MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963.
Name of Dam: Dry Run No. 102
Location: Page County, State of Virginia
Inventory Number: VA 13901

National Dam Safety Program
Phase I Inspection Report

POTOMAC RIVER BASIN

M. C. Baker, Jr., P.E.
BEAVER, PENNSYLVANIA 15009

DISTRIBUTION STATEMENT A
Approved for public release. Distribution unlimited.

Norfolk District Corps of Engineers
503 Front Street
Norfolk, Virginia 23510

Prepared for:

U.S. Army Corps of Engineers
200 West Broad Street
Richmond, Virginia 23219

Prepared for:

NORFOLK DISTRICT CORPS OF ENGINEERS

Potomac River Basin

Prepared by:

MICHAEL BAker, JR., P.E.

Final report:

Drawn by: B. W. Broyter III

D.C. Department of Public Welfare

SEP 11, 1986

59 09 10 112

450 795

DDC FILE COPY

ADA 073614
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
20. Abstract

Pursuant to Public Law 92-367, Phase I Inspection Reports are prepared under guidance contained in the recommended guidelines for safety inspection of dams, published by the Office of Chief of Engineers, Washington, D. C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general conditions of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

Based upon the field conditions at the time of the field inspection and all available engineering data, the Phase I report addresses the hydraulic, hydrologic, geologic, geotechnic, and structural aspects of the dam. The engineering techniques employed give a reasonably accurate assessment of the conditions of the dam. It should be realized that certain engineering aspects cannot be fully analyzed during a Phase I inspection. Assessment and remedial measures in the report include the requirements of additional indepth study when necessary.

Phase I reports include project information of the dam and appurtenances, all existing engineering data, operational procedures, hydraulic/hydrologic data of the watershed, dam stability, visual inspection report and an assessment including required remedial measures.
<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>VA 13901</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>Phase I Inspection Report</td>
</tr>
<tr>
<td>National Dam Safety Program</td>
<td></td>
</tr>
<tr>
<td>Dry Run No. 102</td>
<td></td>
</tr>
<tr>
<td>Page County, Virginia</td>
<td></td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
<td>Final</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>Michael Baker, Jr., Inc. - Michael Baker III</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
<td>M.G. - DACW 65-78-D-0016</td>
</tr>
<tr>
<td>9. PREPARING ORGANIZATION NAME AND ADDRESS</td>
<td></td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>U. S. Army Engineering District, Norfolk</td>
</tr>
<tr>
<td>803 Front Street</td>
<td></td>
</tr>
<tr>
<td>Norfolk, VA 23550</td>
<td></td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>February 1979</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>803</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>15. SECURITY CLASS. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td>Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151</td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>Dams - VA</td>
</tr>
<tr>
<td>National Dam Safety Program Phase I</td>
<td></td>
</tr>
<tr>
<td>Dam Safety</td>
<td></td>
</tr>
<tr>
<td>Dam Inspection</td>
<td></td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td>(See reverse side)</td>
</tr>
</tbody>
</table>
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of the Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (flood discharges that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the design flood should not be interpreted as necessarily posing a highly inadequate condition. The design flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

CONTENTS

Brief Assessment of Dam .. 1
Overall View of Dam .. 3
Section 1: Project Information 5
Section 2: Engineering Data ... 9
Section 3: Visual Inspection ... 11
Section 4: Operational Procedures 13
Section 5: Hydraulic/Hydrologic Data 15
Section 6: Dam Stability ... 19
Section 7: Assessment/Remedial Measures 21

Appendices

I. Plates
II. Photographs
III. Check List - Visual Inspection
IV. Check List - Engineering Data
V. Annual Maintenance Inspection Reports
VI. References

NAME OF DAM: DRY RUN NO. 102
NAME OF DAM: DRY RUN NO. 102
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Dry Run No. 102
State: Virginia
County: Page
Stream: Dry Run
Date of Inspection: 15 November 1978

BRIEF ASSESSMENT OF DAM

Dry Run Dam No. 102 is an earth dam approximately 81 feet high and 830 feet long. The dam is privately owned by E. Miller and Austin Judd, and is maintained by the Town of Luray, Virginia. The U.S. Soil Conservation Service designed the dam. The visual inspection and review of as-built drawings indicate no serious deficiencies requiring emergency attention.

The spillway will pass the Probable Maximum Flood (PMF) without overtopping the dam. A stability analysis was not available; however, no evidence of distress due to slope-stability problems or seepage was observed.

Filling and reseeding of the tire tracks on the embankment should be completed without delay to prevent erosion. Also, some means of restricting access to the embankment by vehicular traffic should be considered. If restricting vehicular traffic is not possible, a means of protecting the embankment against erosion should be implemented. Recommended remedial measures to be scheduled during the annual maintenance inspection program are to: repair bare areas on the embankment, cut all tree growth on the embankment and rock toe drains, and install a staff gage.

MICHAEL BAKER, JR., INC. SUBMITTED: Original signed by:

James, A. Walsh
Chief, Design Branch

Zane M. Goodwin
Chief, Engineering

MICHAEL BAKER III, P.E. RECOMMENDED:

Chairman of the Board and
Chief Executive Officer

APPROVED: Date:

Douglas L. Hallen
Colonel, Corps of Engineers
District Engineer

DATE: FEB 14 1979

NAME OF DAM: DRY RUN NO. 102
OVERALL VIEW OF DAM
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
NAME OF DAM: DRY RUN NO. 102 ID# VA 13901

SECTION 1 - PROJECT INFORMATION

1.1 General

1.1.1 Authority: Public Law 92-367, 8 August 1972 authorized the Secretary of the Army, through the Corps of Engineers to initiate a national program of safety inspections of dams throughout the United States. The Norfolk District has been assigned the responsibility of supervising the inspection of dams in the Commonwealth of Virginia.

1.1.2 Purpose of Inspection: The purpose is to conduct a Phase I inspection according to the Recommended Guidelines for Safety Inspection of Dams. The main responsibility is to expeditiously identify those dams which may be a potential hazard to human life or property.

