STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER DESIGN ENGINEERING APPLIED SCIENCE

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED
TRANSIENT SOLUTIONS FOR REPAIRABLE ITEM PROVISIONING

by

Zeev Barzily
Donald Gross

Scientific Rept.

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>T-390</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>TRANSIENT SOLUTIONS FOR REPAIRABLE ITEM PROVISIONING</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
<td>SCIENTIFIC</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>ZEEV BARZILY DONALD GROSS</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
<td>N00014-75-C-0729</td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>THE GEORGE WASHINGTON UNIVERSITY PROGRAM IN LOGISTICS WASHINGTON, D.C. 20037</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>OFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON, VA 22217</td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>9 APRIL 1979</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>32</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>15. SECURITY CLASS. (OF THIS REPORT)</td>
<td>NONE</td>
</tr>
<tr>
<td>15a. DECLASSIFICATION/DROWGRADING SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (OF THIS REPORT)</td>
<td>DISTRIBUTION IS UNLIMITED; APPROVED FOR PUBLIC SALE AND RELEASE.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN Block 20, IF different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</td>
<td>FINITE SOURCE QUEUES TRANSIENT SOLUTIONS MACHINE REPAIR</td>
</tr>
<tr>
<td>20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</td>
<td>It is desired to find the spares inventory level and number of repair channels necessary to guarantee a prespecified service level for a population of items that randomly fail and have exponential repair times. Steady state solutions are attainable from finite source queueing theory. This paper looks at transient effects and the speed of convergence to steady state.</td>
</tr>
</tbody>
</table>
Abstract
of
Serial T-390
9 April 1979

TRANSIENT SOLUTIONS FOR REPAIRABLE ITEM PROVISIONING

by
Zeev Barzily
Donald Gross

It is desired to find the spares inventory level and number of repair channels necessary to guarantee a prespecified service level for a population of items that randomly fail and have exponential repair times. Steady state solutions are attainable from finite source queueing theory. This paper looks at transient effects and the speed of convergence to steady state.
1. Introduction

It is desired to find the level of spares inventory (y) and number of repair channels (c) to support an operating population of M items. An operating item may randomly fail and require repair. Both the time to failure and the repair time of any item are independently distributed exponential random variables with parameters \(\lambda \) and \(\mu \), respectively. All items are identical and independent.

Generally one is interested in knowing how many spares and repair channels (or repairmen) are required in order to support the system at a certain level measured in terms such as the probability that the population is operating at full strength or the probability that a certain percentage of the population is operational or the probability that the spares pool is not empty upon a request for a spare.

The classical finite source queueing theory (also known as the machine repair problems) can be used to provide the steady state distribution of the number of units in and awaiting repair which is required to calculate the service level measures. Further, using the costs of
spares and repair channels, a procedure can be developed to find the optimal combination of spares and repair channels to meet a specified level of service (see Reference [6]).

In many cases, the provisioning for spares and repair capacities must be planned in advance. Also, in many new systems, operating units are added over an initial period until the population reaches its full strength. An example of this is a gas turbine engine fleet which is to build to a full strength of 256 ships, starting with an initial fleet size of 5 the first year and adding ships over an 11-year period. When the population size changes, especially if new units have different mean times to failure or mean repair times (which is likely due to technological growth and learning), transient effects might be significant. In Reference [6], it was assumed that the population reached instantaneous steady state every year at new population values. We concentrate here on methods of analyzing transient effects so that situations can be noted for which steady state assumptions may be in doubt as well as those for which steady state assumptions may be adequate.

2. Calculation of Transient Probabilities

The state of the system is defined by the number of items in and awaiting repair, which can vary between zero and \(M+y \). Letting \(p_{ij}(t) \) represent the probability of the system being in state \(j \) at time \(t \) given that it started in state \(i \) \((0 \leq i, j, \leq M+y) \), \(\pi_i(t) \) be the unconditional probability of the system being in state \(i \) at time \(t \), \(P(t) = \{p_{ij}(t)\} \) be the \((M+y+1) \times (M+y+1)\) matrix of transition probabilities \(p_{ij}(t) \), \(\pi(t) \) be the \(M+y+1 \) component vector whose elements are the \(\pi_i(t) \) and \(\pi(0) \) be the initial probability vector whose components \(\pi_i(0) \) are the probabilities that the system starts in state \(i \), we have

\[
\pi(t) = \pi(0)P(t) .
\]

Denoting the steady state probability vector by \(\pi \),

\[
\pi = \lim_{t \to \infty} \pi(t) .
\]
It is not necessary to obtain \(\pi(t) \) if only \(\pi \) is of interest since this can be determined directly by steady state finite source queueing results (for example, see [5], pp. 118-125). However, to assess transient effects, it is necessary to calculate \(\pi(t) \); in fact, it is of interest to compare \(\pi(t) \) to \(\pi \) to observe the speed of convergence to steady state.

Solving for \(\pi(t) \) requires solving a set of \(M+y+1 \) differential equations in \(M+y \) unknowns. Obtaining analytical solutions is extremely difficult and in most cases impossible unless \(M+y \) is very small. However, a variety of procedures are available which can yield numerical solutions to the differential equations. Reference [4] compares several of these numerical procedures and concludes that the so-called randomization procedure has some advantages. This procedure is presented (although not under that name) in Reference [3] on page 46.

For the purposes of study in this paper, the randomization procedure appears useful, although if solutions for \(\pi(t) \) are desired for a large number of \(t \) values, the Runge-Kutta method may be more efficient. The randomization procedure will yield \(P(t) \), from which \(\pi(t) \) can be calculated using Equation (1). The calculation procedure is as follows.

Let \(Q \) denote the intensity matrix (infinitesimal generator) of the Markov chain of this birth-death system, that is

\[
Q = \begin{pmatrix}
-\lambda_0 & \lambda_0 & 0 & \cdots & 0 \\
\mu_1 & -\lambda_1 - \mu_1 & \lambda_1 & 0 & \cdots & 0 \\
0 & \mu_2 & -\lambda_2 - \mu_2 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \mu_{M+y} \\
\end{pmatrix},
\]

where
The birth-death differential equations then can be written
\[\pi'(t) = \pi(t)Q, \quad (3) \]
where \(\pi'(t) \) is the vector whose components are \(\pi'_i(t) = d\pi_i(t)/dt \).

The randomization procedure gives a method of calculating \(P(t) \) using \(Q \).

