INTERACTIVE DIGITAL IMAGE PROCESSING INVESTIGATION

W. C. Rice
J. S. Shipman
R. J. Spieler

International Business Machines Corporation
Federal Systems Division
18100 Frederick Pike
Gaithersburg, Maryland 20760

29 December 1978

Final Report

Prepared For

U. S. Army Engineering Topographic Laboratories
Fort Belvoir, Virginia 22060

Approved For Public Release
Distribution Unlimited
Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.
**Report Documentation Page**

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Govt Accession No.</th>
<th>Recipient's Catalog Number</th>
<th>Type of Report &amp; Period Covered</th>
<th>Performing Org. Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETL 0172</td>
<td></td>
<td></td>
<td>Interactive Digital Image Processing Investigation, Final Report</td>
<td>DAAK70-77-C-0166</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Contract or Grant Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. C. Rice, J. S. Shipman, R. J. Spieler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name and Address</th>
<th>Program Element, Project, Task Area &amp; Work Unit Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Business Machines Corporation Federal Systems Division/18100 Frederick Pike Gaithersburg, Maryland 20760</td>
<td>Final report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlling Office Name and Address</th>
<th>Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060</td>
<td>29 December 1978</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Agency Name and Address</th>
<th>Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Classification (of this report)</th>
<th>Distribution Statement (of this Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution Statement (of the abstract entered in Block 20, if different from Report)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Key Words (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote sensing, pattern recognition, feature extraction, digital image processing, photogrammetry, classification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
</table>

174 950
ABSTRACT

Engineer Topographic Laboratories (ETL) Report No. 0172
IBM/FSD
Interactive Digital Image Processing Investigation
December 1979 (Unclassified)

The objective of this investigation was to develop an interactive software package of general utility that can be used to support experiments and evaluate a class of interactive/automatic digital techniques whose goal is feature extraction/exploitation. The initial task was to survey and select techniques, algorithms and supporting functions that were to be included in the system. A maximum likelihood supervised classification algorithm, and an unsupervised classification (clustering) method, based on the ISODATA algorithm were selected. These and the associated support and evaluation functions were developed and implemented on the ETL Digital Image Analysis Laboratory (DIAL). Testing of the system was accomplished by performing experiments on areas for which both multi-dimensional images and ground truth were available. Analysis of experimental results validated the system. These experimental results were in good agreement with ground truth and further, supervised and unsupervised classification results were in substantial agreement. This report describes the data processing algorithms/techniques, software system, user guide information, and the experiment procedures used along with their results.
PREFACE

This is the final report for the Interactive Digital Image Processing Investigation Department of the Army contract number DAAK 70-77-C-0166. The purpose of the investigation was to survey algorithms for extracting features from multi-dimensional digital imagery; to select the most promising algorithms; and to implement them on the DIAL system, where algorithm performance was calculated.

The report was prepared by W. C. Rice, R. J. Spieler, and J. S. Shipman. We would like to thank the following people at ETL for their help during the course of this work:

Samuel Barr
Dave Jenkins
Bob Matos
John Moses (DBA Systems, Inc.)
Dr. Bryce Schrock
James Stilwell
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Report Organization</td>
<td>1-3</td>
</tr>
<tr>
<td>2 FEATURE EXTRACTION OVERVIEW</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Overall Structure</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 General User Information</td>
<td>2-2</td>
</tr>
<tr>
<td>3 PROCESSING MODULE DESCRIPTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 INTERL Processing Module</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.1 INTERL User Information</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.2 INTERL Engineering Description</td>
<td>3-5</td>
</tr>
<tr>
<td>3.1.3 INTERL Control Flow Processing Steps</td>
<td>3-7</td>
</tr>
<tr>
<td>3.1.4 INTERL Subroutine Description</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2 FIELDEF Processing Module</td>
<td>3-12</td>
</tr>
<tr>
<td>3.2.1 User Information</td>
<td>3-12</td>
</tr>
<tr>
<td>3.2.2 Engineering Description</td>
<td>3-26</td>
</tr>
<tr>
<td>3.2.3 FIELDEF PDL</td>
<td>3-32</td>
</tr>
<tr>
<td>3.2.4 FIELDEF Subroutine Description</td>
<td>3-36</td>
</tr>
<tr>
<td>3.3 CLASTAT</td>
<td>3-49</td>
</tr>
<tr>
<td>3.3.1 User Information</td>
<td>3-49</td>
</tr>
<tr>
<td>3.3.2 Engineering Description</td>
<td>3-50</td>
</tr>
<tr>
<td>3.3.3 CLASTAT PDL</td>
<td>3-59</td>
</tr>
<tr>
<td>3.3.4 Subroutine Description</td>
<td>3-62</td>
</tr>
<tr>
<td>3.4 CLUSTER Processing Module</td>
<td>3-64</td>
</tr>
<tr>
<td>3.4.1 User Information</td>
<td>3-64</td>
</tr>
<tr>
<td>3.4.2 Engineering Description</td>
<td>3-70</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.4.3</td>
<td>CLUSTER PDL 3-91</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Subroutine Description 3-93</td>
</tr>
<tr>
<td>3.5</td>
<td>MAXLIK Processing Module 3-99</td>
</tr>
<tr>
<td>3.5.1</td>
<td>MAXLIK User Information 3-99</td>
</tr>
<tr>
<td>3.5.2</td>
<td>MAXLIK Engineering Description 3-113</td>
</tr>
<tr>
<td>3.5.3</td>
<td>MAXLIK Control Flow 3-115</td>
</tr>
<tr>
<td>3.5.4</td>
<td>MAXLIK Subroutine Description 3-117</td>
</tr>
<tr>
<td>4</td>
<td>EXPERIMENT RESULTS 4-1</td>
</tr>
<tr>
<td>4.1</td>
<td>Overview 4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Hand County Data Set 4-1</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Supervised Classification 4-2</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Unsupervised Classification 4-12</td>
</tr>
<tr>
<td>4.3</td>
<td>Synthetic Data Set 4-14</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Supervised Classification 4-14</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Unsupervised Classification 4-15</td>
</tr>
<tr>
<td>5</td>
<td>EXPERIMENT CONCLUSIONS AND RECOMMENDATIONS 5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Conclusions 5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Recommendations 5-2</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure                     Page
2.1-1  Overall Structure of Feature Extraction Package  2-3
2.2-1  Typical Classification Sequence                   2-4
3.1-1  INTERL Options Menu                                3-2
3.1-2  List of Channels                                   3-4
3.1-3  Image Channel Correspondence                       3-4
3.2-1  FIELDEF Option Menu                                3-13
3.2-2  FIELDEF Display Selection Menu                    3-14
3.2-3  FIELDEF Image Type Menu                            3-16
3.2-4  FIELDEF Red Image Select Menu                      3-17
3.2-5  FIELDEF Field/Class-File Menu                      3-18
3.2-6  FIELDEF Field/Class-Data-File Menu                 3-19
3.2-7  FIELDEF Field Definition Menu                      3-20
3.2-8  FIELDEF Image Function Tables Modification Menu   3-21
3.2-9  FIELDEF Area Outline Menu                          3-22
3.2-10 FIELDEF Subimage Expansion Menu                    3-23
3.2-11 FIELDEF Field Type Selection Menu                 3-24
3.2-12 FIELDEF Areal Field Creation Menu                 3-25
3.2-13 FIELDEF Field Record Menu                          3-27
3.2-14 FIELDEF Linear Field Creation Menu                3-28
3.2-15 FIELDEF Field Modification Menu                   3-29
3.2-16 FIELDEF Vertex Modification Menu                  3-30
3.3-1  CLASTAT Field/Class-Data-File Select Menu          3-51
3.3-2  CLASTAT Principle Options Menu                    3-52
3.3-3  CLASTAT Field Selection Menu                      3-53
3.3-4  CLASTAT Class Selection Menu                      3-54
3.3-5  Example of Class Statistics Display                3-55
3.3-6  Bhattacharyya Distance Between Field1 and Field5   3-56
3.4-1  CLUSTER Composite Scene and Field/Class-Data-File Selection Menu  3-67
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4-2</td>
<td>Display of Selected Fields Data</td>
</tr>
<tr>
<td>3.4-3</td>
<td>CLUSTER Initial Parameters Menu</td>
</tr>
<tr>
<td>3.4-4</td>
<td>CLUSTER Starting Vectors Display</td>
</tr>
<tr>
<td>3.4-5</td>
<td>CLUSTER Interim Statistics Display, First Pass</td>
</tr>
<tr>
<td>3.4-6</td>
<td>CLUSTER Interim Statistics Display, Second Pass</td>
</tr>
<tr>
<td>3.4-7</td>
<td>CLUSTER Interim Statistics, Third Pass</td>
</tr>
<tr>
<td>3.4-8a</td>
<td>CLUSTER Interim Statistics, Fourth Pass</td>
</tr>
<tr>
<td>3.4-8b</td>
<td>CLUSTER Interim Statistics, Fourth Pass (cont'd.)</td>
</tr>
<tr>
<td>3.4-9</td>
<td>CLUSTER Interim Statistics, Fifth Pass</td>
</tr>
<tr>
<td>3.4-10a</td>
<td>CLUSTER Interim Statistics, Sixth Pass</td>
</tr>
<tr>
<td>3.4-10b</td>
<td>CLUSTER Interim Statistics, Sixth Pass (cont'd.)</td>
</tr>
<tr>
<td>3.4-11</td>
<td>CLUSTER Population Statistics Before and After Eliminating Small Clusters</td>
</tr>
<tr>
<td>3.4-12a</td>
<td>CLUSTER Summary Statistics</td>
</tr>
<tr>
<td>3.4-12b</td>
<td>CLUSTER Summary Statistics (cont'd.)</td>
</tr>
<tr>
<td>3.4-13</td>
<td>CLUSTER Field Statistics</td>
</tr>
<tr>
<td>3.5-1</td>
<td>Field Description</td>
</tr>
<tr>
<td>3.5-2</td>
<td>Class Prescription</td>
</tr>
<tr>
<td>3.5-3</td>
<td>Class Pseudocolor</td>
</tr>
<tr>
<td>3.5-4</td>
<td>Processing Parameters</td>
</tr>
<tr>
<td>3.5-5</td>
<td>Results Options</td>
</tr>
<tr>
<td>3.5-6</td>
<td>MLC Subimage Results</td>
</tr>
<tr>
<td>3.5-7</td>
<td>Thresholding</td>
</tr>
<tr>
<td>3.5-8</td>
<td>Field Results</td>
</tr>
<tr>
<td>3.5-9</td>
<td>Subarea Map Results</td>
</tr>
<tr>
<td>4.2-1</td>
<td>Sample Ground Truth Inventory Page</td>
</tr>
<tr>
<td>4.2-2</td>
<td>Ground Truth Overlay</td>
</tr>
<tr>
<td>4.2-3a</td>
<td>Hand County Training Fields</td>
</tr>
<tr>
<td>4.2-3b</td>
<td>Hand County Training Fields (cont'd.)</td>
</tr>
<tr>
<td>4.2-4a</td>
<td>Hand County Classes</td>
</tr>
</tbody>
</table>
Figure

4.2-4b Hand County Classes (cont'd.) 4-8
4.2-4c Hand County Classes (cont'd.) 4-9
4.3-1a Synthetic Data Set, Band 3 4-16
4.3-1b Thresholded Class Map 4-17
4.3-2 Initial Clustering Parameters for Synthetic Data Set 4-18
4.3-3a Interim Statistics for Synthetic Data Set, Second Pass 4-19
4.3-3b Interim Statistics for Synthetic Data Set, Third Pass 4-20
4.3-4 Cluster Map for SYNDATA 4-23
4.3-5a Cluster Map Results, Synthetic Data 4-24
4.3-5b Classification Map Results, Synthetic Data 4-25
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-1</td>
<td>Preliminary Classification Results</td>
</tr>
<tr>
<td>4.2-2</td>
<td>Results of Second Classification Run</td>
</tr>
<tr>
<td>4.2-3</td>
<td>Assignment of Classes to Clusters</td>
</tr>
<tr>
<td>4.2-4</td>
<td>Cluster and Training Field Means</td>
</tr>
<tr>
<td>4.3-5</td>
<td>Assignment of Training Field Pixels</td>
</tr>
<tr>
<td>4.3-6</td>
<td>Cluster Statistics Comparison</td>
</tr>
<tr>
<td>4.3-7</td>
<td>Field Statistics Comparison</td>
</tr>
</tbody>
</table>
Section 1
INTRODUCTION

1.1 BACKGROUND

The Digital Image Analysis Laboratory (DIAL) at the Engineer Topographic Laboratories is one of the most advanced interactive digital image processing facilities in the country. The computer and display subsystems in combination with the large repertory of applications programs enable the user to apply interactively a variety of digital image processing techniques to problems in photointerpretation, stereo compilation, and automatic cartography. A complete range of display operations and many digital image processing techniques such as image rotation and warping are available as callable routines. Several feature extraction algorithms have been implemented to take advantage of the throughput capabilities of the STARAN associative processor. These capabilities include differentiation, mask comparison (which yields information about the direction of edges), and convolution. However, up until the time the effort described in this report was initiated, none of the feature extraction algorithms typified by the maximum likelihood classification method used in NASA's Large Area Crop Identification Experiment (LACIE) was available to DIAL users. It was the purpose of this effort to select several proven feature extraction algorithms of this type from those which have been documented, implement those chosen as DIAL callable program modules (PMs), and test and validate the PMs with multi-channel digital images commonly processed by these algorithms.
Two algorithms were selected for implementation, a supervised classification scheme based on the maximum likelihood approach to pattern recognition, and an unsupervised clustering scheme based on the ISODATA algorithm developed by Ball and Hall at Stanford Research Institute. Supervised classification requires some apriori knowledge of the image data to be classified, known as "ground truth" in the LACIE application, while unsupervised classification does not. On the other hand, supervised classification is usually computationally faster and more accurate than unsupervised classification. The algorithms chosen are, therefore, complementary. In addition, they have been successfully applied to several types of digital imagery, not just Landsat agricultural scenes, and have been implemented in a number of digital image processing facilities of varying hardware configurations. The two algorithms are then natural choices for the DIAL application.

The classification techniques require as supporting capabilities the building of composite (multi-channel) images from single channel source images, the definition of fields in the image to be used as training fields, classes, and fields to be classified, the computation of class statistics (signatures), and the display of class maps and the generation of classification reports. These capabilities are implemented in five PMs callable by DIAL users, INTERL, FIELDEF, CLASTAT, MAXLIK, and CLUSTER which communicate with each other through disk files. The PMs were tested and the algorithms validated on two sets of image data and are now available to DIAL users for application to problems in feature extraction.
1.2 REPORT ORGANIZATION

Section 1 contains background information and the report organization.

Section 2 contains a review of the feature extraction package, which consists of the five PMs INTERL, FIELDEF, CLASTAT, MAXLIK, and CLUSTER, directed toward the user.

Section 3 includes a detailed user's guide to the package, including copies of the menus encountered by the user, and a documentation of the PMs which make up the package. The documentation is in high-level program design language (PDL) for the major programs, with conventional descriptions of the principal subroutines called. Copies of complete commented computer listings have been deposited with J. E. Stilwell of USAETL.

Section 4 discusses the results of the experimentation. The data sets are described, the principal steps in the classification procedure explained, and the classification results interpreted. Copies of the displayed reports and photographs of a set of the class maps are included.

Section 5 presents the conclusions of the investigation, and recommendations for further work to extend and enhance the DIAL feature extraction capability provided by the present package.
Section 2
FEATURE EXTRACTION OVERVIEW

This section presents an overview of the Feature Extraction capability of DIAL. In the overview are discussed the overall structure and general user information. It is assumed that the reader has some familiarity with DIAL.

2.1 OVERALL STRUCTURE

The feature extraction package described in this report, which adds to the DIAL system the capability of performing both supervised and unsupervised classification, consists of five interrelated processing modules (PMs). The PMs communicate thru the use of image and parameter data sets. The five PMs are

INTERL - Builds a composite image of up to 24 channels in the band-interleaved-by-pixel format from images resident on disk, and stores the resulting image on disk.

FIELDDEF - Constructs a parameter data set (field/class) of fields associated with a designated composite image. The fields can be closed polygons or connected linear segments of up to twelve sides or segments. FIELDDEF includes facilities for displaying a composite image; designating a portion of that image for magnification; and displaying the fields defined superimposed on the composite image.
CLASTAT - Computes the channel means and covariance matrix for previously defined fields to form classes, as well as the Bhattacharyya distance between classes (a measure of their separation).

CLUSTER - Performs unsupervised classification (clustering) of a previously defined composite image according to the ISODATA algorithm. Included are facilities for displaying a channel of the image to be clustered, and the resulting cluster map.

MAXLIK - Performs supervised classification according to the maximum likelihood or Bayes' algorithms.

The interfaces and data sets used by the PMs are shown in Figure 2.1-1. To take advantage of the similarity of functions the PMs perform, a significant set of common subroutines was developed and is used by all PMs.

2.2 GENERAL USER INFORMATION

A typical classification sequence is given in Figure 2.2-1. Clustering and maximum likelihood classification are done on multichannel (composite) images, so that the first step is the construction of an appropriate composite image consisting of the channels to be used. For example, if it were decided that bands 5, 6, and 7 of a four-band LANDSAT MSS image were to be classified, a three channel composite image would be built using the INTERL PM. Once the composite image is made it can be used until it is purged and does not need to be recreated before each classification run.
Figure 2.1-1  Overall Structure of Feature Extraction Package
Figure 2.2-1 Typical Classification Sequence
Next comes field definition (FIELDDEF). The fields defined there serve two purposes. Some will be used to define the area to be classified or clustered, while others will become classes (training fields) for which statistics will be computed in CLASTAT. Further, both the MAXLIK and CLUSTER PMs perform on the minimum rectangle encompassing all the fields selected.

If supervised classification (MAXLIK) is to be performed CLASTAT would be called next to compute class signatures (the use of classes is optional in unsupervised classification). Finally MAXLIK or CLUSTER would be initiated. In many applications it is advantageous to classify a given image by both supervised and unsupervised algorithms. In such cases MAXLIK and CLUSTER would be called one after the other and both results would be analyzed. This process in many cases leads to further runs.

In general, each PM is self-explanatory through the menu sequence, which requests the user to make certain choices and to enter certain parameters. If a user has some knowledge of the principles of pattern recognition he should have no difficulty using this package for his application.
Section 3
PROCESSING MODULE DESCRIPTION

3.1 INTERL PROCESSING MODULE

INTERL is the processing module by which single channel DIAL images are composed into multi-channel, band-interleaved-by-pixel, DIAL images. The image/scene that results from the process will be called a composite image; this definition is used throughout the report. Composite images can have up to 24 channels, and all the channels are assumed to be registered.

3.1.1 INTERL User Information

Upon entering the INTERL processing module (PM) the user is asked if a new composite image is to be created or if channels are to be added to an existing composite image. If a new composite image is to be created, then requests are made to

- name the image
- enter an image specification, and
- enter the pixel size (number of bits per pixel) which can be different from that of the input images.

When using an existing composite image, the user enters the image name or a carriage return and selects from the library. Upon completing the above the menu given in Figure 3.1-1 is displayed and the processing is controlled by the option selected. This menu is redisplayed upon completion of processing for the selected option. The exception is option
INTERL

12/04/78 13:23:06

GENERATES A COMPOSITE IMAGE

AVAILABLE OPTIONS ARE

1 LIST OF COMPOSITE IMAGE CHANNELS
2 LIST OF CHANNEL IMAGE CORRESPONDENCE
3 ADD IMAGE TO COMPOSITE
4 DELETE IMAGE FROM COMPOSITE
5 BUILD COMPOSITE IMAGE
6 TERMINATE PH

ENTER OPTION NUMBER 3

Figure 3.1-1 INTERL Options Menu
six which terminates processing.

1. List of Composite Image Channels
   This option displays on the Tektronix a list of all the channels associated with the composite image. "Associated" means that if the next option selected is Build Composite Image, then the composite would have the channels displayed. The reason "associated" is used is that it is possible to delete or add images to this composite before a build is performed. See Figure 3.1-2 for an example of the display this option generates. It states that composite image ERIMSYN has 6 channels; the names and sequence are as given in the figure.

2. List of Channel Image Correspondence
   Like Option 1, this option gives the user information about the composite image to be built. It differs in that a user may add composite images to the composite being created. Under this situation, the user needs to know the channel/composite image correspondence because when composite images are added or deleted all channels of the composite are included in the operation. Figure 3.1-3 gives an example of the display.

3. Add Image to Composite
   This option just requests an image name to be added to the composite. This can be accomplished by either typing in a name or hitting carriage control (CR) and selecting from the library. A maximum of 8 images can be accumulated before it is necessary to either delete images or build a composite. This restriction is due to the number of permanent files that can be attached.
Figure 3.1-2 List of Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ERIMA</td>
</tr>
<tr>
<td>2</td>
<td>ERIMB</td>
</tr>
<tr>
<td>3</td>
<td>ERIMC</td>
</tr>
<tr>
<td>4</td>
<td>ERIMD</td>
</tr>
<tr>
<td>5</td>
<td>ERIME</td>
</tr>
<tr>
<td>6</td>
<td>ERIMF</td>
</tr>
</tbody>
</table>

To select another option enter (CR)

Figure 3.1-3 Image Channel Correspondence
4. Delete Image From Composite
After this option is selected a numbered list of the images associated with the primary composite are displayed on the Tektronix, and the user enters the number of the image (single channel or multi-channel) to be deleted. Again, if one is deleting a composite image from the primary composite, all channels of that image are deleted.

5. Build Composite Image
This option is selected when the user is satisfied with the set of images making up the composite and their sequence. At this time, the actual building of the label and writing the image to disk takes place. Because this process can take a considerable amount of time, a status message is displayed on the Tektronix. Also, the composite image is closed and not cataloged which means that the user must save the image via DIAL routines or it will be deleted at LOGOFF.

