths. With three IF constructs we have eight control paths, but the diagram contains only five domains since three of the paths are infeasible. Also many of these domains have fewer than three border segments because of redundant and input-independent interpretations. From this example we can conclude that the input space partitioning structure of a program with many predicates and a larger dimensional input space can be extremely complicated.

The foregoing definitions and the example allow us to characterize more precisely domains which correspond to simple linear predicate interpretations. For a formal statement of the characterization, we need the following definitions. A set is *convex*, if for any two points in the set, the line segment joining these points is also in the set. A *convex polyhedron* is the set produced by the intersection of the set of points satisfying a finite number of linear equalities and inequalities.

Proposition 1

For an execution path with a set of simple linear equality or inequality predicate interpretations, the input space domain is a single convex polyhedron. If one or more simple linear nonequality predicate interpretations are added to this set, then the input space domain consists of the union of a set of disjoint convex polyhedra.

ERROR CLASSIFICATION AND THEORETICAL LIMITATIONS

Definitions of types of error

The basic ideas behind the classification of errors that we use are due to Howden (009).
but our approach to defining them is somewhat more operational than that given in his paper.

From the previous sections, it is clear that a program can be viewed as:

1 Establishing an exhaustive partition of the input space into mutually exclusive domains each of which corresponds to an executable path

2 Specifying, for each domain, a set of assignment statements which constitute the domain computation.

Thus we have a canonical representation of a program, which is a (possibly infinite) set of pairs \((D_1,f_1), (D_2,f_2), ..., (D_k,f_k), ... \), where \(D_i \) is the i-th domain, and \(f_i \) is the corresponding domain computation function.

Given an incorrect program \(P \), let us consider the changes in its canonical representation as a result of modifications performed on \(P \). It is assumed that these modifications are made using only permissible language constructs and result in a legal program.

Definition: A domain boundary modification occurs if the modification results in a change in the \(D_i \) component of some \((D_i,f_i) \) pair in the canonical representation.

Definition: A domain computation modification occurs if the modification results in a change in the \(f_i \) component of some \((D_i,f_i) \) pair in the canonical representation.

Definition: A missing path modification occurs if the modification results in the creation of a new \((D_j,f_j) \) pair such that \(D_j \) is a subset of \(D_i \) occurring in some pair \((D_i,f_i) \) in the canonical representation of \(P \), and \(f_j \) differs from \(f_i \).

Notice that a particular modification (say a change of some assignment statement) can be a modification of more than one type. In particular, a missing path modification is also a domain boundary modification.

The errors that occur in a program can be classified on the basis of the modifications needed to obtain a correct program and consequent changes in the canonical representation. In general, there will be many correct programs, and multiple ways to get a particular correct program. Hence, the error classification is not unique, but relative to the particular correct program that would result from the series of modifications.

Definition: An incorrect program \(P \) can be viewed as having a domain error (computational error) (missing path error) if a correct program \(P^* \) can be created by a sequence of modifications, at least one of which is a domain boundary modification (domain computation modification) (missing path modification).

Several remarks are in order. The operational consequence of the phrase 'can be viewed as' in the above definition is that the error classification is relative not only to a particular correct program, but also to a particular sequence of modifications. For instance, consider an error in a predicate interpretation such that an incorrect relational operator is employed, e.g., use of \(> \) instead of \(< \). This could be viewed as a domain error, leading to a modification of the predicate, or as a computation error, leading to a modification of the functions computed on the two branches. The fact that it might be more profitable to change the relational operator rather than the function computations is a consequence of the language constructs, and is not directly captured in the definitions of the types of error. In this paper we would regard an error due
to an incorrect relational operator as a domain error; it is a simpler modification to change the relational operator in the predicate than to interchange the set of assignment statements.

More specific characterizations of these errors can be made in the context of the specific programming language which we have introduced. In particular, the following informal description directly relates the domain and missing path errors to the predicate constructs allowed in the language.

A path contains a domain error if an error in some predicate interpretation causes a border segment to be 'shifted' from its correct position or to have an incorrect border operator. A domain error can be caused by an incorrectly specified predicate or by an incorrect assignment statement which affects a variable used in the predicate. An incorrect predicate or assignment statement may affect many predicate interpretations and consequently cause more than one border to be in error.

A path contains a missing path error when a predicate is missing which would subdivide the domain and create a new execution path for one of the subdomains. This type of error occurs when some special condition requiring different processing is omitted.

Fundamental limitations

Finite testing strategies are fundamentally limited by their inability to detect phenomena occurring in regions which have zero volume or measure relative to the input space or domain. The first of these limitations we shall define as coincidental correctness. In testing each domain for the correctness of its boundaries, if the output for a test case is correct, it could be either that the test point was in the correct domain, or that it was in a wrong domain but the computation in that domain coincidentally yielded a correct value for the test point. Similarly, a domain computation could correspond to an incorrect function, but its output may coincide with the correct value for a particular test point. To be absolutely certain that the values are not coincidentally correct, it would be necessary to exhaustively test all the points of the domain.

The essence of the coincidental correctness problem is the same as that of the problem of deciding if two arbitrary computations are equivalent; the latter problem is known to be generally undecidable. However, in practice, the severity of the problem is related to the probability that for an arbitrary point this coincidence would occur. If the set of points for which the two functions have the same value is of measure zero, then this probability is zero, even though coincidental correctness is still possible. So, even with coincidental correctness as a possibility, a testing strategy can be almost reliable in the sense of Howden (09), if it would be reliable in the absence of coincidental correctness, and the set of points which are coincidentally correct has zero volume relative to the domain being tested.

Another basic limitation relates to missing path errors. When the subdomain associated with a missing path is a region of lower dimensionality than the original domain, a missing path error of reduced dimensionality occurs. This typically happens when the missing predicate is an equality. If all that is available is just the (incorrect) program to be tested, then the probability that a finite set of test points would detect the missing predicate is zero, since the volume of the subdomain is zero relative to that of the original domain.

The proposed approach is capable of detecting many kinds of missing path errors, but
The domain testing strategy is designed to detect domain errors and will be effective in detecting errors in any type of domain border under certain conditions. Test points are generated for each border segment which, if processed correctly, determine that both the relational operator and the position of the border are correct. An error in the border operator occurs when an incorrect relational operator is used in the corresponding predicate, and an error in the position of the border occurs when one or more incorrect coefficients are computed for the particular predicate interpretation. The strategy is based on a geometrical analysis of the domain boundary and takes advantage of the fact that points on or near the border are most sensitive to domain errors. A number of authors have made this observation, e.g., Boyer et al. (1981) and Clarke (1982).

As stated in Proposition 1, a domain defined by simple linear predicates is a convex polyhedron, and each point can be classified according to its position within the domain. An interior point is defined as one which is surrounded by an ε-neighbourhood containing only points in the domain. Similarly, a boundary point is one for which every ε-neighbourhood contains both points in the domain and points lying outside of the domain. Finally, an extreme point is a boundary point which does not lie between any two distinct points in the domain.

In the previous section, a comparison was made between the given program and a corresponding correct program; indeed domain errors were defined in terms of this correspondence. It should be emphasised that the domain strategy does not require that the correct program be given for the selection of test points, since only information obtained from the given program is needed. However, it will be convenient to be able to refer to a 'correct border', although it will not be necessary to have any knowledge about this border. Define the given border as that corresponding to the predicate interpretation for the given program being tested, and the correct border as that border which would be calculated in some correct program.

The domain testing strategy is first developed, explained, and validated in detail under a set of simplifying assumptions:

1. Coincidental correctness does not occur for any test case. If correct output results are produced, we can assume that the test point is in the correct domain rather than being coincidentally correct in another domain.

2. A missing path error is not associated with the path being tested. Missing path errors of reduced dimensionality pose a theoretical limitation to the reliability of any program testing methodology.

3. Each border is produced by a simple predicate.

4. The path corresponding to each adjacent domain computes a different function than the path being tested.

5. The given border is linear, and if it is incorrect, the correct border is also linear.
The input space is continuous rather than discrete.

