Time-sharing, a General Ability
Abstract

The time-sharing ability of 18 students was measured under 8 separate dual-task (double-stimulation) conditions. Three task characteristics — input modality (auditory or visual), output modality (vocal or manual) and task difficulty (easy or difficult) — were systematically varied across conditions in an effort to manipulate the nature of the specific time-sharing demands imposed.

Each condition contained two of these characteristics in common with 3 of the remaining 7 conditions, one of the characteristics in common with 3 others, and none in common with the last condition.

Time-sharing efficiency was found to correlate across conditions that impose similar processing demands on the individual, but not across conditions imposing relatively dissimilar demands. We conclude on this basis that time-sharing performance is largely determined by several poorly coorelated, task-specific subcapacities rather than by a single general capacity or ability.
Is Time-Sharing a General Ability?

Human factors researchers have long assumed that a general time-sharing ability is influential in tasks such as piloting, driving and air-traffic control where high rates of information exchange are required between the operator and the environment. This belief has prompted a substantial research investment over the past three decades in efforts to develop measures of time-sharing that will predict performance in such tasks (e.g., Melton, 1947; Trankell, 1959; North and Gopher, 1976; and Demos, 1978). Much of this research has been based on a single-channel model of human information processing capacity. In this view, one's time-sharing ability is largely determined by the capacity of a single (central) processing structure through which most input-output transactions must be funneled. If this idea is correct, any measurement procedure that accurately reflects the individual's central processing capacity should be broadly predictive of time-sharing performance across a wide range of criterion situations.

An alternative view is possible, however. It could be that time-sharing performance is governed not by a single general capacity, but by several more specific subcapacities, each associated with a particular structure within the information-processing sequence. If such subcapacities were to some extent independent of one another and if their relative contributions to overall performance were to vary across time-sharing situations, the development of a single general predictor could prove a more complex task than has previously been assumed. These issues are examined in the experiment described in the present report.

Evidence consistent with the view that time-sharing is based upon several structure-specific subcapacities rather than upon a single general capacity appears in work recently completed at the University of Oregon. Some of
this work has been reported elsewhere (Hawkins, Church and deLemos, 1978). Subjects were tested in a variant of the double-stimulation paradigm in which the subject is required on each trial to make a speeded choice reaction to each of two distinct stimuli. The Task 1 stimulus (stimulus 1) appeared at the beginning of each trial, while the Task 2 stimulus (stimulus 2) appeared either simultaneously with stimulus 1 or following a variable delay ranging up to 1200 msec. Subjects were instructed to maintain a relatively stable mean reaction time (RT) to Task 1 across all interstimulus intervals, and were able to do so. We take this result to imply that the full force of the time-sharing demands imposed by the task combination at the shortest ISIs is manifested in performance on Task 2. Characteristic data patterns are illustrated in Figure 1.

The increase in RT to Task 2 at the shortest ISIs is called the psychological refractory period (PRP) effect. The presence of a PRP effect implies an inability to completely time-share the processing demands of the two tasks.

In some of the studies, stimulus 1 and stimulus 2 were either input through the same input modality (visual-visual) or through different modalities (auditory-visual). In other studies responses to the two stimuli were emitted through the same output modality (left hand manual-right hand manual) or through different modalities (vocal-right hand manual). In all studies two levels of Task 2 difficulty were presented and subjects were observed over several days of practice. Three of the findings of these studies are especially relevant to the present report.

First, we observed that when two simultaneous stimuli must share the same input modality (i.e., both stimuli were visual), time-sharing performance
Figure 1. Task 1 and Task 2 Reaction Time under conditions of double stimulation as a function of interstimulus interval.
Time-sharing

is poor relative to cases in which separate input modalities were used (one stimulus auditory, one visual). This result implies the existence of capacity limitations during input processing. These limitations appear to be manifested when multiple inputs must be processed through a single modality, but not otherwise. This effect resembles a phenomenon that Treisman and Davies (1973) have called structural interference. Second, we observed that when two simultaneous or near-simultaneous responses share the same output modality (i.e., each task entails a manual response), time-sharing performance is poorer than when separate output modalities are used. This result implies the presence of capacity-limited operations during output processing. Third, we observed that early in training the response retrieval demands of multiple tasks are mutually interfering, implying that response retrieval, or related activities (Keele, 1973) are governed by capacity-limited operations at the early stages of learning. We found that the rate at which retrieval processes automate, or lose their capacity-limited character with practice, varies across tasks. Consequently, at any given point prior to the very highest levels of training, some task combinations were observed to manifest time-sharing limitations during retrieval, whereas others did not.

The first two of these effects clearly reflect limitations that are task-specific. The third effect varies with the difficulty of the response retrieval demands imposed by the task, and thus is task-specific to some degree.

Considered together these findings indicate that different subcapacities are invoked under different time-sharing conditions. The results give no hint, however, regarding whether these subcapacities are correlated, or for that matter, whether the role they play in determining time-sharing performance is very important.
Recent work by Sverko (1977) raises the possibility that the sub-capacities underlying time-sharing are both important and uncorrelated. Sverko tested 60 subjects on four information-processing tasks presented both singly and in all possible pair-wise combinations. The tasks were chosen because of their simplicity of administration and the fact that they presumably tap different psychomotor and mental functions. The tasks included rotary pursuit, visual choice reaction time, mental arithmetic and auditory discrimination. All task pairings were performed under instructions to assign equal priority to both tasks.

