MEMORANDUM REPORT ARBRL-MR-02915

EFFECT OF HORIZONTAL AND VERTICAL SIDE FORCES AND MOMENTS ON STABILITY OF A SYMMETRIC MISSILE IN ASCENDING OR DESCENDING FLIGHT

Charles H. Murphy

April 1979

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
Lloyd and Brown have shown that constant horizontal and vertical side forces and moments applied to a spinning projectile can result in dynamic instability. This instability arises from the nonlinear terms in the fixed-plane coordinate system spin that appear in the equations of motion. By quasilinearization, these nonlinear terms are shown to affect the frequencies slightly but the damping rates not at all. By the use of the fixed-plane system (rather than Lloyd and Brown's nonrolling system) simpler relations can be developed, the full effects of gravity, drag and roll damping obtained, and the limitation to...
Large gyroscopic stability factors removed. Very simple stability bounds are given for a slowly spinning or nonspinning finned missile such as Copperhead.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II. EQUATIONS OF MOTION</td>
<td>6</td>
</tr>
<tr>
<td>III. LINEARIZED SOLUTION FOR CONTROL MOMENT</td>
<td>9</td>
</tr>
<tr>
<td>IV. LINEARIZED SOLUTION FOR GRAVITY</td>
<td>12</td>
</tr>
<tr>
<td>V. QUASILINEAR ANALYSIS OF (\phi)</td>
<td>14</td>
</tr>
<tr>
<td>VI. DISCUSSION</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>23</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

In 1977, Lloyd and Brown\(^1\) investigated the feasibility of controlling a 105mm spinning projectile by means of horizontal and vertical side forces. Their numerical calculations yielded the surprising result that an applied constant-amplitude yaw moment could cause dynamic instability. The usual linear analysis seems to predict that such a moment would cause a steady-state horizontal trim angle but would have no effect on the dynamic stability.

This difficulty was resolved by Lloyd and Brown through the observation that the differential equation for the angular motion in fixed-plane coordinates\(^*\) contained nonlinear terms in \(\dot{\phi}_{fp}\), the coordinate system spin rate. These usually neglected terms vanish completely when the equations are transformed to nonrolling coordinates. The terms involving the horizontal and vertical control moments become nonlinear terms that can be easily linearized. The resulting sixth-order system can be approximately solved for large gyroscopic stability factor \((s > 4)\) and excellent agreement with the numerical results obtained. The theory, however, only partially considers the influence of gravity and neglects the effect of drag and roll damping moment.

In this report, we will show that the coordinate system transformation is unnecessary and that a proper linearization in the fixed-plane coordinates requires the solution of a much simpler fourth-order system. This allows the very easy inclusion in the theory of the full effect of gravity as well as the effects of drag and roll damping. Much more importantly, the requirement of high stability factor is eliminated so that the very important case of a finned missile with little or no spin can be studied. Finally, the effective technique of quasi-linearization will be used to derive the effect of the truly nonlinear part of the \(\dot{\phi}_{fp}\) terms on the frequencies and the damping rates of the motion.

\(^*\) Fixed plane axes \(\hat{x}, \hat{y}, \hat{z}\) pitch and yaw with the missile but roll so that the \(\hat{y}\)-axis is always in the horizontal plane.
II. EQUATIONS OF MOTION

The plane trajectory of a particle flying at velocity V and trajectory angle θ_T with respect to the horizontal can be described by the equations

\[\frac{V'}{V} = -C_D^* - g^* \] (2.1)

\[\theta_T' = -g \frac{V^2}{2m} \cos \theta_T \] (2.2)

where

\[C_D^* = \frac{\rho S L_c}{2m} C_D \]

\[g^* = g \frac{V^2}{2m} \sin \theta_T \]

and where derivatives are with respect to the nondimensional arc-length, s. These equations are good approximations for the actual variation of V and θ_T for a symmetric missile. The moments and transverse forces that have a measurable effect on the missile's motion are usually expressed in missile-fixed coordinates as

\[M_X = \left(\frac{1}{2} \right) \rho S \xi V^2 \left[\delta_f C_{\delta \phi} + \phi' C_{\phi p} \right] \] (2.3)

\[M_Y + i M_Z = \left(\frac{1}{2} \right) \rho S \xi V^2 \left[\phi' C_{M_{pa}} - i C_{M_\alpha} \right] \xi + C_{M_q} \mu - i C_{M_\alpha} \left(\xi' + i \phi' \xi \right) \] (2.4)

2. C.H. Murphy, "Gravity-Induced Angular Motion of a Spinning Missile," Ballistic Research Laboratories Report No. 1546, July 1971, AD 730641. (See also Journal of Spacecraft and Rockets 8, August 1971, pp. 824-828.)

\[F_Y + i F_Z = -\left(\frac{1}{2}\right) \rho S V^2 C_{NA} \xi \] (2.5)

where
\[\psi' = p \xi V^{-1} \]
\[\xi = (v + i w) V^{-1} \]
\[\mu = (q + i r) V^{-1} \]

The complex variable \(\xi \) locates the plane of the velocity vector and has a magnitude that is the sine of the total angle of attack.

