PRECIPITATION ESTIMATION USING SATELLITE DATA

SEPTEMBER 1979

By
Bruce T. Miers

Approved for public release; distribution unlimited

US Army Electronics Research and Development Command
ATMOSPHERIC SCIENCES LABORATORY
White Sands Missile Range, NM 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destory this report when it is no longer needed. Do not return it to the originator.
This report attempts to show that, by fitting particular nonlinear auto-
covariance and cross-covariance functions to space-time covariance values
calculated from satellite data, convective complex characteristics such as
size, ellipticity, motion, growth, and decay of a storm can be determined.
These modeled features then can be related to convective storm characteris-
tics found by Scofield and Oliver. In turn, these characteristics are re-
lated to actual rainfall amounts. The results of this study are a first step
in removing the subjectivity from current rainfall estimation techniques. Results from the 20 May 1977 storm over Texas and Oklahoma are presented.
CONTENTS

INTRODUCTION 5
DATA PROCESSING PROCEDURES 6
NAVIGATION FOR GEOSYNCHRONOUS METEOROLOGICAL SATELLITES 7
THE OBJECTIVE ANALYSIS TECHNIQUE 9
SYNOPTIC SITUATION 12
AUTOCOVARIANCE AND CROSS-COVARIANCE FUNCTION RESULTS 14
RAIN GAGE - SATELLITE DATA COMPARISON 23
CONCLUSIONS 28
REFERENCES 32
INTRODUCTION

The effects of weather on the planning for and execution of combat missions have been apparent to military men as long as man has fought man. Historically, the weather has been considered to a great extent to be a natural obstacle, akin to difficult terrain, about which soldiers could do little but accept the consequences. And unlike natural obstacles, the weather often varied considerably and was difficult to predict; one had to expect and prepare for the worst.

Trafficability is of critical concern to the army in the field. Battlefield commanders must have information on fluctuations in soil moisture content to make decisions concerning tactical maneuvers on the battlefield. Soil moisture conditions at a given time and place are a function of: (1) water input to the ground surface from precipitation, (2) water loss from the surface by evaporation and transpiration, and (3) changes in soil moisture storage.

In this study the primary concern is with item (1) of the preceding paragraph. Knowledge of where and when rain is occurring as well as the rate of rainfall will provide critical data on changes in soil moisture and thus on trafficability.

Much of the research work which is aimed at using satellite data to arrive at estimates of rainfall amounts has been very subjective in nature; that is, each person viewing the satellite imagery may interpret it in a slightly different manner, thus arriving at variations in the estimated surface rainfall amounts. The elimination of as much of this subjectivity as possible is desirable. An example of this subjective approach is Scofield and Oliver's work which made use of infrared (IR) data to make quantitative estimates of cloud heights. Rainfall estimates were made from enhanced IR satellite images based on the premise that the higher the cumulonimbus cloud top the heavier the rain. Additional information on the rate of anvil growth, the position of the cumulonimbus under the spreading anvil, merging cells, merging convective cloud lines, and overshooting tops has been used to improve the model. These factors are then incorporated into a decision tree to aid the user in determining where and how much rain has fallen.

This study will attempt to show that, by fitting particular nonlinear autocovariance and cross-covariance functions to space-time covariance values calculated from satellite data, storm characteristics such as size, ellipticity, motion, growth, and decay of a storm can be determined. These modeled characteristics then can be related to storm features found by Scofield and Oliver. The storm features in turn are related to actual rainfall amounts. The results of this study are a first step in removing the subjectivity from current rainfall estimation techniques.

DATA PROCESSING PROCEDURES

The Geostationary Operational Environmental Satellite (GOES) surveys the earth from a nominal altitude of 35,800 km. The GOES has a rotation speed of 100 rpm which generates a west-to-east scan of the earth. A stepping mirror allows the sensors to accomplish the north-to-south scan of the earth. Eight visible and two IR sensors, with resolutions of 1 by 1 km and 4 by 8 km, respectively, provide the data base. In one revolution of the satellite, the earth is scanned for about 18 degrees with each scan consisting of data from one IR sensor and eight visual sensors. These data are transmitted to the command station at a 28-megabit/s rate and then are time-stretched to fill the remaining 342 degrees of satellite rotation and retransmitted back to the satellite. GOES then retransmits the data back to earth where they are available to the users by a 2-megabit/s data rate.