3.1.2 INTERL Engineering Description
INTERL's main function is the generation of a composite image in a band-interleaved-by-pixel format. Each record contains one packed image line of data. In this format the unpacked line contains n channel values from pixel 1, followed by n channel values for pixel 2, etc., where n is the number of channels in the composite image.

As an example the buffer containing an unpacked record of a four channel by M pixel composite image would be as given below.
The maximum number of channels for a composite is 24 and the actual number of channels is stored in word 365 of the DIAL label. The label contains standard DIAL type information; also there is a photogrammetric parameters record that contains the channels and images making up the composite. The number of 60-bit words in a record is

\[ \text{NWDS} = \frac{(\text{NCHAN} \times \text{NPIX} \times \text{NBIT} + 59)}{6} \]

where:

- \( \text{NCHAN} \) = Number of channels
- \( \text{NPIX} \) = Number of pixels per image line
- \( \text{NBIT} \) = Number of bits/channel
- \( \text{NWDS} \) = Number of 60-bit words in a record.
Another important consideration is that all the images making up the composite must be registered.

3.1.3 INTERL Control Flow Processing Steps

The control flow of INTERL is determined by the options selected by the user. There are two option menus, the first of which is only displayed once, and the second is displayed after each selected option completes its function or until the user terminates the PM. The control flow/processing steps are given below along with the subroutines used. DIAL subroutines and system routines are not identified.

<table>
<thead>
<tr>
<th>Control Flow</th>
<th>Subroutines Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initialize processing.</td>
<td></td>
</tr>
<tr>
<td>2. Display first option menu</td>
<td></td>
</tr>
<tr>
<td>A. Create a new composite image</td>
<td>FTEKSC</td>
</tr>
<tr>
<td>B. Use an existing composite image</td>
<td></td>
</tr>
<tr>
<td>3. Display second option menu</td>
<td></td>
</tr>
<tr>
<td>A. List of composite image channels</td>
<td>LISTCH</td>
</tr>
<tr>
<td>B. List of channel image correspondence</td>
<td>LISTCH</td>
</tr>
<tr>
<td>C. Add image to composite</td>
<td>ADDIMG</td>
</tr>
<tr>
<td>D. Build composite image</td>
<td>PIXINT</td>
</tr>
<tr>
<td>E. Terminate PM</td>
<td>BLDCOM</td>
</tr>
</tbody>
</table>

3-7
3.1.4 INTERL Subroutine Description

This section describes all the subroutines identified in the prior section with the exception of FETEKSC, which is described in Section 3.2.4.

3.1.4.1 Subroutine ADDIMG

Purpose

Develops arrays containing descriptions of the images to be included in the composite.

Usage

CALL ADDIMG (IREF, IRENAME, MAXPFN, MAXCH, IERROR)

Description of Parameters

IREF - Input flag indicating if the first image is a reference image.

=0 NO

=1 YES

IRENAME - Input flag indicating if renaming of image files should take place.

=0 NO

=1 YES

MAXPFN - Input variable describing the maximum number of PFN's that can be attached (8).

MAXCH - Input variable describing the maximum number of channels (24).

IERROR - Output error flag

=0 No errors

=1 Rename error

=2 Create error

=3 Label read error
Method

Based upon the flag IRENAME renaming of the composite already in existence can take place. The new composite is given the selected name while the old composite is named REFERENCE. This is needed when channels are added to an existing composite. A request to the user for the name of the image to be added is made and upon entry the image is attached and checked to determine if it contains the same number of pixels and lines as the base image. After validation, the image characteristics are stored in arrays and the counters are updated.

Common Areas Used

LINE, ECS, PARAMS, COMIMG, ASSIMG

3.1.4.2 Subroutine BLDCOM

Purpose

Performs file functions and builds label for composite image.

Usage

Call BLDCOM (IREF, IERROR)

Description of Parameters

IREF - Input flag indicating if first image is a reference image

=0 NO

=1 YES

IERROR - Output error flag

=0 No errors

=1 Cannot write composite image label

=21 through 24 Error in PIXINT Routine
=3 Cannot close composite image
=4 Cannot read new composite label

Method
Builds and writes composite image label. Returns to the system all images used in building the composite and purges the reference image if there was one. All the above is accomplished with DIAL routines.

COMMON Areas Used
LINE, ECS, PARAMS, COMIMG, ASSIMG

3.1.4.3 Subroutine DELIMG

Purpose
Deletes images from list to be used for composite.

Usage
CALL DELIMG (IREF)

Description of Parameters
IREF - Input flag indicating if the first image is a reference image.
0 NO
1 YES

Method
Requests user to enter an image name. If the name is not the reference image name, the image characteristics are removed from the tables, the tables are compressed and the image is returned to the system.
COMMON Areas Used
   LINE, ECS, PARAMS, COMIMG, ASSIMG

3.1.4.4 Subroutine PIXINT

Purpose
   Generates a composite band-interleaved-by-pixel image file.

Usage
   Call PIXINT (IERROR)

Description of Parameters
   IERROR - Output error flag
     =0 No errors
     =1 Insufficient central memory
     =2 Pixel count is not equal to reference image
     =3 Line count is not equal to reference image

Method
   This routine is given a set of images which have been located, attached, and validated. From the image characteristics the routine determines how to divide the available central memory and ECS. A result of the above is number of lines to store in ECS and this number of lines is read from the disk for each image and stored in ECS. A line of the composite image is generated by unpacking the corresponding lines from each image and storing the values in appropriate locations of ECS. When the building of the line in ECS is completed, the line is read into central memory where it is packed and written to disk. This is continued until all lines have been processed. Since some of the images can be multichannel.
(composite) images, more than one value from an image can be stored for a given pixel. The output line is in the band-interleaved-by-pixel format.

COMMON Areas Used
LINE, ECS, PARMS, COMIMG, ASSIMG

3.2 FIELDEF PROCESSING MODULE

FIELDEF permits the user to define areas to be used for training the classifier, to be used for classification, or to be used for clustering. The areas are termed "fields." Fields can be defined as a polygon with up to 12 sides, with all of the pixels interior to the polygon considered as the field, or fields can be defined as a series of up to 12 connected straight line segments, with all of the pixels intersected by the line segments considered as the field.

3.2.1 User Information

It is possible for the user to operate FIELDEF without entering a specific name of any of the entities that must be selected to provide information to FIELDEF (except for 2 letters for display selection, and the names of the new fields). The first menu (Figure 3.2-1) that the user sees provides him with a choice to define new fields by displaying the image and interacting with the COMTAL display and trackball to specify field vertices, or to modify or delete existing field definitions. If the user selects to define new fields, the next choice is to specify the display(s) upon which the images will be located (Figure 3.2-2). The first letter specifies the display on which the full image, or possibly an expanded subimage, will be shown to permit
FIELDDEF 12:18:12 16:56:29
FIELD DEFINITION FOR CLASSIFICATION/CLUSTERING

SELECT OPTION

1. DEFINE FIELD(S) USING IMAGES
2. MODIFY/DELETE FIELD(S) WITH KEYBOARD INPUT

(ENTER A VALUE FROM 1 TO 2)

Figure 3.2-1. FIELDDEF Option Menu
SELECT DISPLAY(S)

- ENTER TWO DISPLAY NAMES, A, B, C, OR D. (LETTERS ONLY)
- FIRST NAMED WILL DISPLAY FULL IMAGE WITH CHOICE OF EXPANSION
- SECOND NAMED WILL DISPLAY FIELD DEFINITION (SUB)IMAGE
  (E.G. A C, B B, D A)

Figure 3.2-2  FIELDEF Display Selection Menu
the user to locate the area to be used for field definition. The second letter specifies the display on which the subimage used for field definition will be shown (if necessary, both letters may be the same). The next option menu (Figure 3.2-3) permits the user to select a single image data file and display it in gray, or select three image data files and display the images overlayed in red, green, and blue. The assumption is that the three images are different but registered bands that add information to the red/green/blue display for the user to choose fields. The next request (Figure 3.2-4) will be for the individual data set(s) that contain the image(s) to be displayed. If the user does not remember the name, a (CR) will provide a prompting list. The next option menu (Figure 3.2-5) permits the user the option to select an existing file to add additional field definitions, or to create a new file. If the user selects the existing file (Figure 3.2-6) he will be prompted for the name of the field/class-file. As with the image file, if the user does not remember the name, a (CR) will provide a prompting list. If the user selects to create a new file, he will be prompted for the file name, and a file description. The next selection menu (Figure 3.2-7) is the main set of options for defining fields. The first option the user would normally select is #1, to display the subimage used for defining fields. FIELDDEF will display the full image automatically. Next, the user has the option to modify the brightness and contrast by using the trackball, or to leave the image alone (Figure 3.2-8). Subsequent to this a subarea must be selected by the user (Figure 3.2-9). This subarea may be expanded to further examine the area, or expanded on the second CONTAL to be used for field definition (Figure 3.2-10). After a subimage has been displayed for field definition, Selection 2 (Figure 3.2-7) will begin the sequence of defining fields. The first option menu (Figure 3.2-11) permits the user to define areal or linear fields, or to save a field just defined. Instructions (Figure 3.2-12) prompt the user on how to define the field. After a field has been defined, the field name and
SELECT OPTION

1. GRAY IMAGE (ONE DATA FILE TO SELECT)
2. RED/GREEN/BLUE (THREE DATA FILES TO SELECT)

(ENTER A VALUE FROM 1 TO 2)

Figure 3.2-3 FIELDEF Image Type Menu
TO SELECT RED IMAGE TO BE DISPLAYED ON THE COMTAL-
-ENTER IMAGE-DATA-FILE NAME
-OR (CR) TO DISPLAY IMAGE-DATA-FILE SELECT LIST

Figure 3.2-4 FIELDEF Red Image Select Menu
SELECT OPTION

1. SELECT EXISTING FIELD/CLASS FILE
2. CREATE NEW FIELD/CLASS FILE

(ENTER A VALUE FROM 1 TO 2)

Figure 3.2-5 FIELDEF Field/Class-File Menu
TO SELECT FIELD/CLASS-DATA-FILE TO BE USED-

-ENTER FIELD/CLASS-DATA-FILE NAME
-OR (CR) TO DISPLAY FIELD/CLASS-DATA-FILE LIST

Figure 3.2-6 FIELDDEF Field/Class-Data-File Menu
SELECT OPTION

1. OUTLINE AND DISPLAY SUBIMAGE FOR FIELD DEFINITION
2. DEFINE FIELDS
3. OUTLINE PREVIOUSLY DEFINED FIELDS ON DISPLAY
4. SELECT A DIFFERENT SCENE
5. END FIELDEF

(ENTER A VALUE FROM 1 TO 5)

Figure 3.2-7 FIELDEF Field Definition Menu
SELECT OPTION

1. MODIFY IMAGE FUNCTION TABLE(S) BY TRACKBALL
2. NO MODIFICATION

(ENTER A VALUE FROM 1 TO 2)

Figure 3.2-8 FIELDEF Image Function Tables Modification Menu
TO OUTLINE THE AREA TO BE USED FOR FIELD DEFINITION OR TO EXPAND A SELECTED AREA FOR FURTHER EXAMINATION—

-BEGIN BY CENTERING THE CURSOR WITH THE TRACKBALL IN THE SELECTED AREA AND PRESS *S* OR *D* TO FIX THE LOCATION.

-NEXT, USE THE TRACKBALL TO EXPAND A SQUARE AROUND THE CENTER AND PRESS *S* OR *D* TO FIX THE SQUARE.

Figure 3.2-9  FIELDEF Area Outline Menu
SELECT OPTION

1. FURTHER EXPAND OUTLINE (SUB)IMAGE
2. EXPAND AND DISPLAY FIELD DEFINITION (SUB)IMAGE

(ENTER A VALUE FROM 1 TO 2)

20 PERCENT COMPLETE

Figure 3.2-10  FIELDEF Subimage Expansion Menu
SELECT OPTION

1. DEFINE POLYGON FIELD TO ENCLOSE PIXELS
2. DEFINE LINE-SEGMENT(S) THAT INTERSECT PIXELS
3. SAVE FIELD/LINE-SEGMENT(S) DEFINITION
4. END DEFINITION PROCESS

(ENTER A VALUE FROM 1 TO 4)

Figure 3.2-11 FIELDEF Field Type Selection Menu
ENTER VERTICES OF THE POLYGON OR LINE SEGMENT(S)—BY POSITIONING THE CURSOR AND PRESSING #$%
UP TO A 12 SIDED POLYGON OR 12 LINE SEGMENTS MAY BE ENTERED
AT THE LAST VERTEX, PRESS $D$
(THE LAST SIDE OF A POLYGON WILL BE AUTOMATICALLY CLOSED)
(PRESS $INT$ BEFORE #$S$ OR $D$ TO CANCEL)

Figure 3.2-12 FIELDEF Areal Field Creation Menu
description will be requested (Figure 3.2-13). The user must remember to save the field defined (Figure 3.2-11) at the end of definition.

If the user chooses option 2 on the first menu (Figure 3.2-11), then the next option menu that appears is the one shown in Figure 3.2-14. The user then has the choice to modify the vertices of an existing field record, to replace the original record with the modified record, to delete selected records, or to delete a field/class-file. If the user chooses option 1, the modification of the vertices of an existing field, the next menu displayed is shown in Figure 3.2-15. This is the standard field record selection menu. After a single field is selected and option 3 chosen, the field modification display (Figure 3.2-16) is shown. One dimension of a vertex may be modified at a time. If, after a modification, the field has a segment that crosses another segment, an error message will appear at the top of the screen. This means simply that the field cannot be saved in the state that it is in. The user may continue to modify and complete the modification process. The modified record must be saved (replacing the original) as shown in Figure 3.2-14, option 2.

3.2.2 Engineering Description

FIELDDEF has the capability to display an image and permit the user to define "fields" that correspond to areas of interest. These field definitions may be utilized later as areas that specify the pixels to be used to gather statistics for "training" the MAXLIK classifier, pixels to be classified, or pixels to be clustered with the CLUSTER program.

Fields may be of two types, areal or linear. An areal field consists of a polygon with up to a maximum of 12 sides. It may be either a
ENTER NEW FIELD RECORD NAME
FIELD4

ENTER NEW FIELD RECORD DESCRIPTION (40 CHAR. MAX)
FIELD 4

Figure 3.2-13 FIELDEF Field Record Menu
SELECT OPTION
1. MODIFY FIELD/LINE DEFINITION
2. SAVE MODIFIED FIELD OR LINE-SEGMENT(S)
3. DELETE FIELD/LINE-SEGMENT RECORD
4. DELETE FIELD/CLASS-FILE
5. END FIELDEF

(ENTER A VALUE FROM 1 TO 5)

Figure 3.2-14 FIELDEF Linear Field Creation Menu
Figure 3.2-15 FIELDEF Field Modification Menu

1: SELECT FIELD(S) FOR MODIFICATION OF VERTICES
2: DROP FIELD(S) FROM THE SELECTED LIST
3: FIELD SELECTION COMPLETED

(ENTER A VALUE FROM 1 TO 3)
TO CHANGE AN ELEMENT-
-ENTER ELEMENT NUMBER(NUMBER IN PAREN), FOLLOWED BY (CR)
-THEN, ENTER NEW VALUE, FOLLOWED BY (CR)
TO EXIT FROM MODIFY, ENTER (CR)

FIELD NAME -FIELD4
DESCRIPTION-FIELD 4
TYPE--------AREAL

<table>
<thead>
<tr>
<th>VERTEX</th>
<th>LINE</th>
<th>PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1)</td>
<td>- 130 (2)</td>
<td>33</td>
</tr>
<tr>
<td>2 (3)</td>
<td>- 140 (4)</td>
<td>34</td>
</tr>
<tr>
<td>3 (5)</td>
<td>- 140 (6)</td>
<td>27</td>
</tr>
<tr>
<td>4 (7)</td>
<td>- 131 (8)</td>
<td>26</td>
</tr>
<tr>
<td>5 (9)</td>
<td>- 130 (10)</td>
<td>33</td>
</tr>
<tr>
<td>6 (11)</td>
<td>0 (12)</td>
<td>0</td>
</tr>
<tr>
<td>7 (13)</td>
<td>0 (14)</td>
<td>0</td>
</tr>
<tr>
<td>8 (15)</td>
<td>0 (16)</td>
<td>0</td>
</tr>
<tr>
<td>9 (17)</td>
<td>0 (18)</td>
<td>0</td>
</tr>
<tr>
<td>10 (19)</td>
<td>0 (20)</td>
<td>0</td>
</tr>
<tr>
<td>11 (21)</td>
<td>0 (22)</td>
<td>0</td>
</tr>
<tr>
<td>12 (23)</td>
<td>0 (24)</td>
<td>0</td>
</tr>
</tbody>
</table>

NUMBER OF VERTICES ' (25) - 4

ENTER ELEMENT NUMBER-

Figure 3.2-16 FIELDEF Vertex Modification Menu
convex or a concave polygon. The pixels defined are those whose centers are on the polygon boundary or interior to the polygon. Linear fields consist of series of one or more connected straight line segments, up to a maximum of 12 segments. The pixels defined are those which are intersected by a field line segment.

Fields are stored simply as a series of integer vertices with the areal definitions always including the closing segment. A standard method is provided to analyze which pixels are included in the field by using the FEUTLLA subroutine. FEUTLLA returns the line segment or segments included in the field for any particular line passed to it.

The user specifies the field vertices by cursor position and pressing the cursor button (normally "select," with "done" as the last vertex). FIELDEF automatically enters the last vertex and closes the polygon when the user presses "done."

The subimage upon which the user specifies the location of the field is obtained in a two-step process. First, the entire image is displayed on one COMTAL. By positioning the cursor, the center of a square and the size of the square area to be displayed is specified. This magnifying process can continue on the original COMTAL until the area of interest is clear. Then, a final magnification is transferred to a second COMTAL to be used for field definition.

Additional functions available in FIELDEF are:

1. Outline previously defined fields.

2. Modify field definition vertex locations.
3. Delete field record(s).

4. Delete field/class file.

3.2.3 FIELDEF PDL

FIELDEF: BGNSEGMENT (MAIN)
TEKDISPLAY FIELDEF TITLE MENU
CALL FETEKS0 TO SELECT IMAGE OR KEYBOARD OPTION
CASENTRY (IMAGE-DEFINE, KEYBOARD-DEFINE)
CASE 1 (IMAGE-DEFINE)
   DO UNTIL NO IMAGE TO BE DISPLAYED
      CALL FETEDSD TO SELECT DISPLAYS
      CALL FETEKS0 TO SELECT GRAY OR R/G/B IMAGES
      CASENTRY (GRAY, R/G/B)
      CASE 1 (GRAY)
         CALL FETEKSI TO SELECT GRAY IMAGE
         CALL FECOMIV TO SET DISPLAY VECTORS
      CASE 2 (R/G/B)
         CALL FETEKSI 3 TIMES TO SELECT R/G/B IMAGES
         CALL FECOMIV TO SET DISPLAY VECTORS
      ENDCASE
   CALL FETEKFUC TO SELECT FIELD/CLASS FILE
   DO UNTIL NO FURTHER OPTION
      CALL FETEKS0 TO SELECT 1 OF 5 MAIN OPTIONS
      CASENTRY (OUTLINE DEF IMAGE, DEFINE FIELD, OUTLINE FIELDS,
                  ANOTHER IMAGE, END OF FIELDEF)
      CASE 1 (OUTLINE DEFINITION IMAGE)
         IF NO IMAGE DISPLAYED
            CALL FECOMDI TO DISPLAY FULL IMAGE
         ELSE
CALL FETEKS0 TO SELECT PRESENT IMAGE OR FULL IMAGE
CASENTRY (PRESENT IMAGE, FULL IMAGE)
CASE 1 (PRESENT IMAGE)
    CALL FECONDI OR FECONFS TO DISPLAY PRESENT IMAGE
CASE 2 (FULL IMAGE)
    CALL FECONDI TO DISPLAY FULL IMAGE
ENDCASE
ENDIF
CALL FETEKS0 TO SELECT FUNCTION TABLE MODIFY OR SKIP MODIFY
IF FUNCTION TABLE MODIFY
THEN CALL GRAYMAP TO MODIFY FUNCTION TABLE
ENDIF
DO UNTIL ENOUGH EXPANSION ON COMTAL 1
    SELECT CENTER AND SIZE OF SQUARE TO BE EXPANDED
    CALL FETEKS0 TO EXPAND ON COMTAL 1 OR END CASENTRY (EXPAND ON COMTAL 1, END)
CASE 1 (EXPAND ON COMTAL 1)
    EXPAND ON COMTAL 1
CASE 2 (END EXPANSION ON COMTAL 1)
    SET NO EXPAND SW.
ENDCASE
ENDDO
EXPAND ON COMTAL 2
CALL FETEKS0 TO SELECT FUNCTION TABLE MODIFY OR SKIP MODIFY
IF FUNCTION TABLE MODIFY
THEN CALL GRAYMAP TO MODIFY FUNCTION TABLE ON COMTAL 2
ENDIF

3-33
CASE 2 (DEFINE FIELD)
DO UNTIL NO MORE FIELDS TO BE DEFINED OR CANCELLED
CALL FETEKSO TO SELECT OPTION
CASENTRY (POLYGON, LINE, SAVE, END)
CASE 1 (POLYGON OR LINE)
  IF FIRST POINT
  THEN ADD POINT TO FIELD RECORD
  ELSE CALL FEFDTAD TO CHECK FOR ERROR
    IF OK
      THEN ADD POINT
    ELSE CALL FETEKEM TO DISPLAY ERROR MESSAGE
  ENDIF
ENDIF
ENTER FIELD NAME
ENTER FIELD DESCRIPTION
CASE 2 (SAVE)
  IF FIELD IS VALID
  THEN CALL FETILIA TO SAVE RECORD
  ELSE CALL FETEKEM TO DISPLAY ERROR MESSAGE
  ENDIF
CASE 3 (END)
  SET NO FIELDS SW
ENDCASE
ENDDO
CASE 3 (OUTLINE FIELDS)
  CALL FETEKSO TO SELECT IMAGE TO OUTLINE FIELDS
  CALL FETEKOF TO SELECT FIELDS TO DISPLAY
  DISPLAY ALL FIELDS COMPLETELY CONTAINED ON DISPLAY
CASE 4 (ANOTHER IMAGE)
  SET NO FURTHER OPTIONS SW
CASE 5 (END OF FIELDDEF)
  SET NO FURTHER OPTIONS SW
  SET NO FURTHER IMAGE SW

3-34
ENDCASE
ENDDO
ENDDO
CASE 2 (KEYBOARD DEFINE)
DO UNTIL NO FURTHER OPTION
CALL FETEKSO TO SELECT OPTION
CASENTRY (MODIFY FIELD, SAVE, DELETEFIELD, DELETE F/C FILE, END)
CASE 1 (MODIFY FIELD)
CALL FETEKFC TO SELECT F/C FILE
CALL FETEKDF TO SELECT FIELD RECORD
CALL FEUTLFC TO RETRIEVE RECORD
DO UNTIL (CR) ENTERED
ENTER FIELD ITEM
ENTER ITEM VALUE
IF NOT (CR)
THEN MODIFY AND TEST FIELD
ENDIF
ENDDO
CASE 2 (SAVE)
IF FIELD IS OK
THEN CALL FEUTLLA TO DELETE OLD RECORD
CALL FEUTLLA TO SAVE NEW RECORD
ELSE CALL FETEKEM TO DISPLAY ERROR MESSAGE
ENDIF
CASE 3 (DELETE FIELD)
CALL FETEKFC TO SELECT F/C FILE
CALL FETEKDF TO SELECT FIELDS TO BE DELETED
CALL FEUTLFC TO DELETE RECORDS
CASE 4 (DELETE F/C FILE)
CALL FETEKFC TO SELECT F/C FILE
CALL DPURGE TO DELETE FILE
CASE 5 (END)
SET NO FURTHER OPTION SW
ENDCASE
3.2.4 FIELDDEF Subroutine Description

3.2.4.1 Subroutine FECONDI

Title - Transmits a gray or red/green/blue image to a COMTAL display and displays the image.

