School of

OCEANOGRAPHY

LEVEL

O S U

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

Towed Thermistor Chain Observations During MILE
by
T. J. Spoor
O. A. Paulson
D. Denbe
and
J. Wagner

Office of Naval Research
N00014-76-C-0087
N00014-76-C-0051
NR 066-102

Data Report 74
Reference 76-11
July 1976
Reproduction in whole or in part is permitted for any purpose of the
United States Government

79 09 24 076
Towed thermistor chain observations during MILE

T. J. Spoering, C. A. Paulson
D. Denbo J. Wagner

School of Oceanography
Oregon State University
Corvallis, OR 97331

Office of Naval Research
Ocean Science and Technology Division
Arlington, VA 22217

Approved for public release, distribution unlimited

Observations of temperature between 20 and 40 m depth were made with a towed thermistor chain in the North Pacific (50°N, 145°W) during the Mixed Layer Experiment (MILE). The chain was usually towed at a speed of 3 m/s around a 20 km square on alternate days for a three-week period beginning on 20 August 1977. The observations were averaged over sequential 30-second intervals and isotherm depths were interpolated from the averaged observations. Plots of temperature and isotherm depth are presented. The plots show the horizontal variability of temperature in the well-mixed layer and the vertical displacement...
of isotherms induced by internal waves in the thermocline.
TOWED THERMISTOR CHAIN

OBSERVATIONS DURING MILE

by

T. J. Spoering, C. A. Paulson
D. Denbo and J. Wagner

School of Oceanography
Oregon State University
Corvallis, Oregon 97331

Reference 79-11
July 1979

Data Report 74

Office of Naval Research
Contract N00014-76-C-0067
and N00014-79-C-0004
Project NR 083-102

Approved for public release, distribution unlimited
ACKNOWLEDGMENTS

The design and construction of the thermistor chain were carried out by the Technical Planning and Development Group at Oregon State University under the direction of Rod Mesecar. The cooperation of the officers and crew of the NOAA ship OCEANOGRAPHER, Captain George Poor commanding, is gratefully acknowledged. This research was supported by the Office of Naval Research through contracts N00014-76-C-0067 and N00014-79-C-0004 under Project NR 083-102.
TABLE OF CONTENTS

ACKNOWLEDGMENTS

INTRODUCTION

INSTRUMENTATION

OBSERVATIONS

ANALYSIS

REFERENCES

APPENDICES

A. Tow Tracks	3
B. Temperature Cross-sections	18
C. Isotherm Cross-sections, 0.5°C Spacing	51
D. Isotherm Cross-sections, 1.0°C Spacing	84
INTRODUCTION

This report presents observations of temperature in the upper ocean obtained with a towed thermistor chain as a part of the Mixed Layer Experiment (MILE). The observations were taken between 20 and 40 m depth in the vicinity of Ocean Station P (50N, 145W) during August and September 1977. The thermistor chain was towed by the NOAA Ship OCEANOGRAPHER.

The temperature observations have been analyzed by Spoering (1979) to show the characteristics of internal waves in the upper ocean. Spoering's report also contains additional descriptions of the instrumentation, observations and analysis.

INSTRUMENTATION

The thermistor chain was constructed of sensors, conductors, plastic fairing, a strain member and a 450 kg. depressor. The thermistors were installed at 1 m intervals over a 25 m section of the chain. Four pressure sensors were installed at intervals of 8 m. The 450 kg. lead-filled depressor was attached to the lower end of the chain. The angle between the chain and the vertical was less than 10° for tow speeds up to 3 m/s with the depressor at a depth of 40 m. Signals from the sensors were recorded and displayed aboard ship by use of a minicomputer system.

OBSERVATIONS

The thermistor chain was usually towed on alternate days around a 20 km square. The tow tracks and times are presented in Appendix A. The tow beginning on 5 September proceeded four times around a five-km square centered on a heavily instrumented mooring. The tow tracks and speeds were determined from satellite fixes, radar fixes on the moorings and dead reckoning. During tows, the ships heading and speed were maintained as constant as possible on each leg. The tow speed ranged from 1 to 3 m/s and usually was greater than 2 m/s.

The structure of the upper ocean and the meteorological conditions were characteristic of mid-latitudes during late summer. The upper 30 m of the ocean was usually well-mixed or weakly stratified, bounded below by
a layer of large temperature gradient. Winds during the experiment ranged from near calm to 20 m/s. Wind speeds during tows of the thermistor chain ranged up to 12 m/s.

The only disappointment in the performance of the thermistor chain system was the failure of many of the temperature sensors. The failures were caused by saltwater leaks into the potting between the thermistors and the pad resistors and by leaks through the glass coatings of the thermistor. As a result of these failures only 4 to 10 thermistors were functional at any one time. The operational thermistors were concentrated in one section of the chain. This section was normally centered at a depth of about 30 m, in and above the region of high stratification.

ANALYSIS

The temperature observations were low-pass filtered by computing sequential 30 s averages. The filtered observations were edited to remove effects of radio noise and other errors. These filtered and edited observations are shown in Appendix B as functions of time and distance during a tow.

Isotherm depths were determined by linear interpolation between the filtered temperature observations. The depths of isotherms at spacings of 0.5°C are shown in Appendix C as functions of time and distance during a tow. Some of the tows are also plotted with a 1.0°C spacing in Appendix D.

