Self esteem, problem solving, information search, information acquisition, performance.

Weiss (1977, 1978) has shown that low self esteem workers are more likely to model the role behaviors and work values of superiors than are high self esteem workers. He has argued that new employees are "problem solvers" attempting to determine the most appropriate role behaviors for their new work situation. He has also argued that high self esteem individuals search for less information on problem solving tasks and are therefore less likely to seek and use models.
to help them define their roles.

This study examined whether self esteem is, in fact, negatively related to information search. It also examined whether the greater information search among low esteem individuals would result in more effective performance on a problem solving task where search is functional. Results showed that, as expected, low self esteem subjects searched for more information, search was functional and low self esteem subjects were significantly better performers on the task. The results are contrasted with previous studies of self esteem and performance and discussed in terms of person x situation interactions and the functional and dysfunctional aspects of high self esteem in relation to various types of organizational problems.
Self Esteem, Information Search
and Problem Solving Efficiency

Howard M. Weiss
and
Partick A. Knight
Purdue University

Prepared for
Organizational Effectiveness Research Program
Office of Naval Research

Contract N00014-78-C0609
NR 170-876

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.
Abstract

Weiss (1977, 1978) has shown that low self esteem workers are more likely to model the role behaviors and work values of superiors than are high self esteem workers. He has argued that new employees are "problem solvers" attempting to determine the most appropriate role behaviors for their new work situation. He has also argued that high self esteem individuals search for less information on problem solving tasks and are therefore less likely to seek and use models to help them define their roles.

This study examined whether self esteem is, in fact, negatively related to information search. It also examined whether the greater information search among low esteem individuals would result in more effective performance on a problem solving task where search is functional. Results showed that, as expected, low self esteem subjects searched for more information, search was functional and low self esteem subjects were significantly better performers on the task. The results are contrasted with previous studies of self esteem and performance and discussed in terms of person x situation interactions and the functional and dysfunctional aspects of high self esteem in relation to various types of organizational problems.
Weiss (1977, 1978) has shown that subordinates with low self esteem are more likely to imitate the role behavior of their supervisors than are those with high self esteem. He has argued that new employees are "problem solvers" who are attempting to determine which behaviors are appropriate for their new roles and are actively searching for role defining information. As part of their search, they try to observe the behavior of key role models to help them guide their own activities. Weiss has suggested that differences in self esteem will, however, influence the extent of information search. High self esteem individuals generally have more confidence in their initial approaches to problems and will therefore seek less information before offering solutions and making decisions. Thus, new employees with high self esteem will search for less external role defining information and, as a result, make less use of role models.

Although a number of researchers have shown that uncertainty increases information search (Berlyne, 1960; Crawford 1974; Lanzetta and Driscoll, 1968) and there is limited evidence to suggest that manipulated expectations of task success influence search activities (Lanzetta, 1963; Rotton, 1973), no research exists to support the negative relationship between self esteem and information acquisition suggested by Weiss. Since this relationship is critical to the explanation of self esteem influences on worker imitation, the first purpose of this study was to see if this relationship does, in
Self esteem

fact, exist. Specifically, it was expected that when engaged in a problem solving task individuals with low self esteem would search for more information than would those with high self esteem before offering problem solutions.

Although research on differences in imitation led to this investigation of self esteem and information acquisition, it is clear that any relationship between these two variables has broader organizational implications. Adequate information search is obviously an important component of effective problem solving and decision making in organizational and non-organizational settings (Ebert and Mitchell, 1975; Janis and Mann, 1977). Janis and Mann, for example, stress the value of "vigilant information processing" characterized by extensive information search activities when making decisions. Mitchell (1978) has noted that individuals in organizations too often make decisions using limited information. Thus, factors which tend to diminish search can lead to ineffective performance on the part of problem solvers and decision makers in organizations.

The utility of information search coupled with a negative relationship between search and self esteem leads to the somewhat surprising suggestion that on certain problem solving tasks low self esteem individuals may be more effective performers. This prediction is surprising since most discussions of the relationship between self esteem and performance have emphasized the dysfunctional aspects of low self esteem. Korman (1970), for example, has argued that people are motivated to perform in a manner consistent with their self images. As a result, he predicts generally better performance from high self esteem individuals. Lawler (1971) has suggested that workers with low self esteem have lower effort - performance expectancies which
result in lower effort and poorer performance. In support, a substantial number of studies have demonstrated a positive relationship between self esteem and task performance. (See reviews by Dipboye, 1977 and Korman, 1970; 1976.)

