Design Considerations for Improved Fluidic Input Servovalve Performance

By Richard Deadwyler
Francis M. Manion

U.S. Army Electronics Research and Development Command
Harry Diamond Laboratories
Adelphi, MD 20783

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
A study has been made to determine how the performance of two-stage fluidic input servovalves can be improved. The first stage of the servovalve consists of a fluidic amplifier that is coupled to a set of input bellows, which in turn is coupled to a flapper nozzle valve, and the second stage consists of a sliding spool. At present, fluidic input servovalves have time constants of approximately 15 ms. This study is primarily concerned with determining the first-stage design changes needed to obtain overall fluidic input servovalve time constants of 1 to 5 ms and to reduce leakage flow.
Analysis of the first-stage flapper indicates that the servovalve time constant can be minimized by minimizing the area of the input bellows. The bellows area is the only first-stage servovalve parameter that can be changed to decrease the servovalve time constant without necessitating additional parameter changes. Moreover, minimizing the bellows area also reduces the leakage flow in the servovalve.
CONTENTS

1. INTRODUCTION .. 5

2. DESIGN CONSIDERATIONS .. 7
 2.1 Derivation of Servovalve Transfer Function 7
 2.2 Fluidic Amplifier Leakage Flow 17

3. TEST RESULTS .. 18

4. CONCLUSIONS ... 20

LITERATURE CITED ... 21

NOMENCLATURE .. 23

DISTRIBUTION ... 25

FIGURES

1 Two-stage electrohydraulic servovalve 6
2 Two-stage fluidic input servovalve 9
3 Fluidic input servovalve .. 10
4 Torques acting on flapper .. 11
5 Flapper deflection and bending angle 12
6 Fluidic input servovalve block diagram 14
7 Fluidic input servovalve frequency response 19
1. INTRODUCTION

The control or power element in many hydraulic feedback control systems is the servovalve. The servovalve varies the rate and the direction of flow of fluid to a fluid motor or an actuator by metering the hydraulic fluid through controlled orifices. A large number of servovalves are electrohydraulic. This type is widely used because electrical devices are ideal for sensing, signal amplification, and computation. On the other hand, the power output and the compactness of hydraulic actuators make them ideally suited as power devices. Thus, the electrohydraulic servovalve serves as an interface as well as a power element in control systems. It converts low-power electrical signals into motion of a valve, which in turn controls large flows or pressures to a hydraulic actuator.

The two-stage electrohydraulic valve (fig. 1) has wide usage and is of primary interest in this study. The two-stage servovalve usually has a nozzle flapper valve for the first or primary stage. The flapper valve is used with the torque motor (fig. 1) to provide a hydraulic pressure or force to move the second- or power-stage spool. The combined torque motor-flapper valve is frequently called a hydraulic amplifier. This type of hydraulic amplifier is well suited for use as a first stage because it has an extremely lightweight moving element (the flapper), which requires very small magnetic forces, thus minimizing the electrical input power required for any given response characteristic. It has comparatively high leakage flow, but since the first stage need not be large, its flow consumption may be held to less than 10 percent of the total flow across the power spool.

The second or power stage in the servovalve in figure 1 employs a spool or a sliding element that moves in a direction perpendicular to the static pressure force or the flow of fluid. It meters the flow of high-pressure fluid to the actuator. This sliding valve has relatively little leakage flow and can be built with very high power gains. Servovalves with the torque motor-flapper nozzle first-stage, spool valve second-stage arrangement can be built with up to 11 kW (15 hp) in capacity with inputs of as little as 10 mW into the torque motor and with outputs of up to 0.001 m³/s (20 g/m) and time constants of 3 to 5 ms. A two-stage valve of this type is practically insensitive to accelerations and vibrations because the forces available to drive the spool are many times greater than the weight of the spool itself. However, the “stick” force (the force required to break the spool loose and get it moving) is high with the sliding spool type of second stage, and it can easily be jammed by dirt and impurities.