When the satellite signal is received at the Atmospheric Sciences Laboratory (ASL) Direct Readout Ground Station (DRGS), it is processed through the Bit Frame Synchronizer/Sectionizer System (BFSSS). First the signal is detected and demodulated to digital baseband nonreturn to zero-level (NRZL) code by a demodulator. The signal is then routed to two bit synchronizers, one dedicated to infrared and the other to visible. The outputs of the bit synchronizers, each consisting of NRZL data and bit clock, are routed to the digital interface where the interface establishes synchronization on the IR signal and determines the transmission mode. Synchronization is then established on the visible signal. The digital interface is operated by a PDP 11/45 minicomputer. Through a computer program, sectors of data of interest to a researcher are stored on magnetic tape or displayed in real time.

Once the sector of interest is determined, the IR and visible data are separated into two files for further processing. Often when GOES data are viewed on a display monitor, it is obvious that entire lines of data are unacceptable for use in an analysis program, and random errors are sometimes present in the data. These errors require the use of a filtering and smoothing program to render the data acceptable for use in analysis programs. In outline form the filtering and smoothing program handles the data in the following manner. Image positions are defined by rectangular coordinates \((i, j)\) where \(i = 1, 2, \ldots, N\) gives the relative horizontal position (pixel) and \(j = 1, 2, \ldots, M\) gives the relative position from the top of the image (line); and image intensity at point \((i, j)\) is denoted by \(F(i, j)\). Examination of the data showed that bad isolated points were characterized by \(F(i, j) > \theta_1\), or \(F(i, j) < \theta_2\). For visible data, \(\theta_1\) was assigned the value 59 and \(\theta_2\) the value 4; while for IR data, \(\theta_1\) and \(\theta_2\) were assigned values of 252 and 4, respectively. An isolated bad point, \(F(i, j)\), is replaced by the average of its neighbors \(F(i - 1, j)\) and \(F(i + 1, j)\) on the same line \(j\).

Unacceptable lines were characterized by rapid oscillations of intensities along a line and are detected by a large value of the "average slope" of the line by equation (1).
\[A = \frac{1}{N} \sum_{i=1}^{N-1} |F(i + 1, j) - F(i, j)|. \]

The lines were defined as bad when A was greater than five. After examining a large number of cases, the author found that good lines have a value of A less than three and bad lines have a value of A near 20. In actual computer implementation, lines are processed first and random points next. The program also allows up to three consecutive bad lines or bad points before default of the entire data set. For the purposes of this study, the data were segmented so that only one convective complex will appear in a data set. Tests\(^2\) have shown that the complete data set could possibly show some decimation while still producing the same covariance structure. The results of this study were derived by using every fifth pixel and every second line in the infrared and every twentieth pixel and every sixteenth line in the visible.

After this facet of the data processing procedure was complete, latitude and longitude for each point of the decimated data set were calculated. The data file and the latitude-longitude file were then used to calculate the raw covariance matrices. A data processing flow chart is shown in figure 1.

NAVIGATION FOR GEOSYNCHRONOUS METEOROLOGICAL SATELLITES

The navigation algorithm used by the ASL Meteorological Analysis System (AMAS) is a modification of Phillips and Smith's work.\(^3\) Similar software packages are being used by NASA/GSFC and the Universities of Wisconsin and Colorado State.

The purpose of the navigation software is to provide the capability for accurately calculating the latitude and longitude of any point in the image data and, conversely, for computing the position on the image of any specified earth location. The data required to perform these transformations consist of four principal components: (1) spacecraft orbital elements for computing satellite position at any specified time, (2) spacecraft spin axis attitude, specified by the right ascension and declination

Figure 1. Data processing flowchart.
of the spin vector in celestial coordinates, (3) small angles of pitch, roll, and yaw that specify the misalignment between instrument optical axes and spacecraft spin axis and, (4) scan phase correction parameters for each image to which the navigation applies. These parameters (item (4) above) are the initial offset and drift rate, in the pixel (horizontal) direction, between the center of the earth and the center of the master image.

Three coordinate systems are used in the navigation solution, namely: (1) a celestial inertial system for description of orbit and attitude, (2) a geographic system rotating with the earth for description of landmarks, and (3) a time dependent satellite coordinate system for description of the scanning geometry (figure 2). For a detailed description of this solution, consult Billingsley et al. 4

THE OBJECTIVE ANALYSIS TECHNIQUE

The objective analysis technique used in this project requires that the intrarelationships existing within each single parameter data set, as well as the interrelationships existing between these data sets, be determined. These relationships are then described in terms of correlation and cross-correlation functions which model the spatial and temporal structure of the phenomenon as reflected in the observations themselves.