Parameters

CALL FECONDI (FNAMES, IMGGRAY, LBLBUF, IDSP, IXYS)

FNAMES - A (4,3) array that contains the red, green, and blue image-data-file names in that order; or, for a gray image, the single gray image-data-file name.

IMGGRAY - Ø - FNAMES contains R/G/B names

1 - FNAMES contains a gray name

LBLBUF - Label buffer supplied by the calling program, at least 2602 words long.

IDSP - A 21 element COMTAL display control vector supplied by the calling program.

IXYS - A 3-element vector returned to the calling program that includes the XY coordinates of the registration point, and the sampling factor (See subroutine IMGSIZE).
Description - This subroutine provides a standard means of displaying complete images through the facilities of subroutine IMGDSK. The calling program must have specific declaration statements for ECS.

3.2.4.2 Subroutine FEOMFS

Title - Expands or shrinks a square image or subimage to fit a full COMTAL screen through linear interpolation.

Parameters

CALL FEOMFS (FNAME, IPC, ILC, NPL, JPC, JLC, JNPL, LBLBUF, BUF, LN, LAN, IANN)

FNAME - The image-data-file name that identifies the source of image data.

IPC, ILC - The pixel and line location of the center of the image or subimage to be displayed (requested).

NPL - The requested number of pixels and lines to be displayed on the COMTAL full screen.

JPC, JLC, JNPL - The actual pixel and line location of the center, and the number of lines and pixels actually displayed on the COMTAL full screen. This may differ from IPC, ILC, and NPL if the request implies an off-image extraction.

LBLBUF - Label buffer supplied by the calling program, at least 2602 words long.
BUFF - Working expansion buffer supplied by the calling program, at least 12,288 words long.

LN - Image plane that receives the 8-bit image.

LNA - Overlay plane that receives the annotation.

IANN - 0 - No annotation
       1 - Display annotation

Description - This subroutine provides all of the function needed to extract a square subimage or image from a disk image-data-set and expand or shrink that subimage or image to fit the full screen COMTAL. Linear interpolation is the resampling method. This subroutine does not include invocation of subroutine DISPLAY, which must be done subsequently. The calling program must have specific declaration statements for ECS.

3.2.4.3 Subroutine FECOMIV

Title - Initializes a COMTAL display control vector to a standard set of values.

Parameters

CALL FECOMIV (COMALPH, IMGGRAY, IMGGLN, IDSP)

COMALPH - The selected COMTAL display (A,B,C, or D), left justified and zero-filled.

IMGGRAY - 0 - R/G/B image to be displayed.
          1 - Gray image to be displayed.
IMGGLN - Image plane (1, 2, or 3) where the gray image is located, left justified and zero-filled.

IDSP - The 21 element COMTAL display control vector returned to the calling program.

Description
This subroutine provides a means to initialize a COMTAL display control vector a standard set of values. IMGGLN is not used when IMGGRAY = Ø, but a dummy entry must be present.

3.2.4.4 Subroutine FETEKCL

Title - Clears the Tektronix screen.

No Parameters
CALL FETEKCL

Description
This subroutine provides a simple means to clear the Tektronix display.

3.2.4.5 Subroutine FETEKDF

Title - Displays the field or class records in a field/class-file, permits the user to select one or more records, and returns a series of pointers that point to the location of the selected records.
Parameters

CALL FETEKDF (FNAME, LBLBFR, IFC, MGI, NC, LOCV, MAXV, NV)

FNAME - Field/Class-file that contains the field or class records to be selected.

LBLBFR - A supplied work area for the label.

IFC  - Ø - Display field records only.
     1 - Display class records only.

MGI - A character string to be added to the first line (SELECT FIELD(S) or SELECT CLASS(ES)) as explanation for or about the selection (up to 50 characters).

NC - Number of characters in MGI.

LOCV - A single dimension array of pointers returned that are the indexes of the selected records in the file.

MAXV - Maximum number of record pointers permitted to be returned. If more are selected, the amount will be truncated.

NV - Number of record pointers selected.

Description

This subroutine provides a standard means of displaying the field data or class data in a field/class-file, and permitting the user to select one or more of the fields or classes.
3.2.4.6 Subroutine FETEKEM

Title - Displays a single-line error message on the Tektronix display in a standard format.

Parameters

CALL FETEKEM (MSG, NC, ICLEAR)

MSG - The error message to be displayed--may be up to 81 characters. Formatting control characters should not be included.

NC - The number of characters in the error message.

ICLEAR - Ø - Screen not cleared before display.

1 - Screen cleared before display.

Description

This subroutine provides a standard method to display single-line error messages. The message is displayed with a line of dashes above and below, and the Tektronix horn is beeped.

3.2.4.7 Subroutine FETEKFC

Title - Displays a request for a field/class-data-file name on the Tektronix display, and returns the name to the calling program.

Parameters

CALL FETEKFC (FNAME, IOLINE, NREC, ICLEAR)
FNAME  - Field/class-file name returned by the subroutine
        (40 chars.)

IOLINE - Ø  - Select existing file only
       1  - User has choice to select existing file, or
            create new file.

NREC   - Number of records in the field/class file

ICLEAR - Ø  - Screen not cleared before display
       1  - Screen cleared before display

Description
This subroutine provides a display that requests a field/
class-data-file name, and uses LOCATE to confirm and return
the name to the calling program, or, uses KREATE to confirm,
return the name, and create a new file.

3.2.4.8 Subroutine FETEKC

Title - Displays a request for a composite-data-file name on the
Tektronix display, and returns the name to the calling
program.

Parameters
CALL FETEKC (FNAME,NCH,LBLBUF,ICLEAR)

FNAME  - Composite-file name returned by the subroutine
        (40 chars.)

NCH     - Number of channels included in the composite
        file, returned by the subroutine.
LBLBUF - Label buffer supplied by the calling program, at least 2602 words long.

ICLEAR - Ø - Screen not cleared before display.
   1 - Screen cleared before display.

Description
This subroutine provides a display that requests a composite-data-file name, and uses LOCATE to confirm and return the name to the calling program.

3.2.4.9 Subroutine FETEKS

Title - Displays a request for image display selection on the Tektronix screen and reads a pair of letters corresponding to the user's request. The letters are returned to the calling program.

Parameters
CALL FETEKS (DIS1,DIS2,ICLEAR)

DIS1 - The first letter (A,B,C or D) is returned, left justified and zero-filled.

DIS2 - The second letter is returned, left justified and zero-filled.

ICLEAR - Ø - Screen not cleared before display
   1 - Screen cleared before display
Description
This subroutine provides a header 'SELECT DISPLAY(S)', followed by an explanation of the entry required by the user. The entered letters are returned via the above parameters. This subroutine is designed to be used with subroutine FECOMIV to build a control vector for the COMTAL display.

3.2.4.10 Subroutine FETEKSI

Title - Displays a request for an image-data-file name on the Tektronix display, and uses LOCATE to return the file name.

Parameters
CALL FETEKSI (FNAME, ICOLOR, ICLEAR)

FNAME - The image-data-file name returned by the subroutine.

ICOLOR - Ø - "GRAY IMAGE"
1 - "RED IMAGE"
2 - "GREEN IMAGE"
3 - "BLUE IMAGE"

ICLEAR - Ø - Screen not cleared before display.
1 - Screen cleared before display.

Description
This subroutine provides a display that requests an image-data-file name, and uses LOCATE to confirm and return the name to the calling program. The parameter ICOLOR changes the display wording only.
3.2.4.11 Subroutine FETEKO

Title - Displays a list of options on the Tektronix screen and reads a number corresponding to the option list.

Parameters

CALL FETEKO (MSG,IVAL,NW,NL,ICLEAR,IRSPN)

MSG - A dimensioned array of type integer or real which contains the character data to be displayed as the option list. The character data must consist of display code characters, with each line or option choice starting a new line of the array. Formatting control characters should not be included.

IVAL - A single dimensioned array of integer values that correspond to the count of the number of characters per option description line.

NW - The number of words per row in MSG.

NL - An integer value of the number of option description lines in MSG.

ICLEAR - 0 - Screen not cleared before display.
           1 - Screen cleared before display.

IRSPN - The value entered by the user to indicate the option selected, and returned to the calling program.
Description

This subroutine provides a header 'SELECT OPTION', followed by the character data in MSG. The user must enter an integer that ranges from 1 to the number of option choices. The returned value typically could be used directly in a computed GO TO implemented CASE ENTRY control figure.

Example:

```
DIMENSION MENU1(5,2),IMCL1(2)
DATA IMCL1/32,45/
DATA MENU1(1,1),MENU1(2,1),MENU1(3,1),MENU1(4,1)
$ /1OH1.$DEFINE $,1OHFIELD(S)$,1OHUSING IMAG,
$ 2HES/
DATA MENU1(1,2),MENU1(2,2),MENU1(3,2),MENU1(4,2)
$ /1OH2.$DEFINE/,1OHMODIFY FIG,1OHLD(S) WITH,
$ 1OH KEYBOARD$; 5HINPUT/
CALL FETEKSO (MENU1,IMCL1,5,2,1,ICASE)
CASE ENTRY (IMAGE-DEFINE,KEYBOARD-DEFINE)
GO TO (10,20) ICASE
```

3.2.4.12 Subroutine FEUTLFC

Title — Retrieves, adds, or deletes specific records in a field/class-file.

Parameters

```
CALL FEUTLFC (FNAME,LBLBFR,IFUNCT,ILOC,FCBFR)
```

FNAME — The field/class-file from/to which data is to be retrieved, added, or deleted.

LBLBFR — A supplied work area for the label.
IFUNCT - Ø - Retrieve record
     1 - Add record
     2 - Delete record

ILOC - For IFUNCT = Ø - Points to the record to be retrieved.
     For IFUNCT = 2 - Points to the record to be deleted.

FCBFR - For IFUNCT = Ø - Retrieved record is placed in this area.
     For IFUNCT = 1 - Record to be added is located in this area.

Description
This subroutine provides a standard method to retrieve, add, or delete records in a field/class-file. ILOC must point to the actual record in the file, not to the relative field record, or relative class record. This subroutine along with FETEKDF provides a complete capability to operate on the field/class files.

3.2.4.13 Subroutine FEUTLLA

Title - Determines the maximum and minimum lines involved in a particular field definition, and, for a particular line determines the segment(s) of the line defined by the field.

Parameters
CALL FEUTLLA (IFCR,IRPIX,L1,L2,LINE,NSEG,NSTRT,NEND)
IFCR - Input Field/Class record

IRPIX - 0 - Determine min and max line (L1 & L2) only.
1 - Determine segment(s) of line defined by the field IFCR.

L1 - Minimum line value defined by the field.

L2 - Maximum line value defined by the field.

LINE - Particular LINE for which segment(s) defined by the field are to be determined.

NSEG - Number of segments defined by the field for this LINE (MAX. 12).

NSTRT - A one-dimensional array of NSEG starting segment values.

NEND - A one-dimensional array of NSEG corresponding ending segment values.

Description
This subroutine provides a method to determine the pixel segment(s) included in a field (areal or linear) for any line included in the field.

3.2.4.14 Subroutine SYMIN

Title - Inverts a symmetric matrix, and calculates the determinant of the matrix.
Parameters

CALL SYMIN (A,AI,DET,N)

A - Symmetric matrix to be inverted.

AI - Inverted matrix.

DET - Determinant of A

N - Row/column dimensions of A.

Description

This subroutine inverts a symmetric matrix and provides the determinant of that matrix. Presumed dimensions are 24 x 24.

3.3 CLASTAT

CLASTAT permits the user to utilize the fields defined by FIELDEF to specify the location of pixels for the gathering of signature statistics. One or more fields may be specified for a single signature, with all of the corresponding pixels utilized for the statistics. A combining function is provided to permit two or more classes to be combined into a single new class. And a distance metric is provided in the form of the Bhattacharyya distance calculation. This provides an indication of the similarity of pairs of classes.

3.3.1 User Information

The user may interact with CLASTAT primarily through simple option selection, except for naming new classes that are created.
The first information the user must enter is the field/class-file name, or select one of the available files (Figure 3.3.1). The next item shown on the Tektronix is the main option menu for CLASTAT (Figure 3.3-2). This gives the user the choice to calculate class signature statistics from one or more fields, to combine statistics from one or more classes into a new class, to delete class records, to calculate the Bhattacharyya distance between two classes, and to print class information on the line printer from a set of selected classes. If the user selects option 1, he will be asked to supply the composite-file name, and the field or fields to be referenced for pixel retrieval (Figure 3.3-3). Subsequent to the calculation the user must enter the new class name and description. If the user selects option 2 to combine classes, he must select the classes and then supply the new name and description. In either case he will be asked explicitly to save the new class. To delete classes, the user simply selects the classes from the class selection menu. To calculate the Bhattacharyya distance between two classes (option 4), the user selects two classes from the class selection menu (Figures 3.3-4, 3.3-5), and the result is displayed as in Figure 3.3-6. To print class data (option 5), the user selects the classes from the class selection menu and the results are printed on the line printer.

3.3.2 Engineering Description

The primary function of CLASTAT is to gather mean and covariance statistics, by channel, from pixels specified by fields. More than one field may be specified, and in this event the statistics will be gathered over all of the pixels in all of the fields. The resultant covariance matrix is stored in the upper half of the class record covariance array, while the correlation matrix is stored in the lower half of the class record covariance array.
CLASSTAT
CLASS STATISTICS FOR CLASSIFICATION

TO SELECT FIELD/CLASS-DATA-FILE TO BE USED-
-ENTER FIELD/CLASS-DATA-FILE NAME
-OR (CR) TO DISPLAY FIELD/CLASS-DATA-FILE LIST

Figure 3.3-1 CLASSTAT Field/Class-Data-File Select Menu
SELECT OPTION

1. CALCULATE CLASS SIGNATURE
2. COMBINE CLASSES INTO A NEW CLASS
3. DELETE CLASS(ES)
4. CALCULATE BHATTACHARYYA DISTANCES
5. PRINT FIELD/CLASS FILE
6. END CLASTAT

(ENTER A VALUE FROM 1 TO 6)

Figure 3.3-2 CLASTAT Principle Options Menu
SELECT OPTION

1. SELECT FIELD(S) FOR CLASS SIGNATURES
2. DROP FIELD(S) FROM THE SELECTED LIST
3. FIELD SELECTION COMPLETED

(ENTER A VALUE FROM 1 TO 3)

Figure 3.3-3 CLASTAT Field Selection Menu
SELECT OPTION

1. SELECT CLASS(ES) (2) FOR BHATTACHARYYA DISTANCE
2. DROP CLASS(ES) FROM THE SELECTED LIST
3. CLASS SELECTION COMPLETED

(ENTER A VALUE FROM 1 TO 3)

Figure 3.3-4  CLASTAT Class Selection Menu
CLASS-FIELD1
CLASS-FIELD5
BHATTACHARYYA DISTANCE
.268273E-75

(CR) RETURNS TO OPTION MENU

Figure 3.3-6 Bhattacharyya Distance Between Field1 and Field5
The resultant mean and covariance data is utilized subsequently by
MAXLIK to "train" the maximum likelihood classifier, and also the data
may be used by CLUSTER to provide the mean values of a set of starting
clusters. CLASTAT also provides the capability to combine the class
statistics of two or more classes into a single new class.

Means are calculated by:

$$\mu_c = \frac{1}{N_c} \sum_{k=1}^{N_c} x_k$$

where $\mu_c$ and $x_k$ are n dimensional vectors, and

- $\mu_c$ is the mean for class $c$,
- $x_k$ is the individual pixel vector,
- $N_c$ is the number of pixels in class $c$.

Covariance matrices are calculated by:

$$\sum_c = \frac{1}{N_c-1} \sum_{k=1}^{N_c} (x_k - \mu_c)(x_k - \mu_c)^T$$

To combine 2 classes, the means are calculated as follows:

$$\mu_c = \frac{N'_c \mu'_c + N''_c \mu''_c}{N'_c + N''_c}$$

where $\mu_c$ is the resultant mean vector.
\[ N_c' \] is the number of pixels in the first class,

\[ N_c'' \] is the number of pixels in the second class,

\[ \mu_c' \] is the first mean vector,

\[ \mu_c'' \] is the second mean vector.

Covariance matrices are combined as follows:

\[
\sum_c = \frac{N_c'}{N_c} \sum_c' + \frac{N_c''}{N_c} \sum_c'' (\mu_c' - \mu_c)(\mu_c' - \mu_c)^T + \\
\frac{N_c''}{N_c} \sum_c'' + \frac{N_c'}{N_c} \sum_c' (\mu_c'' - \mu_c)(\mu_c'' - \mu_c)^T
\]

where \[ N_c = N_c' + N_c'' \]

\[ \mu_c \] is the combined mean vector.

A measure of the similarity of two classes is provided through the Bhattacharyya distance calculation. The more similar the two classes are to each other, the closer the distance measure is to 1, the more dissimilar, the closer the measure is to 0.

The calculation of Bhattacharyya distance (Ref. No. 2) is as follows:

\[
p = \left| \frac{\sum_i \left( \frac{\sum_j}{\frac{1}{2} \sum_i + \frac{1}{2} \sum_j} \right)^{1/4}}{\sum_j \left( \frac{\sum_i}{\frac{1}{2} \sum_i + \frac{1}{2} \sum_j} \right)^{1/4}} \right|^{1/4} e^{-1/8 \delta^T \left[ \frac{1}{2} \sum_i + \frac{1}{2} \sum_j \right]^{-1} \delta}
\]
where \( P \) is the Bhattacharyya distance

\[ \Sigma_i \] is the covariance matrix for signature \( i \)

\[ \Sigma_j \] is the covariance matrix for signature \( j \)

\[ \delta = \overline{x_i} - \overline{x_j} \]

\( \delta^T \) is the transpose of \( \delta \)

\( \overline{x_i} \) is the mean vector for signature \( i \)

\( \overline{x_j} \) is the mean vector for signature \( j \)

\( |\Sigma_i| \) is the determinant of the covariance matrix \( i \)

\( |\Sigma_j| \) is the determinant of the covariance matrix \( j \)

Besides providing the capability to gather signature class statistics, combine class statistics, and calculate the Bhattacharyya distance, CLASTAT also provides the capability to:

1. Delete class record(s)

2. Print class data (name, size, means, covariance matrix, correlation matrix, and source field names) of selected classes on the line printer.