The roll equation can be obtained for the roll moment of Equation (2.3) and differs from the usual roll equation\(^3\) by a gravity term that acts on the dynamic pressure:

\[\psi'' = (D_1 + g^*) \psi' + D_2 \] (2.6)

where
\[D_1 = C^*_D + k_a^{-2} C^*_p \]
\[D_2 = k_a^{-2} \delta \xi C^*_\delta \]
\[k_a = \left[I_x/m \xi^2\right]^{\frac{1}{2}} \]

In addition to the aerodynamic force and moment and the gravity force, we assume constant amplitude control forces and moments that are perpendicular to the projectile's axis and either in the horizontal plane or the vertical plane containing the missile's axis. These control forces, which could be produced by roll-stabilized canards, make fixed-plane coordinates most suitable for the analysis. Since fixed-plane axes pitch and yaw with the projectile but roll so that the \(y \) axis is always horizontal, it can be shown that this system has an angular velocity vector \(\hat{\alpha}_{pp} \) with components:\(^4\):

\[\hat{\alpha}_{pp} = (\dot{\phi}_{pp}, \dot{\theta}, \dot{\varphi}) \] (2.7)

where
\[\dot{\phi}_{FP} = -\hat{r} \tan \theta \]

\(\theta \) is the angle between the missile's axis and the horizontal \((\dot{\theta} = q)\);

\(\hat{q}, \hat{r} \) are the pitch and yaw rates in the fixed-plane coordinates.

For this coordinate system, the derivatives of the linear and angular momentum can be computed in the usual way and set equal to the sum of the external forces and moments. The equations for the transverse components can then be given in the form of two first-order complex differential equations:

\[
\begin{align*}
\dot{\xi}' - i \gamma \dot{\mu} &= -\gamma C_{Lq}^* \dot{\xi} + (i \cos \theta + \xi \sin \theta) g \ell V^{-2} \\
&+ (F_{YC} + i F_{ZC}) \ell (m V^2)^{-1} - i \phi_{FP}' \xi \\
\dot{\mu}' - i P \dot{\mu} &= k_t^{-2} \left[\phi' C_{M\alpha q}^* - i C_{M\alpha}^* \right] \dot{\xi} \\
&+ \left[k_t^{-2} C_{Mq}^* + C_{Dg}^* + g^* \right] \dot{\mu} \\
&- i k_t^{-2} C_{Mq}^* (\xi' + i \phi_{FP}' \xi) \\
&+ k_t^{-2} (M_{YC} + i M_{ZC}) (m V^2)^{-1} - i \phi_{FP}' \dot{\mu}
\end{align*}
\]

(2.8)

(2.9)

where

\[
P = I_x \phi'/I_y
\]

\[\gamma = u V^{-1} = the \cosine \ of \ the \ total \ angle \ of \ attack \]
The starred coefficients are of the order 10^{-4} while the
dimensionless control forces and moments will be limited to at most
10^{-4}. Thus, products of these terms can be neglected when $\tilde{\mu}$ is
eliminated between Equations (2.8) and (2.9) to obtain:

$$\ddot{\xi} + \left[H - g^* - \frac{V'}{\gamma} - i \, P \right] \dot{\xi}$$

$$- \left[M + i \, P \, T \right] \xi = \Phi + \hat{G} + C$$

where

$$\Phi = -2 \, i \, \Phi_{FP} \, \dot{\xi} - \left\{ \Phi_{FP} \, (P - \Phi_{FP}) + i \left[\Phi_{FP} \, (H - \frac{V'}{\gamma}) + \Phi_{FP}'' \right] \right\} \dot{\xi}$$

$$\hat{G} = \left[P \, \cos \theta - i \, \mu \, \sin \theta \right] g \, \epsilon \, V^{-2} + g^* \left(\dot{\xi} - i \, P \, \xi \right)$$

$$C = i \left[\gamma \, k^{-2} \left(M_{YC} + i \, M_{ZC} \right) - (P - i \, \gamma' \, \gamma^{-1}) \epsilon (F_{YC} + i \, F_{ZC}) \right] (mV^2)^{-1}$$

III. LINEARIZED SOLUTION FOR CONTROL MOMENT

For simplicity, we will first neglect the gravity terms in
Equation (2.10) and consider the linear approximation to Φ. In doing
this, it is most important to remember that Equation (2.10) predicts a
steady-state equilibrium angle
\[\dot{\xi}_e = \beta_e + i \dot{\alpha}_e = \frac{-C}{M + i P} \]

(3.1)

If the small force terms are neglected, the real part of Equation (2.8) yields

\[\gamma \dot{\xi} + \dot{\xi} = -\beta' + \phi'_{FP} \hat{\alpha} \]