The analysis model used is an extension 5 of classical multiple linear regression. This extension consists of modeling the structure that is representative of the information contained in the time series data set being analyzed and then using that model in the determination of the regression weights.

The model for the univariate case is given by

\[Y = X\beta + \varepsilon, \]

where \(Y \), the predictand, is an \(N \times 1 \) matrix; \(X \), the predictor set, is an \(N \times M \) matrix; \(\beta \), the vector of regression weights, forms an \(M \times 1 \) matrix; and \(\varepsilon \), the noise vector, forms an \(N \times 1 \) matrix.

In classical regression, if \(E[\varepsilon] = 0 \), where \(E \) is the expectation operator, \(\Sigma = E[\varepsilon \varepsilon^T] \) is the variance-covariance matrix of \(\varepsilon \), where \(\varepsilon^T \) denotes

Figure 2. Relation between satellite, earth, and image coordinates.
the transpose of the noise vector, and \(\varepsilon_i \) is a normally distributed random variable with mean zero and variance \(\sigma^2 \), then the regression weights determined from the data are

\[
\beta = \left(x^T V^{-1} x \right)^{-1} x^T V^{-1} y ,
\]

(3)

where \(-1\) denotes matrix inversion and the objective analysis may be accomplished by

\[
y = X \hat{\beta} .
\]

(4)

See Draper and Smith\(^6\) for details.

The \(k \)th, \(l \)th element of the matrix \([x^T V^{-1} x]\) is computed by

\[
[x^T V^{-1} x]_{kl} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} X_{ik} X_{ij} V^{-1}_{ij} ,
\]

(5)

and the \(k \)th element of the vector \([x^T V^{-1} y]\) is computed by

\[
[x^T V^{-1} y]_k = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} X_{ik} y_j V^{-1}_{ij} .
\]

(6)

The covariance structure function, \(\text{cov}(XX) \), is determined from the historical data set for all possible \(k \)th, \(l \)th elements of \([x^T V^{-1} x]\) and for all

possible kth elements of \([X^tX^{-1}Y]\), and is expressed in terms of a mathematical model. The signal plus noise covariance can be computed from this modeled structure for any kth, lth element required, within the limits of the model itself.

\[\Delta t = t_2 - t_1 \]
\[X_1 = \text{position (E-W) of variable 1} \]
\[X_2 = \text{position (E-W) of variable 2} \]
\[Y_1 = \text{position (N-S) of variable 1} \]
\[Y_2 = \text{position (N-S) of variable 2} \]
\[t_1 = \text{observation time of variable 1} \]
\[t_2 = \text{observation time of variable 2} \]

The decision variables (NLP estimated parameters) are as follows:

- \(A \) = modeled lag zero correlation coefficient.
- \(\sigma_x, \sigma_y, \sigma_t \) = modeled measures of storm size in space and time.
- \(\alpha \) = a measure of ellipticity.
- \(C_x \) and \(C_y \) = modeled speeds toward the east and north (positive), respectively (figure 3).

Crawford's\(^7\) NLP algorithm minimizes an objective function, subject to mathematical constraints. The algorithm adjusts the values of the variables until any minor change in these variables results in an improvement of the objective function of less than some small preset value. The algorithm thus converges upon values of the variables which are as good as or better than any nearby values.

In the above formulation, variables 1 and 2 were both IR or visible, thus producing an autocovariance function.

SYNOPTIC SITUATION

The first case used to test the objective analysis procedures occurred on 20-21 May 1977 over the south-central United States (see appendix for map series). The synoptic situation on 19 May at 1200Z showed a high pressure system centered over Kentucky with a low pressure over North Dakota. A

\(^7\)K. C. Crawford, 1977, "The Design of a Multivariate Mesoscale Field Experiment," PhD Dissertation, University of Oklahoma, Department of Meteorology
Figure 3: Cloud top characteristics for one portion of the storm, lifetime deduced from the modelled covariance function. $a =$ major axis, $b =$ minor axis, $\theta =$ orientation, $c_x =$ eastward speed of storm, $c_y =$ southward speed of storm, $\phi =$ direction of movement.
cold front extended from this low pressure system southwestward through South Dakota, Nebraska, western Kansas, and Oklahoma into the Texas Panhandle. Flow in advance of the front was southerly, bringing warm moist air from the Gulf of Mexico in the Great Plains. Surface temperatures in advance of the front ranged from the lower 70's in North Texas to the lower 60's in North Dakota with dew point temperatures ranging from the mid 60's to the mid 50's.