3.3.3 CLASTAT PDL

CLASTAT:BGNGENT(MAIN)

CALL TITLE TO DISPLAY CLASTAT TITLE MENU
CALL FETEKFC TO SELECT FIELD/CLASS FILE
DO UNTIL NO FURTHER OPTION TO BE SELECTED
   CALL FETEKSO TO SELECT 1 OF 6 MAIN OPTIONS
   CASE ENTRY (FIELD STATS, COMBINE, DELETE CLASS,
                BHATTACHARYYA DISTANCE, PRINT FILE, END)
   CASE 1 (FIELD STATS)
      CALL FETEKSC TO SELECT COMPOSITE FILE
      CALL FETEKDF TO SELECT FIELD(S) FOR CLASS STATISTICS
      IF ONE OR MORE FIELDS CHOSEN
      THEN
         DO FROM 1 TO NUMBER OF FIELDS
            CALL FEUTLFC TO RETRIEVE FIELD
            CALL FEUTLUA TO DETERMINE MIN AND MAX LINES IN FIELD
            COPY FIELD NAME INTO CLASS RECORD
            DO FROM FIRST FIELD LINE TO LAST FIELD LINE
            CALL FEUTLUA TO OBTAIN LINE SEGMENTS IN FIELD
            DO FROM 1 TO NUMBER OF SEGMENTS
            CALL FECLSUM TO ADD INTERMEDIATE SUMS
         ENDDO
      ENDDO
   ENDDO
   CALCULATE MEANS FOR EACH CHANNEL
   CALCULATE COVARIANCE MATRIX (UPPER HALF)
   CALCULATE CORRELATION MATRIX (LOWER HALF)
   ENTER CLASS NAME
   ENTER CLASS DESCRIPTION
   ENDIF
   CASE 2 (COMBINE)
      CALL FETEKDF TO SELECT CLASSES TO COMBINE INTO ONE
      IF ONE OR MORE CLASSES CHOSEN
      THEN CALL FEUTLFC TO RETRIEVE FIRST CLASS RECORD
      DO WHILE MORE RECORDS TO COMBINE AND NUM OF CHANNELS
            ARE EQUAL
         CALL FEUTLFC TO RETRIEVE NEXT CLASS RECORD
      ENDDO
IF NUMBER OF CHANNELS EQUAL
THEN
    COMBINE MEANS
    COMBINE COVARIANCE MATRIX
    ADD NUMBER OF PIXELS
    COPY FIELD NAME(S) HISTORY
ELSE
    SET NUM OF CHAN EQ SW TO NO
    CALL FETEKEM TO DISPLAY ERROR MESSAGE
ENDIF
ENDDO
IF NUMBER OF CHANNELS EQUAL
THEN
    CALCULATE RESULTANT CORRELATION MATRIX(LOWER HALF)
    ENTER NEW CLASS NAME
    ENTER NEW CLASS DESCRIPTION
ENDIF
ENDIF
CASE 3 (DELETE CLASS)
    CALL FETEKFC TO SELECT CLASS(ES) TO DELETE
    CALL FEUTLFC TO DELETE
CASE 4 (BHATTACHARYYA DISTANCE)
    CALL FETEKDF TO SELECT 2 CLASSES
    IF NUMBER OF CLASSES EQUAL 2
    THEN
        CALL FEUTLFC TO RETRIEVE 1ST CLASS
        CALL FEUTLFC TO RETRIEVE 2ND CLASS
        IF NUMBER OF CHANNELS EQUAL
        THEN
            CALCULATE BHATTACHARYYA DISTANCE
        ELSE
            CALL FETEKEM TO DISPLAY ERROR MESSAGE
        ENDIF
    ENDIF
ENDIF
CASE 5 (PRINT FILE)
CALL FETEKFC TO SELECT CLASSES TO PRINT
IF ONE OR MORE CLASSES CHOSEN
THEN
DO FROM 1 TO NUMBER OF CLASSES
CALL FEUTLCFC TO RETRIEVE CLASS RECORD
PRINT NAME, MEANS, COV/COR MATRIX, AND FIELD HISTORY
ENDDO
CALL Q9DISPO TO PASS PRINT FILE TO SYSTEM
ENDIF
CASE 6 (END)
SET NO FURTHER OPTIONS SW
ENDCASE
ENDDO
ENDSEGMENT

3.3.4 Subroutine Description

3.3.4.1 Subroutine FETEKCL
For a description, see section 3.2.4.4.

3.3.4.2 Subroutine FETEKDF
For a description, see section 3.2.4.5.

3.3.4.3 Subroutine FETEKEM
For a description, see section 3.2.4.6.
3.3.4.4 Subroutine FETEKFC

For a description, see section 3.2.4.7.

3.3.4.5 Subroutine FETEKS C

For a description, see section 3.2.4.8.

3.3.4.6 Subroutine FETEKSO

For a description, see section 3.2.4.11.

3.3.4.7 Subroutine FEUTLFC

For a description, see section 3.2.4.12.

3.3.4.8 Subroutine FEUTLLA

For a description, see section 3.2.4.13.

3.3.4.9 Subroutine SYMIN

For a description, see section 3.2.4.14.
3.4 CLUSTER PROCESSING MODULE

CLUSTER embodies an iterative unsupervised classification (clustering) process based on Ball and Hall's ISODATA (Iterative Self-Organizing Data Analysis Techniques A) algorithm (Ref. 1). The algorithm makes multiple passes through the data, assigning data to clusters, and splitting or combining the clusters so formed in a sequence determined by the user.

3.4.1 User Information

The user is first requested to specify a composite image containing at least two channels, and then to select fields within this image. CLUSTER forms the rectangular hull of the set of fields and it is the data in this area which is grouped into clusters. If the user has specified one or more COMTAL displays in the LOGON procedure, he may then elect to display the image to be clustered. In any event, the output (clustered) image to be created must be named. The name can also be annotated or described with up to 40 characters.

The user is then presented with an option menu from which the subsequent computational path is selected. The PM automatically returns to this menu at the appropriate points in the computation. In general, the "Cluster" option cannot be exercised until starting vectors have been specified, and the "Cluster Map" option cannot be exercised until clustering has taken place.

The "Modify Parameters" option enables the user to review the values of the eleven parameters which are used at various points in the computation and to specify the sequence of cluster splitting and cluster combining iterations. The eleven parameters are initialized to default
values when the PM is called, and the split/combine sequence is empty, that is if this sequence is not changed by the user, data would be assigned to clusters and the clustering process would terminate pending further instructions from the user. Each of the parameters has a maximum allowable value and if the user attempts to enter a value greater than the maximum, the message requesting the parameter value is repeated. Clustering is by its nature an interactive process and a certain amount of experimentation with the parameters is necessary to obtain optimal results.

The "Starting Vectors" option enables the user to specify cluster centers for the initial assignment of data to clusters. There are three possibilities: "Zero" or self-generated, which selects a single starting vector consisting of zeros in all channels; "New," which allows the user to select up to 50 previously defined classes as starting vectors; and "Old" which defines the starting vectors as the clusters determined during the immediately preceding cluster run of the present DIAL session. The "Old" option cannot be exercised until the "Cluster" option has been exercised at least once.

The "Cluster" option instructs the PM to perform the clustering computation. In the first pass through the data points are assigned to the nearest cluster according to one of two distance measures; unweighted Euclidean if IDISF = 1, and $L_1$ (sum of absolute values) if IDISF = 2. The subsequent computation depends on the split/combine sequence and the value of P. If P > 0, the program will perform the iteration cycle of splitting clusters and reassigning the data points to clusters until P x 100 percent of the clusters are stable, or PN iterations have taken place, at which time control is passed to the split/combine sequence. If P = 0, the initial cluster splitting is bypassed and control is passed to the split/combine sequence after the initial assignment of pixels to clusters. In either case, if the split/combine sequence is
empty, no further clustering computation takes place. After each iteration, the resulting cluster centers and channel variances are available for display. After the last iteration of a given sequence, cluster populations before and after thresholding and the distances between cluster centers and cluster means are displayed. At several points in the computation, the process pauses to allow the user to make a hard copy of the Tektronix display. Computation resumes when the user enters (CR).

Once an output (clustered) image has been created in the "Cluster" option, the "Results/Cluster Map" option enables the user to display a pseudo-color cluster map on one of the COMTAL displays, to display a portion of the clustered image on the Tektronix display in which each cluster is represented by a character chosen by the user, and to list the numerical clustering results (percent of the data points in each cluster, etc.).

Finally, the "Exit" option terminates the PM. If the Cluster PM is called again during the same terminal session (that is, without an intervening LOGOFF), the clustering parameters are set to their default values and no cluster means are available for the "Old" suboption of the "Select Starting Vectors" option, but the names of any output images are saved, so that new names must be chosen for subsequent output images.

The Tektronix displays created in a representative session are shown in Figures 3.4-1 through 3.4-13. Figure 3.4-1 shows the first two menus the user encounters. Composite-scene-file ERIMSIN and associated field-class file FCERIM were selected. Figure 3.4-2 is the display after fields 1, 2 and 3 were selected and the "Drop Fields" option exercised. The asterisks indicate that the corresponding fields have been selected; in this run no fields were dropped subsequent to selection. Figure 3.4-3 displays the values of the clustering parameters after T1, T2 and R2 were changed from their default values to
CLUSTER

UNSUPERVISED CLASSIFICATION BY A VERSION OF HALL AND BALL'S ISODATA ALGORITHM

TO SELECT A COMPOSITE-SCENE-FILE TO BE USED IN CLUSTERING
- ENTER COMPOSITE-SCENE-FILE NAME
- OR (CR) TO DISPLAY COMPOSITE-SCENE-FILE LIST
  @ ERIMS

TO SELECT FIELD/CLASS-DATA-FILE TO BE USED-
- ENTER FIELD/CLASS-DATA-FILE NAME
- OR (CR) TO DISPLAY FIELD/CLASS-DATA-FILE LIST
  @ FCERIM

Figure 3.4-1 CLUSTER Composite Scene and Field/Class-Data-File Selection Menu
<table>
<thead>
<tr>
<th>LINE</th>
<th>SELECTED NO.</th>
<th>FIELD NAME</th>
<th>DESCRIPTION</th>
<th>AREAL NUMBER</th>
<th>LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. WOODS2</td>
<td>WOODS 2</td>
<td>74 89 9 886 896 76 6</td>
<td>AREAL</td>
<td>7816 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>166 117 167 167 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. WOODS1</td>
<td>WOODS 1</td>
<td>69 643 6 64 736 87 6 886 871</td>
<td>AREAL</td>
<td>28212 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>213 266 366 336 372 276 256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. VEGETATION1</td>
<td>VEGETATION 1</td>
<td>83 6 829 634 630 812 818</td>
<td>AREAL</td>
<td>8398 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 12 14 54 57 46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER LINE NUMBER(S) TO DROP AND PAGE (E.G. 11,13,18,20) -OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU).

ENTER VALUE(S) FROM 1 TO 3 OR (CR)--

Figure 3.4-2 Display of Selected Fields Data
THE CURRENT VALUES OF THE INITIAL CLUSTERING PARAMETERS ARE

1. TI = 10.0
2. TB = 5.0
3. NMIN = 30
4. NUMMAX = 60
5. SEP = 1.0
6. ISODAT = 1
7. IDISF = 2
8. P = 0.0
9. R2 = 100.
10. PMAX = 10
11. PN = 1
12. SPLIT/COMBINE SEQUENCE = SSSCS

-FOR THE DESCRIPTION OF A PARAMETER, OR TO CHANGE ITS VALUE,
ENTER ITS NUMBER OR (CR) IF NO VALUES TO CHANGE

Figure 3.4-3 CLUSTER Initial Parameters Menu
the values indicated, and a split/combine sequence of SSSCS was specified. The "Zero" starting vector option was chosen, as Figure 3.4-4 indicates, and the clustering computation proper initiated. Figures 3.4-5 through 3.4-10 show the evolution of the clusters through the course of the specified split/combine sequence. Figure 3.4-11 gives a summary of the cluster populations before and after clusters having fewer than the minimum number of pixels are eliminated (in the present case none was eliminated). Finally, Figures 3.4-12 and -13 illustrate summary reports available in the "Reports/Cluster Map" option. (Of course, the actual cluster map which is displayed on one of the COMTALs is not available.) Not included in the group of figures are displays which report the percent of the image classified at 10% intervals, which keeps the user informed about the progress of the computation; displays which give the cluster number and channel of clusters which have been split, and the cluster number of clusters which have been merged; and a summary of the L1 distances between cluster means and centers and minimum distance statistics.

3.4.2 Engineering Description

As mentioned in Section 3.4.1, the CLUSTER PM embodies a version of Ball and Hall's ISODATA algorithm, a method of unsupervised pattern classification. The method is iterative, making a series of passes through the data to assign the data points (pixels) to clusters on the basis of one of two possible distance measures, and a sequence of splitting or combining of clusters so formed, the cycle of computations being dependent on parameters chosen by the user. The region to be clustered in the present version of CLUSTER is the rectangular hull of the fields within the composite image designated by the user. The composite image must contain at least two channels, that is each data point considered as a vector must have at least two dimensions. All
STARTING VECTORS (CLUSTER CENTERS)

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
</tr>
<tr>
<td>5</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>0.32</td>
</tr>
</tbody>
</table>

**TO SEE NEXT GROUP OF STARTING VECTORS ENTER 'NEXT'**
**TO RESUME COMPUTATION ENTER (CR)**

Figure 3.4-4  CLUSTER Starting Vectors Display
## INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>MEAN</th>
<th>ST.DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>191.47</td>
<td>11.05</td>
</tr>
<tr>
<td>2</td>
<td>62.55</td>
<td>18.39</td>
</tr>
<tr>
<td>3</td>
<td>82.84</td>
<td>17.38</td>
</tr>
<tr>
<td>4</td>
<td>191.43</td>
<td>15.98</td>
</tr>
<tr>
<td>5</td>
<td>94.84</td>
<td>18.16</td>
</tr>
<tr>
<td>6</td>
<td>68.26</td>
<td>15.88</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'NEXT'
To resume computation enter (CR)

Figure 3.4-5  CLUSTER Interim Statistics Display, First Pass
## INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1</th>
<th>CLUSTER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>ST.DEV</td>
</tr>
<tr>
<td>1</td>
<td>119.20</td>
<td>11.16</td>
</tr>
<tr>
<td>2</td>
<td>78.98</td>
<td>14.11</td>
</tr>
<tr>
<td>3</td>
<td>89.60</td>
<td>12.82</td>
</tr>
<tr>
<td>4</td>
<td>161.95</td>
<td>15.83</td>
</tr>
<tr>
<td>5</td>
<td>185.65</td>
<td>16.40</td>
</tr>
<tr>
<td>6</td>
<td>78.67</td>
<td>18.67</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'NEXT'
To resume computation enter (CR)

Figure 3.4-6 CLUSTER Interim Statistics Display, Second Pass
### INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 2 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 3 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 4 MEAN</th>
<th>ST.DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.98</td>
<td>13.40</td>
<td>94.72</td>
<td>4.98</td>
<td>102.98</td>
<td>5.91</td>
<td>94.55</td>
<td>6.11</td>
</tr>
<tr>
<td>2</td>
<td>98.73</td>
<td>17.68</td>
<td>61.47</td>
<td>8.47</td>
<td>76.44</td>
<td>7.68</td>
<td>69.61</td>
<td>6.46</td>
</tr>
<tr>
<td>3</td>
<td>76.72</td>
<td>26.71</td>
<td>42.68</td>
<td>6.25</td>
<td>68.66</td>
<td>7.63</td>
<td>62.61</td>
<td>6.99</td>
</tr>
<tr>
<td>4</td>
<td>100.99</td>
<td>14.60</td>
<td>108.88</td>
<td>7.82</td>
<td>115.90</td>
<td>14.51</td>
<td>84.19</td>
<td>5.77</td>
</tr>
<tr>
<td>5</td>
<td>119.86</td>
<td>13.30</td>
<td>85.42</td>
<td>10.81</td>
<td>104.81</td>
<td>10.85</td>
<td>82.33</td>
<td>10.32</td>
</tr>
<tr>
<td>6</td>
<td>97.76</td>
<td>14.56</td>
<td>68.47</td>
<td>5.51</td>
<td>68.82</td>
<td>6.33</td>
<td>60.61</td>
<td>5.90</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'NEXT'
To resume computation enter (CR)

Figure 3.4-7 CLUSTER Interim Statistics, Third Pass
### INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 2 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 3 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 4 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 5 MEAN</th>
<th>ST.DEV</th>
<th>CLUSTER 6 MEAN</th>
<th>ST.DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.67</td>
<td>13.19</td>
<td>95.54</td>
<td>4.60</td>
<td>108.97</td>
<td>5.84</td>
<td>86.48</td>
<td>4.72</td>
<td>111.61</td>
<td>7.75</td>
<td>106.28</td>
<td>6.26</td>
</tr>
<tr>
<td>2</td>
<td>166.45</td>
<td>18.39</td>
<td>83.30</td>
<td>7.68</td>
<td>76.98</td>
<td>6.54</td>
<td>68.86</td>
<td>7.39</td>
<td>83.46</td>
<td>9.70</td>
<td>105.66</td>
<td>7.97</td>
</tr>
<tr>
<td>3</td>
<td>196.87</td>
<td>20.77</td>
<td>83.59</td>
<td>5.59</td>
<td>65.92</td>
<td>5.21</td>
<td>63.91</td>
<td>6.57</td>
<td>88.96</td>
<td>6.97</td>
<td>105.66</td>
<td>5.87</td>
</tr>
<tr>
<td>4</td>
<td>136.99</td>
<td>13.96</td>
<td>20.74</td>
<td>6.04</td>
<td>111.89</td>
<td>7.56</td>
<td>89.68</td>
<td>6.48</td>
<td>119.66</td>
<td>8.36</td>
<td>106.31</td>
<td>9.68</td>
</tr>
<tr>
<td>5</td>
<td>187.29</td>
<td>14.77</td>
<td>81.82</td>
<td>5.62</td>
<td>66.91</td>
<td>8.38</td>
<td>61.94</td>
<td>5.98</td>
<td>92.37</td>
<td>10.83</td>
<td>71.18</td>
<td>8.73</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'Next'  
To resume computation enter (CR)
### INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 7</th>
<th>CLUSTER 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>ST.DEV</td>
</tr>
<tr>
<td>1</td>
<td>53.08</td>
<td>4.92</td>
</tr>
<tr>
<td>2</td>
<td>46.76</td>
<td>7.91</td>
</tr>
<tr>
<td>3</td>
<td>49.63</td>
<td>6.46</td>
</tr>
<tr>
<td>4</td>
<td>51.12</td>
<td>10.36</td>
</tr>
<tr>
<td>5</td>
<td>73.32</td>
<td>7.18</td>
</tr>
<tr>
<td>6</td>
<td>58.74</td>
<td>5.40</td>
</tr>
</tbody>
</table>

To see next group of means and st.dev's enter 'next'
To resume computation enter (CR)
### INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1</th>
<th>CLUSTER 2</th>
<th>CLUSTER 3</th>
<th>CLUSTER 4</th>
<th>CLUSTER 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>ST.DEV</td>
<td>MEAN</td>
<td>ST.DEV</td>
<td>MEAN</td>
</tr>
<tr>
<td>1</td>
<td>187.07</td>
<td>13.08</td>
<td>96.60</td>
<td>4.88</td>
<td>109.17</td>
</tr>
<tr>
<td>2</td>
<td>90.90</td>
<td>11.33</td>
<td>65.44</td>
<td>6.98</td>
<td>57.64</td>
</tr>
<tr>
<td>3</td>
<td>96.90</td>
<td>11.28</td>
<td>46.26</td>
<td>5.68</td>
<td>59.76</td>
</tr>
<tr>
<td>4</td>
<td>127.81</td>
<td>12.86</td>
<td>90.68</td>
<td>6.46</td>
<td>111.64</td>
</tr>
<tr>
<td>5</td>
<td>187.09</td>
<td>13.78</td>
<td>62.41</td>
<td>5.33</td>
<td>64.93</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'NEXT'
To resume computation enter (CR)

Figure 3.4-9  CLUSTER Interim Statistics, Fifth Pass
# INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1</th>
<th>CLUSTER 2</th>
<th>CLUSTER 3</th>
<th>CLUSTER 4</th>
<th>CLUSTER 5</th>
<th>CLUSTER 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>ST.DEV</td>
<td>MEAN</td>
<td>ST.DEV</td>
<td>MEAN</td>
<td>ST.DEV</td>
</tr>
<tr>
<td>1</td>
<td>131.29</td>
<td>7.32</td>
<td>97.63</td>
<td>4.26</td>
<td>160.24</td>
<td>5.04</td>
</tr>
<tr>
<td>2</td>
<td>184.24</td>
<td>9.63</td>
<td>66.21</td>
<td>6.06</td>
<td>77.96</td>
<td>5.95</td>
</tr>
<tr>
<td>3</td>
<td>108.43</td>
<td>9.15</td>
<td>186.13</td>
<td>7.35</td>
<td>95.58</td>
<td>5.64</td>
</tr>
<tr>
<td>4</td>
<td>55.44</td>
<td>11.09</td>
<td>100.17</td>
<td>6.82</td>
<td>127.98</td>
<td>5.86</td>
</tr>
<tr>
<td>5</td>
<td>129.52</td>
<td>11.18</td>
<td>91.64</td>
<td>7.34</td>
<td>111.67</td>
<td>6.11</td>
</tr>
<tr>
<td>6</td>
<td>111.01</td>
<td>14.66</td>
<td>62.60</td>
<td>5.44</td>
<td>88.32</td>
<td>7.33</td>
</tr>
</tbody>
</table>

To see next group of means and ST.DEV's enter 'NEXT'
To resume computation enter (CR)

Figure 3.4-10a  CLUSTER Interim Statistics, Sixth Pass
### CLUSTER POPULATIONS

<table>
<thead>
<tr>
<th>CLUSTER</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8468</td>
</tr>
<tr>
<td>2</td>
<td>17364</td>
</tr>
<tr>
<td>3</td>
<td>11811</td>
</tr>
<tr>
<td>4</td>
<td>8888</td>
</tr>
<tr>
<td>5</td>
<td>18666</td>
</tr>
<tr>
<td>6</td>
<td>9767</td>
</tr>
<tr>
<td>7</td>
<td>12361</td>
</tr>
<tr>
<td>8</td>
<td>9798</td>
</tr>
<tr>
<td>9</td>
<td>18899</td>
</tr>
</tbody>
</table>

Figure 3.4-11 CLUSTER Population Statistics Before and Eliminating Small Clusters
CLUSTER
12/05/73 10.26.23.