Denoting the \(i,j \)th element of \(Q \) by \(q_{ij} \), define a scalar \(\alpha \) as
\[\alpha = \max q_{ij}. \]

Let \(\beta \) be another scalar such that
\[\beta \geq \alpha. \]

Then, form a matrix \(P \) with element \(p_{ij} \) as
\[P = \{p_{ij}\} = I + \frac{1}{\beta} Q, \]
where \(I \) is an \((M+y+1) \times (M+y+1) \) identity matrix. It can be shown that the elements of \(P(t) \) can be obtained by
\[p_{ij}(t) = e^{-\beta t} \sum_{n=0}^{\infty} \frac{\beta^n t^n}{n!} p_{ij}^{(n)}, \quad (4) \]
where \(p_{ij}^{(n)} \) is the \((i,j) \)th element of the matrix \(P^{(n)} \) and \(P^{(n)} \) is the matrix \(P \) raised to the power \(n \). Thus the computations are not simple since they involve raising the matrix \(P \) to the nth power for \(n=0,1,2,\ldots \).

Obviously, the numerical procedure must truncate \(n \) at some appropriate value and our criterion was to truncate \(n \) at a number \(N \), such that
\[\frac{p_{ij}(t) - p_{ij}^N(t)}{p_{ij}(t)} \leq \varepsilon, \]

where
\[p_{ij}^N(t) = e^{-\beta t} \sum_{n=0}^{N} \frac{(\beta t)^n}{n!} p_{ij}(n). \]

We are fortunate here in being able to guarantee this since
\[p_{ij}(t) = e^{-\beta t} \sum_{n=0}^{\infty} \frac{(\beta t)^n}{n!} p_{ij}(n) = p_{ij}(t) + e^{-\beta t} \sum_{n=N+1}^{\infty} \frac{(\beta t)^n}{n!} p_{ij}(n). \]

Now
\[e^{-\beta t} \sum_{n=N+1}^{\infty} \frac{(\beta t)^n}{n!} p_{ij}(n) < e^{-\beta t} \sum_{n=N+1}^{\infty} \frac{(\beta t)^n}{n!} = e^{-\beta t} \left[e^{\beta t} - \sum_{n=0}^{N} \frac{(\beta t)^n}{n!} \right] \]
\[= 1 - e^{-\beta t} \sum_{n=0}^{N} \frac{(\beta t)^n}{n!}. \]

Thus
\[p_{ij}(t) - p_{ij}^N(t) < 1 - e^{-\beta t} \sum_{n=0}^{N} \frac{(\beta t)^n}{n!}. \]

Hence we can choose the smallest \(n \) such that the absolute error
\[1 - e^{-\beta t} \sum_{n=0}^{N} \frac{(\beta t)^n}{n!} \leq \varepsilon. \]

(5)

Because some of the \(p_{ij}(t) \) may be very small, a somewhat better criterion might be to choose \(n \) such that
\[1 - e^{-\beta t} \sum_{n=0}^{N} \frac{(\beta t)^n}{n!} \leq \varepsilon; \]

(6)

that is, the percentage error is less than or equal to \(\varepsilon \). This is somewhat more complex to calculate however.
This procedure was programmed on an IBM 370/148. Analytical solutions are obtainable for the special case \(M = y = c = 1 \) for which there are only three states \((i=0,1,2)\). The three differential equations in three unknowns given by Equation (3) can be solved using Laplace transforms (see Reference [1]). The numerical procedure was checked against the analytical solution for the special case and found to be quite accurate. Table I shows the comparison using criteria from Inequality (5); that is, the absolute error criterion with \(\varepsilon = 10^{-3} \), and \(10^{-6} \). We see

TABLE I

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS

\[M = y = c = 1; \quad \lambda = 0.5, \quad \mu = 1.0 \]

Anal. (Analytical); Num. (Numerical); Num\(^a\): \(\varepsilon = 10^{-3} \), Num\(^b\): \(\varepsilon = 10^{-6} \)

<table>
<thead>
<tr>
<th>t</th>
<th>(p_{00}(t))</th>
<th>(p_{01}(t))</th>
<th>(p_{02}(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anal.</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Anal.</td>
<td>1</td>
<td>.7265</td>
<td>.2227</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>.7260</td>
<td>.2224</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>.7266</td>
<td>.2226</td>
</tr>
<tr>
<td>Anal.</td>
<td>3</td>
<td>.6010</td>
<td>.2768</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>.6003</td>
<td>.2767</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>.6003</td>
<td>.2767</td>
</tr>
<tr>
<td>Anal.</td>
<td>5</td>
<td>.5775</td>
<td>.2839</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>.5770</td>
<td>.2837</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>.5770</td>
<td>.2837</td>
</tr>
<tr>
<td>Anal.</td>
<td>10</td>
<td>.5715</td>
<td>.2857</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>.5710</td>
<td>.2854</td>
</tr>
</tbody>
</table>

\(^a\)Running time to generate four 3x3 \(P(t) \) matrices \((t=1,3,5,10)\): 15.78 sec.

\(^b\)Running time to generate one 3x3 \(P(t) \) matrix \((t=1)\): 3 min.
that the numerical procedure, with $\epsilon = 10^{-3}$, is always exact to the second decimal place and in most cases to the third. While lowering ϵ to 10^{-6} helps somewhat on the accuracy (see the $t=1$ case in Table I), the added expense in running time becomes enormous and hence it was felt that 10^{-3} was satisfactory.

3. Results

Figure 1 shows the results of a case where $M = 10$, $y = 4$, $c = 2$, $\lambda = .15$, $\mu = 1.0$. The measure of system service used is the probability that the entire population is operational. Denoting this by $A(t)$, we have

$$A(t) = \sum_{i=0}^{y} \pi_i(t).$$

Two cases are shown, one in which the initial conditions had all machines "up," that is, no machines in or awaiting repair, one machine operating, and one in the spares pool $[\pi(0)=(1,0,0)]$, and the other where both machines were "down," that is, one in repair and the other in the repair queue $[\pi(0)=(0,0,1)]$. We can see that in the first case steady state is approached rather quickly while in the second the approach is considerably slower.

There are two factors influencing the speed to steady state. One is the initial conditions, that is, how far the system is from steady state initially, and the other is the speed at which the transient terms (terms depending on t) of the full solution to the differential equations damp out. In some cases it is known what the initial conditions are or are likely to be, but in many cases information about the initial state of the system may not be available or reliable. In order to divorce the effect of the initial conditions from how quickly the transient terms damp out, we decided to look at the $P(t)$ matrix itself. We became interested in two facets of the $P(t)$ matrix. First, we wished to obtain information about the behavior of the $p_{ij}(t)$ as t increases and second, we wished to determine for a given t how "far" $P(t)$ was from its steady state value $P(\infty)$, where
$M = 10, \ y = 4, \ c = 2; \ \lambda = 0.15, \ \mu = 1.0$

Figure 1.—Example of $A(t)$ versus t.

