UNCLASSIFIED
Phase I Inspection Report

Title: Phase I Inspection Report
Subtitle: St. Joseph's Lake Dam
Period Covered: Delaware River Basin, Sullivan County, New York
Inventor No.: N.Y. 324

Authors: George Koch, P.E.

Performing Organization Name and Address:
New York State Department of Environmental Conservation/ 50 Wolf Road
Albany, New York 12233

Controlling Office Name and Address:
New York State Department of Environmental Conservation/ 50 Wolf Road
Albany, New York 12233

Report Date: 17 April 1979

Number of Pages: 10007

Security Class. of this Report: UNCLASSIFIED

Distribution Statement (of this Report): Approved for public release; Distribution unlimited.

Abstract:
This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. St. Joseph's Lake Dam was found to have several deficiencies which require further investigation. Structural stability and seepage investigations should be undertaken. Additional monitoring of seepage and erosion at the spillway was also recommended.
DELAWARE RIVER BASIN

ST. JOSEPHS LAKE DAM
SULLIVAN COUNTY, NEW YORK
INVENTORY No. NY 324

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
CONTRACT NO. DACW-51-79-C0001

NEW YORK DISTRICT CORPS OF ENGINEERS
JANUARY 1979
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probably Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

- ASSESSMENT

- OVERVIEW PHOTOGRAPH

1 PROJECT INFORMATION

1.1 GENERAL

1.2 DESCRIPTION OF PROJECT

1.3 PERTINENT DATA

2 ENGINEERING DATA

2.1 DESIGN

2.2 CONSTRUCTION RECORDS

2.3 OPERATION RECORD

2.4 EVALUATION OF DATA

3 VISUAL INSPECTION

3.1 FINDINGS

3.2 EVALUATION OF OBSERVATIONS

4 OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURE

4.2 MAINTENANCE OF DAM

4.3 MAINTENANCE OF OPERATING FACILITIES

4.4 WARNING SYSTEM IN EFFECT

4.5 EVALUATION

PAGE NO.

1

1

2

4

4

4

4

5

5

6

7

7

7

7

7
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>HYDROLOGIC/HYDRAULIC</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>DRAINAGE AREA CHARACTERISTICS</td>
<td>8</td>
</tr>
<tr>
<td>5.2</td>
<td>ANALYSIS CRITERIA</td>
<td>8</td>
</tr>
<tr>
<td>5.3</td>
<td>SPILLWAY CAPACITY</td>
<td>8</td>
</tr>
<tr>
<td>5.4</td>
<td>RESERVOIR CAPACITY</td>
<td>8</td>
</tr>
<tr>
<td>5.5</td>
<td>FLOODS OF RECORD</td>
<td>8</td>
</tr>
<tr>
<td>5.6</td>
<td>OVERTOPPING POTENTIAL</td>
<td>9</td>
</tr>
<tr>
<td>5.7</td>
<td>EVALUATION</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>STRUCTURAL STABILITY</td>
<td>10</td>
</tr>
<tr>
<td>6.1</td>
<td>EVALUATION OF STRUCTURAL STABILITY</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>ASSESSMENT/RECOMMENDATIONS</td>
<td>11</td>
</tr>
<tr>
<td>7.1</td>
<td>ASSESSMENT</td>
<td>11</td>
</tr>
<tr>
<td>7.2</td>
<td>RECOMMENDED MEASURES</td>
<td>12</td>
</tr>
</tbody>
</table>

APPENDIX

A. PHOTOGRAPHS
B. ENGINEERING DATA CHECKLIST
C. VISUAL INSPECTION CHECKLIST
D. HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS
E. REFERENCES
F. DRAWINGS
PHASE 1 REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: St. Josephs Lake Dam (I.D. No. NY 324)
State Located: New York
County Located: Sullivan
Stream: Black Brook (tributary of Mongaup River)
Date of Inspection: October 20, 1978

ASSESSMENT

The St. Josephs Lake Dam consists of a sandstone block masonry spillway with 2 masonry non-overflow sections. The north section is buttressed on both faces with earth fill. The visual inspection of the dam revealed a need for the following investigations:

1. Seepage investigations are required to determine the type and extent of measures needed to control the seepage observed in the earth embankment and the south masonry portion.

2. Investigate the spillway and the erosion at the base when the reservoir is drawn down below the spillway crest.

3. Investigate the structural stability of the dam. The stability analysis will determine if additional spillway capacity and/or remedial measures are required.

A consulting engineering firm should be contacted within 3 months to initiate these investigations. The investigations should be completed within 12 months. The deteriorated spillway buttresses and the mortar joints of the masonry blocks should be repaired during the next construction season. Vegetative growth on and in the vicinity of the dam should be removed immediately.

The discharge capacity of the spillway is inadequate for all flow in excess of 29% of the Probable Maximum Flood (PMF). The spillway is not considered seriously inadequate, based on the Corps of Engineer's Screening Criteria, since the dam is a gravity structure and has experienced overtopping similar to the 1/2 PMF in 1955 without failure of the dam. If unacceptable factors of safety are achieved in the stability analysis, then all screening criteria will be met and the spillway will be considered seriously inadequate. This will result in the need for additional spillway capacity and/or measures to insure the stability and safety of the structure. In the interim, continuous monitoring of the structure must be initiated during periods of high run-off and a contingency plan adopted to inform the proper authorities in the event of overtopping.
The following deficiencies were observed which require remedial action:

1. The mortar joints of the masonry blocks at the spillway crest and on the downstream face require repointing.

2. The spillway buttresses require repair to prevent further deterioration.

3. Vegetative growth surrounding the dam must be removed. A program of periodic cutting and mowing is required.

4. Initiate a program of periodic inspection and maintenance of the dam and appurtenances. Document this information and develop an operations manual.