The superior performance of high self esteem workers is generally thought to result from their greater effort. However, since effort is not always the critical factor in determining performance (Lifter, Bass and Nussbaum, 1971) a positive relationship between self esteem and worker effectiveness might not be expected for all tasks. Task demands and characteristics should influence the effects of self esteem.

In this study, the effect of self esteem was examined for a problem solving task where information search is functional. If, as hypothesized, individuals with high self esteem engage in more limited search behavior they should not perform as well on the task as individuals with low self esteem. As a result, rather than the more traditional positive correlation between self esteem and task performance, a negative correlation should be found. Testing this proposition was the second purpose of this study.

Method

Procedure

Subjects were recruited to participate in a problem solving task. Upon arrival, each subject was ushered into a small room where, in the absence of the experimenter, he completed a self esteem inventory. The experimenter then returned to the room and administered the problem solving task. After completing the task the subject was debriefed and dismissed.
Subjects

Subjects were 41 male undergraduates enrolled in the introductory psychology course at Purdue University. Their participation was in partial fulfillment of class requirements.

Task

The problem solving task was originally used by Wason (1960). Each subject was given the numbers 2, 4, 6 and was told that these three numbers conformed to a particular relational rule known by the experimenter. The subject's problem was to determine the correct rule. Each subject was to search for information to help him solve the problem by generating sets of three numbers which the experimenter would classify as conforming or not conforming to the rule. The subject could ask the experimenter about as many sets of numbers as he wished. Only when he was confident that he had discovered the rule was he to present the rule to the experimenter who would tell him whether or not it was correct. If he gave the correct rule, the task was over. If he did not he was to continue searching for information by generating more sets of numbers until he was again confident he knew the rule. This process continued until he either solved the problem or felt he was unable to answer correctly and asked to stop. As in Wason's experiments, each subject was allowed to keep a written record of his numbers and his rules and he was told to present a solution only when he was confident it was correct. The rule was that the numbers are in increasing order of magnitude.
Two indices of information search were calculated; the amount of information sought (sets of numbers) before the first problem solution was offered and, since the first solutions offered by all subjects were incorrect, the amount of information sought per problem solution offered.

Self Esteem

Self esteem was measured using the Rosenberg Self Esteem Inventory (Rosenberg, 1960). The scale asks respondents to indicate the extent to which they agree or disagree, using a four point Likert type format, with ten statements about their own perceived worth and competence. For this sample, the mean self esteem score was 32.33 with a standard deviation of 3.61. Both values are extremely similar to those found by Weiss (1977, 1978) using the same scale on a managerial sample. In this study, the coefficient alpha internal consistency reliability was .76.

Results

The average amount of information requested by all subjects before offering their first problem solutions was 1.6 (s.d.=1.4). Three people felt confident enough to offer their initial solution without requesting any information, while one person inquired about seven sets of numbers before venturing his first hypothesis. For each solution offered subjects requested an average of 2.1 pieces of information (s.d.=1.3). The average amount of information requested per solution ranged from .67 (one subject offered three solutions for every two pieces of information
he requested) to 6.14.

It seems clear that these subjects comprise a fairly confident group of problem solvers. A relatively small amount of information was requested prior to offering solutions to the problem. Yet it is also clear that there was a substantial amount of variance in the subjects' information search behavior. The initial expectation of this study was that these differences in the amount of information requested would be significantly correlated with self esteem, with low self esteem subjects requesting more information.

As can be seen in Table 1, this expectation was strongly supported. The correlation between subjects' self esteem and the amount of information sought before offering the initial problem solution was $r = -0.31$ ($p < 0.05$). The correlation between self esteem and the average amount of information requested per solution presented was $r = -0.42$ ($p < 0.01$). These correlations indicate that, on this task, low self esteem subjects requested more information before they were willing to offer solutions to the problem.