$A(0) = 1$

$A(t) = 0$
that is, a matrix in which all rows are the steady-state probability vector \(\pi \). This necessitated the development and study of single value measures for the "distance" between \(P(t) \) and \(P(\infty) \).

3.1 Behavior of \(p_{ij}(t) \)

We know \(P(0) \) is an \((M+y+1) \times (M+y+1)\) identity matrix and \(P(\infty) \) is the \((M+y+1) \times (M+y+1)\) matrix with all rows equal to the vector \(\pi \). We are interested in what happens in between. For the case \(M = 10 \), \(y = 4 \), \(c = 2 \), \(\lambda = 0.05 \), \(\mu = 1.0 \), we plotted the first four probabilities of row three of the matrices \(P(t) \), \(t = 0, 1, 3, 5, 10 \) and \(\infty \); that is, we plotted \(p_{20}(t) \), \(p_{21}(t) \), \(p_{22}(t) \), and \(p_{23}(t) \) for the above values of \(t \) (see Figure 2).

It can be seen that not all of the \(p_{ij}(t) \)'s approach their steady state value monotonically. The diagonal element \(p_{22}(t) \) and the first element \(p_{20}(t) \) do, \(p_{22}(t) \) from above and \(p_{20}(t) \) from below. But the other elements, \(p_{21}(t) \) and \(p_{23}(t) \), start at zero, overshoot their steady state values, and then appear to monotonically decrease toward them. We will show that \(p_{ij}(t) \) will always approach \(\pi_i \) from above and, although it has not been proven, we conjecture that if \(p_{ij}(t_1) \geq \pi_j \), then \(p_{ij}(t) \geq \pi_j \) for all \(t \geq t_1 \); that is, \(p_{ij}(t) \), \(i \neq j \), starts at zero, overshoots \(\pi_i \) at most once, and then approaches \(\pi_j \) from above.

The above conjecture can be argued by the following physical analogy. Consider a row of the \(P(t) \) matrix as a bar of water. At \(t = 0 \), a sugar cube is dropped in at the diagonal \((i,i)\) position. As time passes,
Figure 2.--Behavior of $p_{ij}(t)$ versus t.

$M = 10, y = 4, c = 2; \lambda = .05, \mu = 1.0$
the sugar is dispersed along the row until it reaches its steady-state concentration \(\pi_i \) (\(i=0,1,2,\ldots,M+y \)). Note that at \(i,j \) the sugar gradually flows away from its initial concentration (of 1) to its final concentration \(\pi_i \). At either end, sugar gradually flows in until it builds up to the steady state concentrations \(\pi_0 \) and \(\pi_{M+y} \). All other states start at zero, receive sugar from the diagonal element, some of which will eventually flow past to other states and some of which will remain, causing the overshoot prior to settling down to its steady-state concentration.

It is possible that other states near to the "end" of the row may not overshoot depending on the rates of sugar flow in versus sugar flow out. We expect the greatest overshoots to be in the states near the diagonal element.

We next looked at the behavior of the \(p_{ij}(t) \) as a function of \(j \) for fixed \(t \). That is, it was of interest to observe which \(p_{ij}(t) \) were larger than their steady state values, \(\pi_i \), and which were smaller, for a given value of \(t \). In all cases run, we observed one of three situations as shown in Figure 3. It can be seen that the \(p_{ij}(t) \)'s which overestimate their \(\pi_j \)'s appear together in a "clump." If this were always true, there could be significant savings in the computational effort required for obtaining the distance measures \(|P(\omega)-P(t)|\) discussed in the next section. We have proved that this clumping will always be the case as well as its relative position in the row in the lemma and theorems presented below.

Lemma: Let \(N_i(t) \) = the number of customers in and awaiting repair at time \(t \) given \(i \) in and awaiting repair at time 0. Then

\[
\Pr\left(N_{i+1}(t) \leq k \right) \leq \Pr\left(N_i(t) \leq k \right) \leq \Pr\left(N_{i+1}(t) \leq k+1 \right).
\]

Proof: Let

\[T_i = \min\{u: N_i(u) = N_{i+1}(u), \ 0 \leq u \leq \infty\}. \]

It is obvious that
Figure 3.--Behavior of $p_{ij}(t)$ versus j, t fixed.
\[\Pr[N_1(t) = k \mid \tau_1 \leq t] = \Pr[N_{i+1}(t) = k \mid \tau_1 \leq t], \quad k = 0, 1, 2, \ldots, \quad (7) \]

\[\Pr[N_1(t) < k \mid \tau_1 > t] \geq \Pr[N_{i+1}(t) < k \mid \tau_1 > t]. \quad (8) \]

Combining (7), (8), and the fact that \(\Pr(\tau_1 > t) > 0 \) yields

\[\Pr[N_1(t) \leq k] \geq \Pr[N_{i+1}(t) \leq k]. \quad (9) \]

Now we denote by \(A_1(t) \) the number of arrivals in \([0, t]\) and by \(S_1(t) \) the number of service completions in the same time interval, given \(i \) in system at \(t = 0 \). Since \(\lambda_j \geq \lambda_{j+1} \) and \(\mu_j \leq \mu_{j+1} \) for all \(j \geq 0 \), then

\[\Pr[A_1(t) - S_1(t) \leq k] \leq \Pr[A_{i+1}(t) - S_{i+1}(t) \leq k], \quad \text{for any } k. \]

The proof is now complete since

\[N_j(t) = j + A_j(t) - S_j(t). \]

From (9) we obtain that

\[p_{00}(t) \geq p_{10}(t) \geq p_{20}(t) \geq \ldots, \]

and as

\[\pi_0 = \sum_{i=0}^{M+Y} \pi_i p_{i0}(t), \]

then

\[p_{00}(t) \geq \pi_0. \]

The next theorem extends this result for all \(p_{ii}(t) \).

Theorem 1: \(p_{ii}(t) > \pi_i \forall i \) and \(t \).