(3.2)

Equation (3.2) is now multiplied by \(\tan \theta \) and solved for \(\phi'_{FP} \).

\[\phi'_{FP} = \frac{\beta' \tan \theta}{\gamma + \dot{\alpha} \tan \theta} \]

(3.3)

Now

\[\theta = \int q \, dt \pm \theta_e + (\hat{\alpha} - \hat{\alpha}_e) \gamma^{-1} \]

(3.4)

\[\phi'_{FP} = a \beta' \left\{ \tan \theta_e + \gamma^{-1} (\hat{\alpha} - \hat{\alpha}_e) + \gamma^{-1} (a \beta_e \tan \theta_e)(\hat{\beta} - \hat{\beta}_e)
+ a_1 (\hat{\alpha} - \hat{\alpha}_e)^2 + a_2 (\hat{\alpha} - \hat{\alpha}_e)(\hat{\beta} - \hat{\beta}_e) + a_3 (\hat{\beta} - \hat{\beta}_e)^2 \right\} \]

\[\pm a \beta' \tan \theta_e \]

(3.5)

where

\[a = [\gamma_e + \hat{\alpha}_e \tan \theta_e]^{-1} \]

\[a_1 = [2 \hat{\alpha}_e - (1 - \beta_e^2) a \tan \theta_e] (2 \gamma_e^3)^{-1} \]

\[a_2 = (1 + a \gamma_e) \beta_e \gamma_e^{-3} \]

\[a_3 = (1 - \hat{\alpha}_e^2 + 2a \gamma_e \beta_e^2)(a \tan \theta_e) (2 \gamma_e^3)^{-1} \]

Since a linear analysis is concerned with small amplitude motion about the equilibrium angle \(\xi_e \), \(\phi \) is expanded in powers of \(\xi - \xi_e \) and its derivatives. The linear part of this expansion is:

\[\phi = -i a \tan \theta_e [\beta'' + (H - i P)\beta'] \xi_e \]

(3.6)
The usual solution to the linearized Equation (2.10) neglecting ϕ is

$$\hat{\xi} = \hat{\xi}_e + K_1 e^{i\phi_1} + K_2 e^{i\phi_2}$$

(3.7)

where

$$\phi'_j = (1/2)(P \pm \sqrt{P^2 - 4M})$$

$$K'_j/K_j = \lambda_j = \frac{-\phi_j' H + PT - \phi''_j}{2 \phi'_j - P}$$

It is important to note that $|\phi'_j| \sim 10^{-2}$ and $|\lambda_j| \sim 10^{-4}$.

For ascending or descending flight, ϕ'_e introduces terms in $\tilde{\phi}' = (\hat{\xi}' + \bar{\hat{\xi}}')/2$ and $\tilde{\phi}'' = (\hat{\xi}'' + \bar{\hat{\xi}}'')/2$.

The linearized Equation (2.10) becomes

$$\left[1 + (a_i \xi_e/2) \tan \theta_e \right] \left[\hat{\xi}'' + (H - iP) \hat{\xi}'\right] - (M + iPT) \hat{\xi} = C - (a_i \xi_e/2) \tan \theta_e \left[\bar{\hat{\xi}}'' + (H - iP) \bar{\hat{\xi}}'\right]$$

(3.8)

As is shown in Reference 5, the effect of the conjugate terms in Equation (3.8) is to add two additional modes in $-\phi_1$ and $-\phi_2$.

For reasonable values of ξ_e, the amplitude of these modes will be much less than K_1 and K_2. If we approximate the actual solution by the two-mode solution of Equation (3.7) and substitute in Equation (3.8), the conjugate terms have no contribution to the damping or

frequency equations obtained from the coefficients of \(\exp(i \psi_j) \).

For simplicity, we make the usual size assumptions \(|\lambda_j| << |\psi_j|, |H| << |\psi_j|, |T| << |\psi_j| \) and retain only terms linear in \(\dot{\theta}_e \) and \(\dot{\beta}_e \).

\[
(\psi_j')^2 - \psi_j' P + M + \tan \theta_e [M \dot{\theta}_e + P T \dot{\beta}_e]/2 = 0 \quad (3.9)
\]

\[
\lambda_j = \frac{-H \psi_j' + P T - \psi_j'' - \tan \theta_e [M \dot{\beta}_e - P T \dot{\beta_e}]/2}{2 \psi_j' - P} \quad (3.10)
\]

IV. LINEARIZED SOLUTION FOR GRAVITY

For no control forces \(C = 0 \), Equation (2.10) predicts a steady-state equilibrium angle

\[
\dot{\xi}_e = \frac{-G}{M + i P (T - g^*)} \dot{\xi}_e - G/M \quad (4.1)
\]

where

\[
G = P g \xi V^{-2} \cos \theta_e.
\]