George Koch
Chief, Dam Safety Section
New York State Department of Environmental Conservation
NY License No. 45937

Approved By:

Col. Clark H. Benn
New York District Engineer

Date: 17 April 79
SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority
The Phase 1 inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection
Evaluation of the existing conditions of the subject dam to identify deficiencies and hazardous conditions, determine if they constitute hazards to life and property and recommend remedial measures where necessary.

1.2 DESCRIPTION OF PROJECT

a. Description of the Dam and Appurtenant Structures
The St. Josephs Lake Dam consists of a sandstone block masonry spillway with 2 non-overflow sections, the north section of which is buttressed on both faces with earth fill. The maximum height of the dam is 22 feet. The length of the dam is 229 feet including a 40 feet long spillway, located 49 feet north of the south abutment. The upstream face is vertical and the downstream face drops vertically a distance of 5 feet then slopes downward at a rate of approximately 2 vertical to 1 horizontal. The elevation of the top of dam is assumed from the USGS topographic map to be 2.5 feet above lake level or 1432.5.

The ungated masonry spillway is 3 feet wide at the crest and steps down in 12 varying increments to the base. Flow over the spillway would not permit complete inspection and measurement of the spillway, however, the general shape is that of an ogee section. Two buttresses form the north and south extremities of the spillway. The spillway crest is 2.5 feet below the top of dam, assumed elevation 1430.

Two 2 feet diameter conduits with manually operated gate valves are located just north of the spillway. One serves as a reservoir drain, the other now abandoned, served as part of the hydroelectric generation system.

b. Location
The St. Josephs Lake Dam is located on the Black Brook in the Town of Forestburg approximately 4.5 miles south of the city of Monticello, Sullivan County, east of State Route #62.
c. Size Classification
The dam is 22 feet high, impounds 1800 acre-feet of water and is classified as an "intermediate" dam (1000 to 50,000 acre-feet).

d. Hazard Classification
The dam is classified as "high" hazard because of the presence of a number of homes approximately 1 mile downstream.

e. Ownership
The dam is owned and operated by the Sisters of St. Dominick, Town of Forestburg, New York. Telephone (914) 794-2020.

f. Purpose of the Dam
While the dam originally provided storage for power development, currently the dam is used for recreational purposes.

g. Design and Construction History
The dam was reported to have been constructed about 1905. Any other information concerning this dam was either lost or unavailable for review.

h. Normal Operating Procedures
Water flows over an ungated spillway.

1.3 PERTINENT DATA

a. Drainage Area (sq. mi) 5.2

b. Discharge at Dam Site (cfs)
 - Maximum known Flood (Diane, 1955) 1,300
 - Spillway at Maximum Pool (El. 1432.5) 440
 - Maximum Capacity of Reservoir Drain 70
 - Total Discharge, Max. Pool (El. 432.5) 510
 - Average Daily Discharge Unknown

c. Elevation (ft. above MSL-Datum)
 - Top of Dam 1432.5
 - Spillway Crest 1430.0
 - Tailrace Channel 1407.0

d. Reservoir
 - Length of maximum Pool, miles 1.33
 - Length of Shoreline (Spillway Crest) miles 4.55
 - Surface area (Spillway Crest) acres 340

e. Storage, (Acre-feet)
 - Spillway Crest 1,800
 - Top of Dam 2,740
f. Dam
 Embankment Type: Stone Masonry
 Length (ft.) 289
 Upstream slope Vertical
 Downstream slope—Vertical up to 5 feet from top then slopes to 2:1
 Crest Elevation, ft. 1432.5
 Crest Width, ft. 5

g. Spillway
 Type: Stepped Masonry
 Length, ft. 40
 Crest Elevation MSL 1430.0

h. Regulating Outlet
 Manually Operated Gate Valve
SECTION 2: ENGINEERING DATA

2.1 DESIGN

a. Geology
The St. Josephs Lake Dam is located in the "Appalachian Uplands" physiographic province of New York State. This province (the northern extreme of the Appalachian Plateau) was formed by dissection of the uplifted but flat lying sandstones and shales of the Middle and Upper Devonian Catskill Delta. Relief is high to moderate. Maximum dissection occurs in the Catskill Mountain area, where only the mountain peaks approximate the original plateau surface. Drainage is generally southwest toward the Delaware River system.

b. Subsurface Investigations
No subsurface investigation could be located for this dam. However, the "Dam Report" filed by Mr. Richard L. Hyde on August 27, 1914 states that the dam is founded on slate.

The "General Soil Map of New York State" prepared by Cornell University Agriculture Experiment Station indicates that the surficial soils are Lackawanna and Wurtsboro of glacial till origin. These soils are generally stony sand silt and gravel with a trace of clay, having poor internal drainage characteristics. Boulders are also common in these soils; depth to bedrock is variable. Bedrock was observed to outcrop near the south abutment on the downstream side.

c. Embankment and Appurtenant Structures
The dam was built about 1905. No other information could be located concerning the design of the dam.

2.2 CONSTRUCTION RECORDS
No construction records are available.

2.3 OPERATION RECORDS
No maintenance or operation record or manual is available.

2.4 EVALUATION OF DATA
The data available is extremely limited. The information reported herein is based on NYS Department of Environmental Conservation files, discussion with Messers Michael Casey and Con Abbey (representatives of the owner), and the visual inspection.
SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General
Visual inspection of St. Josephs Lake Dam and the surrounding watershed was conducted on October 20, 1978. The weather was cloudy and the temperature ranged in the forties. The lake level was 0.2 feet above spillway crest at the time of the inspection. No flashboards were present.

b. Masonry Structure (including embankments & abutments)
The sandstone block masonry structure is generally in good condition, except the mortar of the joints has deteriorated substantially. The areas of primary concern are to joints at the spillway crest and the area south of the spillway where seepage was observed. Considerable moss growth approximately 10 feet south of the spillway and 2 feet below the lake level was evident. Adjacent to the moss area (approximately 3 feet south of the spillway) seepage was flowing through the joints at a rate of 2 to 5 gallons per minute. This flow appeared to be related solely to the joint deterioration and should be easily controlled by repointing the area (see photograph # 7). The concrete buttresses located at each end of the spillway have extensively cracked and spalled. The south buttress deterioration has progressed so far that a void near the spillway crest exists through the entire width of the buttress (see photograph # 5 & 8).