Proof: We compare our system to a Markovian queueing system with only two states, 0 and 1. Denote the rate out of state 0 by \(\nu \) and the rate out of state 1 by \(\eta \). Let \(r_{0,i}(t) \) be the transient probability of being in state \(i \) (\(i = 0, 1 \)) at \(t \) given that the system started in state 0. The steady state probabilities of the two-state system depend on the ratio \(\nu/\eta \). We choose \(\nu/\eta \) such that
\[\lim_{t \to \infty} r_{00}(t) = \pi_1. \]

It is well known that \(r_{00}(t) \geq \pi_1 \) for any \(v \), \(\eta \), and \(t \); hence the required result is obtained if \(\eta \) and \(v \) can be chosen to yield

\[r_{00}(t) \leq p_{11}(t). \] \(\text{(10)} \)

Since \(r_{00}(0) = p_{11}(0) = 1 \), then Equation (10) is satisfied if

\[r'_{00}(t) \leq p'_{11}(t) \] \(\text{(11)} \)

at any point \(t \) where

\[r_{00}(t) = p_{11}(t). \] \(\text{(12)} \)

To determine the conditions under which Inequality (11) holds, we write

\[p'_{11}(t) - p'_{11}(\infty) = -(\lambda_1 + \mu_1)(p_{11}(t) - \pi_1) \]

\[+ \lambda_{i-1}(p_{i,i-1}(t) - \pi_{i-1}) + \mu_{i+1}(p_{i,i+1}(t) - \pi_{i+1}) \] \(\text{(13)} \)

and

\[r''_{00}(t) = r'_{00}(t) - r'_{00}(\infty) = -(v+\eta)(r_{00}(t) - \pi_1). \] \(\text{(14)} \)

Using Equation (12) in (13) and then comparing (13) to (14) yields that Inequality (11) holds iff

\[-(v+\eta) < \frac{-(\lambda_1 + \mu_1)(p_{11}(t) - \pi_1) + \lambda_{i-1}(p_{i,i-1}(t) - \pi_{i-1}) + \mu_{i+1}(p_{i,i+1}(t) - \pi_{i+1})}{p_{11}(t) - \pi_1} \] \(\text{(15)} \)

The RHS of (15) is clearly bounded since the matrix \(P(t) \) can be expressed as

\[P(t) = \lim_{t \to \infty} P(t) + B_2 e^{C_2 t} + B_3 e^{C_3 t} + \ldots + B_M e^{C_M t}, \]

where \(C_i < 0 \) is the \(i \)th eigenvalue of the infinitesimal generator matrix \(Q \) and \(B_i \) is a \((M+Y+1) \times (M+Y+1)\) matrix that has finite elements (see, for example, [2], pp. 364–368). Thus we conclude that \(v \)

- 14 -
and \(n \) can be chosen big enough so that (11) is satisfied at any point at which (12) is satisfied, and the proof is now complete.

Theorem 2: For any \(i \) and \(t \) there exists a \(j_L(i,t) \) and a \(j_R(i,t) \),
\[
j_L(i,t) \leq i \leq j_R(i,t) ,
\]
such that
\[
p_{ij}(t) - \pi_j > 0 , \quad \text{if } j = j_L(i,t) \text{ or } j = j_R(i,t)
\]
and
\[
p_{ij}(t) - \pi_j \geq 0 , \quad \text{if } j_L(i,t) < j < j_R(i,t)
\]
and
\[
p_{ij}(t) - \pi_j \leq 0 , \quad \text{otherwise}.
\]

Proof: Denote
\[
K(i,t) = \{ k : p_{ik}(t) = \pi_k \} .
\]
At \(t=0 \) we have \(p_{ii}(0) = 1 \) and \(p_{ij}(0) = 0 \), \(i \neq j \); hence the required conditions are satisfied. To complete the proof we have to show that for any \(k \in K(i,t) \) we have
\[
p'_{ik}(t) \leq 0 , \quad \text{if } k < j_L(i,t)-1 \text{ or } k > j_R(i,t)+1
\]
and
\[
p'_{ik}(t) \geq 0 , \quad \text{if } j_L(i,t) < k < j_R(i,t) .
\]
To show that the above conditions hold, we write
\[
p'_{ik}(t) = p'_{ik}(t) - p'_{ik}(\omega) =
\]
\[
\begin{cases}
-\lambda_k [p_{ik}(t)-\pi_k] + \mu_{k+1} [p_{i,k+1}(t)-\pi_{k+1}] , & k=0 \\
-(-\lambda_k + \mu_k) [p_{ik}(t)-\pi_k] + \lambda_{k-1} [p_{i,k-1}(t)-\pi_{k-1}] + \mu_{k+1} [p_{i,k+1}(t)-\pi_{k+1}] , & k \geq 1 \\
-\mu_k [p_{ik}(t)-\pi_k] + \lambda_{k-1} [p_{i,k-1}(t)-\pi_{k-1}] , & k = M+Y
\end{cases}
\]
(16)
If \(k < j_L(i,t)-1 \) or \(k > j_R(i,t)+1 \), then \(p_{i,k-1}(t) - \pi_{k-1} \leq 0 \) and\(p_{i,k+1}(t) - \pi_{k+1} \leq 0 \); thus \(p'_{ik}(t) \leq 0 \). If \(j_L(i,t) < k < j_R(i,t) \), then \(p_{i,k-1}(t) - \pi_{k-1} \geq 0 \) and \(p_{i,k+1}(t) - \pi_{k+1} \geq 0 \); thus \(p'_{ik}(t) \geq 0 \).
3.2 Measures of the distance between \(P(t) \) and \(P(\infty) \)

We now turn our interest to gaining information concerning how far from steady state the system is at a given time. We desire some measure of the distance between two matrices \(P(t) \) and \(P(\infty) \); that is, a measure of \(\| P(t) - P(\infty) \| \).

Consider the following example for \(P(t_1), P(t_2), \) and \(P(\infty) \):

\[
P_{t_1} = \begin{pmatrix} 0.8 & 0.2 & 0 \\ 0.6 & 0.3 & 0.1 \\ 0 & 0.6 & 0.4 \end{pmatrix}, \quad P_{t_2} = \begin{pmatrix} 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.1 & 0.5 & 0.4 \end{pmatrix}
\]

\[
P(\infty) = \begin{pmatrix} 0.2 & 0.5 & 0.3 \\ 0.2 & 0.5 & 0.2 \\ 0.2 & 0.5 & 0.2 \end{pmatrix}
\]

It is clear that \(\| P(t_2) - P(\infty) \| < \| P(t_1) - P(\infty) \| \). We desire to develop scalar measures to reflect this situation.