Since \(\dot{\theta}_e \) is zero, \(\theta_T = \theta_e \) and the linearized \(\dot{\theta} \) and \(\phi \) become

\[
\dot{\theta} = \dot{\theta}_e = \frac{-G - i g^* P \hat{\beta}}{M + i P T} \quad (4.2)
\]

\[
\phi = i g^* \frac{(P/M)}{(H - i P) \hat{\beta}'} \quad (4.3)
\]

Equation (2.10) reduces to

\[
\ddot{\xi}'' + (H - g^* - i P) \dot{\xi}' - (M + i P T) \dot{\xi} = G + i g^* \frac{(P/M)}{(H - i P) \hat{\beta}'} - M \hat{\beta} \quad (4.4)
\]
The solution to Equation (4.4) can be approximated by the two-mode Equation (3.7) with the result that the second term on the right of Equation (4.4) has no measurable contribution to the frequency or damping.

\[(\phi_j')^2 - P \phi_j' + M = 0 \quad (4.5)\]

\[\lambda_j = \frac{- (H - g^*) \phi_j' + P T - \phi_j''}{2 \phi_j' - P} \quad (4.6)\]

Differentiating Equation (4.5),

\[\phi_j'' = \frac{P' \phi_j' - M'}{2 \phi_j' - P} \quad (4.7)\]

Since \(D_2\) in Equation (2.6) is zero for a body of revolution, the damping rate for a shell becomes

\[\lambda_j = \frac{- H \phi_j + P T}{2 \phi_j' - P} - \frac{[D_1 P + 2 \phi_j' (P - \phi_j') g^* - M']}{(2 \phi_j' - P)^2} \quad (4.8)\]

It is interesting to note that as the gyroscopic stability increases, \(\phi_j'\) goes to \(P\) and \(\phi_j''\) goes to 0 and the contribution of gravity to damping decays to zero.

Equation (4.6) is precisely the same as that in Reference 2. The derivation given in Reference 2, however, separately neglected the second term in Equation (4.2) and all of \(\phi\). The correct derivation combines these terms and shows that their combined effect can be neglected.
V. QUASILINEAR ANALYSIS OF ϕ

For horizontal flight without control forces or gravity, ϕ is cubic and was shown in Reference 4 to cause a change in frequency. Numerical calculations by Clark and Hodapp6 showed that this frequency shift was very well predicted by the quasilinear analysis. In this section, we will derive the quasilinear prediction for cubic ϕ and ascending or descending flight with control forces but no gravity.

The cubic part of the nonlinear term in γ' on the left side of Equation (2.10) can be easily computed:

$$(\gamma'/\gamma) \ddot{\xi} = \frac{1}{2} \frac{(\gamma')'^2}{\gamma'} \ddot{\xi}$$

$$= -\frac{1}{2} (\dot{\xi} \ddot{\xi})' \ddot{\xi}$$ \hspace{1cm} (5.1)

The quasilinear technique then assumes an undamped motion of the form of Equation (3.7) and seeks the average in-phase and out-of-phase contributions to the coefficient of $K_j \exp(i \phi_j)$ by the relation

$$[F]_{j,av} = \frac{1}{K_j S_W} \int_0^{S_W} F e^{-i \phi_j} ds$$ \hspace{1cm} (5.2)

If there is no equilibrium angle, S_W is $2\pi (\phi'_1 - \phi'_2)^{-1}$, the wavelength of $\xi \exp(-i \phi_j)$. For nonzero equilibrium angles, the integrand has several wavelengths present and S_W is taken to be large compared to the largest of these.

Now

$$[\ddot{\xi} \ddot{\xi}]' = i \left[\ddot{\xi}' K_1 K_2 (e^{i \phi} - e^{-i \phi}) + \phi'_1 K_1 \delta_c \left(e^{i \phi_1} - e^{-i \phi_1} \right) + \phi'_2 K_2 \delta_c \left(e^{i \phi_2} - e^{-i \phi_2} \right) \right]$$

$$= \left. \frac{1}{2} \frac{(\gamma')'^2}{\gamma'} \ddot{\xi} \right. \hspace{1cm} (5.3)

where
\[\delta_c = |\hat{\xi}_e| \]
\[\hat{\phi} = \phi_1 - \phi_2 \]

Therefore,
\[
[Y \gamma^{-1} \hat{\xi}']_{1,av} = (1/2) \left(\phi_2' (\phi'_1 - \phi'_2) K_2^2 \right.
+ (\phi'_2)^2 K_2^2 \delta_c K_1^{-1} \left[e^{i(2 \phi_2 - \phi_1)} \right]_{av} \left. \right) \]
\[(5.4) \]

where
\[
\left[\right]_{av} = \frac{1}{S_W} \int_0^{S_W} \left[\right] \, ds
\]