The second expectation of this study was that self esteem would be negatively related to problem solving efficiency. Relevant results are also presented in Table 1. As expected, subjects with low self esteem were significantly more efficient at solving the problem than were subjects with high self esteem. The correlation between self esteem and the number of incorrect solutions that were offered by the subjects before they gave
the correct solution or gave up was \(r = .41 \) \((p < .01) \). Approximately one quarter of all subjects never obtained the correct solution and the point biserial correlation between obtaining the correct solution and self esteem was \(r = -.31 \) \((p < .05) \). In sum, as expected, low self esteem subjects are significantly more efficient performers on this task. They offered fewer incorrect solutions and were more likely to correctly solve the problem.

Finally, the negative correlation between self esteem and task performance was based upon the functional value of information search. To assess the relationship between search behavior and problem solving efficiency, the average amount of information sought before offering correct answers was compared with the average amount of information sought before offering incorrect answers. Before offering their correct solutions, subjects inquired about an average of 3.03 sets of numbers. This was significantly higher \((t = 3.19, \text{d.f.} = 30, p < .01) \) than the 1.86 sets of numbers presented before offering incorrect solutions \(^1\) and indicates that subjects searched for more information before presenting correct solutions than they did before presenting incorrect solutions. In addition, both the amount of information sought before offering the first rule and the average amount sought before each rule was offered were significantly and negatively correlated with the number of incorrect solutions \((r = -.43 \text{ and } r = -.41, \text{respectively, both significant at } p < .01) \).

In summary, low self esteem subjects searched for more information,
information search was related to problem solving efficiency and, as expected, low self esteem subjects were more successful at the task.

Discussion

In this study, a negative relationship was found between self esteem and both information search and problem solving efficiency. Low self esteem subjects acquired more information and performed significantly better than did subjects with high self esteem. These findings are particularly surprising and interesting given the fairly substantial number of studies in the organizational psychology literature in which low self esteem has been shown to have dysfunctional consequences (Dipboye, 1977; Korman 1970; 1976).

It is clear that the information search requirements of the specific task of this study greatly influenced the differences between these results and previous self esteem findings and this fact demonstrates once again the need to take situations into account when trying to understand the effects of personality on behavior (Magnusson and Endler, 1977). Any relationship between self esteem and task performance, rather than being uniformly positive as implied by most previous research, will depend upon the particular characteristics and demands of the task and situation.

For example, it has already been suggested that the effort requirements of a task will affect the relationship between self esteem and performance. Where effort is not a significant determinant of task success, effort differences between high and low self esteem workers will not lead to differences in their effectiveness.
The results of this study also indicate the importance of the information search requirements of a task on self esteem-task performance relationships. Since low self esteem individuals generally search for more information on problem solving tasks, they should be more effective performers on those problems where search is functional. Certainly, in a number of situations where careful deliberation is required the individual with a tendency to "shoot from the hip" will be at a severe disadvantage. The findings of this study show this to be true.

The negative relationship between self esteem and performance found here should not be expected for all problem solving tasks. Even for problems where some information search is functional, extensive search is not necessarily so (Janis and Mann, 1977). Under conditions where the correct solution is obvious, the greater search of low self esteem individuals will not result in a performance advantage. Similarly, on some tasks performance results more from effective implementation of any of a number of workable problem solutions than from finding the one best solution. Here the high self esteem individual who has more confidence in his solution may implement it more effectively.

Search entails costs of both time and resources. Task efficiency often must be judged by weighing the benefits of arriving at the best solution against the costs of reaching and implementing it. For any particular task, one might conceptualize a search utility curve with a point where the costs of information acquisition overcome the benefits. The exact shape of the curve and the point where search becomes dysfunctional will vary across tasks and so too will the relative effectiveness of individuals with high or low self esteem. On one task where the benefits
of information search are not soon outweighed by the costs (e.g. the correct solution is not obvious, the risks of a wrong solution more substantial) the more extensive information search of individuals with low self esteem may give them a performance advantage. On other tasks, where the costs of search soon outweigh the benefits, high self esteem performers may be more effective.