UNSUPERVISED CLASSIFICATION BY A VERSION OF HALL AND BALL'S ISODATA ALGORITHM

OVERALL CLUSTER RESULTS FOR SUBIMAGE

COMPOSITE NAME------ERIMSYN
RESULTS IMAGE NAME--CLTEST

PIX MIN  12 PIX MAX  372 LINE MIN  604 LINE MAX  839

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CLUSTER NAME</th>
<th>CHARACTER POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

--- MEANS --- SIGMA ---


ENTER (CR) TO GET NEXT PAGE OF RESULTS

Figure 3.4-12a CLUSTER Summary Statistics
CLUSTER 12/05/75 10:25:38
UNSUPERVISED CLASSIFICATION BY A VERSION OF HALL AND BALL'S ISODATA ALGORITHM

OVERALL CLUSTER RESULTS FOR SUBIMAGE
COMPOSITE NAME------ERIMSYN
RESULTS IMAGE NAME--CLTEST

<table>
<thead>
<tr>
<th>PIX MIN</th>
<th>12</th>
<th>PIX MAX</th>
<th>372</th>
<th>LINE MIN</th>
<th>604</th>
<th>LINE MAX</th>
<th>899</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CLUSTER NAME</th>
<th>CHARACTER POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1836</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9739</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>18899</td>
</tr>
</tbody>
</table>

MEANS--SIGMAS--MEANS--SIGMAS--MEANS--SIGMAS--MEANS--SIGMAS--MEANS--SIGMAS--MEANS--SIGMAS--

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.244</td>
<td>147.968</td>
<td>6.266</td>
<td>6.838</td>
<td>6.789</td>
<td>4.765</td>
</tr>
<tr>
<td>34.087</td>
<td>56.701</td>
<td>45.193</td>
<td>4.582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.526</td>
<td>85.074</td>
<td>89.091</td>
<td>69.816</td>
<td>8.591</td>
<td></td>
</tr>
<tr>
<td>35.934</td>
<td>49.382</td>
<td>56.359</td>
<td>10.165</td>
<td>7.271</td>
<td></td>
</tr>
</tbody>
</table>

ENTER (CR) TO DISPLAY RESULTS MENU

Figure 3.4-12b CLUSTER Summary Statistics (continued)
## Cluster Field Results

**Composite Image: Epimsyn**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Number of Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woods52</td>
<td>7816</td>
</tr>
<tr>
<td>Vegetation1</td>
<td>8398</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster/Number</th>
<th>Number in Class, And Percent of Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 0.9768 2224 28.4545 6 3044 38.9468 3 38 10.1044 4 32 0.4054</td>
</tr>
<tr>
<td>2</td>
<td>0 0.0000 10255 26.4384 5 4957 17.6746 3 28 0.3709 4 3 0.0106</td>
</tr>
<tr>
<td>3</td>
<td>0 0.0000 6489 23.0000 10 8 0.0000 7 6416 22.7542 8 47 0.1866</td>
</tr>
</tbody>
</table>

To advance to next page of field results enter (CR)  
Or, to terminate field results enter X

Figure 3.4-13 CLUSTER Field Statistics
such vectors must have the same number of components, and corresponding components of all of the vectors must be of the same type (e.g. sensor intensity values in a given band), but different components of a given vector may be of different types (e.g. components one through four might be the respective MSS intensities of a pixel (data point) in LANDSAT bands 4 through 7, and component five might be the elevation of the pixel in meters).

The course of a clustering computation is governed by twelve parameters which are initialized to default values, but whose values may be changed by the user. These parameters are:

1. **T1** - Threshold for cluster splitting, in the same units as the respective channel standard deviations. If for a given cluster the standard deviation of a given channel is greater than T1, then that cluster is a candidate for splitting (in the split computation) along the channel in question, if certain other conditions are met (see below).

2. **T2** - Threshold for cluster combining in the same units as the distance measure. If the distance between clusters is less than T2, the two clusters are candidates for merging in the combine computation.

3. **NMIN** - Minimum number of data points in a cluster. After the last requested iteration, clusters with fewer than NMIN points are eliminated and the points in those clusters are assigned to the remaining clusters if the respective distances are less than R2, or to the null cluster otherwise.

4. **NVMAX** - The maximum number of clusters allowed.
5. SEP - The scale factor which multiplies the ith channel standard deviation in cluster splitting. The resulting clusters have respective means of $\mu_i \pm \text{SEP} \sigma_i$, where $\mu_i$ is the mean of the ith channel before splitting, and $\sigma_i$ is the standard deviation of the ith channel before splitting.

6. ISODAT - Selects the distance measure used in the cluster combining algorithm. If $\text{ISODAT} = 0$, the unweighted euclidean distance is used to define the distance $\Delta_{ij}$ between clusters i and j. That is, if $\mu_{ik}$ is the component of the k-th channel of the ith cluster and each cluster has n channels,

$$\Delta_{ij} = \sqrt{\sum_{k=1}^{n} (\mu_{ik} - \mu_{jk})^2}$$

If $\text{ISODAT} = 1$, the weighted euclidean distance is used. That is, if $\sigma_{ik}$ is the standard deviation of the kth channel of the ith cluster,

$$\Delta_{ij} = \sqrt{\sum_{k=1}^{n} \left[ \frac{(\mu_{ik} - \mu_{jk})^2}{\sigma_{ik} \sigma_{jk}} \right]}$$

7. IDISF - Selects the distance measure used in assigning data points to clusters. If $\text{IDISF} = 1$, the unweighted euclidean distance is used. That is, if $x_{ik}$ is the component of the kth channel of the ith data point and $m_{jk}$ is the kth component of the vector of the jth cluster centers, the distance $D_{ij}$ between the ith point and the jth cluster center is

$$D_{ij} = \sqrt{\sum_{k=1}^{n} (x_{ik} - m_{jk})^2}$$
If IDISF = 2, the so-called $L_1$ distance is used, that is

$$P_{ij} = \sum_{k=1}^{n} |(x_{ik} - m_{jk})|$$

8. $P$ - The proportion ($0. < P < 1.0$) of clusters which must be stable (i.e. do not split) in the "Initial Split Iteration" option in order for the split computation to terminate before $P_{\text{MAX}}$ iterations (see 10 below). If $P = 0.$, control passes to the split combine sequence after the initial assignment of pixels to clusters and there is no initial series of split computations.

9. $R_2$ - The distance threshold to determine whether or not a data point (pixel) is assigned to the null class after the last requested iteration. All data points whose distance to the nearest cluster is greater than $R_2$ are assigned to the null class.

10. $P_{\text{MAX}}$ - The maximum number of iterations allowed under the "Initial Split Iteration" option. If more than $P \times 100$ percent of the clusters split, another split computation takes place after the data points are assigned to the new clusters. After $P_{\text{MAX}}$ such iterations control passes to the input split/combine sequence whether or not $P \times 100$ percent of the clusters have remained stable.

11. $P_{\text{N}}$ - Last pass small cluster elimination threshold. Clusters with fewer than $P_{\text{N}} +$ (the number of channels) points are eliminated, and a final reassignment of the points in those clusters to the remaining clusters or to the null class is made.
12. **SPLIT/COMBINE SEQUENCE** - Determines whether an attempt is made to split or combine (merge) clusters after data points have been assigned to clusters and the cluster means and variances recomputed.

Default values of the first eleven parameters are initialized when the CLUSTER PM is called. The values of T1, T2, and R2 are particularly data dependent, and it is to be expected that a certain amount of experimentation with data of interest will be necessary to determine optimal values of these parameters. The split/combine sequence is initialized as "empty," which means that no splitting or combining of clusters is attempted, but only the assignment of data points to clusters.

In addition to the clustering parameters, starting vectors or cluster centers must be specified; three options are provided. Self-generated starting vectors may be requested in which case one cluster center with zero values in all of the channels is selected. On the first assignment of data points to clusters all of the points are, of course, assigned to the same cluster. But if split iterations are specified, in most cases the single cluster will be split, and after several iterations meaningful clusters will develop. It has been found in practice that ISODATA is not very sensitive to the choice of starting vectors. A second option is to select as starting vectors previously defined classes. The third option uses the final values of the cluster means in the immediately preceding cluster computation as starting vectors. In effect, the present computation picks up where the previous one left off and allows split/combine sequences of indefinite length.

Before entering the CLUSTER PM a composite image (one having at least two channels) to be used in clustering must have been built. This is done through the INTERL PM, which is described in Section 3.1. Further,
a file of fields in that image must have been created using the FIELDEF PM, Section 3.2. Upon entering the CLUSTER PM, the user must specify the composite image and select the fields. The data points in the rectangular hull of the selected fields will be clustered in the subsequent computation. The values of the clustering parameters are changed from their default values, if desired, and starting vectors specified. These two steps may be done in any order.

In the normal procedure, the "cluster" option is selected next. As many lines (records) of image data as will fit are read from disk and stored in ECS. Then a line at a time is read from ECS, unpacked, and stored in core. For each pixel (data point) in the line, the distance to each existing cluster is computed according to the metric specified by IDISF. The index of the cluster closest to the pixel and the distances to that pixel are recorded and stored in interleaved fashion on disk as the output image. The output image may be thought of as a two channel image which corresponds pixel by pixel with the image to be clustered, the first channel containing the distance to the nearest cluster and the second channel containing the number of the nearest cluster. The process continues until all of the lines in ECS have been treated. If the image to be clustered cannot fit into ECS, the next group of image lines is read into ECS up to its capacity, and the process continued until all of the pixels of the image have been assigned. The channel means and variances are then computed for each of the clusters formed.

The subsequent computational path depends on the value of P and the split/combine sequence specified by the user. If P = 0, the split/combine sequence is tested on each iteration to determine whether a split (S) or combine (C) iteration is specified. In a split iteration, the cluster having the largest channel variance is determined. Two new cluster centers are formed from this cluster center by respectively
adding and subtracting SEP (channel standard deviation) to the mean of that channel, provided:

- The channel standard deviation is greater than T1;
- The population of the cluster under consideration is greater than 2*(NMIN + 1);
- The number of clusters after splitting would not exceed NVMAX.

The cluster which has just been split is removed from consideration, and the cluster having the next largest channel variance determined, tested, and if the tests are passed, split. The process continues until all candidates for splitting have been examined. In a combine iteration, the distance between cluster centers is computed according to the unweighted euclidean metric if ISODAT = 0 or the weighted euclidean metric if ISODAT = 1. Clusters closer together than T2 are merged by forming a new cluster center according to the formula

\[ m_j = \frac{n'}{n' + n''} \mu_j' + \frac{n''}{n' + n''} \mu_j'' \]

where \( m_j \) is the jth component of the new cluster center vector, \( \mu_j' \) and \( \mu_j'' \) are the jth channel means of the cluster to be merged, and \( n' \) and \( n'' \) are their respective populations. Following a split or combine computation, pixels are reassigned to clusters, and new cluster channel means and channel variances computed.

Following the initial assignment of pixels to clusters, the cycle of splitting or combining of clusters and reassignment continues until the split/combine sequence is exhausted. If the split/combine sequences has the default values, i.e. is empty, the cycle is completed.
immediately after the first assignment of pixels to clusters. At this point the cluster populations are tested and each cluster whose population is less than \( PN + (\text{the number of channels}) \) is eliminated, and a final assignment of pixels to clusters made. Those pixels whose distance to the nearest cluster center is greater than \( R_2 \) are assigned to the null class, that is they are not considered to belong to any cluster.

The other principal computation path is followed where \( P > 0 \). In that case, following the initial assignment of pixels to clusters, a cycle of iterations is carried out before control is passed to the input split/combine sequence. In each iteration, the ratio of clusters having more than \( PN + (\text{number of channels}) \) pixels whose maximum channel standard deviation is greater than \( T_1 \), to the total number of clusters in that class, is computed. If the ratio is greater than \( P \), a cluster splitting computation is performed and pixels reassigned to the new set of cluster centers. The iteration cycle continues until the ratio of unstable clusters is less than \( P \), or \( P_{MAX} \) iterations have taken place, whichever condition occurs first. At this point control is passed to the input split/combine sequence. The initial split iteration option is particularly useful in dealing with data for which a split/combine sequence which can be expected to produce useful results has not yet been developed. In such cases the algorithm allows the formation of clusters to continue until the situation stabilizes, at which time examination of the results may suggest what course of action (further splitting, combining, or termination of the process) to follow.

To assist the user in deciding on further courses of action, cluster means and variances are available for display on the Tektronix (and consequently for hard copying) after each iteration. After the final iteration of a sequence, cluster populations before and after elimination of small clusters are available, as well as the distance
between the cluster means and cluster centers and the minimum distance statistics. Through the "Cluster Map Reports" option a pseudocolor display of the clustered image (the cluster map) can be put up on one of the COMTALS. A fixed assignment of pseudocolor to cluster number is built into the subroutine. Cluster report summaries can also be displayed on the Tektronix in this option.

3.4.3 CLUSTER PDL

INPUTS - USER SELECTED CLUSTERING PARAMETERS
AND STARTING VECTORS (ENTERED THROUGH
TEKTRONIX TERMINAL)
- COMPOSITE IMAGE DATA SET (FROM DISK)
- FIELD DATA SET (FROM DISK)
OUTPUTS - CLUSTER OUTPUT IMAGE DATA SET (TO DISK)
- CLUSTER STATISTICS
CLUSTER:BGNSEGMENT(MAIN)
TEKDISPLAY CLUSTER TITLE MENU
TEKDISPLAY COMPOSITE—SCENE—FILE LIST
SELECT COMPOSITE—SCENE—FILE
CALL FETEKFO
TEKDISPLAY FIELD—FILE—NAME LIST
SELECT FIELDS FOR CLUSTERING AND POSSIBLE DISPLAY
CALL FETEKDF
DETERMINE MINIMUM RECTANGULAR HULL
CALL RECFLD
READ COMPOSITE IMAGE LABEL AND VALIDATE SUBIMAGE TO
BE CLUSTERED
IF IMAGE DISPLAY OPTION
THEN DISPLAY IMAGE TO BE CLUSTERED
CALL DSPCLA
CREATE OUTPUT IMAGE FILE
CALL KREARI
DO WHILE ANOTHER OPTION TO BE SELECTED
TEKDISPLAY OPTION MENU
SELECT OPTION
CALL FETEKS0
CASENTRY (MODIFY, STARTING VECTORS, CLUSTER, MAP, EXIT)
CASE 1 (MODIFY)
DO WHILE CLUSTERING PARAMETERS TO BE MODIFIED
SELECT OPTION (ONE OF TWELVE PARAMETERS)
CALL FETEKS0
MODIFY
ENDDO
ENDCASE
CASE 2 (SELECT STARTING VECTORS)
DO WHILE STARTING VECTORS TO BE SELECTED
SELECT OPTION (ZERO, OLD, NEW)
STARTING VECTORS SELECTED AND DISPLAYED
ENDDO
ENDCASE
CASE 3 (CLUSTER)
DO WHILE SPLIT/COMBINE ITERATIONS REMAIN TO BE PERFORMED
ASSIGN PIXELS TO CLUSTERS AND BUILD OUTPUT IMAGE
DO WHILE IMAGE LINES REMAIN TO TRANSFERRED TO ECS
CALL PTECS
DO WHILE IMAGE LINES IN ECS REMAIN TO BE CLUSTERED
CALL READEC
CALL UNPKF
CALL CLUS2
CALL PACKF
CALL WRITEC

3-92
ENDDO
CALL EMTECS
ENDDO
CALL DCLOSE
SPLIT OR COMBINE CLUSTERS
CALL CESCA
IF LAST ITERATION
THEN ELIMINATE SMALL CLUSTERS, REASSIGN PIXELS TO
REMAINING CLUSTERS
ENDDO
ENDDCASE
CASE 4 (REPORTS, CLUSTER MAP)
CALL RMENU
ENDDCASE
CASE 5 (EXIT)
SET EXIT FLAG
ENDDCASE
ENDDO
CALL FINIS
END

3.4.4 Subroutine Description

The principal subroutines called by CLUSTER are as follows:

3.4.4.1 Subroutine CESCA

Title – Cluster elimination, splitting, and combining algorithm.
Parameters

CALL CESCA (ECHAR, VMP, VAR, ND, NVM, NMIN, T1, T2, SEP, ISODAT, NVMMAX, IT)

ICHAR - Left justified Hollerith S or C which determines whether clusters are to be split or combined

VMP - Array of cluster channel means

VAR - Array of cluster channel variances

ND - Number of channels

NVM - Number of clusters

NVMIN - Minimum cluster population parameter for cluster splitting

T1 - Cluster splitting channel standard deviation threshold

T2 - Cluster combining intercluster distance threshold

SEP - New cluster channel mean scaling factor

ISODAT - Selects combining algorithm

NVMMAX - Maximum number of clusters allowed in cluster splitting

IT - Iteration number
Description

This subroutine performs cluster splitting or combining, depending on the value of ICHAR. Cluster splitting finds the cluster having the largest channel variance and splits the cluster along that channel, providing certain other conditions are met. The two new cluster centers are removed from the competition and the algorithm finds the cluster from the remaining group having the largest channel variance. The cycle continues until no candidate clusters remain. The cluster combining algorithm finds a pair of clusters whose distance is less than the threshold. A new cluster center is formed from the average of the two weighted by their respective populations. The merged clusters are removed from the competition and the cycle repeated with the remaining clusters until no candidate clusters remain.

3.4.4.2 Subroutine CLUS2

Title - Assigns pixels to clusters a line at a time

Parameters

CALL CLUS2(IT, ITL, IDISF, R2, NVLL)

COMMON/RESIMG/NAMER, NBITR, NWPSR, NLV, NPIXC
COMMON/PROCPIEM/KOPTP, NCHAN, NCLUS, NSLC, NELC, NSPC, LEPC, NWECs
COMMON/STATS/VM, VMP, VAR, NVG, RMINM, RMINV, VSUM1, VSUM2

IT - Iteration number

ITL - Total number of iterations

IDISF - Selects distance metric
R2 - Last iteration distance threshold

NULL - Null class population

NPIXC - Number of pixels in a line

NCHAN - Number of channels

NCLUS - Number of clusters

VM - Array of cluster centers (NCHAN*NCLUS components)

NVG - Array of cluster populations

RMINM - Array of means of distance to nearest cluster

RMINV - Array of variances of distance to nearest cluster

VSUM1 - Working array to accumulate channel sums

VSUM2 - Working array to accumulate channel sums of squares.

(Other COMMON variables not required in this subroutine.)

Description

For a line of image data CLUS2 computes the distance of each pixel in turn to each of the clusters and enters the minimum distance and cluster number for which it is attained in the output image array. Minimum distance statistics are accumulated and running sums of channel means and variances computed.
3.4.4.3 Subroutine DSPCLA

For a description, see Section 3.5.4.3.

3.4.4.4 Subroutine EMTECS

For a description, see Section 3.5.4.5.

3.4.4.5 Subroutine FETEKDF

For a description, see Section 3.2.4.5.

3.4.4.6 Subroutine FETEKFC

For a description, see Section 3.2.4.7.

3.4.4.7 Subroutine FEUTLFC

For a description, see Section 3.2.4.12.

3.4.4.8 Subroutine FILECS

For a description, see Section 3.5.4.6.
3.4.4.9 Subroutine KREARI

For a description, see Section 3.5.4.7.

3.4.4.10 Subroutine PACK

Title - Array packing routine.

Parameters

CALL PACK(V,ND,NV,IND)

V - On input, array to be packed; on output, packed array.

ND - Dimension of vectors in array V.

NV - Number of vectors in array V.

IND - Index of vector to be removed.

Description

PACK forms an array of ND*(NV-1) elements in which all elements of the original array whose index is greater than IND* ND are moved up ND positions.

3.4.4.11 Subroutine RECFLD

For a description, see Section 3.5.4.11.
3.5 MAXLIK PROCESSING MODULE

The maximum likelihood (MAXLIK) processing module (PM) assigns each observation vector in a subimage to the class with the smallest value of the likelihood function. Results of the classification can be displayed on the COMTAL, Tektronix or printed on the line printer.

3.5.1 MAXLIK User Information

Before entering MAXLIK, the user must have defined fields (see Section 3.2 FIELDDEF), defined classes (see Section 3.3 CLASTAT) and have a composite image on the assigned disk pack (see Section 3.1 INTERL). After completing the above MAXLIK can be initialized in one of two ways. First by just typing in "MAXLIK" and second, if the composite image name and field/class data set name is known, by typing in "MAXLIK, Image Name, Field/Class Data Set Name."

If the first way were used the PM would request the user to select a composite image and field/class data set from the library on the disk pack. Once MAXLIK has been initiated and the data sets attached, the user will be presented with the following requests and menus.

Field Selection
The fields to be classified are selected at this time, all pixels interior to the minimum rectangle enclosing the fields will be classified, and the population of each class will be calculated for each field selected. The selection procedure begins with the menu given below.
Select Option
1. Select Field(s) Fields to classified—all Max
2. Drop Field(s) From the selected list
3. Field Selection completed
   (Enter a value from 1 to 3) 1
   Where the response should be a "1."

The second menu presented contains a description of the fields, an example of which is given in Figure 3.5.1. The required response is the numbers of the fields wanted. When all the fields have been selected and reviewed, the select option menu will appear and a response of "3" will terminate the field selection process.

Display of Subimage to be Classified
This request determines if one band/channel of the subimage that is to be classified should be displayed. The menu is given below.

Do you want to display image to be classified (Y/N)? Y
Enter input image display name Bl
Enter channel number 1 thru 3 to be displayed 3
The channel number n refers to nth image that was used in building the composite image.