REFERENCES

APPENDIX A

Tow Tracks

Tow tracks are shown on the following pages for all of the runs. The origin of the coordinate system is at 49° 43.31'N, 145 W. The abscissa and ordinate are in kilometers displacement to the east and north, respectively. The locations of each of the moorings are shown by an X. The southern mooring was the most heavily instrumented, primarily with VACMs. The northern mooring was instrumented by R. Davis with propeller-type current meters. The eastern mooring consisted of a wave-rider.
20 AUG 77 TOW TRACKS (KM)
RUN 01 1846 TO 2201 GMT
☐: BEGINNING ▲: END ✗: MOORING
22 Aug 77 TOW TRACKS (KM)
RUN 02 1648 TO 1654 GMT
☐: BEGINNING ▲: END □: MOORING
24 AUG 77 TOW TRACKS (KM)
RUNS 03-06 1654 TO 1848 GMT
☐: BEGINNING ▲: END □: MOORING
26-27 AUG 77 TOW TRACKS (KM)
RUN 07-09 1521 TO 0028 GMT
□: BEGINNING ▪: END ×: MOORING
30-31 AUG 77 TOW TRACKS (KM)
RUNS 13-15 1736 TO 0328 GMT
□: BEGINNING ▲: END ×: MOORING
1-2 SEP 77 TOW TRACKS (KM)
RUNS 16-18 1723 TO 0052 GMT
☐: BEGINNING ▲: END ×: MOORING
5-6 SEP 77 TOW TRACKS (KM)
RUNS 22-23 1817 TO 0227 GMT
□: BEGINNING ▲: END ×: MOORING
5 SEP 77 TOW TRACKS (KM)
RUN 22 1817 TO 2027 GMT
☐: BEGINNING ▲: END X: MOORING
5 SEP 77 TOW TRACKS (KM)
RUN 22 2027 TO 2225 GMT
☐: BEGINNING ▶: END □: MOORING
5-6 SEP 77 TOW TRACKS (KM)
RUN 22 2225 TO 0028 GMT
□: BEGINNING ▶: END ×: MOORING
6 SEP 77 TOW TRACKS (KM)
RUN 23 0031 TO 0229 GMT
□: BEGINNING ▶: END ×: MOORING
8 SEP 77 TOW TRACKS (KM)
RUN 24 1814 TO 2107 GMT
□: BEGINNING ▲: END ×: MOORING
APPENDIX B

Temperature Cross-sections

Temperature averaged over sequential 30 s intervals are plotted on the following pages.
RUN 01 20 AUG 77 TEMP VS TIME/DISTANCE

DEPTH = 22.7, 23.8, 24.8, 25.9, 26.9, 28.0, 29.0, 32.2, 35.3, 41.6 M
RUN 03 24 AUG 77 TEMP VS TIME/DISTANCE
DEPTH = 24.8, 25.9, 26.9, 28.0, 30.1 M
RUN 08 26 AUG 77 TEMP VS TIME/DISTANCE

DEPTH = 21.7, 22.7, 24 8, 25.9, 26.9, 28.0, 30.1 M
RUN 19 3 SEP 77 TEMP VS TIME/DISTANCE

DEPTH = 29.1, 31.2, 33.3, 34.4 M
RUN 21 4 SEP 77 TEMP VS TIME/DISTANCE
DEPTH = 29.1, 31.2, 33.3, 34.4, 37.5 M
RUN 24 8 SEP 77 TEMP VS TIME/DISTANCE
DEPTH = 29.7, 31.8, 33.9, 34.9, 41.2 M
APPENDIX C

Isotherm Cross-sections, 0.5°C Spacing

Isotherm depths, interpolated linearly from the temperatures plotted in Appendix B are plotted on the following pages.
RUN 02 22 AUG 77 ISONERMS VS TIME/DISTANCE
T = 11.0 TO 12.5 DEG C IN 0.5 DEG INCREMENTS
RUN 03 24 AUG 77 ISOOTHERMS VS TIME/DISTANCE
T = 9.5 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUNS 04-05 24 AUG 77 ISOOTHERMS VS TIME/DISTANCE
T = 8.5 TO 12.0 Deg C IN 0.5 Deg INCREMENTS
RUNS 05-06 24 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 7.5 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUNS 10-11 28 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 9.5 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 12 28 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 8.0 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 12 28 AUG 77 ISOHERMS VS TIME/DISTANCE

T = 9.0 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 14 30 AUG 77 ISOTHERMS VS TIME/DISTANCE

T = 6.5 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 17 1 SEP 77 ISOOTHERMS VS TIME/DISTANCE
T = 6.0 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 21 4 SEP 77 ISOTHERMS VS TIME/DISTANCE

T = 6.5 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 22 5 SEP 77 ISOHERMS VS TIME/DISTANCE
T = 8.0 TO 12.0 DEG C IN 0.5 DEG INCREMENTS
RUN 24 8 SEP 77 ISOTHERMS VS TIME/DISTANCE
T = 6.5 TO 12.5 DEG C IN 0.5 DEG INCREMENTS
APPENDIX D

Isotherm Cross-sections, 1.0° Spacing

Isotherm depths, interpolated linearly from the temperature observations shown in Appendix B are plotted on the following pages for selected runs.
RUN 13 30 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS
RUNS 13-14 30 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS
RUN 15 31 AUG 77 ISOTHERMS VS TIME/DISTANCE
T = 80 TO 120 DEG C IN 1.0 DEG INCREMENTS
RUN 17 1 SEP 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS
RUN 20 3 SEP 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS
RUN 21 4 SEP 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS
RUN 24 8 SEP 77 ISOTHERMS VS TIME/DISTANCE
T = 7.0 TO 12.0 DEG C IN 1.0 DEG INCREMENTS