Each border is produced by an inequality predicate.

The input space is two-dimensional, corresponding to a program which reads, at most, two input variables.

The first two assumptions were thoroughly explored in the previous section. Assumptions 1 through 8 are for convenience in the initial exposition, and we shall investigate later the conditions under which each can be relaxed. Also, references (003) and (004) discuss both the domain strategy and these assumptions in greater detail.

The two-dimensional linear case

Given assumptions 1 to 8, a set of test points is first defined for detecting border shifts, and then we shall show that this set of points also detects all possible relational operator errors. Since the present analysis is limited to linear borders in a two-dimensional input space, each border is a line segment. Therefore, the correct border can be determined if we know two points on that border.

The test cases selected will be of two types, defined by their position with respect to the given border. An **ON** test point lies on the given border, while an **OFF** test point is a small distance \(\epsilon \) from, and lies on the open side of, the given border. Therefore, we observe that when testing a closed border, the **ON** test points are in the domain being tested, and each **OFF** test point is in some adjacent domain. Conversely, when testing an open border, each **ON** test point is in some adjacent domain, while the **OFF** test points are in the domain being tested.

Figure 3 shows the selection of three test points, A, B, and C for a closed inequality border segment. In this and subsequent figures the small arrows are used to indicate the domain which contains the border segment. The three points must be selected in an **ON-OFF-ON** sequence. Specifically, if test point C is projected down on line AB, then the projected point must lie strictly between A and B on this line segment. Also point C is selected a distance \(\epsilon \) from the given border segment, and will be chosen so that it satisfies all the inequalities defining domain D except for the inequality being tested.

It must be shown that test points selected in this way will reliably detect domain errors due to boundary shifts. If any of the test points lead to an incorrect output, then clearly there is an error. On the other hand, if the outputs of all these points are correct, then either the given border is correct or we have gained considerable information as to the location of a correct border. Figure 3 shows that the correct border must lie on or above points A and B, and must lie below point C, for by assumptions 1 and 4 (page 339), each of these test points must lie in its assumed domain. So if the given border is incorrect, the correct border can only belong to a class of line segments which intersect both closed line segments AC and BC.

Figure 3 indicates a specific correct border from this class which intersects line segments AC and BC at P and Q respectively. Define the domain error magnitude for this correct border to be the maximum of the distances from P and Q to the given border. Then it is clear that the chosen test points have detected domain errors due to border shifts except for a class of domain errors of magnitude less than \(\epsilon \). In a continuous space \(\epsilon \) can be chosen arbitrarily small, and as \(\epsilon \) approaches zero, the line segments AC and BC become arbitrarily close to the given border, and in the limit, we can conclude
that the given border is identical to the correct border. However, the continuity of the space also implies that regardless of how small \(\epsilon \) is chosen, border shifts of magnitude less than \(\epsilon \) may not be detected, and therefore we must correspondingly qualify our results.

Figure 4 shows the three general types of border shifts, and will allow us to see how the ON-OFF-ON sequence of test points works in each case. In Figure 4(a), the border shift has effectively reduced domain \(D_1 \). Test points A and B yield correct outputs, for they remain in the correct domain \(D_1 \) despite the shifted border. However, the border has shifted past test point C, causing it to be in domain \(D_2 \) instead of domain \(D_1 \). Since the program will now follow the wrong path when executing input C, incorrect results will be produced. In Figure 4(b), the domain \(D_1 \) has been enlarged due to the border shift. Here test point C will be processed correctly since it is still in domain \(D_1 \), but both A and B will detect the shift since they should also be in domain \(D_1 \). Finally in Figure 4(c), only test point B will be incorrect since the border shift causes it to be in \(D_2 \) instead of \(D_1 \). Therefore, the ON-OFF-ON sequence is effective since at least one of the three points must be in the wrong domain as long as the border shift is of a magnitude greater than \(\epsilon \).

Recall in Figure 3 that we required the OFF point C to satisfy all the inequalities defining domain \(D \) except for the inequality being tested. The reason for this requirement is that some correct border segment may terminate on the extension of an adjacent border, rather than intersecting both line segments AC and BC as we have argued. Since we have assumed a continuous space, C could always be chosen closer to the given border in order to satisfy the adjacent border inequalities.

We must also demonstrate the reliability of the method for domain errors in which the
The domain testing strategy requires at most \(3^P \) test points for a domain, where \(P \), the number of border segments on this boundary, is bounded by the number of predicates encountered on the path. However, we can reduce this cost by sharing test points between adjacent borders of the domain. The requirement for sharing an ON point is that it is an extreme point for two adjacent borders which are both closed or both open.
In the example in Figure 5, the points that can be shared are A_1, A_2, and A_3. The number of ON points needed to test the entire domain boundary can be reduced by as much as one half, i.e., the number of test points, TP, required to test the complete domain boundary lies in the following range:

$$2^P \leq TP \leq 3^P.$$

Even more significant savings are possible by sharing the test points for a common border between two adjacent domains. If both domains are tested independently, the common border between them is tested twice, using a total of six test points. If this border has shifted, both domains must be affected, and the error will be detected by testing either domain. Therefore, the second set of test points can safely be omitted. However, the cost savings in such sharing should be balanced against the additional processing required.

We now formally summarise the results of this section in the following proposition.

Proposition 2

Given assumptions 1 through 8 (page 339), with the OFF test point chosen a distance ϵ from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than ϵ. Moreover, the cost is no more than 3^P test points per domain, where P is the number of predicates along the corresponding path.
N-dimensional linear inequalities

The domain testing strategy developed for the two-dimensional case can be extended to the general N-dimensional case in a straightforward manner. The central property used in the previous analysis was the fact that a line is uniquely determined by two points. We can easily generalize this property since an N-dimensional hyperplane is determined by N linearly independent points. So, whereas in the two-dimensional case we had to identify only two points on the correct border, in general we have to identify N points on the correct border, and in addition, these points must be guaranteed to be linearly independent.

The validation of domain testing for the general linear case is based on the same geometric arguments used in the two-dimensional case. The key to the methodology is that the correct border must intersect every OFF-ON line segment, assuming that the test points are all correct. Since we must identify a total of N points on the correct border, we need N OFF-ON line segments, and we can achieve this by testing N linearly independent ON test points on the given border and a single OFF test point whose projection on the given border is a convex combination of these N points. In addition, as in the two-dimensional case, the OFF point must also satisfy the inequality constraints corresponding to all adjacent borders.

Even though we do not know these specific points at which the correct border intersects the ON-OFF segments, we do know that these points must be linearly independent since the ON points are linearly independent. The OFF point is a distance \(c \) from the given border, and in the limit as \(c \) approaches zero, each OFF-ON line segment becomes arbitrarily close to the given border. However, as in the two-dimensional case, the \(c \)-limitation means that only border shifts of magnitude greater than \(c \) will be detected.

The domain testing strategy requires at most \((N+1)P\) test points per domain, where \(N \) is the dimensionality of the input space in which the domain is defined and \(P \) is the number of border segments in the boundary of the specific domain. However, we again can reduce this testing cost by using extreme points as ON test points. Each extreme point is formed by the intersection of at least \(N \) border segments, and therefore one point can be used to test up to \(N \) borders. In addition, extreme points are also linearly independent. Each border must be tested by \(N \) ON points, and any points beyond this are redundant, and so not all extreme points on each border are required. As a result of this kind of sharing, the number of test points can be as few as \(2P \). As in the two-dimensional case, there can be further savings if test points are shared between adjacent domains. Finally, since some of the \(P \) border segments may be produced by the min-max constraints which define the bounds of the input space, the number of test points can be reduced still further, if we can assume that these constraints are predetermined and need not be tested.

This generalization to \(N \) dimensions is significant since very few non-trivial programs have only two input variables. We summarise the results so far in the following proposition.

