LEVEL

COMPUTER COMMUNICATIONS AND DISSEMINATION
OF ASWEP PRODUCTS TO THE FLEET
NOW AND IN THE FUTURE

By
CAPTAIN PAUL M. WOLFF, USN

This document has been approved
for public release and sale; its
distribution is unlimited.

FLEET NUMERICAL WEATHER CENTRAL
MONTEREY, CALIFORNIA
Contents

Abstract

1. The capabilities and advantages of computers in communications

2. Modes of Operations

3. Tailoring of the products, feedback from the users and evaluation of ASWEP products

5. Table

6. Figures
List of Figures

Tables 1. Approximate area and time scales of sea surface temperature (SST) changes.

Figure 1. Characteristics of numerical programs.

Figure 2. Time and cost of 5 million meteorological computations.

Figure 3. Computer cost summary.

Figure 4. Scheme of data flow and dissemination of products.

Figure 5. Naval Environmental data network.

Figure 6. Scheme of data processing and analyses dissemination.

Figure 7. Zoomed sea surface temperature analyses of the Grand Banks area, 00Z 17 March 1967.

Figure 8. Example of a forecast message.

Figure 9. Observed sea surface temperature (SST, versus FNWC SST outlook, 17-26 August 1967.

Figure 10. Scheme of ship to shore communication.
Abstract

The advantages of computer communications are presented, indicating the speeds, accuracy, reliability, flexibility and capacity of these systems. Examples of size and types of communication computers are given and their cost effectiveness estimated.

Details are given of various modes of operations, such as data collection, their analysis and computation of derived products, computer-to-computer dissemination of gross products, further tailoring for users' need and distribution to users.

The possibilities and needs for direct computerized communications between the ships and shore computer facilities are emphasized, utilizing communication satellites. The flexibilities and properties of such communications are indicated and the use of the proposed system in ASW and other naval operations is outlined.
1. THE CAPABILITIES AND ADVANTAGES OF COMPUTERS IN COMMUNICATIONS

Every environmental property has space and time scales which describe its distribution. As an example, a brief summary of the scales of sea surface temperature changes is given in Table 1. In order to analyze meaningfully and forecast the distribution of properties and their changes there must be a sufficient number of synoptic observations available and the density in space and time should correspond to the time and space scales of the changes of the properties. Some of the density of observation requirements are approximately fulfilled for some meteorological parameters. However, for oceanographic parameters this density is still too sparse in most ocean areas. Thus, many of the oceanographic analyses and forecasts must be derived by computation of the exchange processes between the atmosphere, where the driving forces of the ocean are located, and the sea itself. Thus the atmosphere and ocean are treated as a coupled system.

The timely communications and analysis of all synoptic environmental observations is a formidable task for manual operation. However, this task has become possible thanks to the availability of fast electronic computers and associated auxiliary equipment.

Besides the high speed in handling great volumes of data and computations, the computers also offer accuracy and reliability which is far above any subjective manual work. The computer approach also offers objectivity which eliminates personal interpretations which usually vary from worker to worker. At the same time flexibility is provided by wise programming of multiple choice criteria, thus eliminating human forgetfulness. Figure 1 summarizes
1. **THE CAPABILITIES AND ADVANTAGES OF COMPUTERS IN COMMUNICATIONS**

Every environmental property has space and time scales which describe its distribution. As an example, a brief summary of the scales of sea surface temperature changes is given in Table 1. In order to analyze meaningfully and forecast the distribution of properties and their changes there must be a sufficient number of synoptic observations available and the density in space and time should correspond to the time and space scales of the changes of the properties. Some of the density of observation requirements are approximately fulfilled for some meteorological parameters. However, for oceanographic parameters this density is still too sparse in most ocean areas. Thus, many of the oceanographic analyses and forecasts must be derived by computation of the exchange processes between the atmosphere, where the driving forces of the ocean are located, and the sea itself. Thus the atmosphere and ocean are treated as a coupled system.