1.2 Description of Project

1.2.1 Description of Dam and Appurtenances: Dry Run Dam No. 102 (Morning Star Lake) is a zoned earthfill dam, approximately 81 feet high and 830 feet long. Seepage control is provided by a cutoff trench and an impervious core. An abutment drain is located in the left abutment area. A 10 foot berm is located at the upstream toe of the dam at normal pool elevation.

The approximately 200 foot wide emergency spillway is a vegetated side-channel spillway with a crest elevation of 1440.0 feet M.S.L. The principal spillway is a drop-inlet structure consisting of a reinforced concrete riser, a 36 inch diameter reinforced concrete water pipe with a 4.4 percent slope discharging into a riprapped stilling basin approximately 60 foot long and 25 foot wide. The reservoir is used for flood control and is provided with a low flow inlet in the upstream side of the riser (invert elevation 1409.5 feet M.S.L.). High flow inlets are located on either side of the riser and have a crest elevation of 1428.1 feet M.S.L. The reservoir can be
drained using the 36 inch slide gate, with
an invert elevation of 1388.6 feet M.S.L.,
located on the upstream side of riser. The
plan and typical sections of the dam are
shown on Plates 1, 2 and 3.

1.2.2 Location: Dry Run Dam No. 102 is located on
Dry Run approximately 7.0 miles southeast of
Luray, Virginia in Page County. A Location
Plan is included in this report.

1.2.3 Size Classification: The maximum height of
the dam is 81 feet. The reservoir volume to
the top of the dam is 497 acre-feet. There-
fore, the dam is in the "intermediate" size
category as defined by the Recommended Guide-
lines for Safety Inspection of Dams.

1.2.4 Hazard Classification: Due to the proximity
of the Town of Luray, Virginia with a popula-
tion of 3800 and the homes located along Dry
Run between the dam and Luray, many lives
could be lost in the event of failure of the
dam. Therefore, the dam is considered in the
"high" hazard classification as defined by
Section 2.1.2 of the Recommended Guidelines
for Safety Inspection of Dams. The hazard
classification used to categorize dams is a
function of location only and has nothing to
do with its stability or the probability of
failure.

1.2.5 Ownership: The dam is privately owned by
E. Miller and Austin Judd. The dam is
maintained by the Town of Luray, Page County,
Virginia with maintenance assistance from the
Shenandoah Valley Soil and Water Conservation
district and the U.S. Soil Conservation
Service (SCS).

1.2.6 Purpose: The dam is used for flood control
within the Potomac River Basin.

1.2.7 Design and Construction History: The existing
facility was designed for the owner by the
SCS and built by Wiley Jackson in 1969.

1.2.8 Normal Operational Procedures: No formal
operational procedures are followed for this
dam since its purpose is solely for flood
control. Normal pool elevation of 1409.5 feet
M.S.L. is maintained by an orifice-type inlet
on the upstream face of the riser. The
principal spillway (riser crest) is located

NAME OF DAM: DRY RUN NO. 102
at elevation 1428.1 feet M.S.L. with excess flows diverted through the side-channel emergency spillway with a crest elevation of 1440.0 feet M.S.L. It is not known how often the 36 inch slide gate is operated.

1.3 Pertinent Data

1.3.1 Drainage Area: The drainage area of the Dry Run Dam No. 102 is 2.08 square miles.

1.3.2 Discharge at Dam Site: The maximum flow at the dam site is not known. However, a landowner who lives just downstream of the dam stated that he had never seen water in the emergency spillway. He did report that the water level has been over the top of the riser.

Principal Spillway:
- Pool level at emergency spillway crest: 218 c.f.s.
- Pool level at top of dam: 232 c.f.s.

Emergency Spillway:
- Pool level at top of dam: 15,400 c.f.s.

1.3.3 Dam and Reservoir Data: Pertinent data on the dam and reservoir are shown in the following table:

TABLE 1.1 DAM AND RESERVOIR DATA

<table>
<thead>
<tr>
<th>Item</th>
<th>Elevation</th>
<th>Area</th>
<th>Watershed Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of dam</td>
<td>1448.7</td>
<td>19.6</td>
<td>497</td>
</tr>
<tr>
<td>Maximum pool, design surcharge</td>
<td>1443.0</td>
<td>17.9</td>
<td>401</td>
</tr>
<tr>
<td>Emergency spillway crest</td>
<td>1440.0</td>
<td>16.6</td>
<td>340</td>
</tr>
<tr>
<td>Principal spillway crest</td>
<td>1428.1</td>
<td>12.3</td>
<td>174</td>
</tr>
<tr>
<td>Normal pool (b)</td>
<td>1409.5</td>
<td>5.65</td>
<td>25</td>
</tr>
<tr>
<td>Streambed at centerline of dam</td>
<td>1368.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Total storage, includes 25 acre-feet of sediment storage below normal pool and 38 acre-feet above normal pool.
(b) Invert of low-level intake to riser.
SECTION 2 - ENGINEERING DATA

2.1 Design: The design data reviewed included the following:

1) As-built drawings indicating plans, elevations and sections of the dam and appurtenant structures. Logs of test borings and test pits were also included in the as-built drawings. Plan and typical sections as taken from the as-built drawings are included as Plates 1, 2 and 3 in Appendix I.

2) Hydrologic and hydraulic data including outlet discharge capacity, reservoir area and storage capacity, and hydrograph and routing determinations for the principal spillway, the emergency spillway, and the freeboard hydrographs.

3) Annual maintenance inspection reports of the previous five years conducted by the Town of Luray with assistance from the Shenandoah Valley Soil and Water Conservation District and the regional SCS office (see Appendix V).

All existing data has been filed with the Norfolk District for future reference.

2.2 Construction: The dam, constructed by Wiley Jackson, was completed in 1969. Construction records were not available for this inspection, however, as-built plans were reviewed and verified in the field. Construction records are on file in Washington, District of Columbia.