Sverko sought evidence for a general time-sharing ability using two separate procedures. First, the performance of subjects on each task under each condition (including both single and dual task conditions) was correlated with that on each task under all other conditions. The resulting inter-correlation matrix was then subjected to a principle component analysis. If a general time-sharing factor was manifested in the data five factors should have emerged, four task-specific factors and a general time-sharing factor. In fact, only four factors could be extracted, and these were clearly task-specific. Second, a total performance decrement score was calculated for each task pairing. This score is simply the sum of the proportionate performance loss on the two tasks when paired, relative to when they are carried out singly. The performance decrement score for each task pairing was then correlated with that for each other task pairing with the constraint that no common tasks appeared across pairings. The obtained correlation was essentially zero in all cases. While Sverko's procedure seems generally adequate, one potentially important problem exists with the study; although subjects were instructed to give equal emphasis to the two tasks time-shared under each condition, Sverko had no way to assess the extent to which this
instruction was followed. If performance on a given task does not vary as a linear function of the amount of one's capacity devoted to that task, and if the partition of capacity between tasks varied across conditions, this could have produced artifactually deflated correlations among conditions. Moreover, all of Sverko's tasks were continuous, and it is unknown how subjects interleaved the two tasks. Different tasks could have been interleaved differently by the same subject.

Accordingly, our purpose in the present study was to assess the relatedness of some of the time-sharing subcapacities we had previously identified, and to do so under conditions in which close experimental control can be exerted over the priorities assigned by subjects to component tasks. Subjects were tested under eight separate time-sharing conditions, some relatively similar to one another with respect to the specific subcapacities they are presumed to stress, and some relatively dissimilar. If time-sharing performance is dominated by a single general capacity or by correlated subcapacities, one would expect to see high correlations in time-sharing performance, both between conditions that are similar and those that are dissimilar. If performance is governed by uncorrelated subcapacities, correlations should occur between similar but not between dissimilar conditions.

METHOD

Subjects. The subjects were 10 men and 8 women drawn from the University of Oregon paid subject pool. None of the subjects had previously participated in a dual-task experiment. All reported normal or normal-corrected vision and none reported a hearing deficit.

Procedure. Subjects were tested for 1.5 to 2 h on each of two consecutive days. Practice was given on all experimental conditions at the
beginning of day 1. Following practice on day 1 and beginning at the outset of day 2, subjects were tested for 84 trials under each of 8 time-sharing conditions. The order of the conditions was randomized across subjects and reversed across days within subjects.

Visual stimuli were displayed on a computer-controlled cathode ray tube situated in a small darkened subject cubicle. The subject was seated about 65 cm in front of the CRT display with the middle and index fingers of either the right hand or both hands (depending upon the condition) resting on piano-type response keys. Each trial began with the exposure of a fixation cross which remained in view in the center of the CRT screen for 500 msec. Under conditions in which two visual stimuli were presented, stimulus 1 appeared simultaneously with the offset of the fixation cross and .5 degrees to its left. Under conditions in which stimulus 1 was auditory, a pure 80 db(B) tone appeared binaurally over headphones, onsetting with offset of the fixation cross. Whether visual or auditory, stimulus 1 remained on for 500 msec. Following a stimulus onset asynchrony (SOA) of either 0, 50, 100, 200, 600, or 1200 msec, stimulus 2 appeared on the CRT screen .5 degrees to the right of the position that had been occupied by the fixation cross. When two visual stimuli were present, they subtended a visual angle of 1.6 degrees.

Under all conditions, instructions were to respond quickly and accurately and to treat Task 1 as primary. To facilitate the latter objective, verbal feedback concerning the pattern of Task 1 latencies was given following each trial block.

Time-sharing conditions. Eight time-sharing conditions were generated from the factorial combination of three binary variables. The three variables
were stimulus 1 modality (auditory or visual), response 1 modality (vocal or manual), and Task 2 difficulty (easy or difficult). The conditions are given in Table 1. Under all conditions Task 1 contained two stimulus

Insert Table 1 about here

alternatives, each requiring a unique response. Task 1 visual stimuli consisted of the upper-case letters H and N. The auditory Task 1 stimuli were an 800 and a 1200 hz tone. Under conditions in which Task 1 entailed a manual response, one stimulus required a response by the middle finger of the subject's left hand, and the other stimulus required a left-hand index finger response. Under vocal conditions, subjects responded with the word "RED" to one stimulus and with "GREEN" to the other. Response latencies under vocal conditions were measured by means of a voice-activated switching circuit.

Under all conditions stimulus 2 was visual and response 2 was manual. In the easy form of Task 2, stimuli were the digits 2 and 3. Subjects were instructed to respond with the index finger of the right hand when 2 appeared and with the middle finger of the same hand when 3 appeared. The difficult form of Task 2 consisted of two 4:1 S-R mappings: the digits 2, 5, 6 and 9 required a response by the index finger of the right hand and the digits 3, 4, 7 or 8 required a response by the middle finger of that hand.

Results and Discussion

Mean reaction time (RT) and proportion incorrect responses were calculated for each subject at each of the 6 SOAs for Tasks 1 and 2 under the 8 experimental conditions. The results, averaged across subjects, are given in Table 2. Two features of these data should be pointed out.
Table 1

Relations among the eight time-sharing conditions.

<table>
<thead>
<tr>
<th>Stimulus 1 - Visual,</th>
<th>Stimulus 1 - Auditory,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus 2 - Visual</td>
<td>Stimulus 2 - Visual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Easy Task 2</th>
<th>Difficult Task 2</th>
<th>Easy Task 2</th>
<th>Difficult Task 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1:1 S-R mappings)</td>
<td>(4:1 S-R mappings)</td>
<td>(1:1 S-R mappings)</td>
<td>(4:1 S-R mappings)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response 1 - Vocal, Manual,</th>
<th>VEV</th>
<th>VDV</th>
<th>AEV</th>
<th>ADV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response 1 - Vocal, Manual,</td>
<td>VEM</td>
<td>VDM</td>
<td>AEM</td>
<td>ADM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response 2 - Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response 2 - Manual</td>
</tr>
</tbody>
</table>
First, RT to Task 1 remained relatively invariant across SOAs. Second, a substantial increase in Task 2 latency between the 1200 msec and the 0 msec SOA (the PRP effect) was obtained under all conditions. These results indicate that we were successful in our effort to focus the effects of time-sharing onto Task 2 performance.

Two separate measures of time-sharing performance were used to evaluate the theoretical issues raised in the introduction. The first of these was the PRP effect (see above) which, we assumed, would vary as the inverse of the individual's time-sharing effectiveness. Correlations in PRP magnitude were calculated between all possible pairings of the 8 conditions. These correlations, and split-half reliabilities for all conditions, appear in Table 3.

The correlations are organized according to the number and type of attributes common to the two conditions correlated. It is clear from the table that substantially high correlations in PRP magnitude occur across these time-sharing conditions, even between those formally sharing no common attributes. These results indicate that PRP magnitude was influenced by a common factor across the 8 conditions. However, is time-sharing the common factor? It could be that the longer a person's RT to Task 1 the longer it will tend to be before full attention can be turned to processing stimulus 2, and hence the greater the delay in responding to that stimulus.
Table 2(a)

Mean reaction time and proportion errors (in parentheses) for stimulus 1 averaged across subjects at each SOA under each of the 8 time-sharing conditions.

Stimulus 1
Stimulus onset asynchrony (msec)

<table>
<thead>
<tr>
<th>Condition</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>600</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEM</td>
<td>631</td>
<td>627</td>
<td>630</td>
<td>627</td>
<td>623</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>(.049)</td>
<td>(.042)</td>
<td>(.064)</td>
<td>(.046)</td>
<td>(.032)</td>
<td>(.028)</td>
</tr>
<tr>
<td>ADM</td>
<td>640</td>
<td>654</td>
<td>638</td>
<td>626</td>
<td>615</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>(.038)</td>
<td>(.052)</td>
<td>(.028)</td>
<td>(.046)</td>
<td>(.028)</td>
<td>(.036)</td>
</tr>
<tr>
<td>VEM</td>
<td>538</td>
<td>542</td>
<td>533</td>
<td>526</td>
<td>528</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>(.050)</td>
<td>(.042)</td>
<td>(.030)</td>
<td>(.042)</td>
<td>(.028)</td>
<td>(.050)</td>
</tr>
<tr>
<td>VDM</td>
<td>556</td>
<td>557</td>
<td>543</td>
<td>545</td>
<td>550</td>
<td>552</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.028)</td>
<td>(.030)</td>
<td>(.034)</td>
<td>(.028)</td>
<td>(.028)</td>
</tr>
<tr>
<td>AEV<sup>a</sup></td>
<td>738</td>
<td>727</td>
<td>731</td>
<td>727</td>
<td>731</td>
<td>720</td>
</tr>
<tr>
<td>ADV<sup>a</sup></td>
<td>761</td>
<td>775</td>
<td>707</td>
<td>779</td>
<td>760</td>
<td>762</td>
</tr>
<tr>
<td>VEV<sup>a</sup></td>
<td>640</td>
<td>665</td>
<td>647</td>
<td>643</td>
<td>625</td>
<td>642</td>
</tr>
<tr>
<td>VDV<sup>a</sup></td>
<td>652</td>
<td>648</td>
<td>653</td>
<td>645</td>
<td>667</td>
<td>662</td>
</tr>
</tbody>
</table>

^aVocal trials were spot monitored for errors during practice.

Error rate was found to be negligible or nonexistent for all subjects at this time.
Table 2(b)

Mean reaction time and proportion errors (in parentheses) for stimulus 2, averaged across subjects at each SOA under each of the 8 time-sharing conditions.

Stimulus 2
Stimulus Onset Asynchrony (msec)

<table>
<thead>
<tr>
<th>Condition</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>600</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEM</td>
<td>1050</td>
<td>1010</td>
<td>950</td>
<td>840</td>
<td>521</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>(.028)</td>
<td>(.034)</td>
<td>(.050)</td>
<td>(.028)</td>
<td>(.036)</td>
<td>(.028)</td>
</tr>
<tr>
<td>ADM</td>
<td>1085</td>
<td>1041</td>
<td>982</td>
<td>896</td>
<td>776</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>(.076)</td>
<td>(.070)</td>
<td>(.071)</td>
<td>(.083)</td>
<td>(.083)</td>
<td>(.095)</td>
</tr>
<tr>
<td>VEM</td>
<td>781</td>
<td>751</td>
<td>703</td>
<td>666</td>
<td>469</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>(.048)</td>
<td>(.040)</td>
<td>(.030)</td>
<td>(.048)</td>
<td>(.064)</td>
<td>(.024)</td>
</tr>
<tr>
<td>VDM</td>
<td>979</td>
<td>925</td>
<td>876</td>
<td>750</td>
<td>649</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td>(.091)</td>
<td>(.093)</td>
<td>(.058)</td>
<td>(.099)</td>
<td>(.077)</td>
<td>(.056)</td>
</tr>
<tr>
<td>AEV</td>
<td>985</td>
<td>925</td>
<td>842</td>
<td>726</td>
<td>584</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>(.051)</td>
<td>(.056)</td>
<td>(.048)</td>
<td>(.050)</td>
<td>(.080)</td>
<td>(.056)</td>
</tr>
<tr>
<td>ADV</td>
<td>1059</td>
<td>1031</td>
<td>980</td>
<td>927</td>
<td>717</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>(.098)</td>
<td>(.065)</td>
<td>(.079)</td>
<td>(.078)</td>
<td>(.085)</td>
<td>(.087)</td>
</tr>
<tr>
<td>VEV</td>
<td>938</td>
<td>926</td>
<td>825</td>
<td>731</td>
<td>533</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>(.073)</td>
<td>(.070)</td>
<td>(.071)</td>
<td>(.063)</td>
<td>(.050)</td>
<td>(.058)</td>
</tr>
<tr>
<td>VDV</td>
<td>1051</td>
<td>1022</td>
<td>961</td>
<td>855</td>
<td>691</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>(.106)</td>
<td>(.105)</td>
<td>(.109)</td>
<td>(.091)</td>
<td>(.113)</td>
<td>(.085)</td>
</tr>
</tbody>
</table>
Table 3

Correlation in the magnitude of the psychological refractory period (PRP) effect as a function of the number of characteristics shared by two conditions. Condition codes and split-half reliabilities are given in the top portion of the table. A correlation coefficient of .40 is significant at the .05 level.

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
<th>Reliability</th>
<th>Code</th>
<th>Condition</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEM</td>
<td>.927</td>
<td>5</td>
<td>VEM</td>
<td>.960</td>
</tr>
<tr>
<td>2</td>
<td>ADM</td>
<td>.945</td>
<td>6</td>
<td>VDM</td>
<td>.849</td>
</tr>
<tr>
<td>3</td>
<td>AEV</td>
<td>.921</td>
<td>7</td>
<td>VEV</td>
<td>.912</td>
</tr>
<tr>
<td>4</td>
<td>ADV</td>
<td>.967</td>
<td>8</td>
<td>VDV</td>
<td>.765</td>
</tr>
</tbody>
</table>

No Common Characteristic

<table>
<thead>
<tr>
<th></th>
<th>r_1-8</th>
<th>r_2-7</th>
<th>r_3-6</th>
<th>r_4-5</th>
<th>Mean r^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.691</td>
<td>.494</td>
<td>.709</td>
<td>.435</td>
<td>.592</td>
</tr>
</tbody>
</table>

One Common Characteristic

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
<th>Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1-4</td>
<td>.777</td>
<td>.388</td>
<td>r_1-7</td>
</tr>
<tr>
<td>r_2-3</td>
<td>.744</td>
<td>.386</td>
<td>r_2-8</td>
</tr>
<tr>
<td>r_5-8</td>
<td>.396</td>
<td>.697</td>
<td>r_3-5</td>
</tr>
<tr>
<td>r_6-7</td>
<td>.391</td>
<td>.428</td>
<td>r_4-6</td>
</tr>
<tr>
<td>Mean r^a</td>
<td>.608</td>
<td>.488</td>
<td>.540</td>
</tr>
</tbody>
</table>

Two Common Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Input-Output</th>
<th>Input-Difficulty</th>
<th>Output-Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1-2</td>
<td>.624</td>
<td>r_1-3 = .713</td>
<td>r_1-5 = .462</td>
</tr>
<tr>
<td>r_3-4</td>
<td>.712</td>
<td>r_2-4 = .669</td>
<td>r_2-6 = .499</td>
</tr>
<tr>
<td>r_5-6</td>
<td>.777</td>
<td>r_5-6 = .632</td>
<td>r_3-7 = .720</td>
</tr>
<tr>
<td>r_7-8</td>
<td>.522</td>
<td>r_6-8 = .340</td>
<td>r_4-8 = .440</td>
</tr>
<tr>
<td>Mean r^a</td>
<td>.659</td>
<td>.568</td>
<td>.562</td>
</tr>
</tbody>
</table>

^aMean r was obtained by transforming each r to z, calculating mean z, then transforming back to r.
In other words, the delay in stimulus 2 processing which constitutes the PRP effect could be determined in large measure by how slow the person is to Task 1.

We evaluated this possibility by correlating the magnitude of the PRP effect with Task 1 latency at the shortest SOA. A correlation of .815 was obtained, indicating that those who were fastest on Task 1 indeed showed the smallest interference effect on Task 2. This result is consistent with the idea that the high correlations shown in Table 3 are an artifact of overall quickness. The possibility remains, however, that quick individuals are also good at time-sharing. To separate these two possibilities we developed a measure of time-sharing effectiveness that is not confounded by the individual's overall quickness. The measure, time-sharing efficiency (e_{ts}), is defined as the amount of Task 2 processing, in msec, per msec of Task 1 processing. That is,$$e_{ts} = \frac{RT_2^{1200} - (RT_2^{1200} - RT_1^0)}{RT_1^0},$$where RT_1^0 is the response latency to Task 1 at the 0 SOA, RT_2^{1200} is the response latency to Task 2 at the 1200 msec SOA, and RT_2^0 is the Task 2 latency at 0 SOA. Were no PRP effect present -- that is, should RT_2 not elevate at the shortest asynchrony -- the value of e_{ts} would be 1.00. If the PRP effect were to equal RT_1^0, as though no Task 2 processing took place prior to response 1, the value of e_{ts} would be 0.00. The measure will show a negative value should the PRP effect exceed Task 1 latency.

In an initial attempt to validate e_{ts} as a measure of time-sharing effectiveness, we looked at its behavior across conditions that should predictably differ in time-sharing difficulty. Three comparisons were of special interest: (1) between visual-visual and auditory-visual conditions;
(2) between manual-manual and vocal-manual conditions; and (3) between conditions containing the easier and those containing the more difficult Task 2. Table 4 shows the results of this analysis. Each \(e_{ts} \) entry represents the mean of four conditions: for instance, the visual-visual conditions consisted of VEV, VDV, VEM and VDM. The obtained pattern of results is consistent with what one would expect if \(e_{ts} \) is measuring time-sharing effectiveness. Efficiency is slightly lower when the same input modality is used by both tasks than when different modalities are used (c.f. Treisman, 1969; Hawkins, Church & deLemos, 1978), and is slightly lower when the same output modality is used by both tasks than when separate modalities are used (c.f. McLeod, 1978). Efficiency is also lower when the easier form of Task 2 is used. This counter-intuitive result is expected on the basis of prior data (Karlin and Kestenbaum, 1969; Hawkins, Church & deLemos, 1978), which indicate that an easy second task shows a larger PRP effect than does a difficult one. Data of this form have been interpreted by Keele (1973) through the assumption that much of the increased reaction time which the difficulty of the second task induces is due to processes that are time-consuming but automatic. As a result, the longer-lasting task is actually better able to be time-shared.

Having established that \(e_{ts} \) exhibits a measure of construct validity, we then determined the extent to which its value correlates across the 8 conditions of the experiment. These correlations and split-half reliabilities for conditions are given in Table 5. It is readily apparent that the

Insert Table 4 about here

Insert Table 5 about here

Table 4

Time-sharing efficiency as a function of input, output and difficulty level.

<table>
<thead>
<tr>
<th>Condition</th>
<th>e_{ts}</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual (Task 1)</td>
<td>.253</td>
<td>$p < .02$</td>
</tr>
<tr>
<td>Vocal (Task 1)</td>
<td>.356</td>
<td></td>
</tr>
<tr>
<td>Visual (Task 1)</td>
<td>.281</td>
<td>$p < .10$</td>
</tr>
<tr>
<td>Auditory (Task 1)</td>
<td>.328</td>
<td></td>
</tr>
<tr>
<td>Easy (Task 2)</td>
<td>.257</td>
<td>$p < .05$</td>
</tr>
<tr>
<td>Difficult (Task 2)</td>
<td>.352</td>
<td></td>
</tr>
</tbody>
</table>
Table 5

Correlation in time-sharing efficiency, e_{t8}, as a function of the number of characteristics shared by two conditions. Condition codes and split-half reliabilities are given in the top portion of the table. A correlation coefficient of .40 is significant at the .05 level.

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEM</td>
<td>.855</td>
</tr>
<tr>
<td>2</td>
<td>ADM</td>
<td>.668</td>
</tr>
<tr>
<td>3</td>
<td>AEv</td>
<td>.892</td>
</tr>
<tr>
<td>4</td>
<td>ADV</td>
<td>.927</td>
</tr>
<tr>
<td>5</td>
<td>VEM</td>
<td>.883</td>
</tr>
<tr>
<td>6</td>
<td>VDM</td>
<td>.789</td>
</tr>
<tr>
<td>7</td>
<td>VEV</td>
<td>.866</td>
</tr>
<tr>
<td>8</td>
<td>VDV</td>
<td>.663</td>
</tr>
</tbody>
</table>

No Common Characteristic

\[
\begin{align*}
\rho_{1-8} &= .087 \\
\rho_{2-7} &= .205 \\
\rho_{3-6} &= .147 \\
\rho_{4-5} &= .181 \\
\text{Mean } r^a &= .154
\end{align*}
\]

One Common Characteristic

\[
\begin{align*}
\rho_{1-4} &= .654 \\
\rho_{2-3} &= .483 \\
\rho_{5-8} &= .129 \\
\rho_{6-7} &= .520 \\
\text{Mean } r^a &= .465
\end{align*}
\]

Two Common Characteristics

\[
\begin{align*}
\rho_{1-2} &= .738 \\
\rho_{3-4} &= .411 \\
\rho_{5-6} &= .739 \\
\rho_{7-8} &= .520 \\
\text{Mean } r^a &= .621
\end{align*}
\]

\[
\begin{align*}
\rho_{1-3} &= .564 \\
\rho_{2-4} &= .605 \\
\rho_{5-7} &= .520 \\
\rho_{6-8} &= .079 \\
\text{Mean } r^a &= .461
\end{align*}
\]

\[
\begin{align*}
\rho_{1-5} &= .575 \\
\rho_{2-6} &= .423 \\
\rho_{3-7} &= .320 \\
\rho_{4-8} &= .239 \\
\text{Mean } r^a &= .424
\end{align*}
\]

\[
^a\text{Mean } r \text{ obtained by transforming } r \text{ to } z, \text{ calculating mean } z, \text{ then transforming back to } r.
\]
measure correlates reasonably well across many of the conditions that impose the same types of time-sharing demands. However, when different demands are imposed by a pair of conditions, little or no correlation is observed.

We interpret these results as demonstrating that time-sharing performance is governed by a number of poorly-correlated, task-specific subcapacities, rather than by a single, general capacity or by a set of correlated subcapacities. An individual who performs well in one time-sharing situation will not necessarily perform well in another unless the two situations stress the same set of subcapacities.

How well does this conclusion accord with the literature on time-sharing? While reports supposing the existence of a general time-sharing ability are numerous, we are aware of only three studies in which the supposition has actually been tested. One of these was the Sverko (1977) study, which we have discussed previously. A second was reported over 60 years ago by McQueen (1917). McQueen tested elementary school children on a variety of psychomotor and cognitive tasks, presented both singly and concurrently. Using correlational methods, McQueen was unable to find any evidence whatsoever for a general ability to time share, or as he put it, to "distribute attention" across multiple tasks. The third study was by Jennings and Chiles (1977) whose results have been interpreted as favoring the existence of a general time-sharing ability. A close examination of their results, however, indicates that while they may have identified a time-sharing factor, this factor is not general across the tasks they studied. Rather, what they have uncovered appears to be a task-specific subability, perhaps along the lines of those evidenced in the present study. The procedure used by Jennings and Chiles, like that of Sverko, was to factor analyze
the results of a set of tasks when these were carried out singly and in combination. One of the factors extracted from the analysis showed high loadings for two different low-signal density, visual monitoring tasks when these were performed concurrently with other tasks, but not when they were carried out singly. However, because no other tasks, including 2-dimensional tracking, loaded on this factor under concurrent conditions, the factor is clearly quite specific to a particular class of monitoring tasks.

Data that seem to provide at least indirect support for the idea of a general time-sharing ability have appeared in several studies examining the relationship between measured time-sharing and piloting performance (Melton, 1947; Trankell, 1959; Gopher and North, 1976; Damos, 1978). Even though the nature of the time-sharing predictor tasks differed substantially across these four studies, all obtained statistically reliable correlations. However, it is understandable that these results might be obtained even though time-sharing is not a general ability factor. Piloting is a highly complex task in which information input through visual, auditory, tactile and vestibular channels must be transformed, integrated and acted upon through a variety of output modalities. Consequently, at one time or another piloting probably taxes, and is influenced by, most of the subcapacities implicated in time-sharing. By the same reasoning, one would not expect that correlations between any single time-sharing measure and piloting performance would be substantial (and indeed they are not) for no single measure is apt to reflect all the subcapacities relevant to piloting. Thus a potentially useful selection strategy is to test candidates on a battery of tasks tapping a variety of time-sharing subcapacities. A multiple regression analysis of the data obtained from such an effort could both enhance the predictive
power of one's measurement procedures and lend insights into the relative contributions of the various time-sharing subcapacities in determining performance in the criterion situation.

Reference Note

References

Navy

1. Dr. Ed Aiken
 Navy Personnel R&D Center
 San Diego, CA 92152

1. Dr. Jack R. Borsting
 Provost & Academic Dean
 U.S. Naval Postgraduate School
 Monterey, CA 93940

1. Mr. Maurice Callahan
 Pers 23a
 Bureau of Naval Personnel
 Washington, DC 20370

1. Dr. Pat Federico
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1. CDR John Ferguson, MSC, USN
 Naval Medical R&D Command (Code 44)
 National Naval Medical Center
 Bethesda, MD 20014

1. Dr. John Ford
 Navy Personnel R&D Center
 San Diego, CA 92152

1. Dr. Richard Gibson
 Bureau of Medicine and Surgery
 Code 513
 Navy Department
 Washington, DC 20372

1. Capt. D.M. Gragg, MC, USN
 Head, Section on Medical Education
 UNIFORMED SERVICES UNIV. OF THE
 HEALTH SCIENCES
 6917 ARlington ROAD
 BETHESDA, MD 20014

1. Lt. Steven D. Harris, MSC, USN
 Code 6041
 Human Factors Engineering Division
 Crew Systems Department
 Naval Air Development Center
 Warminster, Pennsylvania 18974

Navy

1. CDR Wade Helm
 PAC Missile Test Center
 Point Mugu, CA 93041

1. LCDR Charles W. Hutchins
 Naval Air Systems Command
 444 Jefferson Plaza # 1
 1411 Jefferson Davis Highway
 Arlington, VA 20360

1. CDR Robert S. Kennedy
 Naval Aerospace Medical and
 Research Lab
 Box 29407
 New Orleans, LA 70189

1. Dr. Norman J. Kerr
 Chief of Naval Technical Training
 Naval Air Station Memphis (75)
 Millington, TN 38054

1. CHAIRMAN, LEADERSHIP & LAW DEPT.
 DIV. OF PROFESSIONAL DEVELOPMENT
 U.S. NAVAL ACADEMY
 ANNAPOLIS, MD 21402

1. Dr. William L. Maloy
 Principal Civilian Advisor for
 Education and Training
 Naval Training Command, Code 00A
 Pensacola, FL 32508

1. Capt. Richard L. Martin
 USS Francis Marion (LPA-249)
 FPO New York, NY 09501

2. Dr. James McGrath
 Navy Personnel R&D Center
 Code 306
 San Diego, CA 92152

1. Dr. William Montague
 LRDC
 UNIVERSITY OF PITTSBURGH
 3939 O'HARA STREET
 PITTSBURGH, PA 15213
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td>U.S. Naval Amphibious School Coronado, CA 92155</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Naval Health Research Center Attn: Library San Diego, CA 92152</td>
</tr>
<tr>
<td>Naval Medical R&D Command</td>
<td>National Naval Medical Center Bethesda, MD 20014</td>
</tr>
<tr>
<td>CAPT Paul Nelson, USN</td>
<td>Chief, Medical Service Corps Code 7 Bureau of Medicine & Surgery U. S. Department of the Navy Washington, DC 20372</td>
</tr>
<tr>
<td>JR. RICHARD J. Niehaus</td>
<td>OFFICE OF CIVILIAN PERSONNEL NAVY DEPT WASHINGTON, DC 20390</td>
</tr>
<tr>
<td>Library</td>
<td>Navy Personnel R&D Center San Diego, CA 92152</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Naval Research Laboratory Code 2627 Washington, DC 20390</td>
</tr>
<tr>
<td>OFFICE OF CIVILIAN PERSONNEL</td>
<td>(CODE 26) DEPT. OF THE NAVY WASHINGTON, DC 20390</td>
</tr>
<tr>
<td>JOHN OLSEN</td>
<td>CHIEF OF NAVAL EDUCATION & TRAINING SUPPORT PENSACOLA, FL 32509</td>
</tr>
<tr>
<td>Psychologist</td>
<td>ONR Branch Office 495 Summer Street Boston, MA 02210</td>
</tr>
<tr>
<td>Psychologist</td>
<td>ONR Branch Office 530 J. Clark Street Chicago, IL 60605</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Code 200 Arlington, VA 22217</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Code 441 Arlington, VA 22217</td>
</tr>
<tr>
<td>Personnel & Training Research Programs</td>
<td>(Code 458) Office of Naval Research Arlington, VA 22217</td>
</tr>
<tr>
<td>Psychologist</td>
<td>OFFICE OF NAVAL RESEARCH BRANCH 223 OLD MARYLEBONE ROAD LONDON, NW, 15TH ENGLAND</td>
</tr>
<tr>
<td>Psychologist</td>
<td>ONR Branch Office 1030 East Green Street Pasadena, CA 91101</td>
</tr>
<tr>
<td>Scientific Director</td>
<td>Office of Naval Research Scientific Liaison Group/Tokyo American Embassy APO San Francisco, CA 96503</td>
</tr>
</tbody>
</table>
Navy

1 Scientific Advisor to the Chief of Naval Personnel (Pers-Or)
 Naval Bureau of Personnel
 Room 4410, Arlington Annex
 Washington, DC 20370

1 LT Frank C. Petho, MSC, USNR (Ph.D)
 Code L51
 Naval Aerospace Medical Research Laboratory
 Pensacola, FL 32508

1 Dr. Richard Sorensen
 Navy Personnel R&D Center
 San Diego, CA 92152

1 CDR Charles J. Theisen, JR. MSC, USN
 Head Human Factors Engineering Div.
 Naval Air Development Center
 Warminster, PA 18974

1 W. Gary Thomson
 Naval Ocean Systems Center
 Code 7132
 San Diego, CA 92152

1 Dr. Ronald Weitzman
 Department of Administrative Sciences
 U.S. Naval Postgraduate School
 Monterey, CA 93940

1 DR. H.M. WEST III
 DEPUTY ADCNO FOR CIVILIAN PLANNING
 AND PROGRAMMING
 RM. 2625, ARLINGTON ANNEX
 WASHINGTON, DC 20370

Navy

1 Roger W. Remington, Ph.D
 Code L52
 NAMRL
 Pensacola, FL 32508

1 Dr. Bernard Riland
 Navy Personnel R&D Center
 San Diego, CA 92152

1 Mr. Arnold Rubenstein
 Naval Personnel Support Technology
 Naval Material Command (081244)
 Room 1044, Crystal Plaza #5
 2221 Jefferson Davis Highway
 Arlington, VA 20360

1 A. A. SJ颅OM
 TECH. SUPPORT, CODE 201
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1 Dr. Alfred F. Smoode
 Training Analysis & Evaluation Group
 (TAEG)
 Dept. of the Navy
 Orlando, FL 32813
Army

1 HQ USAREUE & 7th Army
 ODCOPS
 USAAREUE Director of GED
 APO New York 09403

1 DR. RALPH CANTER
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 DR. RALPH DUSEK
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 Dr. Myron Fischl
 U.S. Army Research Institute for the
 Social and Behavioral Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1 Dr. Michael Kaplan
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 Dr. Beatrice J. Farr
 Army Research Institute (PERI-OK)
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
 ATTN: PERI-OK
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1 Dr. Frederick Steinheiser
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