Upper airflow at 700 mb on the 19th was characterized by a ridge over the eastern portion of the United States, while a trough spanned the area from Idaho through eastern Nevada into southern California.

Twenty-four hours later the surface high pressure system had moved over Pennsylvania, and the cold front reached from northwest Wisconsin to central New Mexico. Warm moist Gulf air continued to flow into regions in advance of the cold front. The upper level trough and ridge positions had moved slowly eastward.

On the mesoscale, a line of thunderstorms had developed by 1700Z in the Texas Panhandle with the line moving southeastward and the cells in the line moving northeastward. Later in the day multiple lines had formed and thunderstorm tops to 14 km were reported (see appendix for radar echo maps). In addition, rainshowers developed around 1630Z in central Texas, and these two areas merged by 1930Z over the Red River. The greatest reported hourly rainfall amount occurred between 0000Z and 0100Z on 21 May at Geary, Oklahoma (2.00 in.). Hourly rainfall amounts in excess of 1 in. were recorded from many areas in the Texas Panhandle and western Oklahoma between 1800Z on 20 May and 0100Z on 21 May. Total storm rainfall (see appendix maps) pattern was oriented southwest-northeast with the largest amount (4.3 in.) occurring at McLean, Texas. The 3-in. isohyet ran from near Kress, Texas, northeastward to Sun City, Kansas.

AUTOCOVARIANCE AND CROSS-COVARIANCE FUNCTION RESULTS

The satellite data for the 20 May 1977 storm produced the values shown in part A of tables 1 and 2. Storm features (part B) derived from the values in part A were computed in the following manner. The orientation \(\theta \) is given by

\[
\theta = (1/2) \arctan \left[\frac{2\sigma_x \sigma_y}{\sigma_x^2 - \sigma_y^2} \right]
\]

(8)

The major axis \(a \) is computed from equation (9)

\[
a^2 = \sigma_x^2 \cos^2 \theta + \sigma_y^2 \sin^2 \theta + 2\sigma_x \sigma_y \sin \theta \cos \theta.
\]

(9)
Table 1. Infrared Data (Threshold = -30°C)