Earth embankment material was placed after the flood of August 1955 (Hurricane Diane) adjacent to the downstream face north of the spillway. Fill was also placed adjacent to the upstream face in 1975 or 1976 to replace that which had settled or eroded over the years. Considerable tree and brush growth was evident on this fill and inspection was difficult. Seepage was observed at 3 locations in the earth embankment adjacent to the outlet conduits on the downstream face. The total combined quantity of flow is estimated to be 5 to 10 gallons per minute (see photograph 9 & 10). No fine particle movement was noted. This flow may be related to the previous precipitation as the three areas were directly below a soft wet area at the top of the embankment.

c. Spillway
The spillway is constructed of stepped sandstone masonry blocks of varying heights forming somewhat of an ogee shape. Flow over the spillway prohibited complete inspection of the spillway surfaces and the immediate downstream area. Two concrete buttresses form the north and south extremities of the spillway. The top of the buttress is 2.5 feet above the spillway crest. The buttresses are severely deteriorated, however, little seepage from the spillway discharge was evident flowing through the buttresses. The crest is composed of 6 feet long and 3 feet wide masonry blocks; the joints of which are deteriorated and require recaulking. The tailrace channel is generally flat and wide, relatively free of debris with some riprap lining. Some large trees are present in the downstream channel. The area directly below the spillway appears to be eroded from the spillway discharge, to a width of 6 feet on the south side and a width of 10 feet on the north side. The depth could not be determined due to spillway discharge.
d. Regulating Outlets
Two 2 feet diameter conduits with manually operated gate valves are located north of the spillway (see photograph #2). The northern and upper conduit served as part of the hydroelectric generation system for the facility but the system is now abandoned. The lower conduit is the reservoir drain and is operational.

e. Downstream Channel
The downstream channel is the natural channel of Black Brook, a tributary of the Mongaup River. No significant debris or obstructions were observed in the channel.

f. Reservoir
There are no noticeable signs of instability in the reservoir area and no sedimentation problems were reported.

3.2 EVALUATION OF OBSERVATIONS
Although deficiencies were observed, there are no indications that the dam is in imminent danger. Some deficiencies are minor and may be corrected by maintenance forces. The more serious conditions of observed seepage have potential for deterioration and should be investigated further.
SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES
The St. Josephs Lake Dam stores water for recreations purposes. Facilities for hydroelectric generation have been abandoned. The rate of flow through the 2 feet diameter reservoir drain is set by a manually operated gate valve with control at the crest of the dam north of the spillway.

4.2 MAINTENANCE OF DAM
There is no operation and maintenance manual for the dam. The dam is in generally good condition. Some seepage was evident in the masonry portions of the dam. This appears to be caused by deteriorated mortar joints. Both spillway buttresses are deteriorated and require repair. Flow over the spillway obscured inspection of the spillway and the immediate area. Mortar joints in the spillway crest also require repair.

4.3 MAINTENANCE OF OPERATING FACILITIES
The reservoir drain is operational.

4.4 WARNING SYSTEM IN EFFECT
There is no warning system in effect or in preparation.

4.5 EVALUATION
The masonry portion of the dam is in need of repointing to control seepage and prevent movement of the sandstone masonry blocks. The spillway buttresses are deteriorated and require repair. Further inspection under low flow conditions is required to analyze the integrity of the spillway.
SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS
St. Josephs Lake is located on Black Brook, a tributary of the Mongaup River, a tributary of the Delaware River. The total drainage area at the St. Josephs Dam is 5.2 square miles. The topography is characterized by gentle slopes interspersed by swamps.

5.2 ANALYSIS CRITERIA
For the purpose of this investigation, the design features were analyzed to determine the capacity of the spillway through the development of Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the PMF through the reservoir using HEC-1.

The unit hydrograph was defined by the Snyder Coefficients, Tp and Cp. The Probable Maximum Precipitation (PMP) was 21.0 inches (Figure 1), Hydrometerological Report (HMR #33) for a 24 hour duration, 200 square mile basin. The percentages of the PMP applied to other duration storms were interpolated from the plot of drainage area versus percent of the 24 hour, 200 square mile depth (Figure 2, HMR #33). The PMF inflow hydrograph was determined by applying the PMP to the unit hydrograph for the basin and the peak inflow was 6,800 cfs. After routing the peak inflow through the impounded storage, the peak outflow was determined to be 1,550 cfs. Half of PMF peak inflow was 3,400 cfs and the routed peak outflow was 800 cfs.

5.3 SPILLWAY CAPACITY
The ungated, stepped (12 steps of various widths) sandstone masonry spillway is 40 feet wide and the maximum head possible between the crest of the spillway and the top of the dam is 2.5 feet. The maximum computed capacity of the spillway is 450 cfs. Marks on the crest of the spillway indicate that flashboards were probably used to raise the water level of the lake one time or the other.

5.4 RESERVOIR CAPACITY
The reservoir capacity at spillway level is 1,800 acre-feet. The storage capacity curve is shown in Appendix D. The curve indicates a surcharge storage above the spillway crest of 940 acre-feet which is equivalent to a runoff depth of 3.4 inches over the drainage area.

5.5 FLOODS OF RECORD
The highest and lowest water levels recorded since completion of St. Josephs Lake Dam are as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Elevation (feet)</th>
<th>Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest</td>
<td>1955</td>
<td>1433.5</td>
</tr>
<tr>
<td>Lowest</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

The highest level was created by Hurricane Diane and the dam was overtopped by 1 foot (Source: Caretaker)
5.6 OVERFLOW POTENTIAL
The maximum capacities of the spillway and the reservoir drain are 450 cfs and 70 cfs respectively. The PMF outflow being 1,550 cfs, the spillway can pass only 29% of PMF and the spillway coupled with reservoir drain can pass 34% of PMF. Again, the spillway alone can pass 56% of one half PMF (800 cfs) and the spillway coupled with the reservoir drain can pass 65% of one half PMF.