For a special value of spin, \(\phi'_2 = \phi'_1 \) and the last term in Equation (5.4) has a nonzero contribution. If we assume that this special value of spin does not occur,
\[
[Y \gamma^{-1} \hat{\xi}']_{1, av} = \phi'_2 (\phi'_1 - \phi'_2) K_2^2/2 \]
\[(5.5) \]
\[
[Y \gamma^{-1} \hat{\xi}']_{2, av} = \phi'_1 (\phi'_2 - \phi'_1) K_1^2/2 \]
\[(5.6) \]
A similar calculation can be done for the nonlinear part of ϕ

The combined nonlinear contributions to the first mode have the form:

$$[\gamma^{-1} \dot{\xi} + \phi - \phi' \xi] = b_1 + (\text{terms that are zero when } \hat{\alpha} = \hat{\beta} = 0)$$

where

$$b_1 = \left[\gamma^{-1} \dot{\xi}\right]_{1,av} + a^2 \tan^2 \theta_e \left[(\hat{\beta}')^2 (\xi - \hat{\xi}_e)\right]_{1,av}$$

$$- \frac{2 \frac{a}{\gamma_e}}{\gamma_e} \left[\hat{\beta}' \phi' (\hat{\alpha} - \hat{\alpha}_e)\right]_{1,av}$$

$$- \frac{a P}{\gamma_e} \left[\hat{\beta}' (\hat{\alpha} - \hat{\alpha}_e) (\xi - \xi_e)\right]_{1,av} - \frac{i a}{\gamma_e} \left[\hat{\beta}'' (\hat{\alpha} - \hat{\alpha}_e) (\xi - \xi_e)\right]_{1,av}$$

$$= (1/2) \left[(\phi'_1)^2 K_1 + P \phi'_2 K_2\right] a^2 \tan^2 \theta_e$$

$$- (2 \gamma_e)^{-1} (\phi'_1 - \phi'_2) \left[a \phi'_1 K_1 + (a - \gamma_e) \phi'_2 K_2\right]$$

A similar expression for the second mode can be obtained by interchanging subscripts 1 and 2.

These average nonlinear contributions can now be added to the coefficients of $\exp(i\phi_i)$ in the usual derivation of the linear damping rates and frequencies. For the special case of no control forces and moments, the damping rates are unaffected and the frequency equations become

$$(\phi'_1)^2 - P \phi'_1 + [M]_{1,av} + \left\{\tan^2 \theta_e \left[(\phi'_1)^2 K_1 + P \phi'_2 K_2\right]
ight.$$

$$+ (\phi'_2 - \phi'_1) \phi'_1 K_1^2\right\}/2 = 0$$

$$\text{(5.8)}$$

For simplicity, the quite small nonlinear terms in H have been omitted.
Table I. Assumed Parameters for 105mm Shell

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l)</td>
<td>0.105 m</td>
</tr>
<tr>
<td>(S)</td>
<td>0.0087 m²</td>
</tr>
<tr>
<td>(m)</td>
<td>15 kg</td>
</tr>
<tr>
<td>(I_x)</td>
<td>0.023 kg·m²</td>
</tr>
<tr>
<td>(I_y)</td>
<td>0.22 kg·m²</td>
</tr>
<tr>
<td>(\rho)</td>
<td>1.05 kg/m³</td>
</tr>
<tr>
<td>(V)</td>
<td>250 m/s</td>
</tr>
<tr>
<td>(p)</td>
<td>1050 rad/s</td>
</tr>
</tbody>
</table>

- \(C_D = 0.13 \)
- \(C_{L\alpha} = 1.7 \)
- \(C_{q\alpha} = -0.012 \)
- \(C_{M\alpha} = 3.8 \)
- \(C_{Mq} + C_{M\alpha} = -8 \)
and a similar equation for the other mode. These frequency equations, for \(\theta_e = 0 \) and an appropriate choice for \(M \), were the equations that gave the excellent agreement with the numerical calculations of Reference 6.

VI. DISCUSSION

According to our analysis, the effect of gravity on damping rates is to replace \(H \) by \(H - g^* \). Equation (3.10) for the damping rates becomes

\[
\lambda_j = \frac{- (H - g^*) \phi_j' + P T - \phi_j'' - (\tan \theta_e) [M \phi_e' - P T \phi_e]}{2 \phi_j' - P} \]

(6.1)

Since \(|P T| \) is usually much smaller than \(|M| \), the effect of \(\phi_e \) on the damping rates can be neglected. Equation (6.1) can therefore be used to derive stability boundaries for the maximum trim angles for \(\beta \).