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_x (km)</td>
<td>σ_y (km)</td>
<td>α</td>
<td>ρ</td>
<td>$T_f (Z)$</td>
<td>θ (deg)</td>
<td>a (km)</td>
<td>b (km)</td>
<td>Area $km^2 \times 10^3$</td>
<td>Shape a/b</td>
<td>Direction (deg)</td>
<td>Speed (km/hr)</td>
<td>S/N</td>
</tr>
<tr>
<td>199</td>
<td>259</td>
<td>0.09</td>
<td>0.61</td>
<td>1800 - 1845</td>
<td>54</td>
<td>249</td>
<td>211</td>
<td>165</td>
<td>1.18</td>
<td>220</td>
<td>81</td>
<td>0.59</td>
</tr>
<tr>
<td>197</td>
<td>272</td>
<td>0.20</td>
<td>0.62</td>
<td>1815 - 1854</td>
<td>61</td>
<td>274</td>
<td>195</td>
<td>168</td>
<td>1.41</td>
<td>223</td>
<td>62</td>
<td>0.62</td>
</tr>
<tr>
<td>195</td>
<td>300</td>
<td>0.25</td>
<td>0.63</td>
<td>1830 - 1915</td>
<td>60</td>
<td>299</td>
<td>196</td>
<td>184</td>
<td>1.53</td>
<td>229</td>
<td>58</td>
<td>0.66</td>
</tr>
<tr>
<td>195</td>
<td>328</td>
<td>0.26</td>
<td>0.65</td>
<td>1845 - 1930</td>
<td>58</td>
<td>321</td>
<td>206</td>
<td>208</td>
<td>1.56</td>
<td>229</td>
<td>72</td>
<td>0.73</td>
</tr>
<tr>
<td>191</td>
<td>354</td>
<td>0.25</td>
<td>0.66</td>
<td>1854 - 1945</td>
<td>55</td>
<td>335</td>
<td>223</td>
<td>235</td>
<td>1.50</td>
<td>234</td>
<td>67</td>
<td>0.77</td>
</tr>
<tr>
<td>191</td>
<td>369</td>
<td>0.20</td>
<td>0.66</td>
<td>1915 - 2000</td>
<td>53</td>
<td>337</td>
<td>243</td>
<td>257</td>
<td>1.39</td>
<td>249</td>
<td>50</td>
<td>0.77</td>
</tr>
<tr>
<td>197</td>
<td>365</td>
<td>0.14</td>
<td>0.66</td>
<td>1930 - 2015</td>
<td>51</td>
<td>325</td>
<td>258</td>
<td>263</td>
<td>1.26</td>
<td>252</td>
<td>50</td>
<td>0.77</td>
</tr>
<tr>
<td>211</td>
<td>362</td>
<td>0.01</td>
<td>0.65</td>
<td>1945 - 2030</td>
<td>45</td>
<td>298</td>
<td>295</td>
<td>276</td>
<td>1.01</td>
<td>239</td>
<td>67</td>
<td>0.73</td>
</tr>
<tr>
<td>226</td>
<td>354</td>
<td>-0.14</td>
<td>0.64</td>
<td>2000 - 2045</td>
<td>8</td>
<td>356</td>
<td>222</td>
<td>248</td>
<td>1.60</td>
<td>226</td>
<td>82</td>
<td>0.69</td>
</tr>
<tr>
<td>242</td>
<td>352</td>
<td>-0.23</td>
<td>0.63</td>
<td>2015 - 2100</td>
<td>15</td>
<td>360</td>
<td>231</td>
<td>261</td>
<td>1.56</td>
<td>222</td>
<td>99</td>
<td>0.66</td>
</tr>
<tr>
<td>262</td>
<td>356</td>
<td>-0.25</td>
<td>0.63</td>
<td>2030 - 2115</td>
<td>19</td>
<td>367</td>
<td>246</td>
<td>284</td>
<td>1.49</td>
<td>220</td>
<td>92</td>
<td>0.66</td>
</tr>
<tr>
<td>272</td>
<td>379</td>
<td>-0.23</td>
<td>0.61</td>
<td>2045 - 2130</td>
<td>17</td>
<td>389</td>
<td>258</td>
<td>315</td>
<td>1.51</td>
<td>221</td>
<td>92</td>
<td>0.59</td>
</tr>
<tr>
<td>295</td>
<td>452</td>
<td>-0.24</td>
<td>0.59</td>
<td>2100 - 2145</td>
<td>14</td>
<td>461</td>
<td>281</td>
<td>407</td>
<td>1.64</td>
<td>207</td>
<td>91</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Table 2. Visible Data 20 May 1977

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_x) (km)</td>
<td>(\sigma_y) (km)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>224</td>
<td>223</td>
</tr>
<tr>
<td>214</td>
<td>224</td>
</tr>
<tr>
<td>216</td>
<td>235</td>
</tr>
<tr>
<td>221</td>
<td>249</td>
</tr>
<tr>
<td>225</td>
<td>255</td>
</tr>
<tr>
<td>228</td>
<td>256</td>
</tr>
<tr>
<td>228</td>
<td>253</td>
</tr>
<tr>
<td>221</td>
<td>244</td>
</tr>
<tr>
<td>216</td>
<td>238</td>
</tr>
<tr>
<td>219</td>
<td>230</td>
</tr>
<tr>
<td>231</td>
<td>207</td>
</tr>
<tr>
<td>253</td>
<td>181</td>
</tr>
<tr>
<td>273</td>
<td>153</td>
</tr>
</tbody>
</table>
The minor axis \(b\) is given by
\[
b^2 = \sigma_x^2 \sin^2 \theta + \sigma_y^2 \cos^2 \theta - 2\sigma_x \sigma_y \sin \theta \cos \theta.
\] (10)

The area is computed from equation (11)
\[
A = \pi(a)(b);
\] (11)

and the shape by
\[
s = a/b;
\] (12)

and the signal to noise ratio (SNR) can be inferred from the modeled lag zero correlation coefficient as follows (equation (13))
\[
\text{SNR} = \frac{\rho^2}{1 - \rho^2}
\] (13)

Also, \(C\) is the speed of movement of the storm and \(\phi\) is the direction of movement.