2.3 Operation: There are no formal operating procedures for this dam because it is a flood control dam. It is not known how regularly the 36 inch slide gate is operated. Annual inspections are performed by the Town of Luray with assistance from the Shenandoah Valley Soil and Water Conservation District and the SCS.

2.4 Evaluation

2.4.1 Design: The as-built drawings were adequate for a general stability assessment. Stability calculations were not available. A study of the boring records and field observations indicates no evident problems.

The as-built drawings were verified by field measurements taken at the time of the visual inspection.

NAME OF DAM: DRY RUN NO. 102
The hydrologic and hydraulic calculations were sufficient to assess the design of the dam.

2.4.2 Construction: No construction records were available, however, the as-built drawings indicate minor modifications that were made during construction.

2.4.3 Operation: Annual inspection reports were available for review and are included in Appendix V. Operation of the dam is considered adequate for the purpose served.

NAME OF DAM: DRY RUN NO. 102
SECTION 3 - VISUAL INSPECTION

3.1 Findings

3.1.1 General: The field inspection was conducted on 15 November 1978. There was light to heavy rain during and after the inspection. The reservoir was at normal pool elevation. The dam and appurtenance structures were found to be in good overall condition at the time of the inspection. The problems noted during the visual inspection are considered to be relatively minor and do not require immediate remedial treatment except for the erosion started by vehicle traffic on the downstream slope (see Photo 1). The significant deficiencies are described briefly in the following paragraphs. The complete visual inspection check list is presented in Appendix III.

3.1.2 Dam: The embankment was generally in good physical condition. No cracks, unusual movement, sloughing, excessively deep erosion or seepage was observed on the embankment or abutments. There are several bare areas namely: vehicle tracks on the downstream slope of the dam and spillway slope, a path on the upstream slope near the riser (see Photo 2), and roadway tracks at the crest on the left side. There are scattered dried out patches of grass and wood debris in the lower 20 feet of the upstream slope. Small trees and brush have grown in the rock toe drain and rock slope gutters (see Photo 5).

3.1.3 Appurtenant Structures: No structural deficiencies were observed (see Photo 3).

3.1.4 Reservoir Area: No serious deficiencies were observed in the reservoir. A staff gage should be installed to monitor reservoir elevations above normal pool.

3.1.5 Downstream Channel: The stilling basin and outlet channel are functioning properly and the riprap is in good condition (see Photo 4).
3.2 Evaluation: The only serious deficiency is the erosion in the tire tracks resulting from operation of vehicles on the downstream slope on the left side of the outlet works (see Photo 1). Topsoil should be placed in the bare areas and planted with grass seed. The access for vehicles should be blocked-off to prevent this problem from re-occurring. If restriction of vehicular traffic is not possible, then some means of embankment protection should be implemented.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures: No formal operational procedures are used for Dry Run Dam No. 102, since the dam is used as a flood control structure. The reservoir remains at normal pool elevation of 1409.5 feet M.S.L. and has an additional 30.5 feet of storage to the crest of the emergency spillway.

4.2 Maintenance of Dam: Annual maintenance inspections are performed by the Town of Luray with the assistance of the Shenandoah Valley Soil and Conservation District and the regional SCS office. Copies of the inspection reports are included in Appendix V.

4.3 Maintenance of Operating Facilities: The dam has no operating facilities since it is used exclusively for flood control and flow from the dam is automatic.

4.4 Warning Systems: At the present time, there is no warning system or evacuation plan in operation.

4.5 Evaluation: Considering the function that is served by the operational facility, maintenance is considered adequate.
SECTION 5 - HYDRAULIC/HYDROLOGIC DATA

5.1 **Design**: The normal pool (elevation 1409.5 feet M.S.L.) maintained by a low stage orifice (0.75 foot high by 2.25 feet long) on the upstream side of the riser was established at an elevation capable of storing 0.23 watershed inches (100-year sediment pool). The high stage riser crest (elevation 1428.1 feet M.S.L.) was established at an elevation to store an additional 1 inch of floodwater plus 0.34 inch of sediment load. The capacity of the principal spillway (218 c.f.s. with the reservoir level at the emergency spillway crest) was established by consideration of the following factors:

1) The capability of evacuating the flood storage space within a reasonable time (± 10 days).

2) Not passing damaging flows downstream.

3) The capability of the reservoir to store the floodwaters.

The crest elevation of the emergency spillway was established at the elevation required to store the 100-year, 10-day rainfall. The elevation of the top of dam (elevation 1448.7 feet M.S.L.) was established by the maximum elevation reached in passing the freeboard hydrograph. The freeboard hydrograph is that computed from rainfall comparable to Probable Maximum Precipitation (PMP) as used by the Corps of Engineers and is therefore comparable to the Probable Maximum Flood (PMF).

5.2 **Hydrologic Records**: No rainfall data or stream flow records were available.

5.3 **Flood Experience**: No exact high water marks or dates were available. However, a local landowner indicated that the reservoir has risen above the riser crest in the past.

5.4 **Flood Potential**: Design features of the dam and reservoir were established by the SCS by routing various hydrographs as noted in paragraph 5.1.

5.5 **Reservoir Regulation**: Pertinent dam and reservoir data are shown in Table 1.1, paragraph 1.3.3.

Regulation of flow from the reservoir is automatic. Normal flows are maintained by the low stage orifice in the riser with crest elevation 1409.5 feet M.S.L. and
the high stage inlet with a crest of 1428.1 feet M.S.L. Water entering these inlets flows through the dam in a 36 inch diameter reinforced concrete conduit. Water also flows past the dam through an ungated, vegetated, side-channel emergency spillway in the event water in the reservoir rises above an elevation of 1440.0 feet M.S.L.

Outlet discharge capacity, reservoir area and storage capacity, and hydrograph and routing determinations were obtained from reports and computations furnished by the SCS. The routing of the emergency and freeboard hydrographs began with the reservoir level at normal pool.