Two measures that appear reasonable are the following:

\[
\overline{M}_1(t) = \frac{M_1(t)}{M_1(0)},
\]

where

\[
M_1(t) = \sum_{i=0}^{M+y} \pi_i \sum_{j=0}^{M+y} |p_{ij}(t) - \pi_j| \tag{17}
\]

and

\[
\overline{M}_2(t) = \frac{M_2(t)}{M_2(0)},
\]

where

\[
M_2(t) = \sum_{i=0}^{M+y} \sum_{j=0}^{M+y} |p_{ij}(t) - \pi_j| \tag{18}
\]

Both measures are normalized to vary between 0 and 1 \([\overline{M}_1(0) = 1, \overline{M}_1(\infty) = 0] \). The second is merely the sum of all the absolute differences between the corresponding elements of \(P(t) \) and \(P(\infty) \). The first is a weighted sum of the corresponding element absolute differences, the weights being the steady state probabilities; that is,
errors in the state probabilities which are seldom visited in steady state are "discounted."

A well-known mathematical definition of the distance between two matrices is the norm of the matrix formed by subtracting corresponding elements, denoted by $||P(t) - P(\infty)||$. Matrix norms must obey certain properties (see Reference [7], page 59), which are given below.

1. $||P(t) - P(\infty)|| \geq 0$ and $||P(t) - P(\infty)|| = 0$, iff $P(t) = P(\infty)$;
2. $||a[P(t) - P(\infty)]|| = |a| \cdot ||P(t) - P(\infty)||$;
3. $||[P(t_1) - P(\infty)] + [P(t_2) - P(\infty)]|| \leq ||P(t_1) - P(\infty)|| + ||P(t_2) - P(\infty)||$;
4. $||[P(t_1) - P(\infty)] \cdot [P(t_2) - P(\infty)]|| \leq ||P(t_1) - P(\infty)|| \cdot ||P(t_2) - P(\infty)||$.

We have not been able to show that \overline{N}_1 and \overline{M}_2 obey all the above properties, although we believe that they do. However, variations of \overline{N}_1 and \overline{M}_2 which do obey all properties are (see Reference [7], page 61):

$$\overline{N}_3(t) = \frac{M_3(t)}{M_3(0)}$$

where

$$M_3(t) = \sum_{i=0}^{M} \pi_i \max_j |p_{ij}(t) - \pi_j|$$

and

$$\overline{M}_4(t) = \frac{M_4(t)}{M_4(0)}$$

where

$$M_4(t) = \sum_{j=0}^{M} \max_i |p_{ij}(t) - \pi_j| .$$

Once again, \overline{N}_3 uses the π_i to weight the maximum row deviations, while \overline{M}_4 is based on the unweighted maximum column deviations. We have run many cases to observe the behavior of the proposed measures.
We chose situations for which \(M+y \) equaled five so that we could view the entire \(6 \times 6 \) \(P(t) \) matrix and compare it with the \(6 \times 6 \) \(P(\infty) \) matrix. The cases run are shown in Table II, with the results shown in Table III.

TABLE II

<table>
<thead>
<tr>
<th>Case</th>
<th>M</th>
<th>y</th>
<th>c</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>("\rho" = M\lambda/c\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.2</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.4</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.6</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.8</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.2</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.6</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.2</td>
<td>0.33</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td></td>
<td>.2</td>
<td>0.25</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>.2</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>.15</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>.15</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Before comparing the four measures numerically, we would like to present two properties that may help in judging the measures.

Property 1:

\[
\sum_{j=0}^{M+y} |p_{ij}(t) - \pi_j| = \frac{1}{2} \sum_{j=\bar{j}}^{j}(i,t) \{p_{ij}(t) - \pi_j\}.
\]

This follows from Theorem 2, which yields

\[
\sum_{j=0}^{M+y} |p_{ij}(t) - \pi_j| = \frac{1}{2} \sum_{j=\bar{j}}^{j}(i,t) \{p_{ij}(t) - \pi_j\} + \sum_{j=\bar{j}}^{j}(i,t) (\pi_j - p_{ij}(t)) \\
+ \sum_{j=\bar{j}}^{j}(i,t) (\pi_j - p_{ij}(t));
\]
TABLE III

RESULTS OF 6x6 CASES RUN

<table>
<thead>
<tr>
<th>Case</th>
<th>A(∞)</th>
<th>Measures</th>
<th>t=0</th>
<th>t=1</th>
<th>t=3</th>
<th>t=5</th>
<th>t=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.820</td>
<td>M_1</td>
<td>1.000</td>
<td>0.376</td>
<td>0.143</td>
<td>0.066</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.505</td>
<td>0.232</td>
<td>0.115</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.319</td>
<td>0.103</td>
<td>0.046</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.366</td>
<td>0.178</td>
<td>0.092</td>
<td>0.016</td>
</tr>
<tr>
<td>2</td>
<td>0.820</td>
<td>M_1</td>
<td>1.000</td>
<td>0.216</td>
<td>0.046</td>
<td>0.010</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.335</td>
<td>0.082</td>
<td>0.019</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.170</td>
<td>0.031</td>
<td>0.007</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.246</td>
<td>0.066</td>
<td>0.016</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.820</td>
<td>M_1</td>
<td>1.000</td>
<td>0.142</td>
<td>0.015</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.232</td>
<td>0.027</td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.103</td>
<td>0.010</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.178</td>
<td>0.023</td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.820</td>
<td>M_1</td>
<td>1.000</td>
<td>0.097</td>
<td>0.005</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.164</td>
<td>0.009</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.068</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.129</td>
<td>0.008</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.964</td>
<td>M_1</td>
<td>1.000</td>
<td>0.266</td>
<td>0.039</td>
<td>0.007</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.464</td>
<td>0.110</td>
<td>0.025</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.262</td>
<td>0.039</td>
<td>0.007</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.325</td>
<td>0.092</td>
<td>0.022</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.630</td>
<td>M_1</td>
<td>1.000</td>
<td>0.221</td>
<td>0.043</td>
<td>0.009</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_2</td>
<td>1.000</td>
<td>0.275</td>
<td>0.056</td>
<td>0.012</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_3</td>
<td>1.000</td>
<td>0.120</td>
<td>0.020</td>
<td>0.004</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_4</td>
<td>1.000</td>
<td>0.099</td>
<td>0.040</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td>Case</td>
<td>(A(\omega))</td>
<td>Measures</td>
<td>(t=0)</td>
<td>(t=1)</td>
<td>(t=3)</td>
<td>(t=5)</td>
<td>(t=10)</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>7</td>
<td>.462</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.198</td>
<td>.033</td>
<td>.006</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.237</td>
<td>.041</td>
<td>.007</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.103</td>
<td>.016</td>
<td>.003</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.164</td>
<td>.023</td>
<td>.004</td>
<td>.000</td>
</tr>
<tr>
<td>8</td>
<td>.624</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.445</td>
<td>.223</td>
<td>.123</td>
<td>.034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.515</td>
<td>.276</td>
<td>.159</td>
<td>.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.371</td>
<td>.120</td>
<td>.062</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.417</td>
<td>.199</td>
<td>.111</td>
<td>.031</td>
</tr>
<tr>
<td>9</td>
<td>.462</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.478</td>
<td>.258</td>
<td>.154</td>
<td>.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.536</td>
<td>.304</td>
<td>.186</td>
<td>.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.416</td>
<td>.145</td>
<td>.077</td>
<td>.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.457</td>
<td>.215</td>
<td>.125</td>
<td>.037</td>
</tr>
<tr>
<td>10</td>
<td>.860</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.371</td>
<td>.155</td>
<td>.076</td>
<td>.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.522</td>
<td>.268</td>
<td>.141</td>
<td>.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.332</td>
<td>.128</td>
<td>.061</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.384</td>
<td>.205</td>
<td>.114</td>
<td>.022</td>
</tr>
<tr>
<td>11</td>
<td>.735</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.349</td>
<td>.121</td>
<td>.053</td>
<td>.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.535</td>
<td>.260</td>
<td>.127</td>
<td>.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.319</td>
<td>.105</td>
<td>.044</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.400</td>
<td>.211</td>
<td>.111</td>
<td>.017</td>
</tr>
<tr>
<td>12</td>
<td>.656</td>
<td>(\overline{M}_1)</td>
<td>1.000</td>
<td>.359</td>
<td>.114</td>
<td>.048</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_2)</td>
<td>1.000</td>
<td>.521</td>
<td>.227</td>
<td>.106</td>
<td>.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_3)</td>
<td>1.000</td>
<td>.315</td>
<td>.092</td>
<td>.036</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{M}_4)</td>
<td>1.000</td>
<td>.376</td>
<td>.186</td>
<td>.092</td>
<td>.013</td>
</tr>
</tbody>
</table>
and as
\[1 = \sum_{j} p_{ij}(t) = \sum_{j} \pi_j, \]
then
\[M_{1+Y} \sum_{j=0}^{n} |p_{ij}(t) - \pi_j| = 2 \sum_{j=J_{i}^{(i,t)}}^{J_{i}^{(i,t)}} (p_{ij}(t) - \pi_j). \]