The timely communications and analysis of all synoptic environmental observations is a formidable task for manual operation. However, this task has become possible thanks to the availability of fast electronic computers and associated auxiliary equipment.

Besides the high speed in handling great volumes of data and computations, the computers also offer accuracy and reliability which is far above any subjective manual work. The computer approach also offers objectivity which eliminates personal interpretations which usually vary from worker to worker. At the same time flexibility is provided by wise programming of multiple choice criteria, thus eliminating human forgetfulness. Figure 1 summarizes
the basic characteristics of numerical programs of environmental analyses and predictions as exemplified in FNWC systems and operations.

An array of computers, in fact any computer, can find a place in the environmental analysis. The smaller computers are usually used for high speed communication of data and checking and sorting. Medium to large computers are used for analyses and prediction purposes. In the latter case, extended core memories are usually required. The list of computers used in the Naval Environmental Data Network and at FNWC is given in another paper.

Figure 2 illustrates the change in the time required for five million meteorological computations and the cost of these computations. As can be seen, low cost levels were achieved by 1967 after which the downward trends of speed and cost have slowed considerably. Figure 3 gives the computer cost summary for rented, purchased and lease purchase approaches. It should be noted that the computer lease prices and the lease purchase prices have gone down considerably in the last few years, so that computers are now accessible to any office where considerable amount of data handling is required.

The existing telecommunications via radio or teletype/telephone lines are in most cases overloaded and are very slow (50 to 120 wpm). Computer to computer communications via land lines or satellites has at present a speed of 4,000 to 8,000 wpm and can reach 25,000 wpm with existing hardware. Small computers and other inexpensive communication devices
(many of which have been designed and built at FNWC) can be used for this purpose. With certain technical precautions, computer to computer communications are practically error free.

The overall cost of a computerized communication network might be high, however, it is shared by many users and thus by pooling resources, the cost per unit amount of communication is considerably lower than present conventional systems.
2. **MODES OF OPERATIONS**

The meteorological observations are received via the Air Force Automated Weather Network. Remote observations from European and Asiatic areas are received at Air Force facilities in Fuchu, Japan and High Wycombe, England. From there, they are fed to Tinker Air Force Base where western hemisphere data is added and then the information is sent to Monterey through a high speed computer to computer communication line with the present speed ranging from 4 to 8 thousand words per minute.

Oceanographic data mainly in the form of BT messages are received at Fleet Weather Centrals and are fed via computer communications to Monterey. Small computers are used for sorting of the data and error checking and then the data are used for environmental analyses. After their use in synoptic analyses, the data are usually stored in a packed form on magnetic tape and are later utilized for climatological analyses.

After the completion of the analyses at Monterey, the analyzed fields are transmitted via computer to computer in form of band indexes, transmitted to tieline stations via collect and transmit (CAT units) directly plotted on Cal Comp plotters, or distributed by teletype messages extracted from the analysed fields.

The environmental data are converted to operational parameters partly in Monterey and partly at other computer centers, such as Rota, Norfolk, Pearl Harbor and Guam. From these stations the products are transmitted to ships via teletype or facsimile.
This Navy Environmental Data Network is illustrated on Figure 5. Figure 6 gives the schemes of data processing analyses and dissemination. Whereas Figure 1 is a general scheme of data flow, figure 6 describes the U. S. Navy Environmental Data Network in greater detail giving indications of the types of computers and auxiliary equipment used.

There is no specific requirement that the computer products be forwarded to the fleet as they come out of the computers. Many of the forecasting programs are still in the developmental stage and have a number of limitations and shortcomings. Thus manual interventions and corrections are possible, provided that the properties of the existing program and its possible shortcomings are known by those making the modifications subjectively.