The dam, therefore, will be overtopped by 15 inches and 6 inches of water due to PMF and one half PMF respectively.

5.7 EVALUATION
The spillway is inadequate to pass one half PMF. However, based on the Corps of Engineer’s Screening Criteria, it is not considered seriously inadequate since the structure successfully withstood overtopping during the flood of August 1955 (similar to the 1/2 PMF event). This determination may be modified if the structural stability of the dam is found to be unsatisfactory.
SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
The visual observations did not indicate any sign of major distress in connection with the dam. Seepage was evident in the masonry portion south of the spillway and in the earth embankment portion north of the spillway. Spillway buttresses and mortar joints are deteriorated. The area directly below the spillway appears to be eroded from spillway discharge. These problem areas are not yet considered to be adversely affecting the structural stability of the structure.

b. Design and Construction Data
No design computations or other data regarding the structural stability of the dam are available.

c. Operating Records
No records of operation are available and no major operational problems were reported.

d. Post-Construction Changes
Earth embankment material was placed after overtopping and erosion occurred during the flood of August 1955 (Hurricane Diane) adjacent to the downstream face north of the spillway. Fill was also placed adjacent to the upstream face in 1975 or 1976 to replace that which had eroded over the years.

e. Stability
Stability analyses were attempted with the limited information available from the visual inspection of the dam. These analyses indicate that the structure should be unstable during the 1 foot overtopping which occurred in 1955. However, the structure withstood this storm and performed satisfactorily. Therefore, the information available is insufficient to conduct a meaningful analysis of the structural stability. The stability analysis is included in Appendix F.

The dam is located in seismic zone 1, and seismic forces are not considered to be of significant magnitude to influence the stability of the structure.
SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety
The Phase 1 inspection of St. Josephs Lake Dam did not indicate conditions which constitute an immediate hazard to human life or property. The dam is not considered to be unstable. However, conditions of seepage, and deteriorated masonry joints and spillway buttresses may lead to the development of hazardous conditions. In addition, the spillway is adequate to pass only 29% of the PMF.

For the aforementioned reasons, St. Josephs Lake Dam required certain measures and improvements to insure a safe and stable structure.

b. Adequacy of Information
The information available is adequate for Phase 1 inspection purposes. It should be noted that the design information is extremely limited. Additional information would greatly aid in the investigation of structural stability.

c. Urgency
The following investigations should be initiated within 3 months and completed within 1 year from notification: structural stability, condition of spillway, seepage analysis. The deteriorated spillway buttresses and the mortar joints of the masonry blocks should be repaired during the next construction season. Vegetative growth in the vicinity of the dam should be removed immediately.

d. Need for Additional Investigation
To prevent the development of potentially hazardous conditions, investigations should be conducted in the following areas:

1. Investigation of the structural stability of the dam using appropriate design parameters. Investigation of the geometry of the dam and its foundation characteristics will be required.

2. Until the investigation and subsequent remedial measures, if any, are completed continuous monitoring of reservoir levels during periods of heavy rainfall and run-off must be initiated by the owner. In addition, a contingency plan must be prepared in the event of overtopping.

3. Investigations of the observed seepage in the earth embankment and the masonry portion of the dam are required to determine the type and extent of remedial measures warranted. The investigation should include periodic and systematic observations and measurements of the quantity of seepage.

4. Investigation of the spillway when the reservoir is drawn down to observe the condition of the spillway and also the erosion area at its base. The NYS Department of Environmental Conservation, Dam Safety Section will be available to assist in this investigation (Tel: (518) 457-6310).
7.2 RECOMMENDED MEASURES

a. Results of the aforementioned investigations will determine the remedial measures required.

b. After completion of the stability analysis, additional spillway capacity may be required so that the total capacity is adequate to pass the 1/2 PMF.

c. The mortar joints of the masonry blocks at the spillway crest and adjacent to the spillway on the south downstream face require re-pointing.

d. The spillway buttresses require repair to prevent further deterioration.

e. Vegetative growth on the embankment, around the reservoir drain, the downstream channel, along the upstream side of the dam north of the spillway, around the gate valve platform, and along the toe of the dam must be removed. A program of periodic cutting and mowing is required to limit root development within the embankment and aid in future inspections.

f. Initiate a program of periodic inspection and maintenance of the dam and appurtenances. Document this information for future reference. Also, develop an operations manual.
APPENDIX A

PHOTOGRAPHS
Photo #1
Earth Embankment & Abandoned Hydroelectric Supply Conduit
Looking East

Photo #2
Earth Embankment & Low Level Outlets
Looking East
Photo #3
Spillway, Looking East

Photo #4
Gate Valve Platform, Looking South
Photo #8
Close up of Seepage Area and Deteriorated Buttress

Photo #7
Downstream Face of Masonry Section, South of Spillway
(Looking North) Note Seepage
Photo #9
Seepage Area of Earth Embankment Adjacent to Low Level Outlets and above Photo #10, Note Seepage at Base of Rock

Photo #10
Seepage Area of Earth Embankment Adjacent to Hydroelectric Supply Conduit and below Photo #9
Note Seepage between Boulders in photo center
Photo #11