For a gyroscopically stable missile with positive spin \((\phi_1' > P/2 > \phi_2' > 0)\),

\[
B_1 < \beta_e \tan \theta_e < B_2
\]

(6.2)

where

\[
B_j = - \left(\frac{2}{M} \right) \left[(H - g^*) \phi_j' - P T + \phi_j'' \right]
\]

Table I gives the various parameters for a 105mm shell and Figure 1 gives the boundaries \(B_1 \) and \(B_2 \) in degrees as functions of the gyroscopic stability factor, \(s_g \). The Lloyd and Brown results were limited to large stability factors and their numerical calculations were for \(s_g = 5.8 \). As we can see from Figure 1, the allowable range for \(\beta_e \) becomes quite small for stability factors less than 2.
A particularly interesting case is that of a statically stable missile with little or no spin \((M < 0, \left| s_g \right| << 1)\). For this case,

\[\frac{\psi''}{M} = \frac{-M'/M}{2 \phi_j} \quad (6.3) \]

For an exponential air density and constant static moment coefficient,

\[M'/M = \rho'/\rho = -\sigma k \sin \theta_T \quad (6.4) \]

where

\[\rho = \rho_0 e^{-\sigma z} \]

Since \(\phi_j \neq \pm \sqrt{-M}\), the stability bounds reduce to the very special condition:

\[|\hat{\beta}_e \tan \theta_e| < B \quad (6.5) \]

where

\[B = \frac{2(H - g^*) - \sigma k \sin \theta_T}{\sqrt{-M}} \]

It is interesting to note that the value of \(B\) for the Copperhead missile is estimated to be 12 degrees.
REFERENCES

2. C.H. Murphy, "Gravity-Induced Angular Motion of a Spinning Missile," Ballistic Research Laboratories Report No. 1546, July 1971, AD 730641. (See also Journal of Spacecraft and Rockets 8, August 1971, pp. 824-828.)

LIST OF SYMBOLS

\begin{align*}
\text{a} &= [\gamma_e + \dot{\theta}_e \tan \theta_e]^{-1} \\
\text{B} &= |B_j| \text{ for a statically stable, nonspinning missile} \\
B_1, B_2 &= \text{lower and upper bounds on } \dot{\theta}_e \tan \theta_e \\
C &= \text{that part of the fixed-plane complex yaw forcing function due to the control force and moment} \\
C_D &= \text{drag force} = \frac{(1/2) \rho S V^2}{(1/2) \rho S V^2 |\xi|} \\
C_{L_\alpha} &= \text{lift force} = \frac{(1/2) \rho S V^2 |\xi|}{(1/2) \rho S V^2 |\xi|} \\
C_{\ell_p} &= \text{roll damping moment coefficient} \\
C_{\ell_\delta} &= \text{roll moment coefficient due to canted fins} \\
C_{M_{\alpha}} &= \text{Magnus moment} = \frac{(1/2) \rho S \ell V^2 |\xi|}{(1/2) \rho S \ell V^2 |\xi|} \\
C_{M_q} + C_{M_\delta} &= \text{sum of the damping moments} = \frac{(1/2) \rho S \ell V^2 |\xi|}{(1/2) \rho S \ell V^2 |\xi|} \\
C_{M_\alpha} &= \text{static moment} = \frac{(1/2) \rho S \ell V^2 V^2}{(1/2) \rho S \ell V^2 |\xi|} \\
C_{N_\alpha} &= \gamma C_{L_\alpha} + C_D, \text{ the normal force coefficient} \\
D_1 &= C_D + k_a^2 C_{\ell_p} \\
D_2 &= k_a^2 \delta_f C_{\ell_\delta} \\
\end{align*}
LIST OF SYMBOLS
(Continued)

\begin{align*}
F_Y, F_Z & \quad \text{transverse missile-fixed components of the aerodynamic force} \\
F_{YC}, F_{ZC} & \quad \text{transverse fixed-plane components of the control force} \\
G & \quad P \, g \, l \, V^{-2} \cos \theta_e \\
\hat{G} & \quad \text{that part of the fixed-plane complex yaw forcing function due to gravity} \\
g & \quad \text{magnitude of the gravity acceleration} \\
g^* & \quad g \, l \, V^{-2} \sin \theta_T \\
H & \quad \gamma \, C_{L\alpha}^* - C_D^* - k_t^{-2} \left(C_{Mq}^* + \gamma \, C_{Ma}^* \right) \\
I_x, I_y & \quad \text{axial and transverse moments of inertia} \\
K_j & \quad \text{magnitude of the } j\text{-th modal arm, } j = 1, 2 \\
k_a & \quad \left(I_x/m \, l^2 \right)^{1/4} \\
k_t & \quad \left(I_y/m \, l^2 \right)^{1/4} \\
\ell & \quad \text{reference length} \\
M & \quad \gamma \, k_t^{-2} \, C_{Ma}^* \\
M_x, M_y, M_z & \quad \text{missile-fixed components of the aerodynamic moment} \\
M_{YC}, M_{ZC} & \quad \text{transverse fixed-plane components of the control moment} \\
m & \quad \text{mass} \\
P & \quad \left(I_x/I_y \right) \phi' \\
p, q, r & \quad \text{missile spin, pitch and yaw rates measured in the missile-fixed system}
\end{align*}
LIST OF SYMBOLS

(Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{q}, \hat{r})</td>
<td>missile pitch and yaw rates measured in the fixed-plane system</td>
</tr>
<tr>
<td>(S)</td>
<td>reference area</td>
</tr>
<tr>
<td>(S_W)</td>
<td>integration interval (calibers) in an averaging process</td>
</tr>
<tr>
<td>(s)</td>
<td>nondimensional arclength along the trajectory</td>
</tr>
<tr>
<td>(s_g)</td>
<td>gyroscopic stability factor</td>
</tr>
<tr>
<td>(T)</td>
<td>(\gamma C_L^* + \gamma k_a^{-2} C_M^*)</td>
</tr>
<tr>
<td>(t)</td>
<td>time</td>
</tr>
<tr>
<td>(u, v, w)</td>
<td>missile-fixed components of the velocity</td>
</tr>
<tr>
<td>(V)</td>
<td>magnitude of the velocity</td>
</tr>
<tr>
<td>(\hat{x}, \hat{y}, \hat{z})</td>
<td>fixed-plane axes, the (\hat{x})-axis along the missile's longitudinal axis and the (\hat{y})-axis always in the horizontal plane</td>
</tr>
<tr>
<td>(\hat{\alpha}, \hat{\beta})</td>
<td>angles of attack and sideslip in the fixed-plane system</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(u V^{-1})</td>
</tr>
<tr>
<td>(\delta_c)</td>
<td>(</td>
</tr>
<tr>
<td>(\delta_f)</td>
<td>fin cant angle</td>
</tr>
<tr>
<td>(\theta)</td>
<td>angle between the missile's axis and the horizontal</td>
</tr>
<tr>
<td>(\theta_T)</td>
<td>trajectory angle</td>
</tr>
<tr>
<td>(\lambda_j)</td>
<td>(\frac{K_j'}{K_j}), (j = 1, 2)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>((q + i r) \times V^{-1})</td>
</tr>
<tr>
<td>(\xi)</td>
<td>((v + i w) V^{-1})</td>
</tr>
<tr>
<td>(\rho)</td>
<td>air density</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS
(Continued)

\(\rho_0 \) air density at sea level

\(\sigma \) \(1/(6700 \text{ m}) \)

\(\phi \) that part of the fixed-plane complex yaw forcing function due to the spin of the fixed-plane system

\(\phi_0 \) linear part of \(\phi \)

\(\phi' \) \(\rho \& V^{-1} \)

\(\dot{\phi}_{FP} \) spin rate of the fixed-plane system

\(\phi_j \) orientation angle of the \(j \)-th modal arm, \(j = 1, 2 \)

\(\dot{\phi} \) \(\phi_1 - \phi_2 \)

\(\Omega_{FP} \) angular velocity of the fixed-plane system

Superscripts

\((\cdot) \) \(\frac{d(\cdot)}{dt} \)

\((\cdot)' \) \(\frac{d(\cdot)}{ds} = (\cdot) & V^{-1} \)

\((\cdot)^* \) \(\frac{\rho S_k}{2 m} (\cdot) \) ... except for \(g^* \)

\((\cdot)^{\wedge} \) fixed-plane value of \((\cdot) \)

\((\cdot)^{\wedge} \) complex conjugate of \((\cdot) \)

Subscripts

\((\cdot)_e \) steady-state equilibrium value

\([\cdot]_{av} \) \(S_W^{-1} \int_{0}^{N} [\cdot] ds \)