Proposition 3

Given assumptions 1 to 7 (page 339), with the OFF test point chosen a distance \(c \) from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than \(c \) regardless of the dimensionality of the input space. Moreover, the cost is not more than \((N+1)P\) test points per domain.
Equality and nonequality predicates

Equality predicates constrain the domain to lie in a lower dimensional space. If we have an N-dimensional input space and the domain is constrained by L independent equalities, the remaining inequality and nonequality predicates then define the domain within the (N-L)-dimensional subspace defined by the set of equality predicates.

In Figure 6 we see the equality border and the proposed set of test points. In a general N-dimensional domain, let us first consider a total of N ON points on the border and two OFF points, one on either side of the border. As before, the ON points must be independent, and the projection of each OFF point on the border must be a convex combination of the ON points.

Given an incorrect equality predicate, the error could be either in the relational operator or in the position of the border or both. The proposed set of test points can be shown to detect an operator error or a position error by arguments analogous to those previously given. This set of points is also adequate for almost all combinations of operator and position errors, except for the following pathological possibility. Let us assume that the border has shifted and the correct predicate is a nonequality. If both OFF points happen to lie on the correct border while none of the ON points belong to this border, the error would go undetected. This singular situation is diagrammed as the dashed border in Figure 7, where A_1 and A_2 are the ON points, and C_1 and C_2 are

![Figure 6: Test points for an equality border](image)

![Figure 7: A pathological case in domain testing for an equality predicate](image)
the OFF points. This problem can be solved by testing one additional point selected so that it lies both on the given border and the correct border for this case, i.e., at the intersection point of the given border with the line segment connecting the two OFF points. This additional point is denoted by B in the figure.

Each equality predicate can thus be completely tested using a total of \((N+3)\) test points. By sharing test points between all the equality predicates, this number can be considerably reduced, but the reduction depends upon values of \(N\) and \(L\). In addition, since testing the equality predicates reduces the effective dimensionality to \((N-L)\) for each of the inequality and nonequality borders, and the equality ON test points can be shared, even further reductions are possible.

For the case of a nonequality border, the testing strategy is identical to that of the equality border just discussed. The arguments for the validity of the strategy are analogous to those in previous cases. Again in this case, the pathological possibility discussed in connection with the equality predicate can occur, and can be handled in the same way. The major difference is that while test points can be extensively shared between equality and inequality borders, in general such sharing is not possible between nonequality and inequality borders. The following proposition summarises the situation for testing linear borders in \(N\)-dimensions.

Proposition 4

Given assumptions 1 through 6 (page 339), with each OFF point chosen a distance \(\epsilon\) from the corresponding border, the domain testing strategy is guaranteed to detect all domain errors of magnitude greater than \(\epsilon\) using no more than \(P(N+3)\) test points per domain.

An example of error detection using the domain strategy

The domain testing strategy has been described and validated using somewhat complicated algebraic and geometric arguments. In this section we hope to complement those discussions by demonstrating how a set of domain test points for a short sample program actually detects specific examples of different types of programming errors. In discussing each error we will focus on a specific domain affected by the error, and a careful analysis of its effect on the domain will allow us to identify those domain test points which detect the error.

The short example program reads two values, \(I\) and \(J\), and produces a single output value \(M\). Therefore, the input space is two-dimensional, and the following min-max constraints have been chosen so that the input space diagram would not be too large or complicated.

\[-8 \leq I \leq 8 \quad -5 \leq J \leq 5.\]

In addition, since this is a two-dimensional space, we will also test extreme points for the border segments produced by the min-max constraints in order to be able to detect as many missing path errors as possible.

Even though the input space is assumed to be continuous, the co-ordinates of each test point are specified to an accuracy of \(0.2\) in order to simplify the diagrams and discussions. Of course, in an actual implementation each OFF point would be chosen much closer to the border.

The sample program is listed below, and it consists of three simple IF constructs, the
first two of which are inequalities and the last of which is an equality. The input
space structure is diagramed in Figure 8, where the solid diagonal border across the
entire space is produced by the first predicate, the dashed horizontal border and short
vertical border at I=0 are produced by the second predicate, and the vertical equality
border at I=5 corresponds to the third predicate. In addition, domain test points
have been indicated for the two domains TTE and ETT which we will discuss.

Statement:

READ I,J;
1 IF I < J + 1
2 THEN I = I + J - 1;
3 ELSE I = 2*I + 1;
4 ENDIF;
5 IF K > I + 1
6 THEN L = I + 1;
7 ELSE L = J - 1;
8 ENDIF;
9 IF J = 5
10 THEN M = 2*L + K;
11 ELSE M = L + 2*K - 1;
12 ENDIF;
13 WRITE M;

Figure 8: Input space domain test points
Domain in error

<table>
<thead>
<tr>
<th>Domain in error</th>
<th>Given statement in error</th>
<th>Given predicate interpretation</th>
<th>Revised correct statement</th>
<th>Correct predicate interpretation</th>
<th>Test points for this error</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE</td>
<td>0 ≤ (x+y+1)</td>
<td>0 ≤ (x+y+2)</td>
<td>0 ≤ (x+y+3)</td>
<td>0 ≤ (x+y+4)</td>
<td>ON (-6,2) -22 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF (-7,1-6) -6.6 -6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ON (3,2) 11 6</td>
</tr>
<tr>
<td>ETT</td>
<td>0 ≤ (x+y+5)</td>
<td>0 ≤ (x+y+6)</td>
<td>0 ≤ (x+y+7)</td>
<td>0 ≤ (x+y+8)</td>
<td>TWO ON (5,5) 23 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TWO OFF (6,0) 26 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extra ON (5,0) 23 23</td>
</tr>
</tbody>
</table>

Figure 9: Detection of domain errors for inequality and equality predicates

Figure 10: Correct input space for a domain error
Figure 9 illustrates two types of errors we would like to consider. The first is an error in the inequality predicate in statement #4 of the above program, \(K \geq I+1 \), where it is assumed that the correct predicate should be \(K > I+2 \). This corresponds to an inequality border shift, and the modified domain structure is shown in Figure 10. Three points have been selected to test this border, and it can be seen in Figure 9 that the two ON points detect this error, where \(N \) and \(N' \) represent the output variables for the given program and for the assumed correct program respectively. Note that as a result of this error, the vertical border at \(I=0 \) in Figure 8 has also shifted to \(I=1 \) in Figure 10, and if tested, would also reveal this error.

Figure 9 also shows the effect of an error in an equality predicate in statement #7 of the given program. It is assumed that the correct predicate should be \((I=5-J) \) rather than the \((I=5) \) predicate which occurs in the given program. Figure 11 shows the modified input space structure, and it can be seen that equality borders TTT and ETT have shifted. Figure 9 shows the five points which test the ETT border, and note that two ON points both detect this shift.

Figure 12 indicates that the domain strategy can also detect a computation error and a missing path error, even though we have previously noted that reliability cannot be proven for these cases. The computation error arises from statement #6 in the given program, where it is assumed that the correct assignment statement for this ELSE clause is \((L=I-2) \) instead of \((L=J-1) \) which actually appears in the given program. Since \(L \) is not used in any subsequent predicate, this corresponds to a computation error rather than a domain error. Thus the input space structure in Figure 8 is applicable for both the given and the correct programs. Figure 12 shows the six test points which have been chosen to test domain TEE which is affected by this computation error. Four of the points should indicate the error, but note the test results at \((-4, -5)\) are...
Figure 12: Detection of a computation error and missing path error

<table>
<thead>
<tr>
<th>Domain in error</th>
<th>Given statement in error</th>
<th>Assumed correct statement</th>
<th>Test points for this domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTE</td>
<td>E L.S.E (L+1-1)</td>
<td>E L.S.E (L+2-2)</td>
<td>Point</td>
</tr>
<tr>
<td>(Computation error)</td>
<td></td>
<td></td>
<td>(-2,-3)</td>
</tr>
<tr>
<td>(See Figure 1)</td>
<td></td>
<td></td>
<td>(-4,-5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(+3,1-1)</td>
</tr>
<tr>
<td></td>
<td>E T.E.E (L+1-2-2-5)</td>
<td>E T.E.E (L+1-5-2-5-1)</td>
<td>(-1,-2-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0,-1)</td>
</tr>
<tr>
<td></td>
<td>E T.E.E (L+1-2-2-1)</td>
<td>E T.E.E (L+1-2-2-1)</td>
<td>(2,2)</td>
</tr>
</tbody>
</table>

* Note that this point is computationally correct.