Downstream Channel as Viewed from Spillway
Looking West

Photo #12

Upstream Face of Dam
Looking West
APPENDIX B

ENGINEERING DATA CHECKLIST
<table>
<thead>
<tr>
<th>Item</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans</td>
<td>Details</td>
</tr>
<tr>
<td>Dam</td>
<td>None</td>
</tr>
<tr>
<td>Spillway(s)</td>
<td>None</td>
</tr>
<tr>
<td>Outlet(s)</td>
<td>None</td>
</tr>
<tr>
<td>Design Reports</td>
<td>None</td>
</tr>
<tr>
<td>Design Computations</td>
<td>None</td>
</tr>
<tr>
<td>Discharge Rating Curves</td>
<td>None</td>
</tr>
<tr>
<td>Dam Stability</td>
<td>None</td>
</tr>
<tr>
<td>Seepage Studies</td>
<td>None</td>
</tr>
<tr>
<td>Subsurface and Materials</td>
<td>None</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Remarks</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Construction History</td>
<td>NONE</td>
</tr>
<tr>
<td>Surveys, Modifications, Post-Construction Engineering Studies and Reports</td>
<td>Fill was placed by dump truck and leveled with bulldozers to replace fill that had settled and eroded over the years on the north section of the dam adjacent to the upstream face (about 1975 or 76). Additional fill may have been placed on the downstream face after overtopping occurred during the flood of 1955 (Hurricane Diane).</td>
</tr>
<tr>
<td>Accidents or Failure of Dam Description, Reports</td>
<td>NONE</td>
</tr>
<tr>
<td>Operation and Maintenance Records</td>
<td>NONE</td>
</tr>
<tr>
<td>Operation Manual</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

VISUAL INSPECTION CHECKLIST
VISUAL INSPECTION CHECKLIST

1) Basic Data
 a. General
 Name of Dam: St. Josephs Lake Dam
 I.D. #: NY 324 Dec 163 Delaware River Basin
 Location: Town Forestburg County Sullivan
 Stream Name: Black Brook
 Tributary of: Mongaup River
 Longitude (W), Latitude (N): 74° 42′ - 40″ / 41° 35′ 30″
 Hazard Category: C High
 Date(s) of Inspection: October 20, 1978
 Weather Conditions: Day, Cloudy
 b. Inspection Personnel: R. McCarty, M. Islam, Mike Casey, Con Avery
 c. Persons Contacted: Sisters of St. Domanick, Peggy, Mary Ann; Tel. (814) 794-2020
 d. History:
 Date Constructed: 1905
 Owner: Sisters of St. Domanick - St. Josephs Sanitarium
 Designer: Unknown
 Constructed by: Unknown

2) Technical Data
 Type of Dam: Stone Masonry with Earth Embankment
 Drainage Area: 5.2 Square Miles
 Height: 22 feet
 Length: 289.3 feet including 40′ spillway
 Upstream Slope: Vertical
 Downstream Slope: Vertical (top 5′) then 2:1 to base
2) Technical Data (Cont'd.)

External Drains: on Downstream Face \textbf{NONE} \hspace{1cm} @ Downstream Toe \textbf{NONE}

Internal Components:

\begin{itemize}
 \item Impervious Core \textbf{UNKNOWN}
 \item Drains \textbf{NONE}
 \item Cutoff Type \textbf{UNKNOWN}
 \item Grout Curtain \textbf{UNKNOWN}
\end{itemize}
3) Embankment

Earth embankment placed against downstream face on north side of spillway

a. Crest

(1) Vertical Alignment indeterminate

(2) Horizontal Alignment indeterminate

(3) Surface Cracks none observed

(4) Miscellaneous

b. Slopes

(1) Undesirable Growth or Debris, Animal Burrows

 Considerable tree and brush growth on earth portions

(2) Sloughing, Subsidence or Depressions

 none evident

(3) Slope Protection none evident

(4) Surface Cracks or Movement at Toe none observed

(5) Seepage 3 locations observed in the earth embankment where seepage was evident. Located near the outlet conduits ~ flow 5 to 10 gpm from all areas. Could not determine if this was related to previous day's rain or dam seepage

(6) Condition Around Outlet Structure appears good although conduits are deteriorating
c. Abutments

(1) Erosion at Embankment and Abutment Contact none observed of significant consequence

(2) Seepage along Contact of Embankment and Abutment

See Seepage on slopes

(3) Seepage at toe or along downstream face

none evident - brush & trees make it difficult to inspect

d. Downstream Area - below embankment

(1) Subsidence, Depressions, etc. none

(2) Seepage, unusual growth none - many large trees in downstream channel are not believed to be a problem

(3) Evidence of surface movement beyond embankment toe none

(4) Miscellaneous

e. Drainage System

none observed
(1) Condition of relief wells, drains, etc. ________________

none observed

(2) Discharge from Drainage System ______________________

none observed
4) Instrumentation

(1) Monumentation/Surveys
 Bench Mark (B.M. 15) Located in Western Side of Dam Adjacent to Spillway Placed by Dept. of Civil Engineering, Manhattan College.

(2) Observation Wells
 NONE

(3) Weirs
 NONE

(4) Piezometers
 NONE

(5) Other

5) Reservoir
 a. Slopes
 OK

 b. Sedimentation
 NONE Reported.
6) **Spillway(s) (including tail race channel)**

- Stepped masonry blocks of varying dimensions [see photographs - appears as an ogive section]
 a. General masonry block construction - crest composed of 6 ft long blocks - joints are deteriorated and require resculking

b. Principle Spillway - general condition unobservable due to flow over spillway - no obvious problems

c. Emergency or Auxiliary Spillway — None

d. Condition of Tail race channel - Piprap on channel. Channel fairly flat and wide; relatively free from debris and does not appear to have any potential problem. Some large trees on banks of channel

e. Stability of Channel side/slopes — OK
7) **Downstream Channel**

a. Condition (debris, etc.) RELATIVELY FREE from DEBRIS

 some large trees

b. Slopes FAIRLY FLAT

c. Approximate number of homes

numerous homes approximately 1 mile downstream

near NY Route 42

8) **Miscellaneous**

9) Structural

a. Concrete Surfaces - Structure is formed of masonry blocks mortared together - mortar has deteriorated particularly in the spillway crest area and at water level on downstream face south of south buttress.

b. Structural Cracking - cracks in spalled buttresses localized at each end of the spillway - they have been repaired in the past but have deteriorated again - south buttress could see thru buttress because crack was so large; new top of spillway.

c. Movement - Horizontal & Vertical Alignment (Settlement) - none observed.

d. Junctions with Abutments or Embankments - no problems observed.