Class Selection
The classes into which every pixel in the subimage will be assigned are now selected. The procedure begins with

SELECT OPTION
1. Select Class(es) for classification—10 Max—
2. Drop Class(es) from the selected list
3. Class selection completed
   (Enter a value from 1 to 3) 1
   Where the response should be a "1."
<table>
<thead>
<tr>
<th>LINE SELECTED NO.</th>
<th>FIELD LINE</th>
<th>DESCRIPTION</th>
<th>AREAL</th>
<th>NUMBER</th>
<th>LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TREESKY</td>
<td>P1-P2-P3-P4</td>
<td>TREE SKY</td>
<td>297</td>
<td>296</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>P5-P6-P7-P8</td>
<td></td>
<td>289</td>
<td>324</td>
<td>307</td>
</tr>
<tr>
<td>2. TREEROAD</td>
<td>P9-P10-P11</td>
<td>TREE ROAD</td>
<td>426</td>
<td>479</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>P12-P13-P14</td>
<td></td>
<td>288</td>
<td>308</td>
<td>266</td>
</tr>
<tr>
<td>3. TREEGRASS</td>
<td>P15-P16-P17</td>
<td>TREE GRASS</td>
<td>418</td>
<td>470</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>P18-P19-P20</td>
<td></td>
<td>271</td>
<td>221</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>P21-P22-P23</td>
<td></td>
<td>25</td>
<td>31</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>P24-P25-P26</td>
<td>WHOLE TREE FIELD</td>
<td>80</td>
<td>338</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>P27-P28-P29</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. TREEWHOLE</td>
<td>P30-P31-P32</td>
<td>WHOLE TREE FIELD</td>
<td>430</td>
<td>431</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>P33-P34-P35</td>
<td></td>
<td>440</td>
<td>442</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>P36-P37-P38</td>
<td></td>
<td>448</td>
<td>441</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>P39-P40-P41</td>
<td></td>
<td></td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>5. DOT BLUE</td>
<td>P42-P43-P44</td>
<td>TREE TRUNK LINE</td>
<td>179</td>
<td>205</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>P45-P46-P47</td>
<td></td>
<td>186</td>
<td>189</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>P48-P49-P50</td>
<td></td>
<td>183</td>
<td>180</td>
<td>177</td>
</tr>
<tr>
<td>6. TREETRUNK</td>
<td>P51-P52-P53</td>
<td>TREE TRUNK LINE</td>
<td>120</td>
<td>172</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>P54-P55-P56</td>
<td></td>
<td>167</td>
<td>183</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>P57-P58-P59</td>
<td></td>
<td>187</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>P60-P61-P62</td>
<td></td>
<td>188</td>
<td>186</td>
<td>188</td>
</tr>
<tr>
<td>7. TREEBRANCH</td>
<td>P63-P64-P65</td>
<td>TREE BRANCHES</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P66-P67-P68</td>
<td></td>
<td>126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5-1 Field Description
Next a description of the available classes is presented, an example of which is given in Figure 3.5.2. The class selection termination proceeds as that of field selection.

Selection of Class Parameters
Three parameters are selected for each class. They are color, apriori weight and character: color selection is required and the others are optional. Color is obtained by first presenting a set of pseudocolor tables and asking the user to select one. This table is displayed and the user is requested to position the cursor over the color that is to represent the class and to press the selection done button. This is done for all classes plus the null class. See Figure 3.5.3 for an example of the menu and the responses. For the apriori weight and character the class name is displayed with a request for a weight or character. A typical case is given below where apriori weights were not wanted but characters were wanted.

**SELECTION OF CLASS PARAMETERS**

Do you want class apriori weights (Y/N)? N
Do you want to assign a character to a class (Y/N)? Y
Enter character for-treesky S
Enter character for-treeroad R
Enter character for-treegrass G
Enter character for-null class N

Processing Parameters
The next set of requests are for how the data is to be processed and for describing the class map image that will be created. Classically, the kernel of the maximum likelihood classifier uses the class covariance matrix, but to reduce computation time approximations to the covariance matrix have been used.
## Table: Class Prescriptions

<table>
<thead>
<tr>
<th>SELECTED NO.</th>
<th>CLASS NAME</th>
<th>DESCRIPTION</th>
<th>CH</th>
<th>MEAN</th>
<th>STD-DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TREESKY</td>
<td>TREE SKY</td>
<td>3</td>
<td>188.08</td>
<td>5.82</td>
</tr>
<tr>
<td>2</td>
<td>TREE ROAD</td>
<td>TREE ROAD</td>
<td>3</td>
<td>161.28</td>
<td>10.83</td>
</tr>
<tr>
<td>3</td>
<td>TREEGRASS</td>
<td>TREE GRASS</td>
<td>3</td>
<td>68.63</td>
<td>32.78</td>
</tr>
<tr>
<td>4</td>
<td>TREEROADGRASS</td>
<td>TREE-ROAD GRASS</td>
<td>3</td>
<td>116.28</td>
<td>52.21</td>
</tr>
<tr>
<td>5</td>
<td>TREESKYROAD</td>
<td>TREE-SKY ROAD</td>
<td>3</td>
<td>76.00</td>
<td>43.93</td>
</tr>
<tr>
<td>6</td>
<td>TREESKYGRASS</td>
<td>TREE-SKY GRASS</td>
<td>3</td>
<td>108.02</td>
<td>43.17</td>
</tr>
</tbody>
</table>

**Enter Line Number(s) to Select and Page (e.g., 11, 13, 18, 20)**
-OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU)

**Enter Value(s) From 1 to 6 or (CR) = 1, 2, 3**

---

**Figure 3.5-2**  Class Prescription
SELECTION OF CLASS PARAMETERS

ENTER INPUT IMAGE DISPLAY NAME B1

SELECTION OF PSEUDOCOLOR TABLE

AVAILABLE PSEUDOCOLOR TABLES

-----------------------------
1 RAY A
2 MOTEARTH2
3 RAY C
4 LINEAR A
5 LINEAR B
6 COLOR CONTOUR

ENTER TABLE NUMBER 3

DO YOU WANT TO VIEW ANOTHER TABLE (Y/N)? N

-----------------------------
SELECTED TABLE IS RAY C

SELECTION OF COLOR FROM TABLE TO REPRESENT CLASS

POSITION CURSOR OVER DESIRED COLOR
FOR CLASS--TREE SKY
PRESS SELECT OR DONE BUTTON
POSITION CURSOR OVER DESIRED COLOR
FOR CLASS--TREE ROAD
PRESS SELECT OR DONE BUTTON
POSITION CURSOR OVER DESIRED COLOR
FOR CLASS--TREE GRASS
PRESS SELECT OR DONE BUTTON
POSITION CURSOR OVER DESIRED COLOR
FOR CLASS--NULL CLASS
PRESS SELECT OR DONE BUTTON

Figure 3.5-3 Class Pseudocolor
There are three approximations to the covariance matrix incorporated in MAXLIK, any of which can be selected. Processing modes describe where and when the processing will be done. Only mode number 1 is currently available. The name for the output class map and the A/N specification conform to the DIAL standards. See Figure 3.5-4 for a typical menu and responses. At this point the actual maximum likelihood classification takes place.

Presentation of Results
When the classification process has been completed, the results menu given in Figure 3.5-5 will be displayed. The user then enters the number of the option he wants and those results are presented. After the option selected has completed its task, the results menu is redisplayed until a 9, "Terminate Results Processing," is entered.

1. LIST OVERALL SUBIMAGE RESULTS
MLC results for the subimage are displayed (see Figure 3.5-6 for an example). The subimage coordinates are with respect to the composite image. The population numbers are the number of pixels in the subimage assigned to the class. The means and sigmas are means and standard deviations of all the pixels in that class. This example was for a composite image having three channels and three classes.

2. DISPLAY CLASS MAP
This option displays the class map image. Each pixel is displayed in the color of the class that it was assigned to. This can also include the null class if thresholding has been performed. The user is also asked if the color/class assignment is to be reviewed.
MAXLIK

PERFORMS MAXIMUM LIKELIHOOD CLASSIFICATION

PROCESSING OPTIONS FOR MLC KERNEL
1 USE COVARIANCE MATRIX
2 USE DIAGONAL ELEMENTS
3 USE EXPECTED VALUE OF TRACE
4 USE IDENTITY MATRIX

ENTER OPTION NUMBER 1

PROCESSING MODES FOR MAXLIK
1 USE INTERACTIVE 6400
2 PERFORM MLC VIA BATCH JOB ON 6400
3 PERFORM MLC ON STARMAN INTERACTIVELY
4 PERFORM MLC ON STARMAN VIA BATCH JOB

ENTER MODE NUMBER 1
ENTER IMAGE NAME FOR OUTPUT CLASS MAPTESTMLC1

ENTER A/N SPEC FOR IMAGE (1 TO 40 CHAR), OR HIT (CR)

CHARACTER COUNTS: 1234567890123456789012345678901234567890
A/N SPEC -

Figure 3.5-4 Processing Parameters
MAXLIK
PERFORMS MAXIMUM LIKELIHOOD CLASSIFICATION

AVAILABLE RESULTS OPTIONS ARE
---------------------------
1 LIST OVERALL SUBIMAGE RESULTS
2 DISPLAY CLASS MAP
3 ANNOTATE RUN RESULTS
4 THRESHOLD RESULT DISTANCE METRICS
5 ASSIGN CHARACTER TO CLASS
6 DISPLAY COMPOSITE SUBIMAGE
7 LIST FIELD RESULTS
8 LIST A SUBAREA OF CLASS MAP
9 TERMINATE RESULTS PROCESSING

ENTER OPTION NUMBER

Figure 3.5-5 Results Options
MAXLIK
PERFORMS MAXIMUM LIKELIHOOD CLASSIFICATION

OVERALL-MLC RESULTS FOR SUBIMAGE
COMPOSITE NAME------$1LL999
RESULTS IMAGE NAME--TESTMLC1

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CLASS CLUSTER NAME</th>
<th>CHARACTER POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TREESKY</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>TREEROAD</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>TREEGRASS</td>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS</th>
<th>MEANS</th>
<th>SIGMAS</th>
<th>MEANS</th>
<th>SIGMAS</th>
<th>MEANS</th>
<th>SIGMAS</th>
<th>MEANS</th>
<th>SIGMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168.770</td>
<td>18.3430</td>
<td>151.3416</td>
<td>23.5811</td>
<td>69.8246</td>
<td>45.1510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>172.7533</td>
<td>16.8291</td>
<td>113.3965</td>
<td>18.9121</td>
<td>59.2981</td>
<td>48.6321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>176.3019</td>
<td>18.3943</td>
<td>137.7579</td>
<td>22.6625</td>
<td>73.7334</td>
<td>46.7834</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER (CR) TO DISPLAY RESULTS MENU

Figure 3.5-6 MLC Subimage Results
If yes, then the class name and the color assigned are displayed on the COMTAL.

3. ANNOTATE RUN RESULTS
Up to eighty characters of run annotation data can be entered and this data will be displayed and printed with all subsequent results.

4. THRESHOLDING
Thresholding is performed by calculating the cumulative distribution of the distance metrics and requesting the user to enter the percent of the distribution to be assigned to the null class. All pixels that exceed the threshold determined by the above information are assigned to the null class and a new class map is created having the same name as the prior class map. The requests and results of a computation are presented in Figure 3.5-7. In this case the request was to assign 51% of the pixels to the null class. This resulted in having 50.93% of the pixels assigned to the null class and the other pixels assigned as follows: 23.3% to the first class, 7.2% to the second class, 18.6% to the third class. The percent is with respect to the subimage.

5. ASSIGN CHARACTER TO CLASS
The class name is presented to the user with a request for a character to represent that class. Each class requires a unique character and if a duplicate character is entered, the program will request another character for that class. The characters are used when Option 8 is selected.
THIS ROUTINE THRESHOLDS THE DISTANCE METRIC IN THE RESULTS IMAGE
AND CREATES A NEW RESULTS IMAGE.

THE THRESHOLD IS BASED UPON THE PERCENT OF PIXELS TO BE ASSIGNED TO THE NULL CLASS
ENTER 1 F.P. VALUE IN THE RANGE 0-.100. E.G. (.5) 51.

THRESHOLD = 51.0000
82460 PIXELS IN NULL CLASS 50.9298 PERCENT OF SUBIMAGE

CLASS/CLUSTER NUMBER, POPULATION AND PERCENT OF SUBIMAGE
1 37703 23.2865 2 11619 7.1763 3 30127 18.6074 4 82460 50.9298

ENTER (CR) TO RETURN TO RESULTS MENU

Figure 3.5-7 Thresholding
6. DISPLAY OF COMPOSITE SUBIMAGE
   If this option is selected, one channel of the composite subimage image is displayed. The same procedure as given under Section 3.5.1B is used.

7. LIST FIELD RESULTS
   Field results are the number of pixels and percent of the field assigned to each class. These results are displayed on the Tektronix for every field selected during the field selection process. An example of a field results display is given in Figure 3.5–8. After the title, the first line gives the composite image name, the second line gives run annotation information, and the third line gives the threshold value. After this individual field results are displayed and in this example there are three fields, TREESKY, TREEROAD, and TREEGRASS, and four classes; namely, TREESKY, TREEROAD, TREEGRASS and NULL. The names of classes and fields are selected by the user. Also the user can have the field results sent to the printer.

8. LIST A SUBAREA OF CLASS MAP
   This option gives the user the capability to display on the Tektronix and send to the printer a 100 pixel by 40 line area of class assignments. This option works in conjunction with Option 5 where a character was assigned to each class. The character which was assigned to the class is displayed for every pixel classified into that class. The subarea is determined by having the user position the cursor over the center of the area of interest and depressing the "select" or "done" button which defines the center of a 100 pixel by 40 line area.
MAXLIK INDIVIDUAL FIELD RESULTS

COMP Site Image ------- ETL5599
MLC Test Total Covariance Matrix Large Image
Threshold = 0.0000

FIELD NAME---------TREESKY
<table>
<thead>
<tr>
<th></th>
<th>NUMBER OF PIXELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>971</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>1</td>
</tr>
<tr>
<td>TREESKAS</td>
<td>0</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0</td>
</tr>
</tbody>
</table>

CLASS NAME, NUMBER IN CLASS AND PERCENT OF FIELD
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>971 99.99%</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>1 0.00%</td>
</tr>
<tr>
<td>TREEGRASS</td>
<td>0 0.00%</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0 0.00%</td>
</tr>
</tbody>
</table>

FIELD NAME---------TREEROAD
<table>
<thead>
<tr>
<th></th>
<th>NUMBER OF PIXELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>0</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>1107</td>
</tr>
<tr>
<td>TREEGRASS</td>
<td>0</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0</td>
</tr>
</tbody>
</table>

CLASS NAME, NUMBER IN CLASS AND PERCENT OF FIELD
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>0 0.00%</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>1107 100.00%</td>
</tr>
<tr>
<td>TREEGRASS</td>
<td>0 0.00%</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0 0.00%</td>
</tr>
</tbody>
</table>

FIELD NAME---------TREEGRASS
<table>
<thead>
<tr>
<th></th>
<th>NUMBER OF PIXELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>0</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>0</td>
</tr>
<tr>
<td>TREEGRASS</td>
<td>1047</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0</td>
</tr>
</tbody>
</table>

CLASS NAME, NUMBER IN CLASS AND PERCENT OF FIELD
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TREESKY</td>
<td>0 0.00%</td>
</tr>
<tr>
<td>TREEROAD</td>
<td>0 0.00%</td>
</tr>
<tr>
<td>TREEGRASS</td>
<td>1047 99.90%</td>
</tr>
<tr>
<td>NULL CLASS</td>
<td>0 0.00%</td>
</tr>
</tbody>
</table>

TO ADVANCE TO NEXT PAGE OF FIELD RESULTS ENTER (CR)
OR, TO TERMINATE FIELD RESULTS ENTER x

Figure 3.5-8 Field Results
rectangle. As an example, consider Figure 3.5-9 where the header information is self explanatory. The subimage coordinates are given in the header data and the line numbers (350-389) and pixel numbers (168-258) are given with respect to the subimage and not the composite image.

9. TERMINATE RESULTS PROCESSING
Selecting this option will terminate the MAXLIK processing module.

3.5.2 MAXLIK Engineering Description

The MAXLIK processing module embodies the maximum likelihood and Bayes classification algorithms. These supervised, parametric classification techniques require class mean vectors ($\mu_k$) and covariance matrices ($\Sigma_k$), and in addition the user may specify a set of probabilities which represent prior knowledge of the relative frequencies of the different classes.

An observation $x$ is classified into the class with the smallest value of

$$L_k(x) = \log |\Sigma_k| + (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) - 2 \log p_k$$

where

- $|\Sigma_k|$ = determinant of covariance matrix for kth class
- $\mu_k$ = mean vector for kth class
- $\Sigma_k$ = covariance matrix for kth class
- $p_k$ = apriori probability
- $L_k$ = likelihood function
This is the most widely used supervised parametric algorithm, mainly because it maximizes the proportion of correctly assigned observations of data from multivariate normal distributions.

When prior knowledge of relative frequencies of the classes is not available, MAXLIK employs a maximum likelihood classifier. It has the same form as the Bayes classifier, equation (1), except that the term \(-2 \log p_k\) is not present. This classifier is optimal if all of the prior probabilities are equal. To reduce the computation time necessary to evaluate equation (1), the user can select approximations to the covariance matrix. These approximations replace \(\sum_k\) by (1) the corresponding diagonal matrix, (2) a constant times the identity matrix \(\sigma^2 I\), and (3) by the identity matrix. These approximations reduce the number of operations per class per pixel from a quadratic to a linear function of the dimension of the observation vector.

A class map image is the primary output of MAXLIK. It is a two dimensional image, each pixel is represented by two 8 bit quantities. The first 8 bits is used for the quadratic term in the likelihood function

\[(x - \mu_k)^T \sum_k^{-1} (x - \mu_k)\]

while the other eight are for the class number. This is the vehicle used for calculating field results, thresholding and displaying results.

3.5.3 MAXLIK Control Flow

This section presents the control flow and processing steps of MAXLIK. The steps are described in general forms and the major subroutines identified. These subroutines are described in the next section.
<table>
<thead>
<tr>
<th>CONTROL FLOW/PROCESSING STEP</th>
<th>SUBROUTINES USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initialize MAXLIK processing</td>
<td></td>
</tr>
<tr>
<td>2. Request composite image</td>
<td></td>
</tr>
<tr>
<td>3. Request fields to be classified</td>
<td>FETEKDF</td>
</tr>
<tr>
<td>4. Determine rectangular subimage encompassing all fields</td>
<td>RECFLD</td>
</tr>
<tr>
<td>5. Validate subimage</td>
<td></td>
</tr>
<tr>
<td>6. Display channel of subimage</td>
<td>DSPCLA</td>
</tr>
<tr>
<td>7. Calculate distance scale factor</td>
<td></td>
</tr>
<tr>
<td>8. Request classes for classification</td>
<td>FETEKDF</td>
</tr>
<tr>
<td>9. Request parameters for classes</td>
<td>CLASDA</td>
</tr>
<tr>
<td>10. List processing options</td>
<td></td>
</tr>
<tr>
<td>11. Calculate and reformat class signatures</td>
<td>SIGPREP</td>
</tr>
<tr>
<td>12. List processing modes</td>
<td></td>
</tr>
<tr>
<td>13. Start MLC processing of subimage</td>
<td></td>
</tr>
<tr>
<td>14. Fill ECS with set of image lines</td>
<td>FILECS</td>
</tr>
<tr>
<td>15. Get a line from ECS</td>
<td></td>
</tr>
<tr>
<td>16. Unpack line</td>
<td></td>
</tr>
<tr>
<td>17. Perform MLC computation for each pixel in the line</td>
<td></td>
</tr>
<tr>
<td>18. Scale distance results</td>
<td></td>
</tr>
<tr>
<td>19. Pack results image line</td>
<td></td>
</tr>
<tr>
<td>20. Write results image line to ECS</td>
<td>EMTECS</td>
</tr>
<tr>
<td>21. Write results image lines in ECS to disk</td>
<td></td>
</tr>
<tr>
<td>22. Return to 14 if all lines in subimage have not been processed or continue at 23.</td>
<td></td>
</tr>
<tr>
<td>23. Display results menu</td>
<td>RMENU</td>
</tr>
<tr>
<td>24. List overall subimage results</td>
<td>RESSUB</td>
</tr>
<tr>
<td>25. Display classification map</td>
<td>DSPMAP</td>
</tr>
<tr>
<td>26. Annotate classification run results</td>
<td></td>
</tr>
<tr>
<td>27. Threshold result image distance metrics</td>
<td>THRESRD</td>
</tr>
<tr>
<td>28. Assign character to class</td>
<td>ASSCHR</td>
</tr>
</tbody>
</table>
29. Display channel of subimage
30. Display on Tektronix field results
31. Display on Tektronix a subarea of class map
32. Terminate MAXLIK processing

3.5.4 MAXLIK Subroutine Description

All of the subroutines developed for MAXLIK are described in this section with the exception of FETEKFDF and FEUTLLA which are described in Section 3.2.4.

3.5.4.1 Subroutine ASSCHR

Purpose
Assign a character to a particular class or cluster

Usage
CALL ASSCHR(NCLASS,CNAME,CLASCH)

Description of Parameters
NCLASS - Integer parameter number of classes/clusters
CNAME  - Array names of classes, each name 4 words stored modulo 4
CLASCH  - Array class characters one word for each class/cluster stored in display code, left justified.

Common Areas Used
None

3-117
3.5.4.2 Subroutine CLASDA

Purpose

Associates a pseudocolor, a weight and a character with each class.

Usage

CALL CLASDA (IREC,NCLS,IERROR)

Description of Parameters

IREC — An input array containing the class record numbers

NCLS — Input variable containing the number of classes

IERROR — Output error parameter

=0 no errors
=1 label error
=2 cannot find record requested
=3 DREAD error

Subroutines Used

CURSDEF, CURSXY, DREAD, DDISPLAY, DSPNME, GALPHA, GSET,
IMGECS, IMGLINE, LBLRD, LNTYPE, PACKF, PACKI, PSEUDO,
SETCORE, TEKMSG, TEKRD, TEKWRIT, TITLE, WRITEC

Method

Pseudocolors are associated with classes by first generating an image containing all 64 values, one per PC table entry. PC tables are used to display this image. When a PC table has been selected, the user is requested to position the cursor over the color wanted for a particular class. As
colors are selected, they are displayed in the order of selection. Characters and weights are entered via the Tektronix.