Air Force

1 Air Force Human Resources Lab
 AFHRL/PED
 Brooks AFB, TX 78235

1 Air University Library
 AUL/LSE 76/443
 Maxwell AFB, AL 36112

1 CDR. MERCER
 CNET LIAISON OFFICER
 AFHRL/FLYING TRAINING DIV.
 WILLIAMS AFB, AZ 85224

1 Dr. Roger Pennell
 AFHRL/TT
 Lowry AFB, CO 80230

1 Personnel Analysis Division
 HQ USAF/DPX/X
 Washington, DC 20330

1 Research Branch
 AFMPC/DPMY
 Randolph AFB, TX 78148

1 Dr. Marty Rockway (AFHRL/TT)
 Lowry AFB
 Colorado 80230

1 Jack A. Thorpe, Capt, USAF
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling AFB, DC 20332

1 Brian K. Waters, LCOL, USAF
 Air University
 Maxwell AFB
 Montgomery, AL 36112
Director, Office of Manpower Utilization
HQ, Marine Corps (MPS)
BCB, Bldg. 2009
Quantico, VA 22134

Mr. Richard Lanterman
PSYCHOLOGICAL RESEARCH (G-P-1/62)
U.S. COAST GUARD HQ
WASHINGTON, DC 20590

MCDEC
Quantico Marine Corps Base
Quantico, VA 22134

DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
Other DoD

1 Dr. Stephen Andriole
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Mr. Fredrick W. Suffa
MPP (A&R)
28269
Pentagon
Washington, D.C. 20301

Civil Govt

1 Dr. Susan Chipman
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Lorraine D. Eyde
Personnel R&D Center
U.S. Civil Service Commission
1900 EStreet NW
Washington, D.C. 20415

1 Dr. Joseph I. Lipson
Division of Science Education
Room W-638
National Science Foundation
Washington, DC 20550

1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Andrew R. Molnar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Dr. Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 C.S. Winiewicz
U.S. CIVIL SERVICE COMMISSION
REGIONAL PSYCHOLOGIST
230 S. DEARBORN STREET
CHICAGO, IL 60604
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550</td>
<td>1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235</td>
</tr>
<tr>
<td>1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213</td>
<td>1 Dr. John B. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>1 Dr. Michael Atwood
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110</td>
<td>1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND</td>
</tr>
<tr>
<td>1 Dr. Gerald V. Barrett
Dept. of Psychology
University of Akron
Akron, OH 44325</td>
<td>1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819</td>
</tr>
<tr>
<td>1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80302</td>
<td>1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304</td>
</tr>
</tbody>
</table>
1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. John B. Carroll
Psychometric Lab
Univ. of N. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. John Chiorini
Litton-Mellonics
Box 1286
Springfield, VA 22151

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Meredith Crawford
Department of Engineering Administration
George Washington University
Suite 805
2101 L Street N. W.
Washington, DC 20037

1 Dr. Ruth Day
Center for Advanced Study
in Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305

1 MAJOR I. N. EVONIC
CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA

1 Dr. Ed Feigenbaum
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138
1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HA RA STREET
PITTSBURGH, PA 15213

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HA RA STREET
PITTSBURGH, PA 15213

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Library
Human Resources Division
27857 Berwick Drive
Carmel, CA 93921

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Mr. Gary Irving
Data Sciences Division
Technology Services Corporation
2811 Wilshire Blvd.
Santa Monica CA 90403

1 DR. LAWRENCE B. JOHNSON
LAWRENCE JOHNSON & ASSOC., INC.
SUITE 502
2001 S STREET NW
WASHINGTON, DC 20009

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. David Kieras
Department of Psychology
University of Arizona
Tucson, AZ 85721

1 Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

1 LCOL. C.R.J. LA FLEUR
PERSONNEL APPLIED RESEARCH
NATIONAL DEFENSE HQS
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0K2

1 Dr. Alan Leagold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

1 Dr. Robert A. Leavit
Manager, Behavioral Sciences
The BDM Corporation
7915 Jones Branch Drive
McLean, VA 22101

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Pk.
Goleta, CA 93017

1 Dr. Richard B. Millward
Dept. of Psychology
Hunter Lab.
Brown University
Providence, RI 82912

1 Richard T. Mowday
College of Business Administration
University of Oregon
Eugene, OR 97403
1 Dr. Allen Munro
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

1 Dr. Donald A Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92039

1 Dr. Melvin R. Novick
Iowa Testing Programs
University of Iowa
Iowa City, IA 52242

1 Dr. Jesse Orlnasky
Institute for Defense Analysis
400 Army Navy Drive
Arlington, VA 22202

1 Dr. Robert Pachella
Department of Psychology
Human Performance Center
330 Packard Road
Ann Arbor, MI 48104

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Mr. A. J. Peach, President
Eclectech Associates, Inc.
P. O. Box 178
N. Stonington, CT 06359

1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207

1 DR. PETER POLKSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80302

1 DR. DIANE M. RAMSEY-KLEE
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265

1 MIN. RET. M. RAUCH
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 161
53 BONN 1, GERMANY

1 Dr. Peter B. Read
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92093

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820
Non Govt

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Brad Symson
Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Kikumi Tatsuoka
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

Non Govt

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 DR. PERRY THORNDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Varrel Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. David J. Weiss
W660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044