e. Drains - Foundation, Joint, Face - none observed.

f. Water passages, conduits, sluices - operational - conduit for facility power generation is now abandoned.

g. Seepage or Leakage - considerable mass growth south of south buttress on downstream face 2' below water line - seepage observed in this area (estimated 2-3 gpm) coming thru deteriorated joints in masonry blocks - principle area - seepage from buttress to 3 feet south. Additional slight seepage to 10 feet south of buttress.
h. Joints - Construction, etc.

masonry joints deteriorated - report

i. Foundation area below spillway is eroded from spillway discharge, to a width of 6 feet on the south side to 10 feet on the north side, could not determine the depth of erosion

j. Abutments good condition where observed

k. Control Gates operational

l. Approach & Outlet Channels generally free of debris

see "foundation" above

m. Energy Dissipators (plunge pool, etc.)

see "foundation" above

n. Intake Structures control gate valve structure is cracked and deteriorated, particularly the top slab, this structure is located north of the north buttress and is part of the north non-overflow masonry section

o. Stability no visual problems observed

p. Miscellaneous
APPENDIX D

HYDROLOGIC/HYDRAULIC

ENGINEERING DATA AND COMPUTATIONS
CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

AREA-CAPACITY DATA:

<table>
<thead>
<tr>
<th></th>
<th>Elevation (ft.)</th>
<th>Surface Area (acres)</th>
<th>Storage Capacity (acre-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top of Dam</td>
<td>1432.5</td>
<td>340</td>
</tr>
<tr>
<td>2</td>
<td>Design High Water (Max. Design Pool)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Auxiliary Spillway Crest</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Pool Level with Flashboards</td>
<td>NO FLASHBOARDS</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Service Spillway Crest</td>
<td>1430.0</td>
<td>240</td>
</tr>
</tbody>
</table>

DISCHARGES

<table>
<thead>
<tr>
<th></th>
<th>Volume (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average Daily</td>
</tr>
<tr>
<td>2</td>
<td>Spillway @ Maximum High Water</td>
</tr>
<tr>
<td>3</td>
<td>Spillway @ Design High Water</td>
</tr>
<tr>
<td>4</td>
<td>Spillway @ Auxiliary Spillway Crest Elevation</td>
</tr>
<tr>
<td>5</td>
<td>Low Level Outlet</td>
</tr>
<tr>
<td>6</td>
<td>Total (of all facilities) @ Maximum High Water</td>
</tr>
<tr>
<td>7</td>
<td>Maximum Known Flood 1955 - EL. 1432.5</td>
</tr>
</tbody>
</table>
CREST: DAM

ELEVATION: 1432.5

Type: STONE MASONRY

Width: 5 FEET
Length: 189.3 FEET

Spillover STONE MASONRY, STEPPED.

Location 49.3 FEET EAST OF WEST EMBANKMENT

SPILLWAY:

<table>
<thead>
<tr>
<th>PRINCIPAL</th>
<th></th>
<th>EMERGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td>STONE MASONRY, STEPPED</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>40 FEET</td>
<td>Width</td>
<td></td>
</tr>
</tbody>
</table>

Type of Control

YES

Uncontrolled

Controlled:

 Type (Flashboards; gate)

Number

Size/Length

Invert Material

Anticipated Length of operating service

Chute Length

COULD NOT BE MEASURED. Height Between Spillway Crest & Approach Channel Invert (Weir Flow)
OUTLET STRUCTURES/EMERGENCY DRAWDOWN FACILITIES:

Type: Gate ______ Sluice ______ Conduit YES Penstock NOT OPERATIONAL

Shape: CIRCULAR

Size: 2 FEET DIAMETER

Elevations: Entrance Invert

Exit Invert

Tailrace Channel: Elevation

HYDROMETEROLOGICAL GAGES:

Type: NONE

Location:

Records:

Date -

Max. Reading -

FLOOD WATER CONTROL SYSTEM:

Warning System: NONE

Method of Controlled Releases (mechanisms):

2 MANUALLY OPERATED ROTATING CONTROL MECHANISMS ON

UPSTREAM AND WEST SIDE OF SPILLWAY. UPPER 24" DIAMETER

PIPE USED FOR POWER GENERATION IS NO LONGER USABLE

AND CONTROL MECHANISM NON-OPERATIONAL. LOWER 24" DIAMETER

PIPE USED FOR DRAINING LAKE AND ITS CONTROL MECHANISM IS

NOW OPERATIONAL.
DRAINAGE AREA: 5.2 sq mi.

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type: Woods

Terrain - Relief: Gentle slopes

Surface - Soil:

Runoff Potential (existing or planned extensive alterations to existing (surface or subsurface conditions)

NONE

Potential Sedimentation problem areas (natural or man-made; present or future)

NONE

Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:

NONE

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the Reservoir perimeter:

Location: NONE

Elevation:

Reservoir:

Length @ Maximum Pool 1.53 (Miles)

Length of Shoreline (@ Spillway Crest) 4.55 (Miles)
ST. JOSEPHS DAM

Broad-Crested Spillway

\[Q = CLH^{3/2} \]

where \(Q \) = Discharge over spillway
\(C \) = Co-efficient of discharge
\(L \) = Length of spillway
\(H \) = Height (head) of water over spillway
\(W \) = Width of crest

