EXTREME SAMPLE CENSORING PROBLEMS
WITH MULTIVARIATE DATA - II

TECHNICAL REPORT

N.L. JOHNSON

JULY, 1979

U.S. ARMY RESEARCH OFFICE
RESEARCH TRIANGLE PARK, NORTH CAROLINA

DAAG29-77-C-0035

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
CHAPEL HILL, NORTH CAROLINA 27514

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

"THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS
AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DE-
CISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION."
Indirect censoring is defined as the effect on observed variables of censoring on unobserved variables. Methods of testing for indirect censoring are discussed, and exemplified, using a bivariate Farlie-Gumbel-Morgenstern distribution.
1. Introduction.

Johnson (1978a) has given a survey of various problems which can arise in testing for censoring of extreme values from univariate data. When data are multivariate, there is a much richer variety of possible problems; some possibilities are described in Johnson (1975). The present paper extends these possibilities and indicates lines of attack on certain of the problems. These are worked out in some detail for Farlie-Gumbel-Morgenstern bivariate distributions.

We suppose that observed values on m characters X_1, X_2, \ldots, X_m are available for each of r individuals. We wish to investigate whether these represent a complete random sample, or are the remainder of such a sample (original size $n>r$) after some form of censoring of extreme values has been applied.

As in Johnson (1978a), we will restrict attention to random sampling from large populations in which the joint distribution of X_1, \ldots, X_m is absolutely continuous, with joint probability density function (PDF)

$$f_{X_1, \ldots, X_m}(x_1, \ldots, x_m) = f_X(x) = f_{12\ldots m}(x_1, \ldots, x_m).$$

We will denote the (unordered) observations on the i-th available individual by

$$X^*_i = (X^*_i, X^*_1, \ldots, X^*_m) \quad (i=1, \ldots, r).$$

*Research sponsored by the Army Research Office under Grant DAAG29-77-C-0035.
We also use the notation:

\[
\frac{\text{m}}{\text{j=1}} \text{Pr} [n(X_{j1} < x_j)] = F_{12} \ldots \text{m}(x_1, \ldots, x_m) \quad (\text{in particular } \text{Pr}[X_{j1} < x] = F_j(x))
\]

(ii) for the conditional PDF of \(X_{a_1}^*, \ldots, X_{a_s}^*\) given \(X_{b_1}^*, \ldots, X_{b_t}^*\)

\[
g_{a_1 \ldots a_s; b_1 \ldots b_t}(x_{a_1}, \ldots, x_{a_s} | x_{b_1}, \ldots, x_{b_t}) \quad (\text{in particular } g_{12}(x_1 | x_2), g_{21}(x_2 | x_1))
\]

and

(iii) for the order statistics corresponding to \(X_{j1}^*, \ldots, X_{jr}^*\)

\[
X_{j1} \leq X_{j2} \leq \ldots \leq X_{jr}.
\]

We also will focus on the forms of censoring accorded special attention in Johnson (1978a):

(i) from above (exclusion of \(s_r\) greatest values) or below (exclusion of \(s_0\) least values), and

(ii) symmetrical -(exclusion of equal number of greatest and least values \((s_0 = s_r)\)).

We denote the hypothesis that the \(s_0\) least and \(s_r\) greatest values of an original complete random sample of size \(n=s_r+s_0+s_r\) have been excluded by

\[
H_{s_0, s_r}, \text{ so that}
\]

(i) corresponds to \(H_{0, s_r} \text{ or } H_{s_0, 0} \quad (s_0, s_r > 0)\)

(ii) corresponds to \(H_{s, s} \quad (s > 0)\).

To indicate that the censoring is applied to the variable \(X_j\) we use the symbol \(H^{(j)}_{s_0, s_r}\).

2. **Problems.**

Problems which will be discussed in the present report include:

(a) Censoring is known to be possible on some one of a certain subset of
m' variables. It is required to decide whether such censoring has occurred (Sections 3 and 4). In Section 3 we show that if $m' = 1$, the univariate techniques already developed can be used on the specified variable; they provide the likelihood ratio test of the hypothesis of no censoring. In Section 4 we discuss the related problem of indirect censoring: detecting whether there has been censoring on X_1 when this variable is not observed directly; only values of X_2, \ldots, X_m are observed. (We take $m = 2$ for simplicity.) An Appendix sets out the application of the results in a special case. This constitutes the major part of this report. In fact, the text of the report might even be regarded as an introduction to the Appendix.

(b) Censoring is known to have occurred on some one of a certain subset of variables. It is required to decide which is the censored variable (Section 5).

(c) We also give an introduction to problems arising in connection with chain censoring. This is censoring in a succession of stages. At the first stage the $(s_0^{(1)} + s_r^{(1)})$ individuals with the $s_0^{(1)}$ least and $s_r^{(1)}$ greatest values of X_1 are removed; then those with the $s_0^{(2)}$ least and $s_r^{(2)}$ greatest values of X_2 among the remainder are removed, and so on. (Section 6 - again with $m = 2$, for reasons of simplicity.)

3. Censoring Possible Only on One of m' (Observed) Specified Variables.

In the special case of (a), Section 2, with $m' = 1$ we suppose (without loss of generality) that X_1 is the possibly censored variable.