Property 1 suggests that \(\overline{M}_1(t) \) and \(\overline{M}_2(t) \) may in general require less computation, since only part of the matrix \(P(t) \) has to be calculated. Further, while all numerical work indicated that \(j_{\chi}^{(i,t)} \) and \(j_{\tau}^{(i,t)} \) do not decrease as \(i \) increases (that is, the "clump," \(p_{ij}(t) - \pi_j \geq 0 \), moves to the right as we go down rows of the \(P(t) \) matrix), we have not been able to prove this.

Property 2: The measures \(\overline{M}_1(t), \overline{M}_2(t) \), and \(\overline{M}_4(t) \) decrease monotonically in \(t \).

To show that \(\overline{M}_1(t) \) and \(\overline{M}_2(t) \) are monotone, we use Expression (16) to obtain for \(j_{\chi}^{(i,t)} \neq 0 \) and \(j_{\tau}^{(i,t)} \neq M_{1+Y} \) that
\[\frac{d}{dt} \sum_{j=J_{i}^{(i,t)}}^{J_{i}^{(i,t)}} (p_{ij}(t) - \pi_j) = \lambda_{j_{\chi}^{(i,t)}-1} (p_{i,j_{\chi}^{(i,t)}-1}(t) - \pi_{j_{\chi}^{(i,t)}-1}) \]
\[- u_{j_{\chi}^{(i,t)}} (p_{i,j_{\chi}^{(i,t)}}(t) - \pi_{j_{\chi}^{(i,t)}}) \]
\[- \lambda_{j_{\tau}^{(i,t)}} (p_{i,j_{\tau}^{(i,t)}}(t) - \pi_{j_{\tau}^{(i,t)}}) \]
\[+ u_{j_{\tau}^{(i,t)+1}} (p_{i,j_{\tau}^{(i,t)+1}}(t) - \pi_{j_{\tau}^{(i,t)+1}}). \]

Expression (21) yields the monotone convergence since all four terms of the RHS are nonpositive. The results for the cases \(j_{\chi}^{(i,t)} = 0 \) and \(j_{\tau}^{(i,t)} = M_{1+Y} \) can be obtained in a similar way.

- 21 -
We now show that \(\overline{M}_4(t) \) is monotone. First we notice that
\[
\max_i |p_{ij}(t) - \pi_j| = \max_i \left\{ \max_i (p_{ij}(t)) - \pi_j ; - \left(\min_i (p_{ij}(t)) - \pi_j \right) \right\}.
\]

Thus the statement is true if \(\max_i (p_{ij}(t)) \) is decreasing and \(\min_i (p_{ij}(t)) \) is increasing. These requirements are met since
\[
\Pr(t_1 + t_2) = \Pr(t_1) \Pr(t_2);
\]
hence the elements of the \(j \)th column of \(\Pr(t_1 + t_2) \) are convex combinations of the \(j \)th column of \(\Pr(t_2) \).

As for \(\overline{N}_3(t) \), in all our calculations this measure was monotone decreasing. However, we are unable to prove it.

Since we are interested in assessing the relative merits of all the measures, for the cases in Table II all \(p_{ij}(t) \) were calculated.

Case 1 can be considered the base case. Cases 2, 3, 4 increase \(\lambda \) and \(\mu \), keeping \(\rho \) (defined as \(\lambda M/\mu \)) constant. Cases 5, 6, and 7 have \(\mu \) constant but varying \(\lambda \), while cases 8, 9, and 10 have \(\lambda \) constant with varying \(\mu \). Cases 11 and 12 revert back to the base case \(\rho \), but vary \(M \), \(y \), and \(c \).

Figure 4 shows some graphs of the measures as they vary with certain parameters. In 4(a), we see that all measures do decrease monotonically with time (in fact, they appear convex), which certainly must be a requirement for the measures to be useful. The unweighted measure \(\overline{M}_2 \) decreases more slowly than its weighted counterpart, \(\overline{M}_1 \). The same is true of \(\overline{M}_4 \) and \(\overline{M}_3 \). Of course, \(\overline{M}_3 \) is always less than \(\overline{M}_1 \), and \(\overline{M}_4 \) is always less than \(\overline{M}_2 \), since \(\overline{M}_3 \) and \(\overline{M}_4 \) consider only maximum row and column errors, respectively.
Figure 4.—Results of 6×6 runs.