<table>
<thead>
<tr>
<th>(H) (ft.)</th>
<th>(W) (ft.)</th>
<th>(C)</th>
<th>(L) (ft.)</th>
<th>(Q) (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.65</td>
<td>40</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.72</td>
<td>40</td>
<td>308</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
<td>2.81</td>
<td>40</td>
<td>494</td>
</tr>
<tr>
<td>(\frac{1}{2}) mins { 3.0 }</td>
<td>3</td>
<td>2.92</td>
<td>spillway 40</td>
<td>600 (\times) 78.2</td>
</tr>
<tr>
<td>(\frac{1}{2}) mins { 0.5 }</td>
<td>3</td>
<td>2.63</td>
<td>embankment 189.3</td>
<td>176</td>
</tr>
<tr>
<td>(\frac{1}{2}) mins { 3.75 }</td>
<td>3</td>
<td>3.05</td>
<td>spillway 40</td>
<td>885 (\times) 89.3</td>
</tr>
<tr>
<td>{ 1.25 }</td>
<td>3</td>
<td>2.64</td>
<td>embankment 189.3</td>
<td>698</td>
</tr>
<tr>
<td>max. observed { 3.5 }</td>
<td>3</td>
<td>2.97</td>
<td>spillway 40</td>
<td>777 (\times) 178</td>
</tr>
<tr>
<td>{ 1.0 }</td>
<td>3</td>
<td>2.65</td>
<td>embankment 189.3</td>
<td>701</td>
</tr>
</tbody>
</table>

Low Level Outlet

\[Q = C_v C_c A \sqrt{2gh} \]

\[= 0.95 \times 0.66 \times \left(\frac{\pi}{4} \right) \times \sqrt{2 \times 32.2 \times 18} \]

\[= 67 \text{ cfs} \approx 70 \text{ cfs} \]

where
\(C_v \) = Coefficient of Velocity
\(C_c \) = Coefficient of Controchen
\(g \) = Acceleration due to gravity
\(A \) = Cross-sectional Area
\(Q \) = Discharge
\(H \) = Head
ST. JOSEPHS DAM

SPILLWAY CAPACITY CURVE

HEAD

0
1
2
3

FEET

CREST OF SPILLWAY

TOP OF DAM

DISCHARGE

0 100 200 300 400 500 600 CFS
St. Joseph’s Dam

Storage Capacity Curve

<table>
<thead>
<tr>
<th>Elevation (Feet)</th>
<th>Volume (Acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1430</td>
<td>1,800</td>
</tr>
<tr>
<td>1431</td>
<td>2,080</td>
</tr>
<tr>
<td>1432</td>
<td>2,400</td>
</tr>
<tr>
<td>1432.5</td>
<td>2,740</td>
</tr>
</tbody>
</table>
ST. JOSEPHS DAM

STORAGE CAPACITY CURVE

ELEVATION

FEET

1424

1432

1422

1421

CREST OF SPILLWAY

TOP OF DAM

STORAGE

1800 2300 2800 3300 ACRE-FT

3300 ACRE-FT
ST. JOSEPHS DAM

D.A. = Drainage area in square miles
L = River mileage from the given station to the upstream limit of the drainage area
LCA = River mileage from the station to the center of gravity of the drainage area
PMP = Probable Maximum Precipitation in inches
\(t_p \) = Lag time from mid-point of unit rainfall duration, to peak of unit hydrograph, in hours.
\(t_r \) = Unit rainfall duration, equal to \(\frac{t_p}{550} \), in hours.
Ct = Coefficient depending upon units and drainage basin characteristics
\(t_r \) = Unit rainfall duration other than standard unit, adopted in specific study, in hours
\(t_{pr} \) = Lag time from mid-point of unit rainfall duration \(t_r \), to peak of unit hydrograph, in hours

D. A = 9.2 square miles, L = 4.65 miles, LCA = 2.04 miles
PMP = 21 inches
Ct = 2.5 (Large Swamp)
Cp = 0.625 from average 640 Cp = 400

\[
t_p = Ct \times (L \times LCA)^{0.3} = 2.5 \times (4.65 \times 2.04)^{0.3} = 4.88 \text{ hours}
\]
\[
tr = \frac{t_p}{5.5} = \frac{4.88}{5.5} = 0.89 \text{ hours (Use 1 hr. hydrograph)}
\]
\[
t_{pr} = t_p + 0.25 (t_r - tr) = 4.88 + 0.25(1 - 0.89) = 4.91 \text{ hrs.}
\]

From HMC 33 - Figure 2, Depth - Area - Duration

6 hour % = 111 , 12 hour % = 123
24 hour % = 123 , 48 hour % = 142
ST JOSEPHS DAM
RESERVOIR ROUTING OF PMF
40 FEET STEPPED MASONRY SPILLWAY

JOB SPECIFICATION

<table>
<thead>
<tr>
<th>No</th>
<th>NHR</th>
<th>NMIN</th>
<th>IDAY</th>
<th>IHR</th>
<th>IMIN</th>
<th>METRC</th>
<th>IPLT</th>
<th>IPRT</th>
<th>NSTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

JOPER NWT
5 0

MULTI-PANALYSIS TO BE PERFORMED

RTIGS= 0.50 1.00

NPLAN= 1 LR10= 1 LR10= 1

SUB-AREA RUNOFF COMPUTATION

<table>
<thead>
<tr>
<th>COMPUTE PMF</th>
<th>ISTAQ</th>
<th>ICOMP</th>
<th>IECON</th>
<th>ITAPE</th>
<th>JPLT</th>
<th>JPRT</th>
<th>INAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>IHYDS</th>
<th>IUHG</th>
<th>TAKES</th>
<th>SNAP</th>
<th>TRSDA</th>
<th>TRSPC</th>
<th>RATIO</th>
<th>I5NOW</th>
<th>ISAME</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.20</td>
<td>0.</td>
<td>5.20</td>
<td>0.</td>
<td>0.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPFE</th>
<th>PHS</th>
<th>R6</th>
<th>R12</th>
<th>R24</th>
<th>R48</th>
<th>R72</th>
<th>R96</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>21.00</td>
<td>111.00</td>
<td>123.00</td>
<td>133.00</td>
<td>142.00</td>
<td>0.</td>
<td></td>
</tr>
</tbody>
</table>