The implications of the present study are not limited to issues of self esteem and performance. It has become fashionable to discount the importance of personality variables for explaining behavior in organizations and elsewhere. Certainly, the results presented here, taken in conjunction with previous self esteem results, again illustrate the futility of expecting across the board relationships between individual difference variables and various criteria. However, they also illustrate that personality variables like self esteem can be useful predictors of these same criteria if careful attention is paid to behavioral expectations and task and situational requirements.
Footnotes

This research was supported by the Organizational Effectiveness Research Program, Office of Naval Research, contract N00014-78-C-0609 to the senior author.

Requests for reprints should be sent to Howard M. Weiss, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907.

1This t-test for non independent samples was conducted comparing information search before correct and incorrect solutions only for those 31 subjects who eventually obtained the correct answer. Inclusion of data from subjects who never obtained the correct answer did not change the results.
References

TABLE 1

Correlations between Self Esteem and Information Search

<table>
<thead>
<tr>
<th>Information Requested</th>
<th>Self Esteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>before offering 1st solution</td>
<td>-.31*</td>
</tr>
<tr>
<td>Information requested per solution offered</td>
<td>-.42**</td>
</tr>
</tbody>
</table>

Correlations between Self Esteem and Task Performance

<table>
<thead>
<tr>
<th>Task Performance</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of incorrect solutions</td>
<td>.41**</td>
</tr>
<tr>
<td>Obtaining correct solution</td>
<td>-.31*</td>
</tr>
</tbody>
</table>

** p < .01
* p < .05
LIST 1

MANDATORY

Office of Naval Research (3 copies)
(Code 452)
800 N. Quincy St.
Arlington, Virginia 22217

Defence Documentation Center (12 copies)
Accessions Division
ATN: DDC-TC
Cameron Station
Alexandria, Virginia 22314

Commanding Officer
Naval Research Laboratory (6 copies)
Code 2627
Washington, D.C. 20375

Science and Technology Division
Library of Congress
Washington, D.C. 20540

LIST 2

ONR FIELD

Commanding Officer
ONR Branch Office
Bldg. 114, Section D
666 Summer St.
Boston, Massachusetts 02210

Psychologist
ONR Branch Office
Bldg. 114, Section D
666 Summer St.
Boston, Massachusetts 02210

Commanding Officer
ONR Branch Office
536 S. Clark St.
Chicago, Illinois 60605

LIST 3

ARPA

Director (3 copies)
Program Management
ARPA, Room 813
1400 Wilson Blvd.
Arlington, Virginia 22209

Director
Cybernetics Technology Office
ARPA, Room 625
1400 Wilson Blvd.
Arlington, Virginia 22209
LIST 4

PRINCIPAL INVESTIGATORS

Dr. Earl A. Alluisi
Performance Assessment Laboratory
Old Dominion University
Norfolk, Virginia 23508

Dr. James A. Bayton
Department of Psychology
Howard University
Washington, D. C. 20001

Dr. H. Russell Bernard
Department of Sociology and Anthropology
West Virginia University
Morgantown, West Virginia 26506

Dr. Arthur Blaiwes
Human Factors Laboratory
Code N-71
Naval Training Equipment Center
Orlando, Florida 32813

Dr. Milton R. Blood
College of Industrial Management
Georgia Institute of Technology
Atlanta, Georgia 30332

Dr. David G. Bowers
Institute for Social Research
P.O. Box 1248
University of Michigan
Ann Arbor, Michigan 48106

Dr. Joseph V. Brady
The Johns Hopkins University
School of Medicine
Division of Behavioral Biology
Baltimore, Maryland 21205

Dr. C. Brooklyn Derr
Visiting Associate Professor
325-C Milton Benmion Hall
University of Utah
Salt Lake City, Utah 84112

Dr. Norman G. Dinges
The Institute of Behavioral Sciences
250 Ward Avenue - Suite 226
Honolulu, Hawaii 96814

Dr. Carson K. Eoyang
Naval Postgraduate School
Department of Administrative Sciences
Monterey, California 93940

Dr. John R. P. French, Jr.
Institute for Social Research
University of Michigan
Ann Arbor, Michigan 48106

Dr. Paul S. Goodman
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr. J. Richard Hackman
School of Organization and Management
56 Hillhouse Avenue
Yale University
New Haven, Connecticut 06520