Since
\[f_{\Delta_0}(x) = f_{\Delta_1}(x_1) f_{\Delta_2}(x_2) \ldots, f_{\Delta_m}(x_m | x_1) \]
\[\text{(1)} \]

and the last term is the same whether $H_0^{(1)}$ is valid or not, it follows that
the likelihood ratio

\[
\frac{f_{X_1}(x_1|H_0^{(1)})}{f_{X_1}(x_1|H_1^{(1)})} \text{ is equal to } \frac{f_{X_1|\mathcal{S}_2}(x_1|H_0^{(1)})}{f_{X_1|\mathcal{S}_2}(x_1|H_1^{(1)})}.
\]

(2)

This shows that the likelihood ratio tests appropriate for univariate data, described in Johnson (1978a) (see also Johnson (1966, 1971, 1972)) can be applied to \(X_1 \), ignoring the observed values of all the remaining variables \(X_2, \ldots, X_m \). (For \(m = 2 \), this result is given in Johnson (1978a).)

As in Johnson (1966, 1971, 1972), application of this result requires a knowledge of the population distribution of \(X_1 \) (though not of \(X_2, \ldots, X_m \)). The methods (described in Johnson (1978a, b)) of utilizing partial knowledge of the distribution of \(X_1 \) are, of course, also relevant here. In fact, in this case we really do not have a multivariate, but only a univariate problem, so far as detection of censoring is concerned.

4. Censoring Possible Only on One (Unobserved) Variable: Indirect Censoring.

A truly multivariate problem arises if we suppose that values of the possibly censored variable \(X_1 \) are not available. How should the (observed) values of \((X_{21}, \ldots, X_{2r}) \) \((i=1, \ldots, r)\) be used to detect if there has been censoring on \(X_1 \)? For simplicity, again, we consider the bivariate case \((m = 2)\).

We first derive a likelihood ratio test. As we shall see, there appear to be considerable technical difficulties in applying this test in many natural situations. Therefore, we also suggest some other procedures which may sometimes be applied more easily.

The available data consist of the \(r \) observed values of \(X_2 \), denoted by \(X_{21}, \ldots, X_{2r} \). Their joint PDF, if \(H_{S_0, S_r}^{(1)} \) is valid, is
where $\ell \equiv \min(x_{11}, \ldots, x_{1r})$; $u \equiv \max(x_{11}, \ldots, x_{1r})$.

Since

$$f_1(x_{11})g_{21}(x_{21}|x_{11}) = f_{12}(x_{11}, x_{21}) = f_2(x_{21})g_{12}(x_{11}|x_{21})$$

we also have

$$f_{X_2^*}(x_{21}|H_0^{(1)}, s_0, s_r) = \frac{(r+s_0+s_r)!}{r!s_0!s_r!} \int \cdots \int (F_1(u))^s_0 (1-F_1(u))^s_r \prod_{i=1}^r g_{21}(x_{21}|x_{11})dx_{11} \cdots dx_{1r}$$

(3)

In particular

$$f_{X_2^*}(x_{21}|H_0^{(1)}, s_0, s_r) = \prod_{i=1}^r f_2(x_{21})$$

It follows that the likelihood ratio is

$$L = \frac{f_{X_2^*}(X_{21}|H_0^{(1)}, s_0, s_r)}{f_{X_2^*}(X_{21}|H_0^{(1)}, s_0, s_r)} = \frac{(r+s_0+s_r)!}{r!s_0!s_r!} \int \cdots \int (F_1(u))^s_0 (1-F_1(u))^s_r \prod_{i=1}^r g_{12}(x_{11}|x_{21})dx_{11} \cdots dx_{1r}$$

(4)

(remembering that $X_{11} = \min(X_{11}^*, \ldots, X_{1r}^*)$; $X_{1r} = \max(X_{11}^*, \ldots, X_{1r}^*)$).

Calculation of L from the observed values X_{21}^* is usually quite difficult.

When this is done, determination of the distribution of L (even when the null hypothesis, $H_0^{(1)}$ is valid) is likely to be even more difficult. In the
Appendix we use a Farlie-Gumbel-Morgenstern (see e.g. Johnson and Kotz (1975)) joint distribution for illustrative purposes. Calculation of L is not very difficult in this special case, but even here, the distribution of L is not easily derived. The conditional joint distribution of X_{11} and X_{1r} can be derived from

$$\Pr[l \leq X_{11} \leq X_{1r} \leq u|X^*_2] = \prod_{i=1}^{r} \int_{x_{1i}}^{u} g_{12}(x_1|x^*_2) dx_1$$ \hspace{1cm} (5)$$

but this expression is usually quite complicated.

We note that the value of L (and so its distribution) is unchanged by any monotonic increasing transformations of X_1^* and X_2^*. This means that we can take, without loss of generality, each of the variables to have a standard uniform distribution ($f_i(x) = 1$ for $0 \leq x \leq 1$, $i = 1,2$). However, the joint PDF would then have to be that resulting from application of the appropriate transformations to the original joint PDF. The Appendix contains some analyses appropriate to a bivariate Farlie-Gumbel-Morgenstern distribution (e.g. Johnson and Kotz (1975)) which does have standard uniform marginal distributions.

A simpler criterion, suggested by the above analysis is

$$L_1 = (F_1(\min_i E[X_1|X^*_2]))^{s_0}(1-F_1(\max_i E[X_1|X^*_2]))^{s_1} \hspace{1cm} (6)$$

If $E[X_1|X_2]$ is a monotonic increasing function of X_2 then

$$L_1 = (F_1(E[X_1|\min(X^*_2,\ldots,X^*_r)]))^{s_0}(1-F_1(E[X_1|\max(X^*_2,\ldots,X^*_r)]))^{s_1} \hspace{1cm} (7)$$

If $E[X_1|X_2]$ is a monotonic decreasing function of X_2, then "min" and "max" in (7) are interchanged.