One of the main advantages in computer communications and dissemination of the data is the high speed and big volumes of data which can be rapidly transmitted from one place to another, circumventing the low speed, saturated teletype circuits and other outmoded communication systems. In case of major conflicts some parts of the computer to computer communication systems are vulnerable and other parts are safe. There are some limitations to sending classified data from computer to computer; however, most of the synoptic environmental analyses and forecasts are unclassified due to the rapid rate of deterioration of the data with time.
3. TAILORING OF THE PRODUCTS, FEEDBACK FROM THE USERS AND EVALUATION OF THE FORECASTS

The operational products derived from environmental analyses/forecasts and forwarded to the ships, are tailored either in Monterey or in weather centrals to fit the particular requirement of the user. One of the essential types of tailoring is done with respect to space and time scales. The hemispheric analyses may be useful for certain purposes in large scale operations. However, in small scale operations and especially in oceanographic subjects a zoomed product is desired. Figure 7 illustrates a zoomed synoptic sea surface temperature analysis of the Grand Banks area. Although this analysis may be accurate at the specific time it refers to, it contains many details which may change over a short period of time. Thus, before such a chart is forecast on facsimile it might be generalized and smoothed to a certain degree.

Many of the analyses and forecasts are disseminated in the form of area messages. One of these messages is illustrated on Figure 8. This message allows the analyses of three environmental parameters to a general degree. First, the numerical values of the parameters (SST, MLD and WH) are given only at half degree latitude/longitude intersections (ca 30 n. miles apart) and secondly, the values of the parameters are truncated.

Any complex system is doomed to become obsolete in time if it does not include a learning and improving process. Through verification and tuning of the product such a process is built into the numerical environmental forecasting system. Good opportunities for verification are provided during Naval
exercises, operations and transits or when many ships are concentrated in relatively small areas and those ships are making observations and comparing them with the forecasts provided. When such verifications are sent back to the forecasting centers, analyses of the causes and nature of the errors can be made and corresponding improvement can be incorporated into the numerical models. An example of the verification of an outlook which was given several weeks ahead of a given transit is shown on Figure 9.

Besides the personal communications of messages and letters, it has been found profitable for the users to make periodic visits to the Weather Centrals to learn about the properties and limitations of different forecasting models as well as the need to observe and report back specific data which are most needed for improving particular forecast models.
4. FUTURE PERSPECTIVES

A number of improvements in communications and dissemination of environmental analyses/forecasts and their application in tactical problems can be achieved with the available hardware. The first and most promising of these improvements is the more general use of satellite communications from ship to ship and vice versa. The communications systems are illustrated in Figure 10. As economic and other reasons will limit the capabilities of the communications equipment on smaller vessels, it seems to be desirable to designate a number of larger vessels as relay stations. These larger vessels should be able to receive the data via satellite using high speed small shipboard computers. In turn they can disseminate the forecasts to surrounding vessels and receive their observations for rapid transmission to analysis centers.

Another natural development in oceanographic analysis/forecasting is the creation of broader international bases for synoptic oceanographic observations, hemispheric analyses and further application of the oceanographic analyses/forecasts in economical undertakings such as fishing and ship routing. This internationalization would allow considerable savings to all nations concerned. However, this reorganization would require the overhaul of the present relatively outmoded WMO communication network to accommodate the oceanographic observations. The interpretation and tailoring of the product for the particular users must obviously remain a "closed-shop" operation for national fisheries as well as for the Navy.