5.6 Overtopping Potential: The probable rise in the reservoir and other pertinent information on the reservoir performance in various hydrographs is shown in the following table:

TABLE 5.1 RESERVOIR PERFORMANCE

<table>
<thead>
<tr>
<th>Hydrograph</th>
<th>Principal Spillway (a)</th>
<th>Emergency Spillway</th>
<th>Freeboard (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak flow, c.f.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflow</td>
<td>-</td>
<td>-</td>
<td>5159</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>218</td>
<td>3400</td>
</tr>
<tr>
<td>Peak elev., ft. M.S.L.</td>
<td>1409.5</td>
<td>1428.1</td>
<td>1443.5</td>
</tr>
<tr>
<td>Emergency spillway (elev. 1440.0 ft. M.S.L.)</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Depth of flow, ft.</td>
<td>-</td>
<td>-</td>
<td>7.7</td>
</tr>
<tr>
<td>Avg. velocity, f.p.s.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Non-overflow section (elev. 1448.7 ft. M.S.L.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Depth of flow, ft.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duration of overtopping, hrs.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg. velocity, f.p.s.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tailwater elev., ft. M.S.L. (c)</td>
<td>1367.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) 100-year, 10-day volume produces the most conservatively large indication of flood control storage required. Detailed discharge hydrograph was not determined.

(b) PMF by COE standards.

(c) Tailwater at time of inspection.

NAME OF DAM: DRY RUN NO. 102

16
5.7 Reservoir Emptying Potential: The time to drawdown the reservoir level from the crest of the emergency spillway (discharge of 218 c.f.s.) to the crest of the riser (discharge of 38 c.f.s.) is about 12 hours. The time to draw the reservoir down from the riser crest to the low stage orifice crest is approximately 5 days. With the 36 inch reservoir drain opened, the reservoir can be drained from normal pool to elevation 1388.1 feet M.S.L. in about 2 hours. Reservoir drawdown was estimated neglecting inflow.

5.8 Evaluation: Hydrologic and hydraulic determinations of the project as prepared by the SCS appear reasonable. The reservoir and spillway are designed to pass a flood essentially equal to PMF which would be developed under standards used by the Corps of Engineers. The project will pass the PMF without overtopping the dam.

Conclusions pertain to present day conditions and the effect of future development on the hydrology has not been considered.
SECTION 6 - DAM STABILITY

6.1 **Foundation and Abutments:** Records of borings and test pits shown on the as-built drawings were used to determine the foundation conditions. Field observations also indicated the soils are mostly silty sand (10 to 30 feet deep) with gravel, cobbles and boulders. The upper bedrock is primarily speckled, fractured, hard granodiorite of the Precambrian Pedlar Formation. There are some thin silt seams in the upper weathered zone with an occasional pegmatite and small voids below. The cutoff trench had been excavated into the weathered bedrock and grouted in the fracture zones.

The deep cut for the spillway was excavated into silty sand and rock fragments with a few exposures of hard blocky granodiorite.

6.2 **Stability Analysis**

6.2.1 **Visual Observations:** No tension cracks or other evidence of movement such as sloughing of the embankment slopes or movement at or beyond the toe were noticed. No seepage was observed on the face of the dam or at the abutments. Erosion has started on an upstream path and tire tracks on the downstream face. Small trees have grown between the rocks in the slope gutters and rock toe drain.

6.2.2 **Design Data:** No stability analyses were available.

6.2.3 **Operating Records:** Recent annual maintenance inspection reports included in Appendix V have called for cutting small trees, a warning sign at principal spillway pipe, and treatment of bare vehicle tracks.

6.2.4 **Post-Construction Changes:** There have been no known post-construction changes.

6.2.5 **Seismic Stability:** Dry Run Dam No. 102 is located in Seismic Zone 2 and is considered to have no hazard from earthquakes according to the Recommended Guidelines for Safety Inspection of Dams provided static stability conditions are satisfactory and conventional safety margins exist.
6.3 Evaluation: Since no stability analyses were available, a detailed stability assessment could not be made. There does not appear to be any adverse condition which affects the structural stability of the dam. The only deficiencies observed include moderate erosion on a path and in vehicle tracks, and scattered growth of small trees which should be removed. These recurring items have been noted in the previous annual maintenance inspection reports after which some remedial action apparently had been taken in the past.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment: The dam, as designed, will prevent overtopping under PMF conditions. The hydrologic and hydraulic data available were sufficient to evaluate the spillway capacity. No evidence of seepage or embankment distress were observed that would threaten the integrity of the dam. Design soils, foundations, and stability reports were not available for review.

The dam is generally in good condition with the exceptions of the maintenance items noted.

7.2 Recommended Remedial Measures: The filling and reseeding of the tire tracks on the embankment should be repaired without delay to prevent erosion. Also, some means from preventing further vehicular traffic on the embankments should be considered immediately. If restricting vehicular traffic is not possible, a means of protecting the embankment against erosion should be implemented. The inspection revealed certain maintenance items listed below which should be scheduled during the annual maintenance period.

1) Cut all tree growth on embankment and rock toe drains.

2) In addition to areas already noted, reseed all bare areas on the embankment including footpath on the upstream side.

3) A staff gage should be installed to monitor reservoir elevations above normal pool.
APPENDIX I

PLATES
CONTENTS

Location Plan
Plate 1: Plan of Structural Works
Plate 2: Plan-Profile of Principal Spillway
Plate 3: Principal Spillway

NAME OF DAM: DRY RUN NO. 102
LOCATION PLAN
DRY RUN DAM NO. 102
EARTH AND FOUNDATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Zone</th>
<th>Material</th>
<th>Required Density</th>
<th>Compaction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silty sand (SW)</td>
<td>90% of optimum</td>
<td>ASTM D1557 method A</td>
</tr>
<tr>
<td>2</td>
<td>Silty sand (SW)</td>
<td>90% of optimum</td>
<td>ASTM D1557 method A</td>
</tr>
<tr>
<td>3</td>
<td>Silty gravel (SW)</td>
<td>90% of optimum</td>
<td>ASTM D1557 method A</td>
</tr>
<tr>
<td>4</td>
<td>Silty gravel (SW)</td>
<td>90% of optimum</td>
<td>ASTM D1557 method A</td>
</tr>
</tbody>
</table>

NOTES:
- **1.** Maximum lift thickness prior to compaction.
- **2.** For typical compaction curves, see sheet 22.
- **3.** Zone 4 material shall contain less than 10% fines.