Another related criterion, generally more difficult to compute is
\[L_1 = E[(F_1(X_1^{(I)}))^S_0 (1-F_1(X_1^{(u)}))^S_r] \]

where \(X_1^{(I)}, X_1^{(u)} \) are independent with PDF's \(g_{12}(x_1|X_2^{(I)}), g_{12}(x_1|X_2^{(u)}) \) respectively and \(i = (I), (u) \) respectively minimize and maximize \(E[X_1|X_2]\) with respect to \(i \).

If \(E[X_1|X_2] \) is a monotonic increasing (decreasing) function of \(X_2 \), then

\[X_2^{(I)} = \min(\max) (X_2^{*1}, \ldots, X_2^{*r}) \]

\[X_2^{(u)} = \max(\min) (X_2^{*1}, \ldots, X_2^{*r}) \]

5. Identification of Censored Variable.

Suppose we know that some one of the \(m' \) variables \(X_1, X_2, \ldots, X_m \), has been censored (and that there has been no other form of censoring). We wish to decide which one of these variables is the one in respect to which censoring has occurred.

Using the argument in Section 3, the likelihood approach is straightforward, if it can be assumed that \((S_0, S_r)\) censoring has been used with \(S_0, S_r \) known. We take each of the \(m' \) variables in order and calculate the appropriate (univariate) likelihood ratio criterion for that variable. We choose that variable for which the likelihood ratio is greatest. This means that we choose \(X_h \) if

\[\{F_h(X_h^{(I)})\}^{S_0} (1-F_h(X_h))^{S_r} \max_{j=1, \ldots, m'} \{[F_j(X_j^{(I)})]^{S_0} (1-F_j(X_j))^{S_r} \} \]

(with some arbitrary rule for deciding ties - which, anyway, have zero probability of occurrence).

We note that the same decision will be reached for all pairs of values \(S_0, S_r \) for which \(S_0/S_r = 0 \) has the same value. In particular, the same decision will be reached for (i) censoring from above \((S=0)\) with any \(S_r \)

(ii) " " below \((S=\infty)\) " " \(S_0 \)

(iii) symmetrical censoring \((S=1)\) " " \(S_0 = S_r \).
(Of course, the decisions for (i), (ii) and (iii) are not, in general, identical, though they might be.)

By analogy with the results in Johnson (1971), when the values of s_0, s_r are unknown, we would choose X_h if

$$F_h(X_{hl}) + 1 - F_h(X_{hr}) = \max_{j=1, \ldots, m'} \left[F_j(X_{jl}) + 1 - F_j(X_{jr}) \right].$$

Hasofer and Davis (1979) have considered a similar type of problem where truncation, rather than censoring is applied to one of a number of variables, and it is desired to identify which of the variables is being truncated.

6. Chain Censoring.

A further type of censoring of an essentially multivariate nature occurs when two or more variables, in sequence, are used for censoring. For example, from a sample of size n, with m variables X_1, X_2, \ldots, X_m measured on each individual (i) the $s_0^{(1)}$ individuals with the least, and $s_r^{(1)}$ with the greatest values of X_1 are removed and then (ii) from the remainder the $s_0^{(2)}$ with the least, and $s_r^{(2)}$ with the greatest values of X_2 are removed, leaving a set of

$$r = n - s_0^{(1)} - s_0^{(2)} - s_r^{(1)} - s_r^{(2)}$$

values.

Problems arising from this type of situation include:

1) Given that there has been chain censoring involving two specified variables X_i and X_j, which variable has been used for the first censoring operation?

2) Given that X_i is the first and X_j the second (if any), is there evidence that second stage censoring has in fact been applied?

3) Which variables have been used in censoring? (Given that just two (or three or more) are used and possibly given an order of precedence such that for any two specified variables it is known which would be used before the other, if both were used.)
APPENDIX: Detection of Indirect Censoring in Farlie-Gumbel-Morgenstern (FGM) Distributions.

A1. Relevant Properties of FGM Distributions

Here we will illustrate calculations and use of the criteria introduced in Section 4, using FGM population distributions with joint distribution

\[\Pr[(X_1 \leq x_1) \cap (X_2 \leq x_2)] = x_1 x_2 (1+\theta (1-x_1)(1-x_2)) \quad (0 \leq x_j \leq 1; j=1,2; |\theta|<1). \quad (A1) \]

Each \(X_j \) has a marginal standard uniform distribution \((F_j(x_j) = x_j \quad (0 \leq x_j \leq 1)) \). This distribution has been chosen for analytical convenience. It is not claimed that the results will apply for other joint distributions, even after transformation to make the marginals to be standard uniform. However, there are some speculative analogies which might be drawn.

From (A1) it follows that the joint PDF is

\[f(x_1, x_2) = 1 + \theta (1-2x_1)(1-2x_2) \quad (0 \leq x_j \leq 1; j=1,2) \quad (A2) \]

and the conditional PDF's are

\[
\begin{align*}
g_{12}(x_1|x_2) &= 1 + \theta (1-2x_2)(1-2x_1) \quad (0 \leq x_1 \leq 1) \\
g_{21}(x_2|x_1) &= 1 + \theta (1-2x_1)(1-2x_2) \quad (0 \leq x_2 \leq 1)
\end{align*}
\]

Hence

\[\Pr[\& \leq X_1 \leq u \mid x_2] = (u-\&)[1+\theta (1-2x_2)(1-u-\&)] \quad (0 \leq \& \leq 1) \]

and so

\[\Pr[\& \leq X_{11} \leq X_{1r} \leq u \mid x_2] = (u-\&)^r \prod_{j=1}^{r} [1+\theta (1-2x_j)(1-u-\&)] . \]

A2. Derivation of L.