The derived storm characteristics are conservative and stable over the 1800Z to 2145Z time period. The change in orientation shown at 2000Z was due to the merging of a small cell with the convective complex (see appendix for radar coverage). The colder IR temperatures became numerous in the southern portion of the storm during the merger, thus forcing the orientation angle around to a more easterly direction; however, the direction of movement (\(\phi\)) of the total storm remained about the same. Figures 4 and 5 show a plot of some of the significant parameters of the convective complex. Weather radar reports from Lubbock, Texas, indicated average cell movements of 30 to 35 knots (55 to 64 km/hr) with a direction of 230 at 1800Z. Maximum observed cell speed by weather radar was 50 knots (91 km/hr) from 230. Later in the day (2030Z), the Oklahoma City weather radar reported cells moving at about 25 to 30 knots (46 to 55 km/hr) from 230 to 240 degrees azimuth. A maximum speed of 35 knots with an azimuth of 230 was also recorded.

The computed storm orientation (\(\phi\)) agrees well with the surface rainfall pattern up until time of cell merger. (See appendix for rainfall analysis.) The area shown in tables 1 and 2 indicates that the visible cloud top is somewhat smaller and oriented a little differently than the IR cloud top. The overshooting tops seen in the visible data (figure 6) are pronounced and tend to line up along the direction of motion. These features tend to make the covariance algorithm deduce a smaller system.
Figure 4. Significant parameters of convective complex. IR threshold data = -30°C.
Figure 5. Significant parameters of convective complex. Visible data 20 May 77.
Figure 6. GOES visible image for 20 May 77, 1815Z.
The SNR increased and then decreased with time. The convective complex evolved during the period of analysis from a smooth and well-defined ellipse up until the time of cell merger. Then the system became a rather flat and ragged composite of anvils produced by several embedded cells (figure 7). The SNR could be anticipated to drop to very small values as the system ceased to produce new active rain cells.

Several inferences can be made from the results of this study, namely: (1) cloud top morphology of convective complexes as deduced by using the space-time covariance analysis technique is sufficiently conservative to suggest that predictions made for periods of about 1 to 2 hours could show significant skill; (2) these predictions can be objective and automated; and (3) rainfall location, movement, and intensity can be associated with cloud top features of such weather systems.

All the statistics required to perform the analysis of the GOES data are contained in the cross-covariance functions derived from the data sets. The first step in modeling these functions is to obtain "raw," discrete covariance estimates by lagging each field with respect to itself in space and time. To cover the entire storm and yet preserve an adequate space-time resolution, the raw covariance matrices were of order 9 by 9 in space and 4 in time. The category sizes or resolution were 70 km east-west, 70 km north-south and 15 minutes in time. The product pairs and the raw covariance matrices for selected times are presented in the appendix.

The raw covariance matrices are normalized to give raw correlation matrices. Equation (7) was fitted to the raw correlation matrices by using a nonlinear program (NLP) algorithm developed by Crawford.7

\[
\text{Cov} (X_1 X_2) = A \exp \left\{ -\frac{1}{2} \left(1 - \alpha^2 \right) \left[(\Delta X / \sigma_x)^2
- 2 \alpha (\Delta X / \sigma_x) (\Delta Y / \sigma_y) + (\Delta Y / \sigma_y)^2 \right]
- \left(\frac{1}{2} \right) (\Delta t / \sigma_t)^2 \right\} \cos \left\{ \pi / 2 \left[(\Delta X / \sigma_x)^2
- 2 \alpha (\Delta X / \sigma_x) (\Delta Y / \sigma_y) + (\Delta Y / \sigma_y)^2 + (\Delta t / \sigma_t)^2 \right]^{1/2} \right\} \right\}
\]

Equation (7) was fitted to the raw correlation matrices by using a non-linear program (NLP) algorithm developed by Crawford.7

7K. C. Crawford, 1977, "The Design of a Multivariate Mesoscale Field Experiment," PhD Dissertation, University of Oklahoma, Department of Meteorology
Figure 7. GOES visible image for 20 May 77, 2115Z.
where

$$\Delta X = (X_2 - X_1) - C_x t - X_0$$

$$\Delta Y = (Y_2 - Y_1) - C_y t - Y_0$$

RAIN GAGE - SATELLITE DATA COMPARISON

The procedures in the previous action showed that an ellipse can be fitted to a convective complex and useful parameters can be derived from the auto-
covariance and cross-covariance functions. However, if an analysis system
is to operate in a real-time mode, the above procedures require too much
computer time for operational purposes.