There is a great need for officers in the Navy as well as fisheries to be specially educated in synoptic oceanography and oceanographic predictions.
and analyses. It is often not sufficient to have specialized meteorologists and oceanographers to do their work but the particular users must have some background knowledge of the subject he is trying to apply to his particular problem. Finally it should be noticed that many of the communications problems are vulnerable during a major conflict. Thus, the operating forces must be in possession of extended forecasts and climatology to be used at the initial stage of the conflict when communication breakdown is expected.
<table>
<thead>
<tr>
<th>Processes affecting SST change</th>
<th>Approximate area scales</th>
<th>Approximate time scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Permanent (gradient) flow</td>
<td>Usually in oceanwide scale and in form of gyrals, 500 to several thousand km. in diameter. Small off estuaries and modified near continental shelf.</td>
<td>Seasonal, except near current boundaries and the coastal waters where dependent on insolation and runoff.</td>
</tr>
<tr>
<td>1.2 Wind currents</td>
<td>Gyrals correspond to the sizes of cyclones and anticyclones.</td>
<td>Cyclone belt - 2 to 8 days Anticyclone belt - 6 to 14 days</td>
</tr>
<tr>
<td>1.3 Inertia and tidal currents</td>
<td>Size of the amphidromic tidal systems. Smaller in semi-closed bays.</td>
<td>Tidal, diurnal, or semidiurnal. Inertia currents dependent on latitudes, (avg. 30 hr.).</td>
</tr>
<tr>
<td>2.1 Insolation</td>
<td>Greatly determined by latitude and cloudiness patterns; in general 1/2 cyclone and 1/4 anticyclone size More rapidly changing smaller patterns in tropical storms, at coasts and occasionally at sharp current boundaries.</td>
<td>Seasonal and synoptic (see 1.2 above)</td>
</tr>
<tr>
<td>2.2 Evaporation</td>
<td></td>
<td>Mainly seasonal; synoptic periods as 1.2 above.</td>
</tr>
<tr>
<td>2.3 Other heat exchange</td>
<td></td>
<td>Seasonal and synoptic as 1.2 above. The synoptic periods also vary seasonally, especially at low latitudes.</td>
</tr>
</tbody>
</table>
APPROXIMATE AREA AND TIME SCALES OF SEA SURFACE TEMPERATURE (SST) CHANGES

<table>
<thead>
<tr>
<th>Processes affecting SST change</th>
<th>Approximate area scales</th>
<th>Approximate time scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Wave action</td>
<td>Generally the size of cyclones and their wind fields.</td>
<td>Cyclone belt - 2 to 8 days Anti-cyclone belt - 6 to 14 days.</td>
</tr>
<tr>
<td>3.2 Convective stirring</td>
<td>Generally latitudinal pattern; at the periphery of cyclones (about 1/2 of their size).</td>
<td>Mainly seasonal in medium and high latitudes</td>
</tr>
<tr>
<td>3.3 Currents (mixing by)</td>
<td>Usually important near major current boundaries. Scale from a few miles to a few hundred miles.</td>
<td>Seasonal, except near current boundaries and in coastal waters.</td>
</tr>
<tr>
<td>4.1 Upwelling and divergence/convergence</td>
<td>Usually narrow and elongated areas near coasts, oceanic and atmospheric fronts; from tens to hundreds of miles wide, several hundred to thousands of miles long.</td>
<td>Seasonal and synoptic (see 3.1 above)</td>
</tr>
<tr>
<td>4.2 Runoff</td>
<td>Off estuaries and along the coast; few miles to a few hundred miles wide.</td>
<td>Mainly seasonal</td>
</tr>
<tr>
<td>4.3 Precipitation</td>
<td>Of minor importance only in high latitudes during the winter; the size of precipitation (snow) area.</td>
<td>Seasonal and synoptic (see 3.1 above)</td>
</tr>
<tr>
<td>4.4 Freezing and melting</td>
<td>Important only near coasts and near ice boundaries.</td>
<td>Mainly seasonal</td>
</tr>
<tr>
<td>Processes affecting SST change</td>
<td>Approximate area scales</td>
<td>Approximate time scales</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>3.1 Wave action</td>
<td>Generally the size of cyclones and their wind fields.</td>
<td>Cyclone belt - 2 to 8 days Anti-cyclone belt - 6 to 14 days.</td>
</tr>
<tr>
<td>3.2 Convective stirring</td>
<td>Generally latitudinal pattern; at the periphery of cyclones (about 1/2 of their size).</td>
<td>Mainly seasonal in medium and high latitudes</td>
</tr>
<tr>
<td>3.3 Currents (mixing by)</td>
<td>Usually important near major current boundaries. Scale from a few miles to a few hundred miles.</td>
<td>Seasonal, except near current boundaries and in coastal waters.</td>
</tr>
<tr>
<td>4.1 Upwelling and divergence/convergence</td>
<td>Usually narrow and elongated areas near coasts, oceanic and atmospheric fronts; from tens to hundreds of miles wide, several hundred to thousands of miles long.</td>
<td>Seasonal and synoptic (see 3.1 above)</td>
</tr>
<tr>
<td>4.2 Runoff</td>
<td>Off estuaries and along the coast; few miles to a few hundred miles wide.</td>
<td>Mainly seasonal</td>
</tr>
<tr>
<td>4.3 Precipitation</td>
<td>Of minor importance only in high latitudes during the winter; the size of precipitation (snow) area.</td>
<td>Seasonal and synoptic (see 3.1 above)</td>
</tr>
<tr>
<td>4.4 Freezing and melting</td>
<td>Important only near coasts and near ice boundaries.</td>
<td>Mainly seasonal</td>
</tr>
</tbody>
</table>
ATTRIBUTES OF ANY SUPPORT SYSTEM