Figure 13: Correct input space for a missing path error

350
The remaining three points detect the error.

Suppose in program statement #2 the THEN clause is replaced by the following code.

```
THEN IF 2*I < -5*I - 40
    THEN K = 3;
    ELSE K = I + J - 1;
ENDIF;
```

This corresponds to a missing path error and is indicated as such in Figure 12. Figure 13 shows how the domain TEE is modified by this missing path error, but note that only test point (-8,-5) detects this error. If the < inequality in the missing predicate had been an equality, this would have produced a missing path error of reduced dimensionality, corresponding to a domain consisting of just the line segment in Figure 13, and would have gone undetected.

EXTENSIONS OF THE DOMAIN TESTING STRATEGY

Many assumptions were required in presenting the previous results, but to some extent these assumptions were made to allow a simple exposition of the domain testing strategy. This section will discuss assumptions 3, 4, and 5 (page 339) which deal with compound predicates, adjacent domains which compute the same function, and non-linear borders, respectively. The treatment of these cases will certainly require additional test points, and in some instances will demand extra processing which may render this testing approach impractical. However, one of the main objectives of this section is to illustrate that none of the assumptions 3, 4, or 5 pose a theoretical limitation to the domain testing strategy which cannot be dealt with in some fashion.

The general non-linear case

A finite domain testing strategy cannot be effective for the universal class of non-linear borders, but we must determine whether this is caused by some fundamental difference between linear and non-linear functions. If the problem is that we are considering too general a class of borders, then we should be able to extend the methodology to cover well-defined subclasses of non-linear functions. However, if the problem is caused by some basic characteristic of non-linear borders, we will not be able to extend domain testing to any class of non-linear functions.

For linear borders, we have assumed that if the given border is linear, and if there is a domain error, then the correct border is also linear. In order to extend our testing results to particular subclasses of non-linear functions, such as quadratic or cubic polynomials, we must assume that if the given non-linear border is in error, then the correct border is in the same non-linear class. This non-linear class will be specified by \(K \) parameters: for example, consider the general form of a two-dimensional quadratic in terms of variables \(X \) and \(Y \), where \(A, B, C, \ldots \) are coefficients, and \(K = 6 \):

\[
AX^2 + BY^2 + CXY + DX + EY + F = 0.
\]

Then \((K-1)\) points can be chosen in order to solve for these \(K \) coefficients. For the example above, the five points \((X_i, Y_i), i = 1, \ldots, 5\), should satisfy the following system of equations:
Define an independent set of \((k-1) \) points \(\{X_i, Y_i\} \) as a set which can be used to solve for the coefficients, and thus determine a specific member of the non-linear class.

We can now formulate the general non-linear domain testing strategy in terms of these observations. \((k-1) \) ON-OFF pairs of points are chosen such that the \((k-1) \) ON points are independent and each OFF point is chosen a distance \(c \) from the corresponding ON point. This requires \(2^k(k-1) \) test points per non-linear border. The \((k-1) \) ON-OFF line segments formed by this set of pairs have been chosen so that the only correct borders which yield correct test results must intersect each of these ON-OFF line segments.

For any particular correct border, there are \((k-1) \) independent intersection points, which determines the border completely. Note that the intersection points are independent if \(c \) is chosen sufficiently small, since the ON points are independent for the given border. A further requirement, as in the linear case, is that all OFF points satisfy all inequality borders other than the one being tested.

While a single OFF point was sufficient in the linear case, the independence criterion requires \((k-1) \) OFF points for each non-linear border. In the former case linearity allowed the OFF point to be shared by all the ON points, since the linear independence of the points identified as lying on the true border is guaranteed by the linear independence of the ON points themselves. If we were to test a non-linear border with \((k-1) \) ON points and a single OFF point, we would be able to conclude that the correct and given borders intersect at \((k-1) \) points. However, we cannot conclude that these \((k-1) \) points are independent. We know of no selection criterion for the ON points which would guarantee the independence of the intersection points using only one OFF point. So an effective strategy requires the full set of \(2^k \) test points, and unfortunately \(K \) grows very rapidly as the dimensionality and degree of non-linearity of the border increases.

A two-dimensional non-linear border is a very special case, and even though the general strategy is effective, a slightly different testing strategy can be formulated to reduce the number of required test points. The basic difference is that the intersection between two-dimensional non-linear borders from the same class is a finite set of points, the maximum number of which can be determined from the form of the function. For example a pair of two-dimensional quadratic curves can intersect in at most four points. This means that any set of more than four points cannot possibly lie on two distinct quadratics, and any five points uniquely determines a specific quadratic. Therefore, we do not have to worry about independence in the two-dimensional case, since any set of \((k-1) \) distinct points will produce a system of independent linear equations. For example, any three distinct points can lie on at most one circle, since two circles cannot have more than two points in common.

We test a two-dimensional non-linear border with \(K \) points, e.g., six for a quadratic selection in an ON-OFF-ON-OFF... sequence along the border as diagrammed for the closed border in Figure 14. Since the correct border must pass on or above the given border at each ON point, and must pass below each OFF point, the two borders must intersect.
an odd number of times, let us assume once, in each ON-OFF and OFF-ON interval along
the border. The K test points define (K-1) intervals on the border, each of which
must contain at least one intersection point. We have shown that these (K-1) points
must be independent, and since they cannot lie on two distinct borders, the given
border must be correct within c. As a technical detail, it is also possible that the
correct border may be tangent to the given border at an ON point, but if this occurs,
an argument involving the derivatives of the two borders at that point can be invoked
to justify the choice of the test points for this two-dimensional case.

Although the domain strategy has been extended to non-linear boundaries, points must be
generated in a domain defined by non-linear boundaries, requiring the solution of non-
linear systems of equations. Since this probably requires excessive processing for
arbitrary non-linear borders, it does not represent a very practical approach.

Adjacent domains which compute the same function

If two adjacent domains compute the same function, any test point selected for their
common border is ineffective, since the same output values are computed for the test
point regardless of the domain in which it lies. We will demonstrate how domain test-
ing can be modified to deal with this problem.

In Figure 15(a), assuming domain D1 were being tested, we must compare the functions
calculated in domains D1 and D2 for test point A, D1 and D3 for B, and D1 and D3 for C.
One of the major problems to be solved is the identification of these adjacent domains.
We assume that when testing domain D1, the partitioning structure of the adjacent domains
and the program paths associated with these domains is not known. It would be very
complicated to have to generate the domains which are adjacent to the border being tes-
ted.

Figure 15(b) illustrates an approach to this problem. The border being tested is shif-
ted parallel by a small distance c, so that test points A and B now belong to adjacent
domains, D1 and D2, respectively. The modified program is then retested using test
points A and B, which will, as a by-product, identify the paths associated with these
two adjacent domains. We can then compare the output for each test point before and
after the shift. If it is different, then we can definitely conclude that the adjacent
domain computes a different function, and this test point can safely be used. If the
output is the same for that test point, then we can conclude that either assumption 1
or 4 (page 339) is violated. However, there is no way to decide this, and the only
practical approach is to use further test points. If we know that coincidental cor-
rectness cannot occur, then we could conclude on the basis of a single point that the
If two adjacent domains such as D₁ and D₂ in Figure 15(a) are found to compute the same function, then in order to carry out the domain testing strategy on the given border, new test points may have to be selected. For example, point A can no longer be used, and this requires ascertaining the border structure between D₁ and D₂. Thus a considerable amount of processing is required which is probably not practical.