NOTE: The foundation surface throughout the base area of the dam shall be scorched to a depth of 6 inches and compacted prior to placement of compacted fill.

PLATE 2

DAM NO 102 NORTH FORK DRY RUN WATERSHED

PAGE COUNTY, VIRGINIA

U.S. DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE

PLATE 2

DAM NO 102 NORTH FORK DRY RUN WATERSHED

PAGE COUNTY, VIRGINIA

U.S. DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE
DAM NO. 102, NORTH FORK, DRY RUN WATERSHED
PAGE COUNTY, VIRGINIA

principal Spillway
U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

PLATE 3
APPENDIX II

PHOTOGRAPHS
CONTENTS

Photo 1: Eroded Vehicular Tracks on Downstream Slope
Photo 2: Footpath on Upstream Slope (Near Riser)
Photo 3: View of Riser From Upstream Face of Dam
Photo 4: Outlet Pipe and Stilling Basin
Photo 5: Rock Toe on Downstream Side of Dam
Photo 6: Emergency Spillway and Left Abutment

Note: Photographs were taken 15 November 1978.

NAME OF DAM: DRY RUN NO. 102
PHOTO 1. Eroded Vehicular Tracks on Downstream Slope

PHOTO 2. Footpath on Upstream Slope (Near Riser)
PHOTO 3. View of Riser From Upstream Face of Dam

PHOTO 4. Outlet Pipe and Stillling Basin
PHOTO 5. Rock Toe on Downstream Side of Dam

PHOTO 6. Emergency Spillway and Left Abutment
APPENDIX III

CHECK LIST - VISUAL INSPECTION
Check List
Visual Inspection
Phase 1

Name of Dam Dry Run No. 102 County Page State Virginia Coordinates Lat. 3838.6 Long. 7821.9

Date Inspection 15 November 1978 Weather Cloudy, Light Rain Temperature 60°F.

Pool Elevation at Time of Inspection 1409.6 ft. M.S.L. Tailwater at Time of Inspection 1367.0 ft. M.S.L.

Inspection Personnel:
Michael Baker, Jr., Inc.:
T. W. Smith
W. L. Shearer
T. J. Dougan

T. W. Smith Recorder
Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>EMBANKMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL EXAMINATION OF</td>
</tr>
<tr>
<td>SURFACE CRACKS</td>
</tr>
<tr>
<td>None observed.</td>
</tr>
<tr>
<td>UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE</td>
</tr>
<tr>
<td>None observed.</td>
</tr>
<tr>
<td>SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES</td>
</tr>
<tr>
<td>No sloughing was observed. There is some erosion in tire tracks on the downstream slope near the principal spillway outlet and in a path on upstream slope near riser. Roadway tracks are exposed on the left side on the top of the dam.</td>
</tr>
<tr>
<td>It is recommended that topsoil be placed on the bare areas and planted with grass seed. The access for vehicles on the downstream slope should be blocked-off.</td>
</tr>
<tr>
<td>VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>RIPRAP FAILURES</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>SURFACE OF SLOPES</td>
</tr>
<tr>
<td>There are scattered dried-out patches of grass and branches of trees in the lower 20 ft. of slope on the upstream side. There is good thick vegetation on the rest of the upstream slope and on the entire downstream slope. The slopes were constructed at a 2.5:1 ratio on both sides of the dam except for a 3:1 slope in the lower upstream side.</td>
</tr>
<tr>
<td>It is recommended that the dried-out areas be reseeded and the wood debris be removed.</td>
</tr>
</tbody>
</table>
EMBANKMENT

Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>Visual Examination of Construction Materials</th>
<th>Observations</th>
<th>Remarks or Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION MATERIALS</td>
<td>The dam was constructed in four zones according to the as-built drawings. Zone 1 in the core consists of silt and clay. Brown, damp, dense sand, silt, gravel, cobbles and rock fragments were observed on the surface in various portions of the dam representing granular Zone 3.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junction of Embankment and Abutment, Spillway and Dam</th>
<th>Observations</th>
<th>Remarks or Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM</td>
<td>There are light-brown, damp, silty sand and rock fragments with boulders in the hillside at the right abutment with granodiorite beneath. Boulders of hard rock form the slope gutters at the right abutment. Some small trees and brush have grown between the boulders on the upstream and downstream gutters. The dam, at the emergency spillway, consists of silty sand and rock fragments with granodiorite beneath.</td>
<td>It is recommended that the trees, brush and any other debris be removed from the slope gutters and riprap.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any Noticeable Seepage</th>
<th>Observations</th>
<th>Remarks or Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY NOTICEABLE SEEPAGE</td>
<td>No seepage was observed on the downstream embankment slope or toe. Two old stream channels on the right side in the woods were dry. Tree stumps, boulders and trash have been dumped in the channels.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staff Gage and Recorder</th>
<th>Observations</th>
<th>Remarks or Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAFF GAGE AND RECORDER</td>
<td>None</td>
<td>It is recommended that the trees and other vegetative growth be removed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drains</th>
<th>Observations</th>
<th>Remarks or Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAINS</td>
<td>A rock toe drain consisting of very hard boulders (1.5 to 3 ft. diameters) extends for the length of the dam except in the vicinity of the outlet for the principal spillway. Scattered small trees have grown in the vicinity and between the boulders. The rock drain is approximately 15 ft. high x 20 ft. wide.</td>
<td>It is recommended that the trees and other vegetative growth be removed.</td>
</tr>
</tbody>
</table>
EMBANKMENT