The conditional joint PDF of \(X_{11} \) and \(X_{1r} \) is therefore
\[\frac{-3^2\text{pr}[X_{11} \leq X_{1r} \leq u | X_{r}(2)]}{\delta \delta u} = r(r-1)(u-2)^{r-2} \prod_{j=1}^{r} (1+\theta z_{2j}(1-u-z)) \]

\[-2x^2(u-2) \sum_{j<j'} z_{2j} z_{2j'} \prod_{h\neq j, j'} (1+\theta z_{2h}(1-u-z)) \]

where \(z_{2j} = 1-2x_{2j} \).

From (4),

\[L = \frac{(r+s_0+s_r)!}{r!s_0!s_r!} \int_{0}^{s_0} \int_{0}^{s_r} (1-u)^r \left[\frac{-3^2\text{pr}[X_{11} \leq X_{1r} \leq u | X_{r}(2)]}{\delta \delta u} \right] d\delta d\mu \]

\[= \frac{(r+s_0+s_r)!}{r!s_0!s_r!} \int_{0}^{s_0} \int_{0}^{s_r} \frac{1}{1-u} \left[-2x^2(u-2) \sum_{j<j'} z_{2j} z_{2j'} \prod_{h\neq j, j'} (1+\theta z_{2h}(1-u-z)) \right] d\delta d\mu \]

\[= \frac{(r+s_0+s_r)!}{r!s_0!s_r!} \left\{ r(r-1) \sum_{h=0}^{r} J(r-2,s_0,s_r;h)Y_h - 2x^2 \sum_{h=0}^{r} J(r,s_0,s_r;h)Y_{h+2} \right\} \]

\[\text{(A5)} \]

where \(Y_0 = 1; Y_h = \sum_{j_1 < \ldots < j_h} \prod_{i=1}^{h} Z_{2j_i} \); \(Z_{2j} = 1-2X_{2j} \) \((h,j=1,\ldots,r)\) and (with \(\varepsilon \) a positive integer)

\[J(\beta,\gamma,\delta;\varepsilon) = \int_{0}^{1} \int_{0}^{1} (u-\varepsilon)(1-u)^{\beta}(1-u-\varepsilon)^{\delta} d\delta d\mu \]

\[= \sum_{i=0}^{\varepsilon} (-1)^{i} \left(\begin{array}{c} \varepsilon \\ i \end{array} \right) \int_{0}^{1} (u-\varepsilon)^{\delta+i} u^{\gamma+i}(1-u-\varepsilon)^{\beta} d\delta d\mu \]

\[= \sum_{i=0}^{\varepsilon} (-1)^{i} \left(\begin{array}{c} \varepsilon \\ i \end{array} \right) \frac{\beta!(\gamma+i)!(\delta+i)!}{(\beta+\gamma+\delta+i+2)!} \]

\[= \sum_{i=0}^{\varepsilon} \frac{(-1)^{i} \left(\begin{array}{c} \varepsilon \\ i \end{array} \right) (\gamma+i)(\delta+i)(\varepsilon+i)}{(\beta+\gamma+\delta+i+2)!} \] \(G(\gamma,\delta;\varepsilon) \) \(\text{(A6)} \)

If, also, \(\beta, \gamma \) and \(\delta \) are positive integers

\[J(\beta,\gamma,\delta;\varepsilon) = \sum_{i=0}^{\varepsilon} \frac{(-1)^{i} \left(\begin{array}{c} \varepsilon \\ i \end{array} \right) \beta!(\gamma+i)!(\delta+i)!}{(\beta+\gamma+\delta+i+2)!} \]

\[= \frac{\beta!(\gamma+1)!(\delta+1)!}{(\beta+\gamma+\delta+2)!} \]

\[G(\gamma,\delta;\varepsilon) = \sum_{i=0}^{\varepsilon} (-1)^{i} \left(\begin{array}{c} \varepsilon \\ i \end{array} \right) (\gamma+i)(\delta+i)(\varepsilon+i) \]

\[\text{and } a^{[b]} = a(a+1)\ldots(a+b-1) \text{ is the } b\text{-th ascending factorial of } a. \]
Formula (A5) can be written
\[L = \sum_{h=0}^{\infty} \frac{K(r,s_{0},s_{r};h)h_{h}}{r+s_{0}+s_{r}+1} \]
with
\[K(r,s_{0},s_{r};h) = \frac{(G(s_{0},s_{r};h) - h(h-1)G(s_{0},s_{r};h-2))/(r+s_{0}+s_{r}+1)^{[h]}}{h!} \]
(If \(\epsilon < 0 \), \(G(s_{0},s_{r};\epsilon) \) can be defined arbitrarily.)

We note that
\[K(r,s_{0},s_{r};0) = G(s_{0},s_{r};0) = 1 \]
so the first term on the right hand side of (A8) is 1.