REALISTIC SOLUTIONS TO PREDICTION PROBLEMS
OBJECTIVITY AND REPRODUCIBILITY
RAPIDITY OF COMPUTATIONS AND COMMUNICATIONS
RELIABILITY
RESPONSIVE TO USERS

CHARACTERISTICS OF FNWC PROGRAMS

ATMOSPHERE AND OCEANS TREATED AS COUPLED SYSTEM
HEMISPHERIC COMPUTATIONS PLUS ZOOMED PRODUCTS
FULLY COMPUTERIZED DATA CYCLE
MODELS EMPIRICALLY TUNABLE TO RESEMBLE REAL ENVIRONMENT
ENGINEERING APPROACH
COMPLETE SUPPORT
OUTPUTS IN ANY FORM, SCALE, OR PROJECTION

FIGURE 1 CHARACTERISTICS OF NUMERICAL PROGRAMMES
FIGURE 2
TIME AND COST OF 5 MILLION METEOROLOGICAL COMPUTATIONS

[Graph showing the decrease in time and cost from 1955 to 1967]
FIGURE 3
COMPUTER COST SUMMARY
THREE SHIFTS

COST RATIO

LEASE 1964
LEASE 1968
LP 30 months
LP 24 months
LP 12 months
PURCHASE

LP: lease purchase

MONTHS
Figure 4. Scheme of data flow and dissemination of products.
TINKER AFB

DATA COLLECTION

CDF 3200

PRELIMINARY DATA PROCESSING

CDF 3200

HEMISPHERIC SCALE COMPUTATIONS

CDF 1604, 3200, 6600

DERIVED PRODUCTS
(e.g. sound prop)

ZOOMED ANAL. (BSS, MLD, etc.)

OUTPUT IN

FNWF FIELD FORMAT

BAND INDEX

GUAM

PEAL HARBOR

PACIFIC FLEET

CUSTOMIZED PRODUCTS

HEMISPHERIC, OCEANWIDE, OR ZOOMED AREAS

NSOŚ

PLOT MAPS

LISTS

PRODUCT DISTRIBUTION

VIA COMPUTER LINK

CDF 300

CDC 8000

OLDS 3

FAX BOCST

LOCAL UTILIZATION

MAPS

MESSAGES

SONAR CONVERSIONS

SPECIAL APPLICATIONS

RATT BOCST

FIGURE 6 SCHEME OF DATA PROCESSING AND ANALYSES DISSEMINATION
The first vertical column gives N latitude for every half degree and the second horizontal line gives W longitude for every half degree. At the intersection of corresponding latitudes-longitudes the five figure group gives sea height (in code), mixed layer depth in tens of feet and sea surface temperature in °F.

Example: 39.0 N 074.5 PW

22744

2 - sea height code (WMO 75), wave height 1/3 to 1-2/3 feet
27 - mixed layer depth 270 feet
44 - sea surface temperature 44 °F
FIGURE 10 Scheme of ship to shore communications.