Common Areas Used

CLASS, ECS, LINE, PROGRM, RESIMG

3.5.4.3 Subroutine DSPCLA

Purpose

Display subimage that is to be classified

Usage

CALL DSPCLA (A, B, IERROR, NAMEC, NBITC, NCHAN, NWDSC, NSPC, NSLC, NPIXC, NLO)

Description of Parameters

A  - Buffer used for temporary storage must be large enough to hold packed composite image line

B  - Buffer used for temporary storage (same size as buffer A)

NAMEC  - Four word array having composite image name

NBITC  - Integer parameter - number of bits/pixel

NCHAN  - Integer parameter - number of channels in image

NWDSRC  - Integer parameter - number of 60 bit wds/record

3-119
NSPC  - Integer parameter - starting pixel number of subimage
NSLC  - Integer parameter - starting line number of subimage
NPIXC - Integer parameter - number of pixels/line in subimage
NLO   - Integer parameter - number of lines in subimage

IERROR - Output error parameter
   =0 No errors
   =1 Find error
   =2 DREAD error

Method
Based upon the channel selected, the composite image is sampled and displayed.

COMMON Areas Used
ECS

3.5.4.4 Subroutine DSPMAP

Purpose
Display class map and class color association

Usage
CALL DSPMAP (NAME, NACLAS, A, NUMCL, IERROR)

Description of Parameters
NAME   - Input array with image map name
NACLAS - Input array with class names each name is 4 words in length.

A - Input array used for label buffer.

NUMCL - An integer value specifying the number of classes.

IERROR - Output error parameter.
- 0 No errors
- 1 error in label
- 2 error in DREAD
- 3 error in number of lines

Method

The image generated by CLUSTER or MAXLIK is displayed with the function memory on and the pseudocolor memory on. Before the image is sent to the COMTAL the image is sampled to remove the chi**2 value and adjusted for the image size. Also upon request the class color correspondence is displayed.

COMMON Areas Used

ECS

3.5.4.5 Subroutine EMTECS

Purpose

Take the packed chi**2 and class map lines from ECS and write them to disk.

Usage

CALL EMTECS (A, LINECS)
Description of Parameters

A  - Array used for temporary storage, must be NWDSQ words long

LINECS - Input number of lines to be written to disk.

Remarks

Packed lines in ECS have interspersed values: first chi**2 then the class number.

COMMON Areas Used

RESIMG,ECS

3.5.4.6 Subroutine FILECS

Purpose

Fill ECS with lines from the composite image

Usage

CALL FILECS (LBC,LINECS,IERROR)

Description of Parameters

LBC  - Input line being classified relative to subimage

LINECS - Output parameter giving number of lines stored in ECS

IERROR - error parameter

=0 no errors
=3 FIND error
Remarks

Packed lines from the composite image on disk are stored in ECS. The number of words from the first word of one line to the first word of the next line is the parameter IECSS.

COMMON Areas Used
ECS, COMIMG, PROCPRM, RESIMG, LINE.

3.5.4.7 Subroutine KREARI

Purpose
Create the output class map image and store appropriate parameters in the label

Usage
CALL KREARI (IFLAGC)

Description of Parameters
IFLAGC - Flag having the following meaning
  =1 MLC processing
  =2 CLUSTER processing

Method
Generate the standard label and move data from COMMON and store it in the photogrammetric parameter record. Also a function memory and pseudocolor memory are stored.

COMMON Areas Used
CLASS, COMIMG, FIELDS, LINE, PROCPRM, RESIMG
3.5.4.8 Subroutine FLDRES

Purpose
Present Cluster/Class results on a per field bases

Usage
CALL FLDRES (NAMEFC,NFLDS,FLDNAM,NAMER,NAMEC,IANNO,CNAME,
NCLASS,DTHRES,IDOR,IFLAGC,IBUF1,IBUF2)

Description of Parameters
NAMEFC - 4 word array - name of field/class file

NFLDS - Integer parameter - number of fields

FLDNAM - Array names of fields each name 4 words stored modulo 4

NAMER - 4 word array - name of results image

NAMEC - 4 word array - name of composite image

IANNO - Array of 10 words describing run

CNAME - Array - names of classes, each name 4 words stored
moddulo 4

NCLASS - Integer parameter - number of classes/clusters

DTHES - Flt. pt. parameter - percent of pixels thresholded
ICOR - 4 word array subimage definition
   ICORR(1) = lowest pixel number
   ICORR(2) = highest pixel number
   ICORR(3) = lowest line number
   ICORR(4) = highest line number

IFLAGC - Processing flag
   =1 MAXLIK
   =2 CLUSTER

IBUF1 - Array used as a buffer (5K words)

IBUF2 - Array used as a buffer (1K words)

Method
This routine reads the file (NAMEFC) to get field description. It then reads the results image to determine the population of each class for the field. These results are displayed on the Tektronix along with field outlines on the COMTAL.

COMMON Areas Used
ECS

3.5.4.9 Subroutine LSTMAP

Purpose
Displays on Tektronix a 100 pixel by 40 line area of class assignments

Usage
CALL LSTMAP (NAMEC, NAMER, IANNO, CLASCH, ICOR, OTHRES, IBUF1)
Description of Parameters

NAMEC — 4 word array — name of composite image

NAMER — 4 word array — name of results image

IANNO — Array of 10 words describing run

CLASCH — Array — class characters, one word for each class/cluster, stored in display code left justified.

ICOR — 4 word array — subimage definition
  ICORR(1) = lowest pixel number
  ICORR(2) = highest pixel number
  ICORR(3) = lowest line number
  ICORR(4) = highest line number

D'THES — Flt. pt. parameter — percent of pixels thresholded

Method

The user is asked to position the cursor over the center of the area where detailed pixel assignment is to be displayed on the Tektronix and printed.

COMMON Areas Used

None

3.5.4.10 Subroutine MLC2

Purpose

Performs maximum likelihood classification on one image a line at a time
Usage
CALL MLC2

Description of Parameters
ALINE - Input array of pixel values, floating point format. Upon exiting array contains \( \chi^2 \) value and chosen class number. They are interwoven starting with \( \chi^2 \) value.

Remarks
The upper triangular part of the matrix is assumed to be stored row-wise in \( N \times (N+1)/2 \) successive storage locations. The second class matrix is stored similarly starting in the next location. Mean vectors are also stored successively. The procedure can be used for \( NCHAN .GT. 2 \) but .LT. 25. and \( NCLASS .LE. 10. \)

Subroutines Used
None

Method
Classification is done by maximum likelihood. Based upon option selected the full covariance matrix is used, or the diagonal, or the expected value of the trace times the identity, or just the identity matrix

COMMON Areas Used
RESIMG, LINE, PROCPRM, STATS

3-127
3.5.4.11 Subroutine RECFLD

Purpose
Determine the minimum rectangular subimage encompassing all the fields to be classified

Usage
CALL RECFLD (IRECS, NAME, ICORR, IERROR)

Description of Parameters
IRECS - An input array containing the record number of the fields to be classified

NAME - An input array containing the Field/Class data set name

ICORR - Output array containing the subimage coordinates
ICORR(1) = min line
ICORR(2) = min pixel
ICORR(3) = max line
ICORR(4) = max pixel

IERROR - Output error parameter
=0 no errors
=1 label error
=2 DREAD error

Method
All requested field records are retrieved from the data set and the minimum and maximum vertices are selected

COMMON Areas Used
FIELDS, LINE
3.3.4.12 Subroutine RMENU

Purpose
Displays the available results options

Usage
CALL RMENU (NAMER, NAMEC, NAMEFC, NFLDS, FLOOS, FLONAM, NCLASS, CNAME,
CLASCH, ICR, NCHAN, FMEAN, FSD, IPOP, IFLAGC,
NBITC, NPIXT, IBUF1, IBUF2)

Description of Parameters

NAMER  - 4 word array - name of results image

NAMEC  - 4 word array - name of composite image

NAMEFC - 4 word array - name of field/class file

NFLDS  - Integer parameter - number of fields

FLDNAM - Array names of fields, each name 4 words stored modulo 4

NCLASS - Integer parameter - number of classes/clusters

CNAME  - Array names of classes, each name 4 words stored modulo 4

CLASCH - Array class characters, one word for each Class/Cluster, stored in display code left justified
ICOR - 4 word array subimage definition
   ICORR(1) = lowest pixel number
   ICORR(2) = highest pixel number
   ICORR(3) = lowest line number
   ICORR(4) = highest line number

NCHAN - Integer parameter - number of channels

FMEAN - Floating point array - Cluster/Class means, NCHAN
   values per Cluster/Class stored modulo NCHAN

FSD  - Floating point array - Cluster/Class standard deviations,
   stored like FMEAN.

IPOP - Array: Class/Cluster population per subimage

IFLAGEC - Processing flag
   =1 MAXLIK
   =2 CLUSTER

NBITC - Integer parameter number of bits/pixel in composite
   image

NPIXLT - Integer parameter number of pixels per line of com-
   posite image

IBUF1 - Array used as a buffer (5K words)

IBUF2 - Array used as a buffer (1K words)

IBUF3 - Array used as a buffer (1K words)
Remarks
This routine asks the user for the type of output wanted and calls the appropriate subroutines

COMMON Areas Used
None

3.5.4.13 Subroutine RESSUB

Purpose
Displays on the Tektronix the overall subimage results

Usage
CALL RESSUB (NAMEC,NAMER,IANNO,CLASCH,CNAME,ICOR,FMEAN,FSD,
IPop,NCHAN,IFLAGC,NCLASS)

Description of Parameters
NAMEC - 4 word array - name of composite image

NAMER - 4 word array - name of results image

IANNO - Array of 10 words describing run

CLASCH - Array of class characters, one word for each Class/Cluster, stored in display code left justified

CNAME - Array - names of classes, each name 4 words stored modulo 4
ICOR  - 4 word array - subimage definition
    ICORR(1) = lowest pixel number
    ICORR(2) = highest pixel number
    ICORR(3) = lowest line number
    ICORR(4) = highest line number

FMEAN  - Floating point array - cluster/class means, chan
    values per cluster/class, stored modulo NCHAN

FSD    - Floating point array - cluster/class standard
        deviations stored like FMEAN

IPOP   - Array - class/cluster population per subimage

NCHAN  - Integer parameter - number of channels

IFLAGC - Processing flag
    =1 MAXLIK
    =2 CLUSTER

NCLASS - Integer parameter - number of classes/clusters

Remarks
This routine displays on the Tektronix class population values
and statistics of all the pixel vectors in the subimage assigned
to the class.

COMMON Areas Used
None
3.5.4.14 Subroutine SIGPREP

Purpose
Retrieves class signatures and prepares them for MLC computation

Usage
CALL SIGPREP (IPRINT, IERROR)

Description of Parameters
A — An array used for temporary storage

IPRINT — Input parameter indicating if signatures should be printed
0 do not print
1 print signatures

IERROR — Output error parameter
0 no errors
1 label error
2 DREAD error
3 number of channels between classes not consistent
4 matrix inversion problem
5 not all signatures are available

Remarks
The class signatures which are stored on disk in a name parameter data set are retrieved and for each class the determinant and the inverse of the covariance matrix are calculated. The off diagonal elements of the inverse are modified to increase computational speed and only the upper triangular portion of the matrix is stored. How the results are stored in main memory is based upon the processing option.
COMMON Areas Used
CLASS, LINE, PROCPRM, STATS

3.5.4.15 Subroutine STDCAL

Purpose
Calculates the class mean and standard deviation

Usage
CALL STDCAL (IPOP,FMEAN,FSD,NCHAN,NCLASS)

Description of Parameters
IPOP  - Array - class/cluster population per subimage
FMEAN - Floating point array - cluster/class means, NCHAN
         values per cluster/class stored modulo NCHAN
FSD   - Floating point array - cluster/class standard
         deviations stored like FMEAN.
NCHAN - Integer parameter - number of channels
NCLASS - Integer parameter - number of classes/clusters

Method
The unnormalized first and second moments are input and the
routine calculates the mean and standard deviation and stores
the results back in the input arrays (FMEAN,FSD).

COMMON Areas Used
None

3-134
3.5.4.16 Subroutine SYMFAC

Purpose

Factor a given symmetric positive definite matrix

Usage

CALL SYMFAC (A,N,EPS,IER)

Description of Parameters

A — Upper triangular part of the given symmetric positive definite N by N coefficient matrix. On return A contains the resultant upper triangular matrix

N — The number of rows (columns) in the given matrix.

EPS — An input constant which is used as relative tolerance for test of loss of significance

IER — Resulting error parameter coded as follows

IER=0 — No error

IER=1 — No result because of wrong input parameter N or because some radicand is nonpositive (matrix A is not positive definite, possibly due to loss of significance)

IER=K — Warning which indicates loss of significance. The radicand formed at factorization step K+1 was still positive but no longer greater than ABS (EPS=A(K+1, K+1)).
Remarks

The upper triangular part of the given matrix is assumed to be stored columnwise in N*(N+1)/2 successive storage locations. In the same storage locations the resulting upper triangular matrix is stored columnwise too. The procedure gives results if N is greater than 0 and all calculated radicands are positive. The product of returned diagonal terms is equal to the square root of the determinant of the given matrix.

Subroutines and Function Subprograms Required

None

Method

Solution is done using the square root method of Cholesky. The given matrix is represented as product of two triangular matrices.

COMMON Areas Used

None

3.5.4.17 Subroutine SYMINV

Purpose

Invert a symmetric positive definite matrix

Usage

CALL SYMINV (A,N,EPS,DET,IER)

Description of Parameters

N - The number of rows (columns) in given matrix.

DET - Determinant of matrix.

EPS - An input constant which is used as a relative tolerance for test of loss of significance

IER - Resulting error parameter coded as follows
  IER=0 - No error
  IER=-1 - No result because of wrong input parameter N or because some radicand is nonpositive
  IER=K - Warning which indicates loss of significance. The radicand formed by factorization step K+1 was still positive but no longer greater than ABS(EPS*A(K+1, K+1)).

Remarks
The upper triangular part of the given matrix is assumed to be stored columnwise in N*(N+1)/2 successive storage locations. In the same storage locations the resulting upper triangular matrix is stored.

The procedure gives results if N is greater than 0 and all calculated radicands are positive.

Subroutines Used
SYMFAC

Method
Solution is done by upper triangular factorization
3.5.4.18 Subroutine THRESH

Purpose
Creates a new results image with all pixel distance metrics exceeding the threshold assigned to the null class

Usage
CALL THRESH (NAMER, NCLASS, DTHRESS, IBUF1, IBUF2, IBUF3)

Description of Parameters
NAMER - 4 word array - name of results image

NCLASS - Integer parameter - number of classes/clusters

DTHES - Flt. pt. parameter - percent of pixels thresholded

IBUF1 - Array used as a buffer (5K words)

IBUF2 - Array used as a buffer (1K words)

IBUF3 - Array used as a buffer (1K words)
Method
The user enters the percent of pixels to be assigned to the null class. The program determines the cumulative distribution of the distances and selects the appropriate threshold. Then each pixel with a distance greater than the threshold is assigned to the null class. A new results image is generated with the new assignments.

COMMON Areas Used
ECS
Section 4
EXPERIMENT RESULTS

4.1 OVERVIEW

Classification experiments were performed on three multi-dimensional image data sets and these experiments constituted the testing of the feature extraction software package. They had two purposes: (1) to verify that the PMs which make up the package and the constituent functions of the PMs work properly, and (2) to validate the accuracy of the versions of the supervised (maximum likelihood) and unsupervised clustering algorithms implemented in the package. The three image data sets were a LANDSAT scene containing the LACIE intensive study site in Hand County, South Dakota, a synthetic data set used in the thematic mapper design parameters investigation (LANDSAT-D), and an Indiana scene taken with the ERIM 6-channel aircraft scanner. Because ground truth was not available for the Indiana scene the results are not included in the report.

4.2 HAND COUNTY DATA SET

This set is four-channel Landsat MSS imagery containing a 5 x 6 nautical mile LACIE intensive site in a LANDSAT scene of 100 x 100 nautical miles. Each of the four bands in the scene was transferred to disk as an image file and a composite image built through the INTERL PM. This image, 2340 x 3240 pixels, was displayed on a COMTAL, and by successive use of the image expansion facility of the FIELDEF PM, a 512 x 512 pixel region containing the 5 x 6 nautical mile ground truth area was defined.
It should be appreciated that locating such a small area in a large image is a nontrivial matter, since the area does not have any particularly distinctive features, and since large scale (1:24,000) maps of the region of interest were not available at the time classification was carried out. A standard road map in which the Landsat scene could be outlined and which had county boundaries was available, which, it turned out, was all that was needed in conjunction with image expansion. A 512 x 512 pixel region containing the ground truth area in its interior was defined, and a four-channel composite image called HANDCO was built using INTERL for subsequent field definition, signature computation, maximum likelihood classification, and clustering.

4.2.1 Supervised Classification

The ground truth area with the exception of about 2% of the area consists of spring wheat, oats, corn, and pasture, the proportions of each being known from the ground inventory. Using this inventory, a sample page of which is shown in Figure 4.2-1, fields in the four classes were selected and then located in the ground truth overlay, Figure 4.2-2. With the aid of the overlay, some seventeen fields were defined in the SELECT FIELDS option of FIELDEF including the area to be classified (named GRTRUTH) which contains 17,394 pixels, four wheat fields, four oat fields, three corn fields, and three pasture/grass fields. These are shown in Figure 4.2-3. The same fields except for GRTRUTH were then designated as classes (Figure 4.2-4), signatures computed (channel means and covariance matrices) and five classes defined for classification purposes as follows:

WHEAT W204, W270, WHEAT210, WHEAT49

SPRING WHEAT SW236, SW263
<table>
<thead>
<tr>
<th>MAP REFERENCE # OF FIELD</th>
<th>ACREAGE</th>
<th>LAND USE CROP CODE</th>
<th>IRRIGATED</th>
<th>FERTILIZED</th>
<th>PLANTING DATE</th>
<th>MONTH DAY YEAR</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>32.6</td>
<td>1</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 35</td>
</tr>
<tr>
<td>226</td>
<td>71.0</td>
<td>2</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>227</td>
<td>17.6</td>
<td>3</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>228</td>
<td>47.4</td>
<td>4</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/16/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>229</td>
<td>72.5</td>
<td>5</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>230</td>
<td>47.4</td>
<td>6</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>231</td>
<td>17.6</td>
<td>7</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>232</td>
<td>47.4</td>
<td>8</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>233</td>
<td>17.6</td>
<td>9</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>234</td>
<td>47.4</td>
<td>10</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>235</td>
<td>17.6</td>
<td>11</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>236</td>
<td>47.4</td>
<td>12</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>237</td>
<td>17.6</td>
<td>13</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>238</td>
<td>47.4</td>
<td>14</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>239</td>
<td>17.6</td>
<td>15</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>240</td>
<td>47.4</td>
<td>16</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>241</td>
<td>17.6</td>
<td>17</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>242</td>
<td>47.4</td>
<td>18</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>243</td>
<td>17.6</td>
<td>19</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>244</td>
<td>47.4</td>
<td>20</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>245</td>
<td>17.6</td>
<td>21</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>246</td>
<td>47.4</td>
<td>22</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>247</td>
<td>17.6</td>
<td>23</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
<tr>
<td>248</td>
<td>47.4</td>
<td>24</td>
<td>y</td>
<td>o</td>
<td></td>
<td>-5/12/75</td>
<td>E. B. 22</td>
</tr>
</tbody>
</table>

Figure 4.2-1 Sample Ground Truth Inventory Page
HAND COUNTY, SOUTH DAKOTA SITE 2
LACIE INTENSIVE STUDY SITE

Figure 4.2-2 Ground Truth Overlay
<table>
<thead>
<tr>
<th>LINE</th>
<th>FIELD NAME</th>
<th>DESCRIPTION</th>
<th>AREAL</th>
<th>NUMBER</th>
<th>LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GRTRUTH</td>
<td>OPPOSED TRUTH AREA</td>
<td>17394</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>W204</td>
<td>WHEAT</td>
<td>AREAL</td>
<td>42</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>OATS247</td>
<td>OATS</td>
<td>AREAL</td>
<td>50</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>OATS192</td>
<td>OATS</td>
<td>AREAL</td>
<td>35</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>OATS226</td>
<td>OATS</td>
<td>AREAL</td>
<td>41</td>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
<td>CORN211</td>
<td>CORN</td>
<td>AREAL</td>
<td>40</td>
<td>6.</td>
</tr>
<tr>
<td>8.</td>
<td>WHEAT210</td>
<td>WHEAT</td>
<td>AREAL</td>
<td>40</td>
<td>8.</td>
</tr>
</tbody>
</table>

Figure 4.2-3a  Hand County Training Fields
<table>
<thead>
<tr>
<th>LINE</th>
<th>SELECT FIELD(S)</th>
<th>FIELD NAME</th>
<th>DESCRIPTION</th>
<th>AREAL NUMBER</th>
<th>LINE</th>
<th>LINEAR OF PIXELS</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>329 335 336</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>P105</td>
<td>PASTURE</td>
<td></td>
<td>284 292 297</td>
<td>234</td>
<td>P2</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>SU263</td>
<td>SPRING WHEAT</td>
<td></td>
<td>261 263 266</td>
<td>153</td>
<td>P3</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>CORN110</td>
<td>CORN</td>
<td></td>
<td>302 302 303</td>
<td>194</td>
<td>P4</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>SU236</td>
<td>SPRING WHEAT</td>
<td></td>
<td>292 299 300</td>
<td>192</td>
<td>P5</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>CORN54</td>
<td>CORN</td>
<td></td>
<td>326 329 331</td>
<td>192</td>
<td>P6</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>OAT538</td>
<td>OATS</td>
<td></td>
<td>341 342 343</td>
<td>148</td>
<td>P7</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>343</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER LINE NUMBER(S) TO SELECT AND PAGE (E.G. 11, 13, 18, 20)
-OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU)