We also note that
\[G(s,0;h) = h!\psi_{h}(s+1) = (-1)^{h}G(0,s;h) \]
where
\[\psi_{h}(y) = 1 - \frac{y}{1!} + \frac{y^{2}}{2!} - \ldots + (-1)^{h}\frac{y^{[h]}}{h!} \]

So, for censoring from below \((s_{r} = 0) \)
\[(r+s_{0}+1)^{[h]}K(r,s_{0},0;h) = h!(\psi_{h}(s_{0}+1) - \psi_{h-2}(s_{0}+1)) = (-1)^{h}s_{0}^{[h]} \]
and for censoring from above \((s_{0} = 0) \)
\[(r+s_{r}+1)^{[h]}K(r,0,s_{r};h) = s_{r}^{[h]} \]

For symmetrical censoring \((s_{0}=s_{r}=s) \) we have
\[G(s,s;h) = \begin{cases} 0 & \text{if } h \text{ is odd} \\ (k+1)[k]_{(s+1)[k]} & \text{if } h = 2k \end{cases} \]
Hence, for symmetrical censoring
\[(r+2s+1)^{[h]}K(r,s,s;h) = \begin{cases} 0 & \text{if } h \text{ is odd} \\ (k+1)[k]_{s}[k] & \text{if } h = 2k \end{cases} \]
Summarizing, we have the following expressions for the likelihood ratios:

For detecting censoring from below: \[L = 1 + \sum_{h=1}^{r} (-1)^{r} \frac{s_0^{[h]}}{(r+s_0+1)[h]} \theta^h Y_h \]
(A16)

above: \[L = 1 + \sum_{h=1}^{r} \frac{s_r^{[h]}}{(r+s_r+1)[h]} \theta^h Y_h \]
(A17)

symmetrical censoring: \[L = 1 + \sum_{k<r/2} \frac{(k+1)[k]}{(r+2s+1)[2k]} \theta^{2k} Y_h \]
(A18)

In each case large values of the statistic are to be regarded as significant of censoring of the relevant type. Some numerical values for calculating the coefficients of \(\theta^h Y_h \) in (A16)-(A18) are shown in Table 1.

A3. Moments of \(L \).

From the general theory of testing hypotheses, we have

\[E[L|H_{0,0}^{(1)}] = 1 \]
(5)

Under \(H_{0,0}^{(1)} \) the \(Z \)'s are mutually independent and each is distributed uniformly over the interval (-1,1) so, for all \(\theta \)

\[E[(Z^q)|H_{0,0}^{(1)}] = \begin{cases} 0 & \text{if } q \text{ is odd} \\ (q+1)^{-1} & \text{if } q \text{ is even} \end{cases} \]
(A19)

It follows that for any \(h, h' (\neq h) \)

\[E[Y_h|H_{0,0}^{(1)}] = 0 = E[Y_{h'}|H_{0,0}^{(1)}] \]

and

\[\text{var}(Y_h|H_{0,0}^{(1)}) = E[Y_h^2|H_{0,0}^{(1)}] = \left(\frac{r}{h} \right) \left(\frac{1}{2} \right)^h \]

Hence when using the statistics (A16), (A17) testing for censoring from below or above \((s_0 = s, s_r = 0 \text{ or } s_0 = 0, s_r = s) \)
\[\text{var}(L|H_0^{(1)}) = \sum_{h=1}^{r} \left\{ \frac{s_s}{[h]} \right\}^2 \left(\frac{r}{h} \right) \left(\frac{1}{3} \theta^2 \right)^h \]

while when testing for symmetrical censoring \((s_0=s_r=s)\)

\[\text{var}(L|H_0^{(1)}) = \sum_{k=r/2}^{r} \left\{ \frac{(k+1)}{2k} \right\} \left(\frac{r}{k} \right) \left(\frac{1}{3} \theta^2 \right)^{2k} \]

Approximate significance limits for \(L\) may be obtained by supposing the distribution under \(H_0^{(1)}\) is approximately normal.

Since

\[E[Z_1^k|Z_2^k] = E[1-2X_1^k|Z_2^k] = \int_0^1 (1-2x_1)(1 + \theta Z_2^k(1-2x_1))dx_1 = \frac{1}{3} \theta Z_2^k \]

it follows that

\[E[X_1^k|X_2^k] = \frac{1}{2}(1 - \frac{1}{3}n(1-2X_2^k)) \]

\[= \frac{1}{2} - \frac{1}{6} \theta (1-2X_2^k) \]

Hence, the simplified test statistic, \(L_1\), defined in (6) is, for our \(FGM\) distribution and with \(\theta > 0\)

\[L_1 = \left\{ \frac{1}{2} + \frac{1}{6} \theta (2X_2 - 1) \right\} S_0 \left\{ \frac{1}{2} - \frac{1}{6} (2X_2 - 1) \right\} S_r \]

We note that if \(s_0 (s_r) = 0 \) (and \(\theta > 0\)), the critical region becomes simply \(X_{2r} < (X_{2r})_K\), with an appropriate value for the constant \(K\). This would, of course, be the appropriate likelihood ratio test of the null hypothesis, with the alternative that \(X_2\) itself has been subjected to censoring from above (below).
In the case of symmetric censoring \(s_0 = s \), the critical region (for all \(s > 0 \)) is of form
\[
\left\{ \frac{1}{2} + \frac{1}{6} \theta(2X_{21} - 1) \right\} \left\{ \frac{1}{2} - \frac{1}{6} \theta(2X_{2r} - 1) \right\} > K \tag{A26}
\]
or equivalently
\[
\frac{1}{9} \theta^2 X_{21}(1-X_{21}) + \frac{1}{3} \theta \left(\frac{1}{2} - \frac{1}{6} \theta \right) (X_{21} + T-X_{21}) > K'. \tag{A26}'
\]
This can be compared with the critical regions
\[
X_{21}(1-X_{21}) \quad \text{(for symmetrical censoring)}
\]
\[
X_{21} + (1-X_{2r}) \quad \text{(for general censoring - see Johnson (1971))}
\]
for likelihood ratio tests of \(H_{0(2)} \).

The values in Table 1 suggest that useful tests might be constructed by taking as test statistics the first terms only in the summations in
\((A16)-(A18) \). This would lead to critical regions (which do not depend on \(\theta \)).

For censoring from below: \(Y_1 < C \) \tag{A27}

" " " above: \(Y_1 > C \) \tag{A28}

" symmetrical censoring: \(Y_2 > C \). \tag{A29}

Since \(Y_1 = \sum_{j=1}^{r} Z_{2j} = \sum_{j=1}^{r} (1-2X_{2j}) \), \((A27) \) and \((A28) \) are equivalent to
\[
\sum_{j=1}^{r} X^{*}_{2j} < C' \tag{A27}'
\]
\[
\sum_{j=1}^{r} X^{*}_{2j} < C' \tag{A28}'
\]
respectively. (The signs of the inequalities would be reversed if \(\theta < 0 \).)

On the null hypothesis \(H_{0(1)} \) (no censoring) the \(X^{*}_{2j} \)'s are mutually
independent standard uniform variables. Therefore, even for r as small as 5, the distribution of their sum is closely approximated by a normal distribution with expected value $\frac{1}{2} r$ and variance $\frac{1}{12} r$ (e.g. Johnson and Kotz (1972, p. 64)). So we obtain an approximate significance level α by taking

$$C' = \frac{1}{2} r + \lambda_\alpha \sqrt{\frac{r}{12}}$$ \hspace{1cm} \text{in (A27)}'$$
$$C' = \frac{1}{2} r - \lambda_\alpha \sqrt{\frac{r}{12}}$$ \hspace{1cm} \text{in (A28)'}

where $\phi(\lambda_\alpha) = 1 - \alpha$.

From (A20)

$$E[Y_2 | H^{(1)}_{0,0}] = 0; \text{var}(Y_2 | H^{(1)}_{0,0}) = \frac{1}{18} r(r-1).$$ \hspace{1cm} (A30)

Assuming Y_2 has an approximately normal distribution under $H^{(1)}_{0,0}$, we obtain an approximate significance level α for the test for symmetrical censoring (A29) by taking

$$C = \lambda_\alpha \sqrt{\frac{r(r-1)}{18}}.$$

The moments of the Y_i's under $H^{(1)}_{s_0,s,r}$ may be evaluated by the following steps:

(i) find the conditional expected value, given X_i^q, and

(ii) find the expected value of (i) when the joint distribution of the X_i^q's is that of the (s_0^1+1)-th, (s_0^1+2)-th, ..., (s_0^1+r)-th order statistics among $(r+s_0^1+s_i^1)$ variables, each with PDF $f_1(x)$.

For (i) we use the result:

$$E[(Z_2^q)^q | X_i^q] = \int_0^1 (1-2x)^q(1+2z_i^q(1-2x))dx$$

$$= \left\{ \begin{array}{ll}
\theta(q+2)^{-1}z_i^q & \text{if } q \text{ is odd} \\
(q+1)^{-1} & \text{if } q \text{ is even}
\end{array} \right.$$ \hspace{1cm} (A31)\hspace{1cm} (cf (A23))

where $Z_i^q = 1 - 2X_i^q$.

For (ii) we use the result (for ordered variables)

\[
E[\prod_{i=1}^{p} x_{i}^{p}|H(1)] = \frac{1}{\prod_{i=1}^{p} (s_{0}^{i}+h_{i}+q_{i}-q_{i})} \cdot \prod_{i=1}^{p} (s_{0}^{i}+h_{i}+\frac{q_{i}}{j})^{[q_{i}]} \cdot \prod_{i=1}^{p} \frac{(s_{0}^{i}+h_{i}+q_{i}-q_{i})}{(r+s_{0}^{i}+s_{r}^{i}+1)}.
\]

(A32)

In fact, in view of (A31), and since, conditionally on \(x_{1}^{*} \), the \(Z_{*}^{*} \)s are mutually independent, we need only the special case \(q_{i} = 1 \) for all \(i \),

\[
E[\prod_{i=1}^{p} x_{i}^{p}|H(1)] = \prod_{i=1}^{p} \frac{(s_{0}^{i}+h_{i}+q_{i}-q_{i})}{(r+s_{0}^{i}+s_{r}^{i}+1)}[p].
\]

(A33)

We find

\[
E[Y_{1}|H^{(1)}] = \frac{1}{3} \sum_{j=1}^{r} E[1-2x_{1j}^{*}|H^{(1)}]
\]

\[
= \frac{1}{3} \sum_{h=1}^{r} E[1-2x_{1h}^{*}|H^{(1)}]
\]

\[
= \frac{1}{3} \sum_{h=1}^{r} \frac{s_{0}^{i}+h}{r+s_{0}^{i}+s_{r}^{i}+1}
\]

\[
= \frac{r(s_{0}^{i}-s_{r}^{i})}{3(r+s_{0}^{i}+s_{r}^{i}+1)} \theta.
\]

(A34)

In particular

\[
E[Y_{1}|H^{(1)}] = -\frac{rs}{3(r+s+1)} \theta = -E[Y_{1}|H^{(1)}].
\]

(A35)

Next,

\[
Y_{z} = \sum_{j<j} Z_{2j}^{*} Z_{2j}^{*}, \quad \text{and} \quad E[Z_{2j}^{*} Z_{2j}^{*}|X_{1j}^{*}, X_{1j}^{*}] = \frac{1}{9} \theta^{2} x_{1j}^{*} x_{1j}^{*}.
\]

So

\[
E[Y_{2}|H^{(1)}] = \frac{1}{9} \theta^{2} \sum_{j<j} E[(1-2x_{1j}^{*}+x_{1j}^{*}) + 4x_{1j}^{*} x_{1j}^{*}|H^{(1)}]
\]

\[
= \frac{1}{9} \theta^{2} \sum_{j<j} E[Z_{2j}^{*} Z_{2j}^{*}|H^{(1)}] + 4 \sum_{h=1}^{r} E[X_{1h}^{*} X_{1h}^{*}|H^{(1)}].
\]
Performing the summations (see, e.g. David and Johnson (1954, pp. 239-40)) we obtain

\[
E[Y_2|H^{(1)}_{s_0',s_r'}] = \frac{r(r-1)(s_0'-s_1')^2+s_0'+s_1'}{18(r+s_0'+s_1'+1)[2]} \theta^2. \tag{A36}
\]

We can use (A30) together with

\[
E[Z_{2j}^2|X_{1j}'] = \frac{1}{3} \quad \text{(for all } X_{1j}'\text{)} \tag{A37}
\]

to calculate the variance of \(Y_1 = \sum_{j=1}^{r} Z_{2j} \) under \(H^{(1)}_{s_0',s_r'} \). We have

\[
E[Y_1^2|H^{(1)}_{s_0',s_r'}] = \sum_{j=1}^{r} E[Z_{2j}^2|H^{(1)}_{s_0',s_r'}] + 2E[Y_2|H^{(1)}_{s_0',s_r'}]
\]

\[
= \frac{1}{3} r + \frac{r(r-1)(s_0'-s_1')^2+s_0'+s_1'}{9(r+s_0'+s_1'+1)[2]} \theta^2
\]

and so, using (A28)

\[
\text{var}(Y_1|H^{(1)}_{s_0',s_r'}) = \frac{1}{3} r + \left[\frac{r(r-1)(s_0'-s_1')^2+s_0'+s_1'}{9(r+s_0'+s_1'+1)[2]} - \frac{r^2(s_0'-s_1')^2}{9(r+s_0'+s_1'+1)[2]} \right] \theta^2
\]

\[
= \frac{1}{3} r + \frac{r(r-1)(r+s_0'+s_1'+1)(s_0'+s_1') - (2r+s_0'+s_1'+1)(s_0'-s_1')^2}{9(r+s_0'+s_1'+1)^2(r+s_0'+s_1'+2)} \theta^2. \tag{A38}
\]

For censoring from below \((s_0'=s, s_r'=0) \) or above \((s_0'=0, s_r'=s) \) this gives

\[
\text{var}(Y_1|H^{(1)}_{s,0'}) = \text{var}(Y_1|H^{(1)}_{0,s}) = \frac{1}{3} r + \frac{rs((r-1)(r+s)+s)}{9(r+s+1)^2(r+s+2)} \theta^2
\]

\[
= \frac{1}{3} r + \frac{rs(r-s) - (s+1)^2}{9(r+s+1)^2(r+s+2)} \theta^2. \tag{A39}
\]
Note that as $s \to \infty$ (with r fixed)

$$E[Y_1|H^{(1)}_{s,0}] + \frac{1}{3} r \delta; \quad \text{var}(Y_1|H^{(1)}_{s,0}) = \frac{1}{3} r(1- \frac{1}{3} \delta^2).$$

Evaluation of variance of Y_2, expected values of Y_h ($h > 2$) and higher moments and product-moments of all Y's, under $H^{(1)}_{s,0,s'}$ requires evaluation of quantities

$$(T_p(r,s_0,s'_r)) = r-p+1 \sum_{j_1< \ldots <j_p} E[\prod_{i=1}^p Z_{s_i}^*|H^{(1)}_{s_0,s'_r}]$$

$$= r-p+1 \sum_{j_1< \ldots <j_p} E[\prod_{i=1}^p (1-2X_{1h_i})|H^{(1)}_{s_0,s'_r}]$$

$$= \sum_{u=0}^{p-u+1} (-1)^u ((r+s_0+s'_r+1)(u))^{-1} r-p+1 \sum_{j_1< \ldots <j_p} E[\prod_{i=1}^u X_{1h_i}|H^{(1)}_{s_0,s'_r}]$$

$$\times \prod_{i=1}^u (s_0^{*h_i} + \alpha - 1). \quad \text{(A40)}$$

(The term corresponding to $u = 0$ is 1. The final multiple sum of products can be expressed as a polynomial in s_0^* and r with coefficients calculated from tables like those in David and Johnson (1954, pp. 239-240).) For example