TRSPC COMPUTED BY THE PROGRAM IS 0.775

LOSS DATA

<table>
<thead>
<tr>
<th>STRKR</th>
<th>DLKR</th>
<th>RT1OL</th>
<th>ERAIN</th>
<th>STRKS</th>
<th>RT1OK</th>
<th>STRTL</th>
<th>CNSTL</th>
<th>ALSMX</th>
<th>RTIMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.</td>
<td>0.10</td>
<td>0.</td>
<td></td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>TP</th>
<th>4.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>0.63</td>
</tr>
<tr>
<td>NTAB</td>
<td>0</td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>STRQ= 10.40</th>
<th>GROSS= 10.40</th>
<th>RT1OR= 1.00</th>
</tr>
</thead>
</table>

APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE T= 5.65 AND R= 4.38 INTERVALS

UNIT HYDROGRAPH 27 END-OF-PERIOD ORDINATES. LAG= 4.88 HOURS, CP= 0.63 VOL= 1.00

<table>
<thead>
<tr>
<th>35.</th>
<th>131</th>
<th>.256</th>
<th>368.</th>
<th>430.</th>
<th>415.</th>
<th>352.</th>
<th>280.</th>
<th>222.</th>
<th>177.</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.</td>
<td>112.</td>
<td>87.</td>
<td>71.</td>
<td>55.</td>
<td>43.</td>
<td>35.</td>
<td>28.</td>
<td>22.</td>
<td>18.</td>
</tr>
<tr>
<td>14.</td>
<td>11.</td>
<td>9.</td>
<td>7.</td>
<td>5.</td>
<td>4.</td>
<td>4.</td>
<td>4.</td>
<td>4.</td>
<td>4.</td>
</tr>
</tbody>
</table>

END-OF-PERIOD FLOW

<table>
<thead>
<tr>
<th>TIME</th>
<th>RAIN</th>
<th>EXCS</th>
<th>COMP</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.</td>
<td>0.</td>
<td>10.</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>0.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>0.</td>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>
PEAK FLOW SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>PLAN</th>
<th>0.50</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>1</td>
<td>1</td>
<td>3395</td>
<td>6789</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>1</td>
<td>1</td>
<td>807</td>
<td>1501</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

APPENDIX E
APPENDIX E

REFERENCES

APPENDIX F

DRAWINGS
TOPOGRAPHIC MAP
STATE OF NEW YORK
CONSERVATION COMMISSION
ALBANY

DAM REPORT

CONSERVATION COMMISSION,
DIVISION OF INLAND WATERS.

GENTLEMEN:

I have the honor to make the following report in relation to the structure known as the St. Joseph's Lake Dam.

This dam is situated upon the Black Brook (Give name of stream) in the Town of Eastham, Sullivan County, about 6 miles from the Village or City of Monticello (Give name in full) and was built in or about the year 1905, and was extensively repaired or reconstructed during the year.

As it now stands, the spillway portion of this dam is built of masonry with concrete joints (State whether of masonry, concrete or timber) and the other portions are built of masonry with cement joints (State whether of masonry, concrete, earth or timber, with or without rock fill).

As nearly as I can learn, the character of the foundation bed under the spillway portion of the dam is and under the remaining portions such foundation bed is.
(In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

(In the space below, make a third sketch showing the general plan of the dam, and its approximate position in relation to buildings or other conspicuous objects in the vicinity.)
The total length of this dam is 225 feet. The spillway or waste-weir portion is about 40 feet long, and the crest of the spillway is about 2½ feet below the top of the dam.

The number, size and location of discharge pipes, waste pipes or gates which may be used for drawing off the water from behind the dam, are as follows: two spillway gates.

State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particularly any leaks or cracks which you may have observed.

Good.

Reported by: Richard L. Jones

(Address—Street and number, P. O. Box or R. F. D. route)

(Name of place)

SEE OTHER SIDE)
Stability Analysis
St. Joseph's Dam

\[
\begin{align*}
M_{\text{water}} &= 102.5 \times 15 \times 12.5 = 1922 \\
M_{\text{water}} &= 102.5 \times 15 \times 6.666 = 1025 \\
M_{\text{water}} &= \left(20.5 \times \frac{3}{2}\right) \times 0.624 = 89.6 \\
M_{\text{pil}
} &= \left(20.5 - 1\right) \times \frac{15}{2} = 91.3 \\
M_{\text{pil}
} &= 1 \left(0.624 \times \frac{15}{2}\right) = 7.0 \\
M_{\text{soil}} &= \frac{3}{2} \left(0.6\right) \times \frac{17}{3} = 14.7 \\
M_{\text{water}} &= \frac{0.624 \left(1\right)}{2} = 0.1 \\
M_{\text{pil}
} &= 15.4 - 9.1 - 0.94 = 20.7 \quad \text{Reaction of base} \\
M_{\text{pil}
} &= 89.6 + 91.3 + 19.7 + 7.0 = 202.6 \quad \text{Sum of Overturning Moments} \\
M_{\text{pil}
} &= 192.2 + 102.5 + 0.1 = 294.7 \quad \text{Sum of Resisting Moments} \\
\text{F.S. overturning} &= \frac{294.7}{202.6} = 1.45
\end{align*}
\]
Location of Resultant = \[294.7 - 202.6 = 4.95 \text{ ft} \]
\[20.7 \]
Resultant falls outside middle third of base
Base = 15 \text{ ft} \] middle third 5 to 10 \text{ ft} \]

Sliding
\[0.55 (20.7) + 0.03 = 11.4 \text{ k} \] Resisting forces
\[13.1 + 2.6 = 15.7 \text{ k} \] Driving forces
\[\frac{F.S. \text{ Sliding}}{normal \text{ conditions}} = \frac{11.4}{15.7} = 0.73 \]

Computer Run for 5000 3/4 ft. Ice load
F.S. overturning = 0.97
Location of Resultant = -0.50 (outside base of dam)
F.S. Sliding = 0.55

Computer Run for PMF (15" overtopping of dam, 375' above spillway), no ice
F.S. overturning = 1.09
Location of Resultant = 1.34 (outside middle third)
F.S. Sliding = 0.51

Since the dam has withstood these forces without failure (note low sliding factors of safety) the assumed geometry must be incorrect as this analysis is invalid. Need More Info.