(a) Effect of \(t \): Case 1.
(b) Effect of \(\lambda, \mu, \rho \) fixed \((t=1)\): Cases 1, 2, 3, 4.
(c) Effect of \(\lambda (t=1) \): Cases 2, 5, 6, 7.
(d) Effect of \(\mu (t=1) \): Cases 1, 6, 8, 9.
In Figure 4(b), we see that increasing λ and μ together so as to keep ρ constant causes a faster approach to steady state (all measures again decrease monotonically). This is intuitive, since we would expect the greater the transition (arrival and service completion) rate, the faster steady state should be approached. While this generally holds also for varying only arrival rate (service completion rate) keeping service completion rate (arrival rate) fixed [see Figures 4(c) and 4(d)], the measures do not always decrease monotonically. In the case where μ is fixed, \bar{M}_1 decreases, then slightly increases, then decreases again as λ increases. In other runs not shown in Table III we saw similar effects for the other measures. Just why this is so is not intuitively clear, although one must keep in mind that the traffic intensity (ρ) is now also varying, so that the probability distributions of the system states are also changing.

The final two cases run (Cases 11 and 12) had the same ρ but varied M, y, and c. Even with ρ fixed, $A(\infty)$ varies, showing the effect of population size, spares pool size, and repair capacity on availability. However, the convergence to steady state as given by the four measures does not appear to change significantly.

Which measure to choose and how to utilize the measure ultimately lie in a subjective judgment. We see that \bar{M}_2 decreases more slowly than the others, while \bar{M}_3 decreases most rapidly. Since in effect the scale is arbitrary, one a measure (or measures) is chosen, subjective benchmarks would have to be set up. For example, consider the $P(t)$ matrices for Case 1, $t=1,3,5$ and ∞, and the respective measures shown in Figure 5. The full $P(t)$ matrices for $t=1,3,5$ are given. At the bottom of each is listed the steady state probability, π_j [the $P(\infty)$ matrix has all its rows identical and equal to $\pi = (\pi_0, \pi_1, \ldots, \pi_M)\pi_1$ so that near steady state all elements in column j of a $P(t)$ matrix should be close to π_j].
\[
\begin{align*}
\text{P(1)} & \quad \text{P(3)} & \quad \text{P(5)} \\
\begin{bmatrix}
.62 & .29 & .07 & .01 & .00 & .00 \\
.24 & .49 & .20 & .05 & .01 & .00 \\
.10 & .33 & .36 & .18 & .03 & .00 \\
.03 & .15 & .29 & .38 & .13 & .01 \\
.01 & .05 & .14 & .33 & .40 & .07 \\
.00 & .01 & .05 & .17 & .36 & .40 \\
\end{bmatrix} & \quad \begin{bmatrix}
.39 & .36 & .16 & .07 & .02 & .00 \\
.30 & .36 & .20 & .10 & .03 & .00 \\
.23 & .33 & .23 & .15 & .06 & .01 \\
.15 & .28 & .24 & .20 & .10 & .02 \\
.09 & .21 & .23 & .25 & .16 & .05 \\
.05 & .15 & .20 & .27 & .24 & .10 \\
\end{bmatrix} & \quad \begin{bmatrix}
.33 & .35 & .19 & .10 & .03 & .01 \\
.29 & .34 & .20 & .11 & .04 & .01 \\
.26 & .33 & .21 & .13 & .05 & .01 \\
.22 & .31 & .22 & .16 & .07 & .02 \\
.18 & .28 & .22 & .18 & .10 & .03 \\
.14 & .25 & .22 & .21 & .14 & .04 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{P(\infty)}: & \quad .28 & .34 & .20 & .12 & .05 & .01 \\
\bar{N}_1: & \quad .376 & \quad .143 & \quad .066 \\
\bar{N}_2: & \quad .505 & \quad .232 & \quad .115 \\
\bar{N}_3: & \quad .319 & \quad .103 & \quad .046 \\
\bar{N}_4: & \quad .366 & \quad .178 & \quad .092 \\
A(t)_{UP}: & \quad .917 & \quad .917 & \quad .871 \\
A(t)_{DN}: & \quad .064 & \quad .393 & \quad .612 \\
A(\infty): & \quad .820 & \quad .820 & \quad .820 \\
\end{align*}
\]

Figure 5.—P(t), \(\bar{N}_1(t)\) and A(t) for Case 1.
In viewing Figure 5, it is fairly clear that \(P(1) \) is extremely far from \(P(\infty) \) and \(P(3) \) is quite far, while \(P(5) \) is somewhat closer—although in a few places there are some sizable errors, particularly in rows 5 and 6, which, of course, are discounted by measures \(\bar{M}_1 \) and \(\bar{M}_3 \). Thus one might conclude that a value of \(\bar{M}_1 \) of .05 or less indicates a near steady state condition, while a value for \(\bar{M}_2 \) of .10 or less suffices.

Also shown in Figure 5 is the steady state population availability, \(A(\infty) \), along with two transient \(A(t) \)'s. One of these, \(A(t)_{UP} \), assumes all units are operational at time zero, and the other, \(A(t)_{DN} \), assumes the opposite, namely, all units are down (in or awaiting repair). Note, as before, that \(A(t)_{UP} \) is much closer to \(A(\infty) \) than is \(A(t)_{DN} \), since \(A(\infty) \) is nearer to \(A(0)_{UP} = 1 \) than to \(A(0)_{DN} = 0 \).

As to which measure might be preferable, again subjectivity is required. Consider Figure 6, where \(P(1) \) for Cases 1, 11, and 12 is shown, along with the respective \(P(\infty) \), \(A(t) \), and \(A(\infty) \). In viewing the matrices, it appears that all are about the same distance from steady state. In looking at \(A(t)_{UP} \) and \(A(t)_{DN} \) versus \(A(\infty) \), perhaps one might say that Case 12 is the "poorest" case, while Case 1 is the "best." None of the measures indicates Case 12 to be the poorest, although \(\bar{M}_2 \) and \(\bar{M}_4 \) come closest to this. The measures \(\bar{M}_2 \) and \(\bar{M}_4 \) do indicate that Case 1 is the best.

In Figure 7 two more cases are compared, namely, Cases 2 and 6. Again it is difficult to judge which \(P(1) \) is the better, although in looking at the \(A(1) \)'s one might give "the edge" to Case 2. Here, however, \(\bar{M}_1 \) shows Case 2 to be preferable, while \(\bar{M}_2 \), \(\bar{M}_3 \), and \(\bar{M}_4 \) show the opposite.