Dr. Asa G. Hilliard, Jr.
The Urban Institute for Human Services, Inc.
P. O. Box 15068
San Francisco, California 94115

Ms. Kirsten Hinsdale
Vice-President, Research & Development
Validated Instruction Associates, Inc.
P. O. Box 386
Albion, Michigan 49224

Dr. Edwin Hollander
Department of Psychology
State University of New York at Buffalo
4230 Ridge Lea Rd.
Buffalo, New York 14226

Dr. Charles L. Hulin
Department of Psychology
University of Illinois
Champaign, Illinois 61820

Dr. Faris Kirkland
University City Science Center
Center for Social Development
3624 Science Center
Philadelphia, Pennsylvania 19104
LIST 4 (cont'd.)

Dr. Kudi Klaus
Syracuse University
Public Administration Department
Maxwell School
Syracuse, New York 13210

Dr. Arthur L. Korotkin
Vice President and Director
Washington Office
Richard A. Gibboney Associates, Inc.
10605 Concord St. - Suite 203 A
Kensington, Maryland 20795

Dr. Edward E. Lawler
Battelle Human Affairs Research Centers
4000 N.E., 41st St.
P.O. Box 5395
Seattle, Washington 98105

Dr. Arlie Y. Lewin
Duke University
Duke Station
Durham, North Carolina 27706

Dr. Morgan W. McCaffy, Jr.
Center for Creative Leadership
P.O. Box P-1
Greensboro, North Carolina 27402

Dr. Terence R. Mitchell
School of Business Administration
University of Washington
Seattle, Washington 98195

Dr. William H. Mobley
College of Business Administration
University of South Carolina
Columbia, South Carolina 29208

Dr. Robert Morrison
Navy Personnel R&D Center
San Diego, California 92152

Dr. John M. Neale
State University of New York
at Stony Brook
Department of Psychology
Stony Brook, New York 11794

Dr. Peter G. Nordlie
Human Sciences Research, Inc.
7710 Old Springhouse Rd.
McLean, Virginia 22101

Dr. Robert D. O'Connor
Behavior Design, Inc.
11212 N. May Ave. - Suite 111
Oklahoma City, Oklahoma 73120

Dr. Manuel Ramirez
Systems and Evaluations
232 Swanton Blvd., P.O. Box 5395
Santa Cruz, California 95060

Dr. Irwin Sarason
Department of Psychology
University of Washington
Seattle, Washington 98195

Dr. Saul B. Sells
Institute of Behavioral Research
Drawer C
Texas Christian University
Fort Worth, Texas 76129

Dr. H. Wallace Sinaiko
Program Director
Manpower Research & Advisory Services
Smithsonian Institution
801 N. Pitt St. - Suite 120
Alexandria, Virginia 22314

Mrs. Alice I. Snyder
Anthropological Inquiry Services
1749 Navaja Lane
El Cajon, California 92020

Dr. Bertram I. Spector
CACI, Inc. - Federal
Ann Arbor Office
1325 S. Maple Rd.
Ann Arbor, Michigan 48103

Dr. Richard Steers
Graduate School of Management and Business
University of Oregon
Eugene, Oregon 97403

Dr. Philip G. Zimbardo
Department of Psychology
Stanford University
Stanford, California 94305
LIST 4 (cont'd.)

Dr. Robert J. Anderson
MATHTECH, Inc.
P.O. Box 2392
Princeton, New Jersey 08540

Dr. Les Cohen
Information Spectrum, Inc.
1745 S. Jefferson Davis Highway
Arlington, Virginia 22202

Dr. Richard Morey
Duke University
Graduate School of Business Administration
Durham, North Carolina 27706
LIST 5
MISCELLANEOUS

Air Force

AFOSR/NL (Dr. Fregly)
Building 410
Bolling AFB
Washington, D. C. 20332

Military Assistant for Human Resources
OAD (E&LS) ODDR&E
Pentagon 30129
Washington, D. C. 20301

AFMPC/DPMYP
(Research and Measurement Division)
Randolph AFB, Texas 78148

Air University Library/LSE 76-443
Maxwell AFB, Alabama 36112

Air Force Institute of Technology
AFIT/LSGR (Lt.Col. Umstot)
Wright-Patterson AFB, Ohio 45433