In summary, a technique of testing each point twice will assure us that assumption 4 is valid, and this redundancy might be viewed as a reasonable price to pay to eliminate this restriction. However, if an instance is found where the assumption is not valid, a basic theoretical problem exists.
Domain testing for compound predicates

Assumption 3 (page 339) stated that a path contained only simple predicates, and this implied that the set of input points could be characterized quite simply as a single domain. We must consider what complications can occur for compound predicates, and how the domain strategy can be generalized to test paths containing these predicates.

The set of inputs corresponding to a path is defined by the path condition, consisting of the conjunction of the predicates encountered along the path. If a compound predicate of the form \((C_i \text{ AND } C_{i+1})\) is encountered on the path, the path condition is still a single conjunction of simple predicates, and the only difference is that two of the simple predicates are produced as a single branch point on the path. No modifications of the domain testing strategy are required in this case.

However, compound predicates using the Boolean operator \(\text{OR}\) are more complicated. Consider a path containing the following predicates:

\[C_1, C_2, \ldots, (C_i \text{ OR } C_{i+1}), \ldots, C_t \]

The path condition in this case is the conjunction of these predicates, and in standard disjunctive normal form:

\[(C_1 \text{ AND } C_2 \text{ AND } \ldots \text{ AND } C_i \text{ AND } \ldots \text{ AND } C_t) \]

\[\text{OR } (C_1 \text{ AND } C_2 \text{ AND } \ldots \text{ AND } C_{i+1} \text{ AND } \ldots \text{ AND } C_t) \]

The set of input data points following this path consists of the union of two domains, each defined by the conjunction of simple predicates, and in general any number of these domains are possible.

Assuming linear predicates, each of these domains is a convex polyhedron, but the domains may overlap in arbitrary ways. The major problem caused by these compound predicates is that the domains correspond to the same path, and the assumption that adjacent domains do not compute the same function is violated. We identify these cases of importance: domains which do not overlap, domains which partially overlap, and domains which totally overlap.

The first case is indicated in Figure 14(a), where domains \(D_1\) and \(D_2\) are defined by the compound predicate \((C_1 \text{ OR } C_2)\), and domain \(D_1\) corresponds to some other path. In this case our methodology can be applied to each domain separately, since the two domains for this path are not adjacent.

In Figure 14(b), the domains partially overlap, where \(D_1 \cup D_2\) is the domain defined by \(C_1\), and \(D_1 \cup D_3\) is the domain defined by \(C_2\). In the example we cannot test the domains separately, since they are adjacent and the same function is computed in each. For example, any test point for \(C_1\), selected along that part of the border between \(D_1\) and \(D_2\), is ineffective since the same results are computed for it in both of these regions. So, in this case we must ensure that the adjacent domain assumption is satisfied by selecting test points for \(C_1\) and \(C_2\) which lie in that part of the border adjacent to a domain for some other path. In order to deal effectively with this case, some extra analysis will have to be made, first in order to identify this second case, and also to identify the actual domain, which is no longer convex. The borders of this domain are shown with a heavier line in Figure 14(b). This is probably no longer a practical approach, especially for higher dimensions.
Figure 16: Domains defined with compound OR predicates
The third case is shown in Figure 16(c), where the domain D_1 for predicate C_1 is a subset of the other domain, $D_1 \cup D_2$, which is obtained for predicate C_2. This presents a serious problem since there are no test points for border B of domain D_1 which can satisfy the adjacent domain assumption, and therefore B cannot be tested effectively. The technique developed in the previous section should help to identify this case. However, even if this case could be identified, testing for border B is no longer a practical procedure.

So, in summary, a compound predicate of the form $(C_1 \land C_2)$ is the same as two simple predicates, and domain testing can be applied to a domain defined with this type of compound predicate. In addition, if the compound predicate is of the form $(C_1 \lor C_2)$ and the domains are distinct, domain testing can be applied to each domain separately. However, if the domains overlap, this introduces the problem of adjacent domains which compute the same function. Although we may not find effective test points for domains which overlap in arbitrary ways, we can recognize this situation and identify it as a border which cannot be tested effectively.

ERROR ANALYSIS OF DOMAIN BORDERS AND DISCRETE SPACES

An error analysis of domain borders is needed to resolve the following questions:

1. How small should c be chosen in selecting an OFF test point for linear borders, and where are optimal locations for the test points?

2. We required the OFF test point for a given border to satisfy all inequality borders except that being tested; how do potential errors in other borders of the domain affect this requirement?

3. What are the difficulties in applying domain testing in a discreet space or in a space in which numerical values can only be represented with finite resolution, and can these difficulties be circumvented by taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in (012). It is interesting to observe that the answers to questions 1, 2 and 3 all involve the same worst-case situation: when two adjacent linear borders of the same domain are nearly parallel. Figure 17 indicates the two cases which can arise from adjacent linear borders which are nearly parallel. Figure 17(a) shows a given border segment EF in which the two adjacent border segments EF and PQ both make large external angles θ and ϕ, near 180°, with the given border EF. This leads to very small supplementary internal angles θ and ϕ, and especially for ϕ, this results in a very sharp 'corner' of the domain. In Figure 17(b), the adjacent borders PE and PQ are again nearly parallel to the given border EF, but a different case is created. In this case, external angles θ and ϕ are very small, and the internal angles θ and ϕ, are both near 180°.

We will briefly argue in this paper that one of these two situations is the key to the analysis of questions 1, 2, and 3, and we refer the reader to (012) for further details and proofs. The best location for each of the three test points will be indicated, and it will be shown how interacting border changes may affect the location of these test points. The problem of domain testing in discreet spaces is briefly introduced, and a sufficient condition is specified which guarantees that effective test points can always be chosen. Since all these arguments are given only for two dimensions, a brief discussion...
An error measure for test point selection

In Figure 17(a), consider the selection of three test points A, B, and C for testing border segment EF. It is shown in (012) that the best positions for two of them, say A and B, are points E and F, so the remaining problem is the location of test point C.

We have observed that if the given border EF is in error, then test points A, B and C will fail to detect errors if the correct border is one which intersects line segments AC and BC. Thus given C which is at a distance ϵ from the given border and halfway between A and B, an appropriate error criterion could be the 'number' of erroneous points which would be undetected, i.e., the area between the two borders, possibly limited by either or both of the extensions of the adjacent borders EP and FQ. It can be shown that this area measure can be bounded by the expression

$$\frac{c^2}{EF} + 2\epsilon \cot \theta,$$

where θ is the larger of θ_1 and θ_2.

In order for this error measure to be finite, it is necessary that both θ_1 and θ_2 are not too close to 180° for given ϵ. If $|\cot \theta| < \frac{EF}{\epsilon}$, then the error measure is in the order of $\epsilon \cdot EF$. This gives some guidance as to the choice of ϵ for point C.
Interacting border segments

In presenting the domain strategy, we required the OFF test point to satisfy all inequality borders except the border being tested. Usually this does not impose much of a constraint on the choice of the OFF point, but Figure 17(b) illustrates a situation in which a severe constraint exists. We can show that

\[h = \frac{EF}{\cot \theta_1 + \cot \theta_2} \]

and since \(c < h \) for choosing the OFF test point, this again shows the effect if either \(\theta_1 \) or \(\theta_2 \) or both are very small.

The same situation applies for interacting adjacent borders, and is illustrated in Figure 18. As long as the OFF points \(C_1 \) and \(C_2 \) for each of the adjacent borders are chosen sufficiently close to those borders, and the external angles \(\theta_1 \) and \(\theta_2 \) are not too small, then the adjacent borders have a minimal influence on the selection of the OFF point \(C \) for border \(EP \). For example, point \(C \) must lie inside triangle \(EFU \) determined by given borders \(EF \) and \(FU \). The correct borders which pose the worst case in limiting the selection of point \(C \) are shown as dashed lines in Figure 18; these limiting correct borders are determined by how close \(C_1 \) and \(C_2 \) have been chosen to their respective test borders.