<table>
<thead>
<tr>
<th>Name of Dam:</th>
<th>DRY RUN NO. 102</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATION</td>
<td>According to the borings and test pits shown on the construction plans, the dam was constructed on silty sand with gravel, cobbles and boulders at least 10 ft. deep. The bedrock is primarily hard, brown and green granodiorite of the Precambrian Pedlar Formation. The bedrock in the bottom of the cutoff trench was grouted in fractured zones.</td>
<td></td>
</tr>
</tbody>
</table>

III-4
OUTLET WORKS

Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT</td>
<td>No unusual cracking or spalling of the outlet pipe was observed.</td>
<td></td>
</tr>
<tr>
<td>INTAKE STRUCTURE</td>
<td>Concrete reinforced riser shows no signs of spalling or cracking.</td>
<td></td>
</tr>
<tr>
<td>OUTLET STRUCTURE</td>
<td>The outlet structure consists of 30 in. diameter R.C.P. exiting into a stilling basin approximately 25 ft. wide x 60 ft. long with boulder riprap along the bottom and banks. The outlet flow in the pipe was 0.1 ft. deep.</td>
<td></td>
</tr>
<tr>
<td>OUTLET CHANNEL</td>
<td>The outlet channel is approximately 12 ft. wide at bottom with channel slope of 2-3%. The channel is lined with cobbles and small boulders.</td>
<td></td>
</tr>
<tr>
<td>EMERGENCY GATE</td>
<td>The emergency gate is located on upstream side of riser and can be used to drain the reservoir.</td>
<td></td>
</tr>
</tbody>
</table>
UNGATED SPILLWAY

<table>
<thead>
<tr>
<th>Name of Dam:</th>
<th>DRY RUN NO. 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL EXAMINATION OF</td>
<td>OBSERVATIONS</td>
</tr>
<tr>
<td>CONCRETE WEIR</td>
<td>None</td>
</tr>
</tbody>
</table>

| **APPROACH CHANNEL** | The approach channel enters the emergency spillway along left side of reservoir with a 2% adverse slope in silty sand and rock fragments. There is a thick vegetative cover. |

| **DISCHARGE CHANNEL** | The discharge channel is located beyond the left end of the dam. The soil is silty sand and rock fragments with a thick vegetative cover including a few small pines and bushes. | The pine trees and bushes should be removed. |

| **BRIDGE AND PIERS** | None |

<p>| CONFINING SLOPES | Residual silty sand with rock fragments is exposed in the 100 ft. cut on left side. The slope is well covered with vegetation and a few small pine trees except for vehicle tracks in the lower part near the center. The slope is cut at a 2:1 ratio with two 10 ft. berms separated by a 40 ft. interval. There are a few exposures of hard granodiorite in large blocks. Silt, sand, gravel and rock fragments comprise the 3:1 slope on the right side for the extension of the dam embankment. | It is recommended that the trees be removed and grass seed (same as existing) be planted in the bare tracks on the left slope. |</p>
<table>
<thead>
<tr>
<th>MONUMENTATION/SURVEYS</th>
<th>None observed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATION WELLS</td>
<td>None observed.</td>
</tr>
<tr>
<td>WEIRS</td>
<td>None</td>
</tr>
<tr>
<td>PIEZOMETERS</td>
<td>None</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>
Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPES</td>
<td>The slopes are generally gentle near the reservoir becoming steeper toward the woods. Clear springs emanate from silty sand and rock fragments in extensive areas on the east and southeast sides of the reservoir. The clear springs outlet above sandy clay at lake level. The southeast side is swampy near the inlet of Dry Run. The southwest side is dry except for a wet swale near the access road. There are two cabins located on the southeast corner.</td>
<td></td>
</tr>
<tr>
<td>SEDIMENTATION</td>
<td>No unusual sedimentation was noted.</td>
<td></td>
</tr>
</tbody>
</table>
Name of Dam: DRY RUN NO. 102

DOWNSTREAM CHANNEL

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF (OBSERVATIONS)</th>
<th>REMARKS OR RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)</td>
<td>There are sand, gravel, cobbles and boulders in the channel which is free of obstructions and debris.</td>
</tr>
<tr>
<td>SLOPES</td>
<td>The slopes of silty sand, gravel, cobbles and boulders are well defined at a 2:1 ratio.</td>
</tr>
<tr>
<td>APPROXIMATE NO. OF HOMES AND POPULATION</td>
<td>There are 50 to 60 homes located in the 4 mi. stretch downstream of the dam with most of the homes being located along Route 667. Population is estimated to be between 250 to 350.</td>
</tr>
</tbody>
</table>
APPENDIX IV