It appears that no measure is superior, so that the choice should perhaps be the one that is computationally easiest to obtain. In view of
<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 11</th>
<th>Case 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(1))</td>
<td>(P(1))</td>
<td>(P(1))</td>
</tr>
<tr>
<td>[\begin{bmatrix} .62 & .29 & .07 & .01 & .00 & .00 \ .24 & .49 & .20 & .05 & .01 & .00 \ .10 & .33 & .36 & .18 & .03 & .00 \ .05 & .15 & .29 & .38 & .13 & .01 \ .01 & .07 & .14 & .33 & .40 & .07 \ .00 & .01 & .05 & .17 & .36 & .40 \end{bmatrix}]</td>
<td>[\begin{bmatrix} .68 & .25 & .06 & .01 & .00 & .00 \ .41 & .37 & .17 & .03 & .00 & .00 \ .17 & .29 & .37 & .14 & .02 & .00 \ .05 & .14 & .31 & .38 & .10 & .00 \ .01 & .04 & .15 & .34 & .39 & .06 \ .00 & .01 & .05 & .17 & .37 & .40 \end{bmatrix}]</td>
<td>[\begin{bmatrix} .62 & .29 & .07 & .01 & .00 & .00 \ .24 & .50 & .21 & .04 & .00 & .00 \ .10 & .35 & .39 & .14 & .02 & .00 \ .03 & .16 & .32 & .38 & .10 & .01 \ .01 & .05 & .15 & .34 & .39 & .06 \ .00 & .01 & .05 & .17 & .37 & .40 \end{bmatrix}]</td>
</tr>
</tbody>
</table>

\(P(\infty) \): .28 .34 .20 .12 .05 .01 .46 .28 .17 .07 .02 .00 .30 .36 .21 .10 .03 .00

\(\overline{M}_1 \): .376 .349 .359
\(\overline{M}_2 \): .505 .535 .521
\(\overline{M}_3 \): .319 .319 .315
\(\overline{M}_4 \): .366 .400 .376

\(A(t)_{UP} \): .917 .928 .920
\(A(t)_{DN} \): .064 .013 .014
\(A(\infty) \): .820 .714 .656

Figure 6.—\(P(1), \overline{M}_1(1) \) and \(A(1) \) for Cases 1, 11, 12.
<table>
<thead>
<tr>
<th>Case 2</th>
<th>Case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(1)$</td>
<td>$P(1)$</td>
</tr>
</tbody>
</table>
| \[
\begin{bmatrix}
.47 & .35 & .13 & .04 & .01 & .00 \\
.29 & .29 & .20 & .09 & .02 & .00 \\
.18 & .34 & .26 & .16 & .05 & .01 \\
.09 & .24 & .27 & .25 & .12 & .02 \\
.04 & .14 & .22 & .30 & .23 & .06 \\
.02 & .07 & .14 & .26 & .32 & .19 \\
\end{bmatrix}
| \[
\begin{bmatrix}
.32 & .36 & .20 & .09 & .03 & .00 \\
.20 & .34 & .25 & .15 & .05 & .01 \\
.12 & .27 & .26 & .22 & .10 & .02 \\
.06 & .19 & .24 & .28 & .18 & .05 \\
.03 & .11 & .19 & .30 & .27 & .10 \\
.01 & .05 & .12 & .25 & .33 & .22 \\
\end{bmatrix}
|

$P(\infty)$: \[
\begin{align*}
.28 & .34 & .20 & .12 & .05 & .01 \\
.14 & .26 & .23 & .21 & .12 & .04 \\
\end{align*}
|

\bar{M}_1: \[
.216 \quad .221 \\
\]

\bar{M}_2: \[
.335 \quad .275 \\
\]

\bar{M}_3: \[
.170 \quad .120 \\
\]

\bar{M}_4: \[
.246 \quad .199 \\
\]

$A(1)_{UP}$: \[
.951 \quad .879 \\
\]

$A(1)_{DN}$: \[
.229 \quad .193 \\
\]

$A(\infty)$: \[
.820 \quad .630 \\
\]

Figure 7.—$P(1)$, $\bar{M}_1(1)$ and $A(1)$ for Cases 2 and 6.
the theorems, M_1 and M_2 are computationally most efficient for large matrices, so that either of these might be an appropriate choice.
REFERENCES

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research Library
Vice President H. F. Bright
Dean Harold Liebowitz
Dean Henry Solomon

ONR
Chief of Naval Research
(Codes 200, 434)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
NavyData Automation Cmd
OG-994

Naval Aviation Integrated Log Support
HANMAC Tech Library
Naval Electronics Lab Library
Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library
Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Ship Eng Center
Washington, DC

Naval Ship R & D Dev Center
Naval Sea Systems Command
PNH 30611
Tech Library
Code 073

Naval Supply Systems Command
Library
Operations and Inventory Analysis

Naval War College Library
Newport

NUPERS Tech Library

NMSU

Integrated Sea Lift Study

USN Ammu Depot Earle

USN Postgrad School Monterey Library
Dr Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, NAD

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer
Commanding Officer
USN Francis Marion (LPA-249)

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmd & Cen Staff College

Army Logistics Mgt Center
Fort Lee

Commanding Officer, USA/D/NSRA
New Cumberland Army Depot
Philadelphia

Air Force Headquarters
AFASD-
LES
SAP/ALC
Griffins Air Force Base
Reliability Analysis Center

Gunter Air Force Base

Maxwell Air Force Base

Wright-Patterson Air Force Base
Log Command
Research Sch Log
AFASD/AR

Defense Documentation Center
National Academy of Sciences
Maritime Transportation Res Board Library

National Bureau of Standards
Dr S. H. Colvin
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

Weapon Systems Evaluation Group

British Navy Staff

National Defense Mgmt, Ottawa
Logistics, OR Analysis Establishment

American Power Jet Co
George Chernowitz

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole

Library

Logistics Management Institute
Dr Murray A. Geisler

MUTHIC
Dr Elliot Feldman

Rand Corporation

Library

Carnegie-Mellon University
Dean W. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof R. V. Dean
Prof M. Masarovic
Prof S. Zacks

Cornell University
Prof K. E. Beachhofer
Prof R. M. Conway
Prof Andrew Schultz, Jr.

Cowles Foundation for Research in Economics
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof N. A. Bradley

Harvard University
Prof K. J. Arrow
Prof M. C. Cochran
Prof Arthur Schliefer, Jr.

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson