LEVEL IV

STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER DESIGN ENGINEERING APPLIED SCIENCE GEORGE WASHINGTON UNIVERSITY

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING SCHOOL OF ENGINEERING AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.
A SEPARABLE PROGRAMMING APPROACH TO THE LINEAR COMPLEMENTARITY PROBLEM

by

Jonathan F. Bard
James E. Falk

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
The linear complementarity problem (LCP) is reformulated as a non-convex, separable program and solved with a general branch and bound algorithm. Unlike the principal alternatives, the approach offered here works for all linear complementarity problems regardless of their underlying matrix structure. In the reformulated version, the optimal value is known at the outset so a convergence check can be made at each iteration of the algorithm. This greatly increases its performance; in fact, a number of cases are given where immediate convergence can be expected.
Abstract
of
Serial T-403
22 June 1979

A SEPARABLE PROGRAMMING APPROACH TO
THE LINEAR COMPLEMENTARITY PROBLEM

by

Jonathan F. Bard
James E. Falk

The linear complementarity problem (LCP) is reformulated as a
nonconvex, separable program and solved with a general branch and bound
algorithm. Unlike the principal alternatives, the approach offered
here works for all linear complementarity problems regardless of their
underlying matrix structure. In the reformulated version, the optimal
value is known at the outset so a convergence check can be made at each
iteration of the algorithm. This greatly increases its performance;
in fact, a number of cases are given where immediate convergence can
be expected.

Research Supported by
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research
1. Introduction

Complementarity plays an important role in both general equilibrium theory [1] and mathematical programming. We will be concerned with the linear complementarity problem (LCP) of finding an x in \mathbb{R}^n such that

$$Mx + v \geq 0, \quad x \geq 0, \quad \langle x, (Mx + v) \rangle = 0$$

(LCP)

where M is a given $n \times n$ matrix and v is a given vector in \mathbb{R}^n. Applications of this problem can be found in such areas as economics, engineering, and game theory (see, for example, [2], [7]). A number of algorithms [4], [7], [9] have been specifically designed to take advantage of the special structure it offers. In each case, however, their applicability is limited by the requirement that M satisfy certain conditions. In this paper, we offer a solution to LCP that is independent of the structure of M. Our approach is based on Mangasarian's [8] observation that the linear complementarity problem is equivalent to minimizing a piecewise linear concave function of a polyhedral set contained in the nonnegative orthant; i.e.,
\[
\min_{x \in S} \sum_{i=1}^{n} \left\{ \min(0, M_i x - x_i + v_i) + x_i \right\}
\]

where \(S = \{ x : Mx + v \geq 0, x \geq 0 \} \) and \(M_i \) is the \(i \)th row of \(M \).

In the manner described by Bard and Falk [3], a general branch and bound algorithm is used to solve a separable representation of (1). In fact, if \(Mx + v \) in LCP is replaced by \(g(x) \), where \(g \) is an implicitly separable function which maps \(\mathbb{R}^n \) into itself, the same methodology can be used to solve the more general problem that results.

In the next section, a brief discussion of the branch and bound algorithm is given. Following this, the characteristics of a linear program (LP) equivalent to LCP are presented and a comparison is made between this problem and the series of subproblems set up by the algorithm under the branch and bound philosophy. Special attention is paid to the case where the algorithm can be expected to produce a solution to the linear complementarity problem on its first iteration. Finally, two examples are presented and the results contrasted with alternative solution techniques.

2. The Branch and Bound Algorithm

The algorithm that we will use for the computations was proposed by Falk [5] and coded by Grotte [6]. As applied to nonconvex problems with linear constraints, it provides approximate solutions by replacing each of the original functions with their piecewise linear convex envelopes. The branch and bound procedure solves this lower bounding problem first to get estimates on the optimal value of the approximating problem, and to set up new problems, if the estimates do not yield a global solution. When all the original functions are piecewise linear, as they are in (1), the solution will be exact, rather than approximate.

Branch and bound algorithms designed to solve mathematical programs generally produce sequences of upper and lower bounds that converge at the
optimal value. This is, indeed, the case with MOGC (the computer code); however, if a solution to LCP exists, the value of the objective function in (1) at the solution will be zero. Knowing this fact greatly improves the efficiency of the algorithm by permitting an independent check for convergence to be made at each iteration.

3. An Equivalent Linear Program

Mangasarian [8] has shown that for any real \(n \times n \) matrix \(M \), if the solution to LCP exists, it can be obtained by solving the linear program,

\[
\min \{ cx : x \in S \} \tag{LP}
\]

where \(c \) is some suitable vector in \(\mathbb{R}^n \). The following set of conditions (see [8] Theorem 1), given here for completeness, characterizes a suitable \(c \) vector.

\[
c = r + M^T s, \ (r,s) \geq 0 \tag{2.1}
\]

\[
MZ_1 = Z_2 + vd^T \tag{2.2}
\]

\[
\langle M, (Y_1 - sd^T) \rangle + \langle Y_2 - rd^T \rangle = 0 \tag{2.3}
\]

\[
\langle r, Z_1 \rangle + \langle s, Z_2 \rangle - \langle v, (Y_1 - sd^T) \rangle = p^T \tag{2.4}
\]

\[
diag p = diag (Y_1 + Y_2) > 0 \tag{2.5}
\]

\[
Z_1, Z_2 \in Z, \ Y_1, Y_2, d, p \geq 0 \tag{2.6}
\]

where \(r, s, d, p \) are all in \(\mathbb{R}^n \), and \(Z_1, Z_2, Y_1, Y_2 \) are all in \(\mathbb{R}^{nxn} \); \(Z \) is the set of all real square matrices with nonpositive off-diagonal elements.

Because of the presence of two bilinear conditions (2.3) and (2.4), it is not easy in general to determine a \(c \) vector for an arbitrary \(M \). However, for a number of special cases including those when \(M \) is a
Z-matrix, or when \(M \) is strictly or irreducibly diagonally dominant [10], a suitable \(c \) can be obtained through a series of intermediate calculations and the linear complementarity problem can be solved as an ordinary linear program.

Unfortunately, even for these special cases, it is rarely a straightforward matter of identifying the matrices, vectors, and side conditions that are needed to calculate a suitable \(c \) vector. When the dimensions of the problem are greater than three, the work required to determine which linear program to solve begins to rival the work required to obtain a solution to LCP. Those cases where \(c \) can be easily determined are discussed in Section 5.

4. The Relationship Between LP and MOGG

In addressing LCP, MOGG sets up and solves a series of linear programs that closely resemble LP. The constraint region of each subproblem is identical to that of LP, but the cost coefficients vary from iteration to iteration. Eventually, MOGG selects a "correct" set of coefficients and produces a solution. The coefficients are correct only in the sense that the supporting hyperplane (objective function) at the solution of the associated linear program passes through the origin. They are not necessarily equal to the value of a \(c \) in LP as determined by conditions (2.1) - (2.6). There is no guarantee that the objective function in LP evaluated at the solution will be equal to zero. To see this, let us introduce a set of auxiliary variables \(w_i \) (\(i = 1, \ldots, n \)) for the purpose of transforming (1) into a separable programming problem; that is:

\[
\min \sum_{i=1}^{n} \{ \min(0, w_i) + x_i \} \\
\text{subject to} \\
w_i - M_i x + x_i = v_i \quad i = 1, \ldots, n
\]
where \(W \) is an arbitrarily large hyperrectangle in \(\mathbb{R}^n \).

The iterative procedure used by MOGG to solve (3) was described in Section 2. The equivalent series of linear programs addressed in this procedure can be given in terms of the original variables and a parameter \(\alpha \) in \(\mathbb{R}^n \) as follows:

\[
\min \sum_{i=1}^{n} \{ \alpha_i w_i + x_i \} \quad \text{subject to} \quad w_i - M_i x + x_i = v_i \quad i = 1, \ldots, n
\]

where \(\alpha_i \) assumes one of the following three values: 0, 1/2, 1, depending upon which stage the algorithm is in. At the first stage, \(\alpha_i = 1/2 \) \((i = 1, 2, \ldots, n) \); this represents the convex underestimating problem. Although there are \(3^n \) possible combinations of the \(\alpha_i \)'s, some of the associated linear programs turn out to be redundant and are not addressed by MOGG. It is possible to verify through enumeration that \(2^{n+1} - 1 \) is the maximum number of subproblems that might have to be solved.

Each auxiliary variable \(w_i \) in problem (4) can be eliminated by substituting its equivalent, as determined from (4.2), into (4.1), and noting that \(W \) is arbitrarily large. Lemma 2 in [8] assures that the solution of LCP occurs at a vertex of \(S \). The resulting problem is

\[
\min \sum_{i=1}^{n} \{ x_i + \alpha_i (M_i x - x_i + v_i) \} \quad \text{subject to} \quad (1-\alpha_i) x_i + \alpha_i M_i x_i = 0 \quad i = 1, \ldots, n
\]

which has the same constraint region as LP; hence, any solution to LP
will be both feasible and optimal to (5). This leads to the following lemma which characterizes immediate solutions to LCP.

Lemma 1. Let the linear complementarity problem have a solution, and let the objective function \(c \) of the associated linear program satisfy conditions (2.1) - (2.6). Now, if, for some \(\gamma > 0 \),

\[
c_j = \gamma \left(1 + \sum_{i=1}^{n} M_{ij} \right), \quad j = 1, 2, \ldots, n \tag{6}
\]

then Falk's algorithm will produce a solution to either problem on its first iteration.

This can be seen by letting \(a_i = 1/2 \) (\(i = 1, \ldots, n \)) and equating the cost coefficients of LP and (5). The applicability of this result is more general than it would first appear because \(c \) will usually assume a range of values.

In fact, (6) is only a sufficient condition for the algorithm to produce a solution on its first iteration. A necessary and sufficient condition would be that the vector \(\gamma \left(1 + \sum_{i=1}^{n} M_{ij} \right), \ i = 1, 2, \ldots, n \) lie in the cone formed by the gradients of the binding constraints of the associated linear program. This condition, of course, is untestable in that the calculation of \(c \) offers no hint as to which constraints will be binding at the solution.

5. **A Verifiable Case**

In general, even if a suitable \(c \) is known, the only way to determine if MOGG will produce a solution to LCP on its first iteration is by evaluating (6). In this section we examine the special case where \(c \) assumes a unit structure and show that in this instance the solution is immediate. A statement of this result is contained in the following theorem.

Theorem 1. Let \(x^* \) solve LCP. If \(M \) is such that \(c = \beta e \)
satisfies conditions (2.1) - (2.6) for some $\beta > 0$ and $e = (1,1,\ldots,1)$ then MOGG will produce a solution to LCP on its first iteration.

Proof: Let (x^*, u_1^*, u_2^*) in $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ solve LP, where u_1^* and u_2^* are the Kuhn-Tucker multipliers associated with the inequality constraints $Mx^* + v > 0$ and $x^* \geq 0$, respectively. It will be shown that there exists a corresponding point $(x^*, \bar{u}_1, \bar{u}_2)$ in $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ that satisfies the Kuhn-Tucker conditions for (5) with $\alpha_i = 1/2$ ($i = 1,\ldots,n$) and is thus the solution to the first subproblem set up by MOGG.

Letting $c = \beta e$, the first order necessary conditions for LP that require that

$$\beta \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = u_1^* \begin{pmatrix} M_{11} \\ \vdots \\ M_{1n} \end{pmatrix} + \ldots + u_n^* \begin{pmatrix} M_{n1} \\ \vdots \\ M_{nn} \end{pmatrix}$$

$$+ u_2^* \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + u_n^* \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

if (x^*, u_1^*, u_2^*) is to be a solution. Similarly for (5) with $\alpha_i = 1/2$

$$\frac{1}{2} \begin{pmatrix} 1 + \sum_{i=1}^{n} \sigma_{ij} \\ \vdots \\ 1 + \sum_{i=1}^{n} \sigma_{in} \end{pmatrix} = \bar{u}_1^* \begin{pmatrix} M_{11} \\ \vdots \\ M_{1n} \end{pmatrix} + \ldots + \bar{u}_1^* \begin{pmatrix} M_{n1} \\ \vdots \\ M_{nn} \end{pmatrix}$$

$$+ \bar{u}_2^* \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \bar{u}_2^* \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

Multiplying (8) by 2β and rearranging we get
The following example illustrates the equivalence stated in Theorem 1 while concurrently demonstrating the impracticality of casting the linear complementarity problem as a linear program when c is not explicitly given. The example is based on the following theorem.

Theorem 2 (Mangasarian [8]). If $S \neq \emptyset$ and there exist r,s in \mathbb{R}^n, Z_1, Z_2 in $\mathbb{R}^{n \times n}$ such that

$$M Z_1 = Z_2 + v d^T,$$

$$\langle r, Z_1 \rangle + \langle s, Z_2 \rangle > 0,$$

$$\langle r, (Z_1 + D) \rangle + \langle s, (Z_2 + D) \rangle > 0, \quad D = \text{diag} d$$

Z_1, Z_2 in \mathbb{Z}; $d, r, s \geq 0$

then LCP has a solution which can be obtained by solving LP with $c = r + M^T s$.

Example 1.

$$M = \begin{pmatrix} 0 & 3 & 4 \\ -1 & -1 & 0 \\ 2 & -1 & -3 \end{pmatrix}$$

and $v = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$

This example satisfies the conditions of Theorem 2 with $d = s = e$, $r = 0$,

$$Z_1 = \begin{pmatrix} -0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

and $Z_2 = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 0 & 0 \\ -1 & 0 & 2 \end{pmatrix}$

Now $c = r + M^T s = 0 + M^T e = e$; hence, by Theorem 1 with $\beta = 1$ (or Lemma 1 with $\gamma = 1/2$) we have the equivalence of (5) and LP. As expected, the first iteration of the algorithm produced the equilibrium point $x^* = (2/5, 2/5, 1/5)$. It is interesting to note that this problem cannot be solved by either Lemke's method or the principal pivoting procedure [4].

The next example illustrates the case where a solution to the
linear complementarity problem is not obtained on the first iteration of MOGG.

EXAMPLE 2.

\[
M = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

This example also satisfies the conditions of Theorem 2 with

\[
r^T = (0,1), \quad s^T = (1,0), \quad d^T = (0,2), \quad z_1 = \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}, \quad z_2 = \begin{pmatrix} -\frac{1}{2} & 0 \\ -1 & 0 \end{pmatrix},
\]

and \(c = (-1,2) \). The associated linear program has the (unique) solution \(x_1 = 1, \ x_2 = 0 \) which expectedly solves the linear complementarity problem. When MOGG was used to solve this problem, the solution was found after three stages of branching had taken place. The branch and bound tree is depicted in Figure 1, and, as can be seen, six of the seven potential subproblems had to be examined before convergence could be established. (The numbers adjacent to the nodes represent the upper and lower bounds for the associated subproblems.)

Figure 1 Branch and Bound Tree for LCP Example 2
When Lemke's method was tried on this problem, an unbounded (infeasible) ray was generated by letting \(x_2 \to \infty \), thus precluding a solution. The principal pivoting algorithm also ran into trouble by cycling rather than converging to solution.

From these two examples, we see that MOGG offers a clear advantage in solving the linear complementarity problem over the principal alternatives. Because MOGG does not insist upon a special matrix structure, it will solve all such problems without first having to check the properties of \(M \) or evaluate an often unwieldy set of nonlinear conditions.

In general, the branch and bound approach would appear to offer the dual advantage of being universally applicable, and computationally superior. This results directly from the guaranteed upper bound, and the simple three-segment form of the objective function.
REFERENCES

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research Library
Vice President H. F. Bright
Dean Harold Liebenwitz
Dean Henry Solomon

ONR
Chief of Naval Research
(Codes 200, 434)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept. Library
NAVDATA, Automation CIO
OP-944

Naval Aviation Integrated Log Support
NARADC Tech Library
Navel Electronics Lab Library
Navel Facilities Eng CIO Tech Library
Navel Ordnance Station
Louisville, Ky.
Indian Head, Md.
Navel Ordnance System Command
Navel Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco
Navel Ship Eng Center
Washington, D.C.
Navel Ship Res & Dev Center
Navel Sea Systems Command
PMS 30611
Tech Library
Code 073

Navel Supply Systems Command
Library Operations and Inventory Analysis
Navel War College Library
Newport

NRL/ERS Tech Library
PMSO
Integrated Sealift Study

USN Ammo Depot Earls

USN Postgrad School Monterey
Library
Dr Jack R. Bosting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev CIO
Logistics Officer
Commanding Officer
USN Francis Marion (LPA-249)

Armed Forces Industrial College
Armed Forces Staff College
Army War College Library
Carlisle Barracks
Army CIO & Gen Staff College

Army Logistics Mgt Center
Fort Lee

Commanding Officer, USAID/NSA
New Cumberland Army Depot

Army Inventory Rea OIC
Philadelphia

Air Force Headquarters
AFADS-1
LEXY
SAP/FALG

Griffiss Air Force Base
Reliability Analysis Center

Center Air Force Base
AFLCMU/A

Maxwell Air Force Base Library

Wright-Patterson Air Force Base
Log Command
Research Sch Log
AFALD/AR

Defense Documentation Center
National Academy of Sciences
Maritime Transportation New Board Library

National Bureau of Standards
Dr R. H. Colvin
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

Weapon Systems Evaluation Group

British Navy Staff

National Defense Hadara, Ottawa
Logistics, Or Analysis Establishment

American Power Jet Co
George Chernowits

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole
Library

Logistics Management Institute
Dr Murray A. Geisler

MATTHEW
C. Elliot Feldman

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof N. Mesarovic
Prof S. Zachs

Cornell University
Prof K. E. Bashafer
Prof R. E. Conway
Prof Andrew Schultz, Jr.

Cowles Foundation for Research in Economics
Prof Herbert Scarf
Prof Martin Shibik

Florida State University
Prof R. A. Bradley

Harvard University
Prof J. J. Arrow
Prof W. C. Cochran
Prof Arthur Schlesier, Jr.

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson
To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.