CHECK LIST - ENGINEERING DATA
<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN OF DAM</td>
<td>The Plan of Dam is shown on the as-built drawings.</td>
</tr>
<tr>
<td>REGIONAL VICINITY MAP</td>
<td>The vicinity map is presented in this report as the Location Plan.</td>
</tr>
<tr>
<td>CONSTRUCTION HISTORY</td>
<td>The contractor and completion date were obtained from the COE. The dam was constructed by Wiley Jackson in 1969.</td>
</tr>
<tr>
<td>TYPICAL SECTIONS OF DAM</td>
<td>Typical sections are included in the as-built drawings and are presented in this report as Plates 2 and 3.</td>
</tr>
<tr>
<td>HYDROLOGIC/HYDRAULIC DATA</td>
<td>Hydrologic and hydraulic calculations were available.</td>
</tr>
<tr>
<td>OUTLETS - PLAN and DETAILS</td>
<td>shown on as-built drawings</td>
</tr>
<tr>
<td></td>
<td>CONSTRANTS and DISCHARGE RATINGS contained in the hydrologic/hydraulic calculations.</td>
</tr>
<tr>
<td>RAINFALL/RESERVOIR RECORDS</td>
<td>No rainfall or reservoir records are available at the dam.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DESIGN REPORTS</td>
<td>A Design Report was not available for this inspection report.</td>
</tr>
<tr>
<td>GEOLOGY REPORTS</td>
<td>A Geologic Report was not available for this inspection.</td>
</tr>
<tr>
<td>DESIGN COMPUTATIONS</td>
<td>Hydrology and hydraulic calculations were available for this inspection report.</td>
</tr>
<tr>
<td>HYDROLOGY & HYDRAULICS</td>
<td>Stability analyses were not available.</td>
</tr>
<tr>
<td>DAM STABILITY</td>
<td></td>
</tr>
<tr>
<td>SEEPA GE STUDIES</td>
<td></td>
</tr>
<tr>
<td>MATERIALS INVESTIGATIONS</td>
<td>Test pit and boring records, results of field permeability, water pressure tests and compaction curves are presented in the as-built drawings.</td>
</tr>
<tr>
<td>BORING RECORDS</td>
<td></td>
</tr>
<tr>
<td>LABORATORY</td>
<td></td>
</tr>
<tr>
<td>FIELD</td>
<td></td>
</tr>
<tr>
<td>POST-CONSTRUCTION SURVEYS OF DAM</td>
<td>No known post-construction surveys were found.</td>
</tr>
<tr>
<td>BORROW SOURCES</td>
<td>Borrow areas in the reservoir area and downstream of the emergency spillway are shown in the as-built drawings.</td>
</tr>
</tbody>
</table>
Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONITORING SYSTEMS</td>
<td>No monitoring systems have been provided.</td>
</tr>
<tr>
<td>MODIFICATIONS</td>
<td>Data obtained during inspection agrees very closely with as-built drawings indicating that no major modifications were made.</td>
</tr>
<tr>
<td>HIGH POOL RECORDS</td>
<td>None are available.</td>
</tr>
<tr>
<td>POST-CONSTRUCTION ENGINEERING STUDIES AND REPORTS</td>
<td>None are available.</td>
</tr>
</tbody>
</table>

PRIOR ACCIDENTS OR FAILURE OF DAM
DESCRIPTION
REPORTS
No prior accidents or failure of the dam have been noted.

MAINTENANCE OPERATION RECORDS
Annual inspections are conducted by the Shenandoah Valley Soil and Water Conservation District with the assistance of the Town of Luray and the SCS to make recommendations for maintenance and upgrading of the dam if needed. Copies of the reports are included in Appendix V.
Name of Dam: DRY RUN NO. 102

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPILLWAY PLAN</td>
<td></td>
</tr>
<tr>
<td>SECTIONS</td>
<td>Information contained in the as-built drawings.</td>
</tr>
<tr>
<td>DETAILS</td>
<td></td>
</tr>
<tr>
<td>OPERATING EQUIPMENT</td>
<td>Information contained in the as-built drawings.</td>
</tr>
<tr>
<td>PLANS & DETAILS</td>
<td></td>
</tr>
</tbody>
</table>

TL-4
CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: _____________ 2.08 sq.mi. _____________

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): _____________ 1409.5 ft. M.S.L. (25 ac.-ft.) _____________

ELEVATION TOP EMERGENCY SPILLWAY CREST (STORAGE CAPACITY): _____________ 1440.0 ft. M.S.L. (340 ac.-ft.) _____________

ELEVATION MAXIMUM DESIGN POOL: _____________ 1443.5 ft. M.S.L. _____________

ELEVATION TOP DAM: _____________ 1448.7 ft. M.S.L. (settled) _____________

CREST: ____________________________ Emergency Spillway ____________________________

a. Elevation _____________ 1440.0 ft. M.S.L. _____________

b. Type _____________ Earth side-channel with vegetative cover _____________

c. Width _____________ 800 ft. _____________

d. Length _____________ 350 ft. total (240 ft. approach, 30 ft. level section, 80 ft. exit) _____________

e. Location Spillover _____________ Outside left abutment _____________

f. Number and Type of Gates _____________ None _____________

OUTLET WORKS: ____________________________ ____________________________

a. Type _____________ Drop-inlet concrete riser _____________

b. Location _____________ Riser in reservoir with 36 in. diameter reinforced concrete outlet pipe _____________

c. Entrance Inverts _____________ 1409.5 ft. M.S.L. (normal pool). _____________ 1428.7 ft. M.S.L. (riser crest) _____________

d. Exit Inverts _____________ 1370.9 ft. M.S.L. (36 in. diameter outlet pipe) _____________

e. Emergency draindown facilities _____________ reservoir drain (36 in. diam. slide gate) _____________

HYDROMETEOROLOGICAL GAGES: _____________ None available _____________

a. Type ____________________________ ____________________________

b. Location ____________________________ ____________________________

c. Records ____________________________ ____________________________

MAXIMUM NON-DAMAGING DISCHARGE _____________ Unknown _____________

Name of Dam: _____________ DRY RUN NO. 102 _____________

IV-5
APPENDIX V

ANNUAL MAINTENANCE INSPECTION REPORTS
REPORT ON ANNUAL MAINTENANCE INSPECTION OF
DRY RUN WATERSHED FLOOD CONTROL STRUCTURES

The Shenandoah Valley Soil and Water Conservation District performed their annual inspection of the completed flood water retarding structures on the Dry Run Watershed, in Page County, Virginia May 23, 1978. The structures inspected were Dams 101 and 102. District Director Arlis Frymyer performed the inspection with the assistance of Don Smith, Luray Town Manager and Sam Linkenhoker, District Conservationist.

The results of the inspections are listed below as agreed to maintenance items.

Dam 101 (Lake Arrowhead)

1. Remove small cedars on downslope of dam.
2. Remove brush from knoll on eastern end of dam and spray undergrowth with brush killer and oil.
3. Spray and remove small trees on drainage ditches in the spillway.
4. Replace bolts on walkway structure.