As a result of these conditions, point \(C \) is constrained to lie within triangle \(EFV \), a more restrictive condition than presented by triangle \(EFU \). It should be clear that if either \(\theta_1 \) or \(\theta_2 \) is too small, or either \(C_1 \) or \(C_2 \) is chosen too far from its respective test border, the region from which \(C \) could be chosen would become restrictively small.

\[\text{Figure 18: Effect of interacting adjacent borders on test point } C \]
Discrete space analysis

The previous several sections have indicated that if adjacent borders are nearly parallel, then test point \(C \) is required to lie very close to the border being tested. But in a discrete space this could cause a severe problem, for no discreet point may exist that close to the border. Similar problems exist for the ON test points \(A \) and \(B \), for it may not be possible to choose them at extreme points of the border.

For the discreet space we shall consider a two-dimensional lattice, with uniform spacing \(\Delta \) in both dimensions. This models the situation where the same data representation, integer or fixed-point, is used for two input variables.

For simplicity, let us again assume that points \(A \) and \(B \) can be chosen as points \(E \) and \(F \). We shall present a sufficient condition for a given domain within this discreet lattice which guarantees that an OFF point \(C \) can be chosen as a lattice point for each border so that the area criterion is finite. The result is based upon the following two observations. First, any circle of diameter \(\Delta \) always contains at least one lattice point. Second, from Figure 17(a), note that if either external angles \(\Theta_1 \) or \(\Theta_2 \) are too near 180°, then the ‘width’ of the domain will tend to be very small in terms of the lattice resolution \(\Delta \).

More formally, define the diameter \(d \) of a convex polygonal domain to be the shortest distance from any extreme point to any domain edge not adjacent to that extreme point; this corresponds to our informal argument about domain ‘width’. The sufficient condition can then be stated as:

Proposition 5

Given a domain with diameter \(d \) in a lattice with resolution \(\Delta \), if

\[
d > \left(\frac{1}{\sqrt{2}} \right) \Delta = (2\cdot12) \Delta,
\]

then a lattice OFF point can be chosen for every border, and moreover all external angles \(\Theta_1 \) and \(\Theta_2 \) are constrained by

\[
| \cot \Theta_1 + \cot \Theta_2 | < \left(\frac{FF}{\Delta} \right) \Delta.
\]

It is clear that there are some domains in a discreet space which cannot be tested, but these are pathological cases where one of the domain dimensions is in the order of the lattice resolution. Moreover, the result indicates a simple computation in terms of the domain diameter to determine when such domains are presented for testing. For domains which can be tested in a discreet space, the important result from Proposition 5 is that a restriction has been obtained on angles \(\Theta_1 \) and \(\Theta_2 \) which precludes both angles which are close to 180° and angles which are too small.

Extensions of error analysis to higher dimensions

The previous arguments have all been made for two dimensions, so it is important that the essential ideas can be generalized to higher dimensions. We can observe that if two border segments are adjacent, they are intersecting hyperplanes. Again, problems
may arise if these two hyperplanes \(H_1 \) and \(H_2 \) are nearly parallel, and this can be measured by taking the inner product of their unit normal vectors \(\vec{n}_1 \) and \(\vec{n}_2 \), yielding the cosine of the angle \(\theta \) between them:

\[
\cos \theta = \vec{n}_1 \cdot \vec{n}_2
\]

This calculation is straightforward, and all the other error analysis issues can be extended in a similar way. The reader should examine (012) for further details.

CONCLUSIONS AND FUTURE WORK

The basic goal of this research is to replace the intuitive principles behind current testing procedures by a methodology based on a formal treatment of the program testing problem. By formulating the problem in basic geometric and algebraic terms, we have been able to develop an effective testing methodology whose capabilities can be precisely defined. In addition, since program testing cannot be completely effective, we have identified the limitations of the strategy. In several cases these limitations have proven to be theoretical problems inherent to the general program testing process.

The main contribution of this research is the development of the domain testing strategy. Under certain well-defined conditions the methodology is guaranteed to detect domain errors in linear borders greater than some small magnitude \(\epsilon \). Furthermore, the cost, as measured by the number of required test points, is reasonable and grows only linearly with both the dimensionality of the input space domain and the number of path predicates. Domain testing also detects transformation errors and missing path errors in many cases, but the detection of these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of non-linear borders, and we have shown that the methodology generalizes to any class of functions which can be described by a finite number of parameters. Unfortunately, non-linear predicates pose problems of extra processing which probably preclude testing except for restricted cases. For example, just finding intersection points of a set of linear and non-linear borders can require an inordinate amount of processing.

Coincidental correctness is a theoretical limitation inherent to the program testing process, and we have argued that it prevents any reasonable finite testing procedure from being completely reliable. In particular, the possibility of coincidental correctness means that an exhaustive test of all points in an input domain is theoretically required to preclude the existence of computation errors on a path. Within the class of all computable functions there exist functions which coincide at an arbitrarily large number of points, but if there is sufficient resolution in the output space, coincidental correctness should be a rare occurrence for functions commonly encountered in data processing problems.

The class of missing path errors, particularly those of reduced dimensionality, has proven to be another theoretical limitation to the reliability of any finite testing strategy. Although our methodology cannot be guaranteed to detect all instances of this type of error, it can be extended to detect some well-defined subclasses of missing path errors. Unfortunately, the extra cost of this modification may be unacceptably high. Our analysis of missing path errors has shown that the cause of the difficulty is that the program does not contain any indication of the possible existence of a missing path error. Therefore, without additional information, a reasonable testing strategy for
this class of errors cannot be formulated.

The domain testing strategy requires a reasonable number of test points for a single path, but the total cost may be unacceptable for a large program containing an excessive number of paths. In particular, this may occur for large programs with complicated control structures containing many iteration loops. Additional research is needed to reduce substantially the number of potential paths. One area being investigated is to obtain appropriate restrictions on control structures, especially iteration loops, so that a large number of paths can be tested simultaneously for domain errors. Another approach is to develop an objective criterion to select a small subset of paths which yields the greatest testing information. A figure of merit must be defined which reflects the value of a path as a candidate for testing, and this measure must consider both the benefits and the cost of testing each path. For example, a very long and complicated path containing many assignment statements and predicates can test many aspects of the program, but a larger number of test points are consequently required. Therefore, the best candidate for testing might be a long path consisting of many assignment statements but few predicates. Also, in selecting the next path for testing we must consider how the set of paths already chosen affects our current selection. We have seen that a single error may affect many different paths, and the error can be detected by testing any one of these paths. A third approach to reduce the number of paths is to design and test small program modules, and then construct a testing strategy for the combination of these modules into large software systems. This is the most practical solution to the testing problem, but many technical and theoretical problems need to be resolved. For example, in order to accomplish this, the communication between modules will have to be appropriately restricted.

We have assumed that an ‘oracle’ exists which can always determine whether a specific test case has been computed correctly or not. In reality, the programmer himself must make this determination, and the time spent examining and analyzing these test cases is a major factor in the high cost of software development. One possible avenue for future research would be to automate this process by using some form of input/output specification. If the user provides a formal description of the expected results, the correctness of each test case can be decided automatically by determining whether the output specification is satisfied. This would reduce the cost of testing tremendously, and these new testing techniques would gain acceptance more quickly since the tedious task of verifying test data would be eliminated. In addition, any extra information supplied by the user might be useful in specifying special processing requirements which would indicate the existence of a possible missing path error.

The domain test strategy is currently being implemented, and will be utilized as an experimental facility for subsequent research. Experiments should indicate what sort of programming errors are most difficult to detect, and should yield extensive dynamic testing data. A most important contribution would be to indicate both programming language constructs and programming techniques which are easier to test, and thus would produce more reliable software.
REFERENCES

001 BOYER R S, ELSFAS B and LEVITT K N
 SELECT — a formal system for testing and debugging programs by symbolic execution
 Proc '75 Int'l Conf on Reliable Software pp 234-245 Los Angeles CA (April 1975)

002 CLARKE L A
 A system to generate test data and symbolically execute programs

003 COHEN E I and WHITE L J
 A finite domain-testing strategy for computer program testing
 Tech Rep 77-13 Computer and Information Sci Res Centre The Ohio State Univ (Aug 1977)

004 COHEN E I
 A finite domain-testing strategy for computer program testing
 PhD Dissertation The Ohio State Univ (June 1978)

005 ELSHOFF J L
 A numerical profile of commercial PL/I programs
 Rep no GMR-1927 Comp Sci Dept General Motors Res Labs Warren MI (Sept 1975)

006 ELSHOFF J L
 An analysis of some commercial PL/I programs
 IEEE Trans on Software Eng vol SE-2 no 2 pp 113-120 (June 1976)

007 GOODENOUGH J B and GERHART S L
 Toward a theory of test data selection
 IEEE Trans on Software Eng vol SE-1 no 2 pp 156-173 (June 1975)

008 HOWDEN W E
 Methodology for the generation of program test data
 IEEE Trans on Computers vol C-24 no 5 pp 554-560 (May 1975)

009 HOWDEN W E
 Reliability of the path analysis testing strategy

010 KNUCH D E
 An empirical study of FORTRAN programs
 SP&E vol 1 no 2 pp 105-113 (April/June 1971)

011 RAMANNOOTRY C V, HO S F and CHEN W T
 On the automated generation of program test data
 IEEE Trans on Software Eng vol SE-2 no 4 pp 293-300 (Dec 1976)

012 WHITE L J, TENG F C, Kuo H C and COLEMAN D W
 An error analysis of the domain-testing strategy
 Tech Rep no 78-2 Computer and Information Sci Res Centre The Ohio State Univ (Aug 1978)
APPENDIX C

414

Discussion

A DISCUSSION OF
A SURVEY OF PROGRAM TESTING ISSUES

Lee J. White, Edward I Cohen, and B Chandrasekaran
Ohio State University, Columbus

In the survey paper on program testing, John Goodenough identifies a number of different possible objectives for testing. He indicates that with each objective, the approach to testing should be different. The most important point emphasized is the need for more research and understanding of the basic testing phenomenon in order that better techniques can be designed based upon this underlying theory. His survey does not include some recent theoretical results which give cause for optimism that a theoretically sound program testing methodology will emerge. We would like to bring his survey up to date by giving a brief account of results which are presented in greater detail in [1,2].

The results to be reported have as their objective program correctness, referring to the Goodenough paper. The construction and correctness of a program specification is a difficult research problem in its own right (as emphasized in this conference). Thus, the paradigm for this research will assume that the program structure is specified, that test points are to be selected to test the program, and that an "oracle" (or user) will be available to indicate the correctness or incorrectness of input-output pairs. Furthermore, the approach will be that of path-oriented correctness testing.

A number of authors (e.g., Howden [3]) have identified a domain error as an error in the predicate of a program path in that a specific input will follow the wrong path due to an error in the control flow of the program. The research reported in this discussion will obtain a finite (and reasonably small) number of test points to completely test for a domain error along a specific program path. The result will be stated and suitably qualified below.

The term "domain error" arises from the fact that the set of distinct paths in the program partition the input space into regions or "domains." Corresponding to each feasible path there are one or more domains. The boundaries of each domain are determined by predicates in the control statements along that path. Recognition that these boundaries are typically linear in the input variables has allowed other investigators (Clarke [4] and Boyer et al. [5]) to utilize linear programming techniques to obtain test points. A survey of fifty typical data processing programs has shown that virtually all of the predicates are linear for this class of programs. Although our original work on domain testing assumed that the predicates were linear in the input variables, we have since shown [2] that the technique extends to certain classes of nonlinear predicates.
Next consider several problems encountered by any type of testing, but in particular by the proposed domain testing approach. The first problem might be termed "coincidental correctness", where although a test point is following the wrong program path due to a control error, it coincidentally yields the correct output. This problem will prove insurmountable for any test point selection strategy, and the only remedy is redundant test point selection. Thus in the domain testing result, we shall assume coincidental correctness does not occur, as it should occur very rarely for practical programs. Another problem is that of a missing path error (also called a subcase error by Howden [3]), in which a required predicate is missing from the program altogether. This becomes especially acute if the missing predicate is of an equality type along the path, for then the reduction in dimensionality of the domain makes it virtually impossible to detect the error by test point selection. No test point selection strategy can overcome problems of missing path errors of reduced dimensionality, although the proposed domain testing technique can be modified to detect other types of missing path errors.

The domain testing result can now be stated.

Theorem. Consider a computer program with linear predicates in terms of the input variables. Then assuming no coincidental correctness of any test points, and except for missing path errors, a convex polytope R in the input space corresponding to a specific path in the program can be tested by a finite number of points as to whether a predicate error in the program has shifted the boundaries of R. Moreover, the number of test points required is no more than PN, where N is the dimensionality of the input space and P is the number of predicates along the path.

The above theorem is rather significant. In the area of program testing, even excluding coincidental correctness and missing path errors, in no other situation do we have results which give assurance of complete testing for any sort of error with a finite number of test points. Furthermore, the test points selected for this purpose will also partially test the program for other types of errors, viz., computation errors, as identified by Howden [3]. Only coincidental correctness of the computational function along the path would mislead one about the information provided by such points.

The technique has also been extended to nonlinear predicates. Just as in the linear case described above, the assumption here is that if a predicate is found to be in error (thus leading to a domain change), the intended or "correct" predicate is also in the same nonlinear class. Again this is not an unreasonable assumption in most practical environments. However, a larger number of test points would have to be selected, depending upon the form of nonlinearity.
This research should provide a basis for path-oriented testing, but a number of serious practical problems remain which must be addressed in order to design a practical test generation system. Path selection is still a difficult problem, and an extension of the work of Howden [6] is needed. Iteration loops present a proliferation of unnecessary paths for domain testing; here is where a combination of verification and testing techniques may provide a more practical and yet solidly based approach. The successful resolution of these and other problems by rigorous research should provide substantial testing guidance for the design of large software systems.

References

APPENDIX D

From Computer, March, 1979

Test tools: usefulness must extend to everyday programming environment

B. Chandrasekaran
Ohio State University

Current software testing tools are designed to help the testing process by highlighting different sources of error in different ways. Each tool implements a particular theory or approach believed best suited for uncovering certain types or patterns of errors. Increasing evidence indicates that no single tool will suffice to test a complex program. A well-integrated collection of tools, with each tool appropriate for certain error types, will be needed for any serious testing facility. This raises questions of research interest—which combination of tools provides the best coverage across types of errors? What are the criteria for integrating the tools (e.g., some tools might provide information which may be used as input to others)? How do we evaluate an integrated facility as opposed to evaluating individual tools?

An important consideration in the usefulness of a tool is the degree to which it may be incorporated in an average programmer's environment. Tools for data flow analysis, for instance, are easily incorporated in such an environment, as are some execution monitoring instrumentation facilities. Tools are also language-dependent, i.e., most tools are designed for handling programs written in one language. Modifications will be needed to adapt them to other languages. But more important is the relation between tools and language constructs. For instance, while current data flow analysis techniques can handle most single-process programs, there is a need for new analytic techniques for dealing with concurrent-process programs. The synchronization constructs that characterize the latter introduce complex data and control flow possibilities.

It is useful to categorize currently available software tools into three classes—static, dynamic, and interpretive. Static analysis tools work on the structure of the program and do not involve execution. Facilities for data flow analysis and for gathering information such as cross-reference maps are examples of this type of tool. Program verification is also a static analysis technique. Examples of dynamic analysis tools include path generation routines and instrumentation for execution monitoring. The results of dynamic analysis are based on the performance of the program as it is executed with some inputs. On the other hand, symbolic execution—an interpretive technique—executes the program, but not for real inputs. Instead input is in symbolic form and the execution computes symbolic values for program and output variables.

Workshop presentations. One session was specifically devoted to test tools, while other workshop papers contained some discussion of experiences with various test tools.

A. Amschler from Karlsruhe, West Germany (co-authors were L. Gmeiner and U. Voges), presented her group's work in the design and implementation of an integrated testing system called SADAT (presumably an acronym for Static And Dynamic Analysis and Testing) for testing Fortran programs that have been compiled error-free. The main modules of SADAT are static analyzer, dynamic analyzer, test case generator, and path predicate calculator. The static analyzer produces several tables based on a simplified lexical analysis of the program source code and also generates a reduced program graph. Several types of errors can be detected at this stage, such as dead code, undeclared or unused labels and variables, and jumps into a loop. In addition, the output of the static analysis phase serves as a data base for later analysis.

SADAT's dynamic analysis documents the execution of program test runs. Basically this consists of instrumentation for the execution count of various branch points. A table is printed giving the relative and absolute numbers of executions and identifying those paths not executed during the test runs. This dynamic analysis is useful for identification of dead code, determining correctness of loop iterations, and optimization. The test generation subsystem automatically generates a subset of paths with almost complete coverage (i.e., each arc and each node is represented in at least one path). In addition to the automatically generated paths, the user can specify a path as a sequence of statements.

The final module, not yet fully implemented, calculates path predicates by symbolic evaluation. The system is written in PL/1 and runs on an IBM 370/168. There is a command language available for selective execution of parts of SADAT.

SADAT appears to be a well-engineered, habitable testing facility, with different tools integrated in a complementary manner.

L. Clarke presented the work of her group at the University of Massachusetts (co-workers are Neal Ogden and Daryl Winters) in the design of a system called Atest, to be used for symbolic execution of Fortran programs in the context of top-down testing. The Atest interface description language AID enables the user to describe both predicated and presumed relationships among program variables. This feature is important in top-down testing (or more generally, in testing using stubs for modules not yet written), since the specifications of the modules can be stated by means of AID commands, and symbolic execution can proceed as if the module is written and connected. Additional execution constructs for the easy description of conditional procedure computations in early versions of a program. Fortran and AID can be freely mixed so that a module can be executed normally or symbolically. Atest also supports symbolic I/O. Using these features, the developer can produce successive refinements with progressively less AID and more Fortran code. For the class of applications where symbolic execution is useful, the Atest system can bring program creation and testing closer together and help realize the promise of stepwise refinement.

R. N. Taylor of Boeing Computer Services and L. J. Osterweil of the University of Colorado reported on their work in developing static and dynamic testing techniques for concurrent-process programs. This work was performed in connection with NASA/Langley's Must program, which addresses the production and testing of concurrent-process flight software.

Dynamic testing of single-process programs often includes generation of histograms. These describe a program's execution history by displaying counts of statement and branch point executions. Taylor and Osterweil proposed the notion of a process-state histogram as an extension of this technique for concurrent-process programs. Each time an event changes takes place, a process state snapshot is made indicating the state of different processes. A series of such
snapshots is used to compute the process-state histogram. Automatic monitoring of system deadlock errors, which can occur in concurrent-process programs, can be incorporated by using several available algorithms. Dynamic assertion verification can be extended to concurrent-process software and is especially valuable to assure that scheduling and timing constraints are as designed.

Static analysis is often effective in weeding out errors that are costlier to detect by dynamic testing techniques. Extension of data flow analysis to concurrent-process software requires more complex control flow models. The PAF—process augmented flowgraph—is a concept designed to capture the data and control flows in concurrent-process programs with schedule and lvar statements as synchronization constructs. The PAF and associated algorithms are capable of detecting errors due to shared data items being referenced by one process before any other process defines them. In addition, certain anomalies in the PAF indicate the occurrence of poorly coordinated processes. While PAFs are useful for a class of concurrent constructs, further work remains to be done for a broader class of synchronization constructs, such as open, close, and signal statements.

M. Holthouse and M. Hatch of Analytic Sciences Corporation discussed their experience with a set of tools including ones for static analysis, assertion processing, and test data generation for a path coverage based approach. While their experience indicated substantial benefits from the interactive use of these tools, they also discovered some potential problems. Sometimes protection schemes are devised to make each module “robust” against its environment. During integration, the protection schemes of two modules may overlap, causing some protection branches in the low-level module to become unreachable. Another issue is large system testing. Each module can be tested separately for high coverage, but when they are integrated discontinuities in overall system flow may be difficult to detect. For loop testing Holthouse and Hatch suggested that each loop be tested not only for its looping state, but also for a program flow not passing through the loop at all. While the testing tools they discussed cannot detect missing paths, Holthouse and Hatch pointed out that the close software inspection the approach forced them to make did in fact lead to the discovery of several errors of this type.

One of the accomplishments of the workshop was the establishment of a mechanism for the exchange of information on implemented test tools. Dr. Selden Stewart of the National Bureau of Standards has consented to be the coordinator of this activity. If you are interested, contact him at the National Bureau of Standards, Tech A-265, Washington, DC 20234, (301) 921-3465. He will be preparing a questionnaire to obtain information about available tools, their language and machine constraints, documentation, and conditions of release.

With respect to future work in tool development, there is a real need for systematic evaluation of tools both in the context of testing programs in practical environments and in the context of carefully controlled experimental situations. This will yield insights about the relationship between error types, tools, and types of tasks. Some other aspects requiring attention include development of tools for a larger class of concurrent-process programs, incorporation of tools into the average programmer’s environment, and human factors in tool design. The last aspect is important because it is unlikely that software testing will soon become entirely automated. The human tester will continue to play a decisive interactive role.

Acknowledgment

I thank Dr. Lori Clark and Dr. Lee White for discussions helpful to me in preparing this report.

Test data generation: three approaches prevail

D. W. Fife
National Bureau of Standards

Test data generation could be defined simply as a collection of techniques for creating valid input data, considered in terms of feasibility, economy, and efficiency. But it is more important to discuss test data generation in the overall context of testing practice. Testing practice includes the testing methodology and tools that give the basis for test data generation. It also involves many other issues that affect evaluation and acceptance of data generation methods, such as testing administration, documentation, and auditing. For example, it is essential to be able to distinguish test cases and to accurately describe them relative to program specifications and testing goals. Test cases must be repeatable, particularly for real-time systems. Testing must be auditable and documented so that the software user or customer is assured that the proper tests have been applied and in the proper manner.

For the purpose of discussing test data generation, we can define testing as the execution of a program on finite input in order to infer conformance to specifications. Specifications agreed upon by user and developer are usually incomplete or else lack rigor and precision in many aspects. The user or the tester may need to augment or refine the specification so that the result of any test is precisely determined. The tester’s problem then is to use (possibly augmented) specifications along with accepted testing principles and his own knowledge to derive appropriate test cases.

Many workshop presentations touched on test data generation problems. For example, the research on program mutation presented by Fred Sayward of Yale and others aims to evaluate a programmer’s selected test cases, but does not define or prescribe how the test data is produced. Many tools such as SADAT developed by Yoges, Amachier, and Gmeiner of Karlsruhe, West Germany) include computer analysis of program predicates to help the programmer select test data to exercise all logical paths. But solutions of the predicates that would specify the needed data are not readily obtainable (and are undecidable in the general case), so the programmer must make his own analysis and frequently must choose test data by trial and error.

The software testing field still lacks one technique, or a set of them, that would be widely accepted as sufficiently effective to be a conclusive testing method. It is commonly believed that a minimum requirement is to test every program statement and branch at least once. This criterion is often marginal but can be supplemented by other criteria as workshop participant Mark Holthouse of Analytic Sciences Corporation described. As a proposed minimum testing standard, this warrants a more extensive empirical evaluation. Sometimes, it leads to many more test cases than may be economically acceptable. Also, it is