ENTER VALUE(S) FROM 11 TO 17 OR (CR) --

Figure 4.2-3b Hand County Training Fields (continued)
<table>
<thead>
<tr>
<th>LINE</th>
<th>SELECTED NO.</th>
<th>CLASS NAME</th>
<th>DESCRIPTION</th>
<th>NUM. OF CHANNELS</th>
<th>OF PIXELS/NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>U284</td>
<td>WHEAT</td>
<td></td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>2.</td>
<td>OATS247</td>
<td>OATS</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>OATS192</td>
<td>OATS</td>
<td></td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>OATS526</td>
<td>OATS</td>
<td></td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>CORN211</td>
<td>CORN</td>
<td></td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>U270</td>
<td>WHEAT</td>
<td></td>
<td>4</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.90</td>
<td>.96</td>
<td>24.78</td>
<td>.82</td>
<td>25.74</td>
<td>1.09</td>
<td>27.73</td>
<td>.81</td>
<td>18.50</td>
<td>1.81</td>
<td>23.12</td>
<td>1.02</td>
</tr>
<tr>
<td>2</td>
<td>31.19</td>
<td>2.39</td>
<td>33.64</td>
<td>1.48</td>
<td>34.83</td>
<td>2.11</td>
<td>37.56</td>
<td>1.16</td>
<td>20.83</td>
<td>1.39</td>
<td>30.69</td>
<td>1.83</td>
</tr>
<tr>
<td>3</td>
<td>38.36</td>
<td>1.85</td>
<td>39.24</td>
<td>1.39</td>
<td>41.51</td>
<td>1.98</td>
<td>43.20</td>
<td>.81</td>
<td>28.33</td>
<td>1.05</td>
<td>36.98</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>38.24</td>
<td>2.55</td>
<td>38.78</td>
<td>1.45</td>
<td>34.08</td>
<td>2.36</td>
<td>34.24</td>
<td>1.39</td>
<td>20.23</td>
<td>1.21</td>
<td>28.45</td>
<td>2.06</td>
</tr>
</tbody>
</table>

ENTER LINE NUMBER(S) TO SELECT AND PAGE (E.G. 11, 13, 18, 20) -OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU) ENTER VALUE(S) FROM 1 TO 6 OR (CR) --

Figure 4.2-4a Hand County Classes
<table>
<thead>
<tr>
<th>LINE</th>
<th>SELECT CLASS(ES)</th>
<th>NUM. OF CHANNELS/OF PIXELS/NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>WHEAT</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>CORN</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>P76</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>P274</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>P105</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>SPRING WHEAT</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.35</td>
<td>7.53</td>
<td>17.14</td>
<td>.83</td>
<td>20.26</td>
<td>.72</td>
<td>19.66</td>
</tr>
<tr>
<td>2</td>
<td>24.48</td>
<td>9.77</td>
<td>17.88</td>
<td>.97</td>
<td>22.22</td>
<td>.94</td>
<td>21.48</td>
</tr>
<tr>
<td>3</td>
<td>29.90</td>
<td>11.66</td>
<td>27.34</td>
<td>.81</td>
<td>34.71</td>
<td>1.13</td>
<td>33.59</td>
</tr>
<tr>
<td>4</td>
<td>22.13</td>
<td>8.75</td>
<td>19.81</td>
<td>.95</td>
<td>27.45</td>
<td>1.41</td>
<td>26.40</td>
</tr>
</tbody>
</table>

ENTER LINE NUMBER(S) TO SELECT AND PAGE (E.G. 11, 13, 18, 20) -OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU)

ENTER VALUE(S) FROM 7 TO 12 OR (CR)---7, 8, 9, 10, 11, 12

Figure 4.2-4b Hand County Classes (continued)
<table>
<thead>
<tr>
<th>LINE SELECTED NO.</th>
<th>CLASS NAME</th>
<th>DESCRIPTION</th>
<th>NUM. OF CHANNELS/OF PIXELS/NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>CORN110</td>
<td>CORN</td>
<td>4</td>
</tr>
<tr>
<td>14.</td>
<td>SU236</td>
<td>SPRING WHEAT</td>
<td>4</td>
</tr>
<tr>
<td>15.</td>
<td>CORN54</td>
<td>CORN</td>
<td>4</td>
</tr>
<tr>
<td>16.</td>
<td>OATS38</td>
<td>OATS</td>
<td>4</td>
</tr>
<tr>
<td>17.</td>
<td>WHEAT49</td>
<td>WHEAT</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.86 0.63</td>
<td>18.96 0.94</td>
<td>16.89 0.62</td>
<td>24.11 0.83</td>
<td>21.72 1.16</td>
</tr>
<tr>
<td>2</td>
<td>16.94 0.78</td>
<td>22.81 1.08</td>
<td>17.25 0.81</td>
<td>31.84 1.30</td>
<td>27.62 1.24</td>
</tr>
<tr>
<td>3</td>
<td>26.68 1.15</td>
<td>30.93 1.14</td>
<td>26.67 0.96</td>
<td>38.99 1.02</td>
<td>34.37 1.40</td>
</tr>
<tr>
<td>4</td>
<td>18.48 1.29</td>
<td>23.48 0.94</td>
<td>21.64 1.40</td>
<td>29.40 1.05</td>
<td>26.28 1.51</td>
</tr>
</tbody>
</table>

ENTER LINE NUMBER(S) TO SELECT AND PAGE (E.G. 11,13,18,20) -OR (CR) TO PAGE ONLY (AFTER LAST PAGE, RETURNS TO OPTION MENU)  
ENTER VALUE(S) FROM 13 TO 17 OR (CR)--13,14,15,16,17

Figure 4.2-4c Hand County Classes (continued)
A preliminary classification was performed by the MAXLIK PM yielding the results shown in Table 4.2-1, where the percentages of the principal classes derived from the ground truth inventory are also shown for comparison.

<table>
<thead>
<tr>
<th>IMAGE</th>
<th>AREAL PROPORTION ESTIMATES (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORN</td>
</tr>
<tr>
<td>GROUND TRUTH MAP</td>
<td>8.06</td>
</tr>
<tr>
<td>HANDCO</td>
<td>11.04</td>
</tr>
</tbody>
</table>

Table 4.2-1 Preliminary Classification Results

While this preliminary classification demonstrated that the PMs are operating, it is not a very satisfactory result. It is clear that the two wheat classes are significantly overclassified, while pasture is underclassified. Examination of the results indicated that pasture pixels were being classified as wheat, and a further set of Bhattacharyya distances indicated that class W204 was very distinct from SW236, and that OATS226 was distinct from the remaining oat classes. Accordingly new classes were defined to reflect these observations as follows:
(Ideally, these classes should be on the same proportion as in the total inventory (shown in parentheses), but it is not always possible to identify training fields of the appropriate type to be combined into classes of the desired proportion).

A second classification with MAXLIK yielded the results of Table 4.2-2. The results of another classification using the ERMAN-II system are given for comparison.

<table>
<thead>
<tr>
<th>IMAGE</th>
<th>AREAL PROPORTION ESTIMATES (%)</th>
<th>% of CLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORN</td>
<td>OATS</td>
</tr>
<tr>
<td>GROUND TRUTH MAP</td>
<td>8.06</td>
<td>6.47</td>
</tr>
<tr>
<td>HANDCO</td>
<td>11.04</td>
<td>9.27</td>
</tr>
<tr>
<td>ERMAN-II CLASSIFICATION</td>
<td>9.35</td>
<td>8.70</td>
</tr>
</tbody>
</table>

Table 4.2-2 Results of Second Classification Run

An examination of the results shows that the training fields OATS247, CORN80, P76, CORN110, and OATS38 each is classified 100% in its own class, but that 5% of P274 is classified as spring wheat, and 11% of SW236 and 3% of SW263 is classified as pasture. What is happening is that a small percentage of pasture is being classified as spring wheat, and a small percentage of wheat is being classified as pasture. Since the ground truth area is 80% pasture, the number of pasture pixels classified as spring wheat is far greater than the number of spring wheat pixels as classified as pasture.
The important point is that these effects are inherent in the data, not in the algorithm or its implementation. The Hand County classification exercise confirms that the supervised classification portion of the feature extraction package is functioning properly.

4.2.2 Unsupervised Classification

The CLUSTER PM was exercised with the Hand County data in two modes. In the first, the four classes employed in the MAXLIK exercise were taken as starting vectors (cluster centers), while in the second, self-generated (zero) starting vectors were used. The results of the second mode will be described here since it is representative of the most common use of unsupervised classification, that is in situations where there is no prior information. A split/combine sequence of SSSCS was chosen, and T1 and T2 set to 2.0 and 4.0 respectively, the remaining clustering parameters being at their default values. The split/combine sequence chosen yielded seven clusters plus the null cluster (to which only 0.4% of the pixels were assigned). A convenient way of summarizing and evaluating the results is to determine the clusters into which pixels of each of the four classes were assigned. This is done in Table 4.2-3 (certain clusters with a small percentage of pixel assignment were

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CLUSTER</th>
<th>% OF CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATS</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>CORN</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>SPRING WHEAT</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>PASTURE</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4.2-3 Assignment of Classes to Clusters
ignored in this summary). To determine the reasonableness of this result, the channel means of Cluster 1 may be compared with a training field known to be oats, cluster 6 with corn, and cluster 4 with spring wheat and pasture. This done on Table 4.2-4. When it is recalled that

<table>
<thead>
<tr>
<th>CLUSTER 1</th>
<th>OATS247</th>
<th>CLUSTER 6</th>
<th>CORN54</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.53</td>
<td>24.78</td>
<td>17.64</td>
<td>16.89</td>
</tr>
<tr>
<td>32.37</td>
<td>30.04</td>
<td>18.39</td>
<td>17.25</td>
</tr>
<tr>
<td>39.13</td>
<td>39.24</td>
<td>29.40</td>
<td>28.67</td>
</tr>
<tr>
<td>30.72</td>
<td>30.78</td>
<td>21.85</td>
<td>21.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLUSTER 4</th>
<th>SW263</th>
<th>P105</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.40</td>
<td>19.97</td>
<td>20.27</td>
</tr>
<tr>
<td>23.12</td>
<td>24.80</td>
<td>22.56</td>
</tr>
<tr>
<td>33.24</td>
<td>31.73</td>
<td>32.25</td>
</tr>
<tr>
<td>25.53</td>
<td>24.17</td>
<td>25.34</td>
</tr>
</tbody>
</table>

Table 4.2-4 Cluster and Training Field Means

the clusters, and therefore, their means, were generated by a process which is completely independent of the selection of training fields, the agreement between supervised and unsupervised classification must be considered quite good. Note that the confusion between spring wheat and pasture is corroborated.

In an actual application, further effort would be made to locate further spring wheat fields and perhaps pastures in order to improve the separation of the two classes. However, from the point of view of testing the feature extraction package, the results obtained confirm its satisfactory operation.
4.3 SYNTHETIC DATA SET

The synthetic data used in the second series of tests of the feature extraction package was derived from a set consisting of six bands each of 1,650 lines and 442 samples which provided field sizes of 2.5, 5, 10, and 20 acres, with form factors (width to length ratio) of 1 x 1, 1 x 2, 1 x 4. Spectral signatures of six classes, namely trees, corn, pasture, winter wheat, soybeans, and soil were derived from covariance matrices obtained from aircraft data of an actual region comprising those classes. This set was resampled to simulate satellite multispectral imagery, yielding a data set of 154 lines and 54 pixels in bands 1 through 5 and 38 lines and 13 pixels in band 6 to simulate an infra-red sensor. Since band 6 has too few pixels for adequate field definition, only bands 1 through 5 were used. After transference to disk, these were combined in the INTERL PM to build a composite image called SYNDATA.

4.3.1 Supervised Classification

Although detailed "ground truth" data is available for the original synthetic data set, time limitations prevented its use in defining training fields, which would have involved long and tedious identification of pixel coordinates. Instead five training fields simply designated FIELD1 through FIELD5 were identified visually and designated as classes, along with a class corresponding to the wedge shaped borders along the left and right hand vertical edges of the image designated BACKGROUND.

Supervised classification was carried out with MAXLIK. Individual field results showed that 100% of the pixels in each of the six training fields were classified into their respective classes (all of the 56
pixels in field Fl were assigned to class FIELD1, all of the 54 pixels in field FIELD2 were assigned to class FIELD2, etc.) thus justifying the training field definition.

Thresholding was applied to the resulting class map at the 30% level, which resulted in the assignment of 29.94% of these pixels to the null class. The resulting class map shows very clearly that the null class is primarily the boundary line (simulating roads or bare soil) between the fields. Polaroid photographs of the COMTAL displays of the original data set and the threshold data set are shown in Figure 4.3-1. In spite of the small size of the image because the image expansion facility is not yet available for output images (class and cluster maps), the good quality of the classification is obvious.

The synthetic data set results confirm the satisfactory operation of the INTERL, FIELDEF, CLASTAT, and MAXLIK PMs.

4.3.2 Unsupervised Classification

Unsupervised classification was carried out on the composite image SYNDATA through the PM CLUSTER. Initial clustering parameters were chosen as shown in Figure 4.3-2, and the zero initial starting vector selected. While an iteration-by-iteration report of the development of clusters will not be given here, it is interesting to note that the cluster corresponding to the bright border pixels (corresponding to the class BACKGROUND in the supervised classification) begins to appear after the first split (as CLUSTER 1, Figure 4.3-3a), and is well-defined after the second split (as CLUSTER 1, 4.3-3b).
Figure 4.3-1a Synthetic Data Set, Band 3
Figure 4.3-1b  Thresholded Class Map
THE CURRENT VALUES OF THE INITIAL CLUSTERING PARAMETERS ARE

1. T1 = 8.0
2. T2 = 3.2
3. NMIN = 30
4. NUMMAX = 60
5. SEP = 1.0
6. ISODAT = 1
7. IDISF = 2
8. P = 0.0
10. PMAX = 10
11. PN = 1
12. SPLIT/COMBINE SEQUENCE = SSSSCS

-FOR THE DESCRIPTION OF A PARAMETER, OR TO CHANGE ITS VALUE, ENTER ITS NUMBER OR (CR) IF NO VALUES TO CHANGE

Figure 4.3-2 Initial Clustering Parameters for Synthetic Data Set
### INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1 MEAN</th>
<th>CLUSTER 1 ST.DEV</th>
<th>CLUSTER 2 MEAN</th>
<th>CLUSTER 2 ST.DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.72</td>
<td>43.86</td>
<td>93.76</td>
<td>24.30</td>
</tr>
<tr>
<td>2</td>
<td>231.68</td>
<td>48.15</td>
<td>88.58</td>
<td>16.95</td>
</tr>
<tr>
<td>3</td>
<td>227.58</td>
<td>55.74</td>
<td>53.59</td>
<td>19.25</td>
</tr>
<tr>
<td>4</td>
<td>233.22</td>
<td>47.70</td>
<td>125.28</td>
<td>43.47</td>
</tr>
<tr>
<td>5</td>
<td>229.47</td>
<td>48.53</td>
<td>41.76</td>
<td>16.77</td>
</tr>
</tbody>
</table>

TO SEE NEXT GROUP OF MEANS AND ST.DEV's ENTER 'NEXT'
TO RESUME COMPUTATION ENTER (CR)

Figure 4.3-3a Interim Statistics for Synthetic Data Set, Second Pass
INTERIM CLUSTER STATISTICS

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CLUSTER 1</th>
<th>CLUSTER 2</th>
<th>CLUSTER 3</th>
<th>CLUSTER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>ST.DEV</td>
<td>MEAN</td>
<td>ST.DEV</td>
</tr>
<tr>
<td>1</td>
<td>252.74</td>
<td>4.69</td>
<td>87.14</td>
<td>11.51</td>
</tr>
<tr>
<td>2</td>
<td>253.46</td>
<td>4.39</td>
<td>90.51</td>
<td>11.59</td>
</tr>
<tr>
<td>3</td>
<td>253.20</td>
<td>4.75</td>
<td>49.10</td>
<td>13.45</td>
</tr>
<tr>
<td>4</td>
<td>253.66</td>
<td>4.35</td>
<td>164.66</td>
<td>23.40</td>
</tr>
<tr>
<td>5</td>
<td>252.39</td>
<td>5.26</td>
<td>45.94</td>
<td>18.12</td>
</tr>
</tbody>
</table>

TO SEE NEXT GROUP OF MEANS AND ST.DEV'S ENTER 'NEXT'
TO RESUME COMPUTATION ENTER (CR)

Figure 4.3-3b Interim Statistics for Synthetic Data Set, Third Pass
Cluster field results show the assignment of training field pixels to clusters, summarized in Table 4.3-5. (as before certain small percentage pixel assignments are not included in the summary).

<table>
<thead>
<tr>
<th>FIELD NAME</th>
<th>CLUSTER NUMBER</th>
<th>% PIXELS ASSIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>FIELD2</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>FIELD3</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>FIELD4</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>FIELD5</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.3-5 Assignment of Training Field Pixels

It is apparent that a direct identification can be made between F1 and CLUSTER 6, FIELD4, and CLUSTER 2, FIELD5 and CLUSTER 3, and BACKGROUND nad CLUSTER 1, but CLUSTERS 5 and 10 are confounded. Statistics of these clusters are given in Table 4.3-6 for comparison.

<table>
<thead>
<tr>
<th>CLUSTER 5</th>
<th>CLUSTER 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>STD. DEV.</td>
</tr>
<tr>
<td>148.09</td>
<td>3.06</td>
</tr>
<tr>
<td>120.44</td>
<td>1.62</td>
</tr>
<tr>
<td>95.66</td>
<td>1.58</td>
</tr>
<tr>
<td>46.55</td>
<td>2.89</td>
</tr>
<tr>
<td>66.14</td>
<td>4.56</td>
</tr>
</tbody>
</table>

Table 4.3-6 Cluster Statistics Comparison

Indeed these two clusters are quite close, and perhaps would have merged if another combine iteration had been specified. Since eleven clusters were generated, CLUSTER 12 is the null cluster which, it turns out,
corresponds to the field boundaries or "roads" between fields. The only surprising result is the apparent confusion between FIELD2 and FIELD5 which are mostly assigned to the same cluster, CLUSTER 3. Statistics for these fields are shown in Table 4.3-7 for comparison.

<table>
<thead>
<tr>
<th>FIELD2</th>
<th>MEAN</th>
<th>STD DEV.</th>
<th>FIELD5</th>
<th>MEAN</th>
<th>STD. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79.40</td>
<td>2.83</td>
<td></td>
<td>82.56</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>65.59</td>
<td>0.79</td>
<td></td>
<td>77.15</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>36.43</td>
<td>1.19</td>
<td></td>
<td>43.97</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>113.74</td>
<td>1.08</td>
<td></td>
<td>114.03</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>22.93</td>
<td>2.39</td>
<td></td>
<td>26.10</td>
<td>3.29</td>
</tr>
</tbody>
</table>

Table 4.3-7 Field Statistics Comparison

There is a considerable degree of similarity between the two training fields, and it would be interesting to pursue the matter further.

Figure 4.3-4 has a polaroid photograph of the cluster map, which is not as vivid as it might be because of the particular color selection used to denote clusters. However, the excellent agreement between cluster map and original image can be seen by comparing Figure 4.3-4 with Figure 4.3-1a. As a final comparison, pixel by pixel subimage listings are shown in Figure 4.3-5 for supervised and unsupervised classifications. It is concluded that the principal components of the feature extraction package are working properly, and that the package is ready for application to actual classification problems.
Figure 4.3-4. Cluster Map of SYNDATA
Figure 4.3-5a  Cluster Map Results, Synthetic Data
Figure 4.3-5b  Classification Map Results, Synthetic Data
Section 5
EXPERIMENT CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

During the period of performance of the FEATURE EXTRACTION EXPERIMENT the following conclusions evolved.

a. Extensive testing validated the techniques and software implementation of the FEATURE EXTRACTION SYSTEM. Tests were run using
   o 5-channel Synthetic Data Set
   o ERIM 6-channel aircraft scanner data
   o LANDSAT 4-channel scenes of Hand County, South Dakota
   and the results were analyzed and compared to ground truth when it was available. The results compared favorably to the ground truth. Further, supervised and unsupervised classification of the same data sets were in substantial agreement with each other.

b. Execution time of maximum likelihood classification on the CDC 6400 for a full LANDSAT scene of 3240 pixels x 2340 lines and 4 channels with 10 classes takes approximately 378 minutes. This is probably too long a period of time for an interactive system. However, smaller scenes take proportionally less time, the LACIE sets requiring less than a minute.

c. The developed system has a broad range of applications and is best used for the purpose of testing and evaluating
processing techniques and hypotheses about remotely sensed data.

d. More robust distance metrics are needed to help analyze the separation (probability of misclassification) between classes.

e. More feedback and correlation is needed between the supervised and unsupervised classification (MAXLIK and CLUSTER) processing modules.

5.2 RECOMMENDATIONS

To improve the performance of the package, the following steps should be taken.

a. Both CLUSTER and MAXLIK should be implemented on the STARAN to reduce computation time.

b. Processing modules to reduce the dimensionality of the data should be developed. An example is the principal components technique which uses the Hotelling transformation.

c. Implementation of the Probability of Error and Chernoff Distance is desirable in order to enable the user to better decide whether his selection of classes is adequate, and when to merge classes.
REFERENCES