An ellipse fitting routine* was developed for the AMAS image processor which
allows an ellipse, similar in configuration to the ones in the previous
section, to be fitted to the convective complex temperature patterns in a
few seconds of computer time. Successive images can be averaged or dis-
played individually as the analyst desires. This system also allows image
overlay of other data. Using the navigation system, one can take each
line-element location on the image and transform it into latitude and
longitude; one can transform earth-located information into the satellite
coordinate system or vice-versa for proper comparison of the data. This
system permits new insight into the physical mechanisms occurring during
the rainfall process and demonstrates where efforts should be made in
further studies.

Rainfall data for the 20 May 1977 period was available at hourly intervals
from some stations and on a daily total basis from other stations. Figures
8, 9, 10, and 11 compare the hourly rainfall totals for 1900Z, 2000Z, 2100Z,
and 2200Z with the fitted ellipses which correspond to the -63°C, -65°C,
and -67°C IR temperatures averaged for the half-hour and hourly values end-
ing on the hour. Since the available satellite data did not span a 24-hour
period, no comparison was made with the total rainfall pattern. The greatest
amounts of recorded rainfall fell within the -67°C fitted ellipse. All
but two rainfall events greater than 0.50 in. fell within the -67°C ellipse.
However one station (within the -67°C ellipse) did not report any rain dur-
ding the 4-hr time period. The -63°C fitted ellipse encompassed most of the
significant (> 0.50 in./hr) rainfall events. Only one event fell outside
this ellipse. More rain usually fell after mergers of -67°C contour areas.

*J. Marvin, Physical Science Laboratory, New Mexico State University,
personal communication
Figure 8. Hourly rainfall rate, 1900Z, 20 May 77, compared with fitted ellipses.
Figure 10. Hourly rainfall rate, 2100Z, 20 May 77, compared with fitted ellipses.
Figure 11. Hourly rainfall rate, 2200Z, 20 May 77, compared with fitted ellipses.
Figures 12 and 13 show the shape, position, and pixel areas of the -67°C contours for 15-min intervals from 1800Z to 2145Z. If the centroid of the -67°C is plotted with respect to time, speed of movement (43 to 54 km/hr) of the centroid is very close to the radar detected speed of movement of the thunderstorm cells.

From this study, it appears that certain ellipses fitted to IR temperature levels can be assigned rainfall amounts. Also, more rain can be assigned to the downwind half of the ellipse than to the upwind half. However, if this scheme is to be automated, the subjective judgments of when area mergers occur and location of downwind areas of ellipses must be eliminated.

Therefore, the following table is suggested for use in solving for rainfall values to be used in trafficability calculations.

<table>
<thead>
<tr>
<th>Ellipse (°C)</th>
<th>Rainfall Range (in./hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-67</td>
<td>0.50 to 1.50</td>
</tr>
<tr>
<td>-65</td>
<td>0.25 to 0.50</td>
</tr>
<tr>
<td>-63</td>
<td>Trace to 0.25</td>
</tr>
</tbody>
</table>

Although these values probably overestimate the rainfall in some areas and underestimate it in others, they do yield reasonable values without subjective judgments. A problem area in this type of estimation is rainfall efficiency. The base of the clouds is often several hundred meters above the surface and subcloud evaporation of rainfall is often quite high, which means that these same cloud top temperatures could yield different rainfall values in other areas and times of the year. Possibly climatologies of rainfall estimates will have to be made according to time of year, time of day, and location before accuracy can be improved. Additional case studies must be done to accomplish the above task.

CONCLUSIONS

The IR data from the cloud tops of convective complexes relate well to rainfall at the surface. Maximum rainfall occurs when cloud top temperatures are -67°C or colder.

The centroid of the fitted ellipse of the -67°C contour area, when plotted against time, appears to agree well with the speed of movement of cells tracked by weather radar.