Dam 102 (Lake Morning Star)

1. Paint a large warning (DANGER KEEP OUT) on the exit end of the principal spillway pipe.

Damazed areas on Dam 102, as a result of motor vehicles, had been repaired and appeared in excellent condition with seeding and planking.

Arlis Frymyer,
Director

Donald Smith,
Town Manager

Samuel W. Linkenhoker,
District Conservationist

V-1
REPORT OF ANNUAL MAINTENANCE INSPECTION OF
DRIY RUN WATERSHED FLOOD CONTROL STRUCTURES

The Shenandoah Valley Soil and Water Conservation District performed their annual inspection of the completed flood water retarding structures on the Dry Run watershed, in Page County, Virginia April 31, 1977. The structures inspected were dams 101 and 102. District directors Joyce Burnor and Clark Spitler performed the inspection with the assistance of Don Smith, Innay Town Manager and Sam Linkenhoker, District Conservationist.

The results of the inspections are listed below as agreed to maintenance items.

DAM 101 (Lake Arrowhead)

1. Remove brush and trees from the upstream slope of dam and paint the stumps with Brush-Killer and oil.

2. Remove the common mullein (Veronica thapsus) from the slopes of the dam and spillway by either grubbing or spraying with 2,4-D mixed in common detergent.

3. Spray the brush on the slopes of the spillway with Brush-Killer.

4. Install a post in the existing lane which is located around the southern edge of the lake to prohibit vehicular travel on said lane.

5. Remove all downed trees that are located within the flood pool area.

DAM 102 (Lake Morning Star)

1. Paint a large warning (PAINTED KEEP OUT) on the exit end of the principal spillway pipe.

2. Remove all locust sprouts from the back side of the dam and paint the stumps with Brush-Killer and Nol oil.

[Signatures]

Clark Spitler, Director
Joyce Burnor, Director
Donald Smith, Town Manager
Inpection of the dam on Dry Dam, Page County, Virginia was made May 27, 1976 by Clark Spitler, Martha Ann Atwood, and Joyce Burner, Shenandoah Valley Soil and Water Conservation District Directors. They were assisted by Donald Smith, Town Manager, and Jamie Griffith, Water Superintendent, Town of Luray. The group was accompanied by John D. Crist, Soil Conservation Service.

The following corrections were agreed upon by all parties involved:

Dam No. 102
1. Remove locust and willow trees from dam and spillway and paint stumps with 245T and fuel oil.
2. Remove log from floodpool area.

Dam No. 101
1. Remove locust and willow trees from dam and spillway and paint stumps with 245T and fuel oil.
2. Remove large logs from dam and waterline.

This report is conserved by:

Clark Spitler, Director
Shenandoah Valley Soil and Water Conservation District

Martha Ann Atwood, Director
Shenandoah Valley Soil and Water Conservation District

Joyce Burner, Director
Shenandoah Valley Soil and Water Conservation District

Donald Smith, Town Manager Town of Luray

Jamie Griffith, Water Superintendent Town of Luray

John D. Crist, District Conservationist
Soil Conservation Service

DISTR: State Office 2 eye.
Area Office
Luray Field Office
Town of Luray
Shenandoah Valley SAWCD

V-3
SHENANDOAH VALLEY SOIL AND WATER CONSERVATION DISTRICT
REPORT OF ANNUAL MAINTENANCE INSPECTION OF WATERSHED DAMS IN
DRY RUN WATERSHED PROGRAM

May 8, 1975

Inspection of the dams on Dry Run, Page County, Virginia was made May 8, 1975 by Clark Spitler, Shenandoah Valley Soil and Water Conservation District Director. He was assisted by Dempsey Stokes and Haywood Nichols from the Town of Luray and John D. Crist, Soil Conservation Service.

The following corrections were agreed upon by all parties involved:

Dam No. 101 - 1. All small locust on dam and spillway will be cut and sprayed with 245T and fuel oil.
 2. The larger logs will be removed from the dam to prevent clogging of spillway.
 3. Two small galled areas will be seeded to Ky. 31 fescue and mulched with straw.

Dam No. 102 - 1. All small locusts on the dam and spillway will be cut and sprayed with 245T and fuel oil.
 2. Two small galled areas will be seeded to Ky. 31 fescue and mulched with straw. The overhang on the top galled area will be knocked off and the area planted to locust to hold the sod in place.

This report is concurred by:

Clark Spitler, Shenandoah Valley Soil and Water Conservation District Director

Dempsey Stokes, Town of Luray

Haywood Nichols, Town of Luray

John D. Crist, District Conservationist, Soil Conservation Service

DISTR: State Office 2 cyg.
 Area Office
 Luray Field Office
 Town of Luray
 Shenandoah Valley SSWCD
SHENANDOAH VALLEY SOIL AND WATER CONSERVATION DISTRICT
REPORT OF ANNUAL MAINTENANCE INSPECTION OF WATERSHED DAMS IN

DRY R-R WATERSHED PROGRAM

MAY 4, 1974

Inspection of the dams was made on May 4, 1974 by James Alcolde and Clark Spitler along with other members of the Shenandoah Valley Soil and Water Conservation District Board of Directors. Dempsey Stokes and Tom Speaks from the Town of Luray and William L. Blair, Jr. and John Christ from SCS accompanied the inspection team.

The following conditions were reported:

Dam No. 101 - Good condition, no extra maintenance is needed.

Dam No. 102 - Good condition, no maintenance needed.

The report is concurred by:

James E. Alcolde
Area Director, Shenandoah Valley Soil and Water Conservation District

Clark Spitler
District Director, Shenandoah Valley Soil and Water Conservation District

Dempsey Stokes
Town Manager of Luray, Virginia

Tom Speaks
Town Mayor of Luray, Virginia

William L. Blair, Jr.
Area Conservationist, SCS

John Christ
State Conservationist, SCS

U.S. Soil Conservation Service
Area Office
Luray Field Office
Town of Luray
Shenandoah Valley SOCCO
APPENDIX VI

REFERENCES
REFERENCES