\([\cdot]_{j,av} \) \((K_j S_W)^{-1} \int_{0}^{N} [\cdot] e^{-i \phi_j} ds \)
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Defense Documentation Center</td>
<td>US Army Tank Automotive Research</td>
<td>ATTN: DDA, DCA</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-DDA, Cameron Station</td>
<td>and Development Command</td>
<td>ATTN: DRDTA-UL, Warren, MI 48090</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
<td>Cameron Station</td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>4</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRCDMD-ST, 5001 Eisenhower Avenue</td>
<td>and Development Command</td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333</td>
<td>US Army Materiel Material and Readiness Command</td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>5</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Aviation Research and Development Command</td>
<td>US Army Armament Research and Development Command</td>
<td>ATTN: DRSAV-E</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSAV-E, P.O. Box 209, St. Louis, MO 63166</td>
<td>US Army Armament Research and Development Command</td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Air Mobility Research and Development Laboratory</td>
<td>US Army Armament Research and Development Command</td>
<td>Ames Research Center, Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Technical Support Activity</td>
<td>US Army Armament Material Readiness Command</td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td></td>
<td>ATTN: DEI-DL</td>
<td>US Army Yuma Proving Ground</td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
<td>US Army Yuma Proving Ground</td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
<td>US Army TRADOC Systems Analysis Activity</td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDAR-LEP-L, Tech Lib</td>
<td>US Army TRADOC Systems Analysis Activity</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 Commander | US Army Research Office
ATTN: CRD-AA-EH
P.O. Box 12211
Research Triangle Park
NC 27709 | 1 Commander | Naval Weapons Center
ATTN: Code 233
China Lake, CA 93555 |
| 1 Commander | Naval Air Systems Command
ATTN: AIR-604
Washington, DC 20360 | 1 Commander | Naval Research Laboratory
ATTN: Tech Info Div
Washington, DC 20375 |
| 3 Commander | Naval Ordnance Systems Command
ATTN: ORD-0632
ORD-035
ORD-5524
Washington, DC 20360 | 1 Superintendent
Naval Postgraduate School
Monterey, CA 93940 |
| 1 Commander | Naval Air Development Center, Johnsville
Warminster, PA 18974 | 1 AEDC (AEOT)
Arnold AFS
Tennessee 37389 |
| 1 Commander | David W. Taylor Naval Ship Research and Development Center
ATTN: Aerodynamics Laboratory
Bethesda, MD 20084 | 1 AFATL (Tech Lib)
Eglin AFB, FL 32542 |
| 4 Director | National Aeronautics and Space Administration
Ames Research Center
ATTN: Dr. Gary Chapman
Mr. A. Seiff
Mr. Murray Tobak
Tech Lib
Moffett Field, CA 94035 | 1 AFFDL
Wright-Patterson AFB, OH 45433 |
| 5 Commander | Naval Surface Weapons Center
ATTN: Dr. Thomas Clare
Dr. W.R. Chadwick
Dr. W.G. Soper
Dr. F. Moore
Dr. T.R. Pepitone
Dahlgren, VA 22448 | 1 ASD (ASAMCG)
Wright-Patterson AFB, OH 45433 |
| 1 Commander | Naval Surface Weapons Center
ATTN: Code 730, Tech Lib
Silver Spring, MD 20910 | 1 Director | National Aeronautics and Space Administration
George C. Marshall Space Flight Center
ATTN: MS-I, Library
Huntsville, AL 35812 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Director National Aeronautics and Space Administration Langley Research Center ATTN: MS 185, Tech Lib Dr. Clarence Young Langley Station Hampton, VA 23365</td>
<td>1</td>
<td>Calspan Corporation P.O. Box 235 Buffalo, NY 14221</td>
</tr>
<tr>
<td>1</td>
<td>Director National Aeronautics and Space Administration Lewis Research Center ATTN: Tech Lib 21000 Brookpark Road Cleveland, OH 44135</td>
<td>1</td>
<td>General Electric Company Armament Systems Department ATTN: Mr. Robert H. Whyte Lakeside Avenue Burlington, VT 05401</td>
</tr>
<tr>
<td>1</td>
<td>Director National Aeronautics and Space Administration Scientific and Technical Information Facility ATTN: SAK/DL P.O. Box 33 College Park, MD 20740</td>
<td>3</td>
<td>Director Sandia Laboratories ATTN: Division 1342, Mr. W.F. Hartman Division 1331, Mr. H.R. Vaughn Mr. A.E. Hodapp Albuquerque, NM 87115</td>
</tr>
<tr>
<td>2</td>
<td>Director Jet Propulsion Laboratory ATTN: Tech Lib, Mr. Peter Joffe 4800 Oak Grove Drive Pasadena, CA 91103</td>
<td>1</td>
<td>Space Research Corporation ATTN: Dr. G.V. Bull North Jay Road P.O. Box 60 North Troy, VT 05859</td>
</tr>
<tr>
<td>1</td>
<td>Aerospace Corporation ATTN: Dr. Daniel Platus 2350E El Segundo Avenue El Segundo, CA 90245</td>
<td>1</td>
<td>California Polytechnic State University ATTN: Dr. John D. Nicolaides Aeronautical Engineering Dept. San Luis Obispo, CA 93401</td>
</tr>
<tr>
<td>1</td>
<td>Arnold Research Organization, Inc. Project Support and Special Studies Section Aerodynamics Division Projects Branch ATTN: Dr. John C. Adams, Jr. Arnold APS, TN 37389</td>
<td>1</td>
<td>Director Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road Laurel, MD 20810</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Stanford University ATTN: Department of Aeronautical Engineering Stanford, CA 94305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>University of California ATTN: Professor E.V. Laitone Berkeley, CA 94704</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>University of Illinois Department of Aeronautical Engineering</td>
<td>Aberdeen Proving Ground Dir, USAMSAA Cdr, USATECOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Professor A.I. Ormsbee</td>
<td>ATTN: Dr. J. Sperrazza DRXSY-MP, H. Cohen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
<td>ATTN: DRSTE-TO-F</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Virginia Department of Engineering Science and Systems</td>
<td>Dir, Wpns Sys Concepts Team, Bldg. E3516, EA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Professor Ira D. Jacobson</td>
<td>ATTN: DRDAR-ACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thornton Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlottesville, VA 22904</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>