Cloud top morphology can be detected by using the AMAS, and ellipses (fitted to the data) can be drawn directly on the display screen.
Figure 13. Shape, position, and pixel areas of the -67°C contours for 15-min intervals. Numbers under the contour areas indicate the number of satellite pixels within the contour. Changes of areas are indicated by letter designator change from one time period to another.
Convective complex movements and areal expansion rates can be predicted by using past positions of the centroid and areas of a fitted ellipse and extrapolation techniques.
REFERENCES

Figure A-1. Total Precipitation 1600Z 20 May 77 through 0200Z 21 May 77.
Figure A-2. Surface at 17007, 20 May 77.
Figure A-3. Surface at 2000Z, 20 May 77.
Figure A-4. Surface at 2300Z, 20 May 77.
Figure A-5. Composite radar echoes for 1730Z, 20 May 77.
Figure A-6. Composite radar echoes for 2030Z, 20 May 77.
Figure A-7. Composite radar echoes for 2330Z, 20 May 77.
Figure A-8. Map for 850 mb, 1200Z, 20 May 77.
Figure A-9. Map for 850 mb, 1800Z, 20 May 77.
Figure A-10. Map for 700 mb, 1200Z, 20 May 77.
Figure A-11. Map for 500 mb, 1200Z, 20 May 77.
Figure A-12. Map for 500 mb, 1800Z, 20 May 77.
Figure A-13. Map for 300 mb, 1200Z, 20 May 77.
Figure A-14. Map for 300 mb, 1800Z, 20 May 77.
DISTRIBUTION LIST

Dr. Frank D. Eaton
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA
Fort Rucker, AL 36362

Chief, Atmospheric Sciences Div
Code ES-81
NASA
Marshall Space Flight Center,
AL 35812

Commander
US Army Missile R&D Command
ATTN: DRDMI-CGA (B. W. Fowler)
Redstone Arsenal, AL 35809

Redstone Scientific Information Center
ATTN: DRDMI-TBD
US Army Missile R&D Command
Redstone Arsenal, AL 35809

Commander
US Army Missile R&D Command
ATTN: DRDMI-TEM (R. Haraway)
Redstone Arsenal, AL 35809

Commander
US Army Missile R&D Command
ATTN: DRDMI-TRA (Dr. Essenwanger)
Redstone Arsenal, AL 35809

Commander
HQ, Fort Huachuca
ATTN: Tech Ref Div
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATSI-CD-MD
Fort Huachuca, AZ 85613

Commander
US Army Yuma Proving Ground
ATTN: Technical Library
Bldg 2100
Yuma, AZ 85364

Naval Weapons Center (Code 3173)
ATTN: Dr. A. Shlanta
China Lake, CA 93555

Sylvania Elec Sys Western Div
ATTN: Technical Reports Library
PO Box 205
Mountain View, CA 94040

Geophysics Officer
PMTC Code 3250
Pacific Missile Test Center
Point Mugu, CA 93042

Commander
Naval Ocean Systems Center (Code 4473)
ATTN: Technical Library
San Diego, CA 92152

Meteorologist in Charge
Kwajalein Missile Range
PO Box 67
APO San Francisco, CA 96555

Director
NOAA/ERL/APCL R31
RB3-Room 567
Boulder, CO 80302

Library-R-51-Tech Reports
NOAA/ERL
320 S. Broadway
Boulder, CO 80302

National Center for Atmos Research
NCAR Library
PO Box 3000
Boulder, CO 80307

R. B. Girardo
Bureau of Reclamation
E&R Center, Code 1220
Denver Federal Center, Bldg 67
Denver, CO 80225

National Weather Service
National Meteorological Center
W321, WWB, Room 201
ATTN: Mr. Quiroz
Washington, DC 20233
Dr. John L. Walsh
Code 5560
Navy Research Lab
Washington, DC 20375

Commander
TRASANA
ATTN: ATAA-PL
(Dolores Anguiano)
White Sands Missile Range, NM 88002

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-M (Mr. Paul Carlson)
Dugway, UT 84022

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-T
(Mr. William Peterson)
Dugway, UT 84022

Commander
USATRADOC
ATTN: ATCD-SIE
Fort Monroe, VA 23651

Commander
USATRADOC
ATTN: ATCD-CF
Fort Monroe, VA 23651

Commander
USATRADOC
ATTN: Tech Library
Fort Monroe, VA 23651
ATmospheric Sciences Research Papers

42. Gillespie, James B., and James D. Lindberg, “A Method to Obtain Diffuse Reflectance Measurements from 1.0 to 3.0 μm Using a Cary 171 Spectrophotometer,” ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, “Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region,” ECOM-5817, May 1977.