$$E[Y_1,Y_2|H^{(1)}_{s_0,s'_r}]$$

$$= E[\sum_{j=1}^r \sum_{j'} Z_{s_j}^* Z_{s_{j'}}^*|H^{(1)}_{s_0,s'_r}]$$

$$= E[\sum_{j<j'} (Z_{s_j}^* + Z_{s_{j'}}^*) Z_{s_j}^* Z_{s_{j'}}^* + 3 \sum_{j<j'j} Z_{s_j}^* Z_{s_{j'}}^* Z_{s_{j'}}^*|H^{(1)}_{s_0,s'_r}]$$

$$= \frac{1}{\theta} \sum_{j<j'} E[Z_{s_j}^* Z_{s_{j'}}^*|H^{(1)}_{s_0,s'_r}] + \frac{1}{\theta} \sum_{j<j'j} E[Z_{s_j}^* Z_{s_{j'}}^* Z_{s_{j'}}^*|H^{(1)}_{s_0,s'_r}]$$

$$= \frac{1}{\theta} (r-1)T_1 + \frac{1}{\theta} \theta^3 T_3. \quad \text{(A41)}$$
and

\[
E[Y_2^2|H_{s_0}^{(1)}, s_r, s_t] = \sum_{j=1}^{r-1} \sum_{j'=1}^{r-1} E[Z_j^2 Z_{j'}^2|H_{s_0}^{(1)}, s_r, s_t] + 2 \sum_{j=1}^{r-2} \sum_{j'=1}^{r-1} \sum_{j''=1}^{r-1} E[(Z_j + Z_{j'} + Z_{j''})Z_j Z_{j'} Z_{j''}|H_{s_0}^{(1)}, s_r, s_t]
\]

\[
+ 6 \sum_{j=1}^{r-3} \sum_{j'=1}^{r-2} \sum_{j''=1}^{r-1} \sum_{j'''=1}^{r-1} E[Z_j Z_{j'} Z_{j''} Z_{j'''},|H_{s_0}^{(1)}, s_r, s_t]
\]

\[
= \frac{1}{9} \sum_{j=1}^{r-1} \sum_{j'=1}^{r-1} 1 + \frac{20^2}{27} \sum_{j=1}^{r-2} \sum_{j'=1}^{r-1} E[Z_j^4 Z_{j'}^4 + Z_j^2 Z_{j'}^2 Z_j^2 Z_{j'}^2 + Z_j^2 Z_{j'}^2 Z_j^2 Z_{j'}^2,|H_{s_0}^{(1)}, s_r, s_t]
\]

\[
+ \frac{60^4}{81} \sum_{j=1}^{r-3} \sum_{j'=1}^{r-2} \sum_{j''=1}^{r-1} \sum_{j'''=1}^{r-1} E[Z_j Z_{j'} Z_{j''} Z_{j'''},|H_{s_0}^{(1)}, s_r, s_t]
\]

\[
= \frac{r(r-1)}{18} + \frac{20^2}{27} (r-2)T_2 + \frac{20^4}{27} T_4.
\]
TABLE I. Values of \((r+s_0+s_r+1)\)^{*h}K(r,s_0,s_r;h)\)

<table>
<thead>
<tr>
<th>s_0</th>
<th>s_r</th>
<th>h</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>120</td>
<td>720</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>720</td>
<td>5040</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>60</td>
<td>360</td>
<td>2520</td>
<td>20160</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>72</td>
<td>360</td>
<td>2880</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td>120</td>
<td>840</td>
<td>6720</td>
<td>60480</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>36</td>
<td>216</td>
<td>1440</td>
<td>11520</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>2880</td>
<td></td>
</tr>
</tbody>
</table>

Note: (1) To obtain the coefficient of \(\theta^h\) in the formula for \(L\) (see (16)) these numbers must be divided by \((r+s_0+s_r+1)^{h-1}\). Thus for \(r = 5, s_0 = 1, s_r = 2\) we have

\[
L = 1 + \frac{1}{9}Y_1 + \frac{4}{90}\theta^2Y_2 + \frac{12}{990}\theta^3Y_3 + \frac{72}{11880}\theta^4Y_4 + \frac{360}{154440}\theta^5Y_5
\]

\[
= 1 + 0.1110Y_1 + 0.0444\theta^2Y_2 + 0.0121\theta^3Y_3 + 0.00606\theta^4Y_4 + 0.00233\theta^5Y_5 .
\]

(ii) Values of \(s_0\) and \(s_r\) can be interchanged by multiplying entries by \((-1)^h\).

(iii) A convenient formula for computation is (with \(s_r > s_0\))

\[
G(s_0,s_r;h) = h!\sum_{i=0}^{(s_0+1)}\binom{(s_0+1)^{s_r}}{i} \cdot \frac{(s_r-s_0)^{h-i}}{(h-i)!} .
\]

In particular, \(G(s,s+1;h) = h!\sum_{i=0}^{s+1}\binom{s+1}{i} \cdot \frac{(s+1-s)^{h-i}}{(h-i)!} ,\) whence

\[
(r+2s+2)^{h}K(r,s,s+1;h) = h!\sum_{i=0}^{s+1}\binom{s+1}{i} \cdot \frac{1}{h} = (k+1)!\sum_{i=0}^{s+1}\binom{s+1}{i} \cdot \frac{1}{h}
\]

with \(k = \frac{1}{2}(s+1)\) if \(h\) is odd

\(k = \frac{1}{2}h\) if \(h\) is even.
REFERENCES

(1978a). Tests for censoring of extreme values (especially when population distributions are incompletely defined, Proc. Army Res. Office Workshop on Robustness.