Army

Office of the Deputy Chief of Staff
for Personnel, Research Office
ATTN: DAPE-PBR
Washington, D. C. 20310

Army Research Institute (2 copies)
5001 Eisenhower Ave.
Alexandria, Virginia 22333

ARI Field Unit - Leavenworth
P. O. Box 3122
Fort Leavenworth, Kansas 66027

Headquarters FORSCOM
ATTN: AFPR-HR
Ft. McPherson, Georgia 30330

CAPT Joseph Weker
Department of the Army
Headquarters, 32D Army Air
Defense Command
APO New York 09175

Marine Corps

Dr. A. L. Slafkosky
Code RD-1
HQ U. S. Marine Corps
Washington, D. C. 20380

Commandant of the Marine Corps
(Code MPI-20)
Washington, D. C. 20380

Coast Guard

Joseph J. Cowan
Chief, Psychological Research Branch
U. S. Coast Guard (G-P-1/2/62)
Washington, D. C. 20590

Navy

Bureau of Naval Personnel
Scientific Advisor (Pers Or)
Washington, D. C. 20370

Bureau of Naval Personnel (Pers 6)
Assistant Chief of Naval Personnel
for Human Resource Management
Washington, D. C. 20370

Bureau of Naval Personnel (Pers 6a3)
Human Resource Management
Washington, D. C. 20370

CAPT Paul D. Nelson, MSC, USN
Director of Manpower & Facilities
(Code 60)
Navy Medical R&D Command
Bethesda, Maryland 20014

CAPT H. J. M. Connery, MSC, USN
Navy Medical R&D Command
Bethesda, Maryland 20014

Superintendent (Code 1424)
Naval Postgraduate School
Monterey, California 93940
LIST 5 (cont’d.)

Professor John Senger
Operations Research & Admin. Science
Naval Postgraduate School
Monterey, California 93940

Training Officer
Human Resource Management Center
Naval Training Center (Code 9000)
San Diego, California 92133

Scientific Director
Naval Health Research Center
San Diego, California 92152

Navy Personnel R&D Center (2 copies)
San Diego, California 92152

Commanding Officer
Naval Submarine Medical Research Lab.
Naval Submarine Base
New London, Box 900
Groton, Connecticut 06340

Commanding Officer
Naval Training Equipment Center
Technical Library
Orlando, Florida 32813

NAMRL, NAS
Pensacola, Florida 32508

Lt. Rebecca G. Vinson, USN
Rating Assignment Officer
Bureau of Naval Personnel (Pers 5151)
Washington, D. C. 20370

Chief of Naval Technical Training
Code 0161
NAS Memphis (75)
Millington, Tennessee 38054

Human Resource Management Center
Box 23
FPO New York 09510

Human Resource Management Detachment
Naples
Box 3
FPO New York 09521

Human Resource Management Detachment Rota
Box 41
FPO New York 09540

Human Resource Management Center
Norfolk
5621-23 Tidewater Dr.
Norfolk, Virginia 23511

Human Resource Management Center
Building 304
Naval Training Center
San Diego, California 92133

Office of Naval Research (Code 200)
Arlington, Virginia 22217

ACOS Research & Program Development
Chief of Naval Education & Training (N-5)
Naval Air Station
Pensacola, Florida 32508

Human Resource Management School
Naval Air Station Memphis (96)
Millington, Tennessee 38054

Bureau of Naval Personnel (Pers 65)
Washington, D. C. 20370

Director, Human Resource Training Dept.
Naval Amphibious School
Little Creek
Naval Amphibious Base
Norfolk, Virginia 23521

Naval Material Command
Management Training Center (NMAT 09M32)
Room 150 Jefferson Plaza, Bldg. #2
1421 Jefferson Davis Highway
Arlington, Virginia 20360

Commanding Officer
HRMC Washington
1300 Wilson Blvd.
Arlington, Virginia 22209

Head, Research & Analysis Branch
Navy Recruiting Command (Code 434)
801 N. Randolph St., Room 8001
Arlington, Virginia 22203