The invention and the development of fluidic amplifiers and fluidic or fluidic control elements that can sense, amplify, and compute make it possible to build pneumatic-hydraulic or all-hydraulic control systems. However, the servovalve in such systems must be designed for fluidic, rather than electrical, input signals. Pneumatic-hydraulic and all-hydraulic control systems are of interest because

a. They have the potential for high-frequency response (time constants of 1 to 5 ms).

b. They may be more reliable than conventional systems since they are more rugged.

c. They will eliminate electrical-to-hydraulic, mechanical-to-hydraulic, etc., interface devices for all-hydraulic systems.

d. They can be powered by the existing hydraulic transmission power supply.

e. They can possibly be produced and operated at lower cost (few moving parts and no auxiliary power supply for electrical or mechanical components). 4

At present, fluidic input servovalves have time constants of approximately 15 ms. This study is primarily concerned with the design changes needed to obtain time constants of 1 to 5 ms for fluidic input servovalves and to reduce leakage flow.

4L. R. Kelly and W. H. Booth, Hydraulic Fluidics, American Society of Mechanical Engineers (1968).
2. DESIGN CONSIDERATIONS

One or more of the following reasons are usually given for using fluidic elements in servovalve design: (1) increasing reliability, (2) lowering production cost, and (3) providing for fluidic input.

There are many possible fluidic servovalve designs. One design calls for an inverted flapper nozzle first or input stage and a vortex valve second stage. A second design uses a fluidic power amplifier (of one or more stages) as a first stage to drive a second-stage spool. A third design calls for the use of a fluidic amplifier cascade and a "jet pipe" to drive the second-stage spool.

A fourth design calls for eliminating the torque motor from the two-stage valve (fig. 1) and attaching mechanical bellows to the flapper arm (fig. 2). The bellows can then be driven by a fluidic amplifier. The operations of the two-stage electrohydraulic servovalve (fig. 1) and the fluidic input servovalve (fig. 2) are basically the same. They differ only in that the input torque applied to the flapper by the torque motor induced magnetic forces in the electrohydraulic version is provided by the fluidic amplifier output pressure used to alternately charge and discharge the bellows in the fluidic version. This fourth servovalve design seems the most promising in terms of minimizing the servovalve time constant and the leakage flow. This two-stage fluidic servovalve arrangement was studied because of its promise and its similarity to the conventional two-stage electrohydraulic servovalve (fig. 1). The design changes needed to minimize the servovalve time constant and the leakage flow in this arrangement are derived in the following sections.

2.1 Derivation of Servovalve Transfer Function

This study is specifically concerned with "simple" first-stage design changes that will minimize the servovalve time constant and the leakage flow. Attention is directed to the first stage of the valve because simple first-stage design changes can probably be made without necessitating redesign of other portions of the valve. Therefore, the transfer function for the fluidic input servovalve (fig. 3) is derived to determine the design parameters that can be adjusted to increase the servovalve frequency response. Neglecting fluidic amplifier input dynamics and transport delay, a pressure difference between the amplifier outputs and the bellows results in a flow between the amplifier and the bellows given by equation (1):

\[P_{A1} - P_{B1} = (L_{A^2} + R_A)Q_1, \]

where

- \(P_A \) = amplifier output pressure (Pa),
- \(P_B \) = bellows pressure (Pa).

\[L_A = \text{amplifier output inertance (Ns}^2/\text{m}^3) , \]
\[s = \text{Laplace transform variable (1/s)} , \]
\[R_A = \text{amplifier output resistance (Ns/m}^2) , \]
\[Q_i = \text{flow into bellows (m}^3/\text{s)} . \]

The sum of the flows into the bellows is

\[Q_i - Q_o = C s P_B , \] \hspace{1cm} (2)

where

\[Q_o = r_B A_B \theta , \text{ outflow caused by extension of bellows (m}^3/\text{s}) , \]
\[r_B = \text{bellows moment arm (m)} , \]
\[A_B = \text{bellows cross-sectional area (m}^2) , \]
\[\theta = \text{angular deflection of flapper or torque arm (rad)} , \]
\[C = \text{fixed volume capacitance of bellows (m}^3/\text{N}) . \]

Substituting equation (2) into equation (1) for both sides (fig. 3 shows a push-pull system), noting that outflow on one side is inflow to the opposite side, gives the differential bellows pressure:

\[\Delta P_B(s) = \frac{\Delta P_A}{L_A C s^2 + R_A C s + 1} \cdot \frac{2(r_B A_B)(L_A s^3 + R_A)\theta(s)}{L_A C s^2 + R_A C s + 1} . \] \hspace{1cm} (3)

From figure 4, the fluidic input torque, \(T_1 \) (Nm), is equal to the restoring torque as shown below:

\[T_1 = \Delta P_B(s)(r_B A_B) = \left(J s^2 + K_{an} + 2 k_B r_B \right)\theta(s) , \] \hspace{1cm} (4)

where

\[J = \text{polar moment of inertia of flapper (m-N} \cdot \text{s}^2) , \]
\[K_{an} = \text{net torque spring rate due to torsional spring, magnetic effects, and flow forces on flapper (m-N/rad)} , \]
\[k_B = \text{spring rate of bellows (N/m)} . \]
Figure 2. Two-stage fluidic input servovalve (schematic from D. Lee and D. N. Wormley, Massachusetts Institute of Technology HDL-CR-77-101-1, December 1977).
Figure 3. Fluidic input servovalve (schematic from D. Lee and D. N. Wormley, Massachusetts Institute of Technology HDL-CR-77-191-1, December 1977).
If the flapper arm bends as shown in figure 5, the torque summation on the flapper must include the bending term, $K_{cr} r_N \phi(s)$, as shown below:

$$\Delta P_R(s) = (J s^2 + K_{cr} 2s k_r r_A) \phi(s) + K_{cr} r_N \phi(s) .$$

(5)

where

- K_{cr} = spring constant of cantilevered flapper arm, which is assumed to be fixed at pivot (N/rad),
- r_N = flapper moment arm (m),
- $\phi(s)$ = single side flapper bending angle (rad).

Substituting equation (3) into equation (5) gives the flapper deflection, $\theta(s)$ (rad).
Figure 5. Flapper deflection and bending angle.

\[
\theta(s) = \frac{\Delta P_A(r_BA_B)}{J_s^2 + \left[\frac{2(r_BA_B)^2(L_As + R_A)}{L_ACs^2 + R_ACs + 1} \right]^2 + K_{an} + 2k_Br_B^2} + K_{cf}r_B \phi(s).
\]

However, if the flapper arm cantilever spring constant, K_{cf}, is very high, then $\phi(s)$ is negligible, and equation (6) reduces to

\[
\theta(s) = \frac{\Delta P_A(r_BA_B)}{J_s^2 + \left[\frac{2(r_BA_B)^2(L_As + R_A)}{L_ACs^2 + R_ACs + 1} \right]^2 + K_{an} + 2k_Br_B^2}.
\]
For hydraulic applications, \(C = \text{(volume/bulk modulus)} \ll 1 \) and equation (7) becomes

\[
\theta(s) = \frac{\Delta P_A r_B A_B}{[J + 2(r_B A_B) r_A A_L^2] s^2 + [2(r_B A_B) r_A A_L s + K_n + 2k_r r_A^2]}.
\]

The flapper displacement, \(x_f \) (rad), at the nozzles is given as

\[
x_f = r_N \theta.
\]

When the flapper is deflected from its centered position, a differential pressure, \(\Delta P_{LP} \) (Pa), is generated at the ends of the spool:

\[
\Delta P_{LP} = K_f x_f,
\]

where

\[
K_f = \text{flapper nozzle pressure gain (N/m²)}.
\]

The differential pressure acts against the centering springs at the ends of the spool. Neglecting sliding friction, the spool displacement, \(x_s \) (m), as a function of \(\Delta P_{LP} \) is given as

\[
x_s = \frac{\Delta P_{LP} A_s}{K_s},
\]

where

\[
A_s = \text{spool end area (m²)}.
\]

\[
K_s = \text{differential spring constant of centering springs attached to ends of spool (N/m)}.
\]

Finally, the spool displacement generates a load flow, \(Q_L \) (m³/s), given by

\[
Q_L = K_{sp} x_s,
\]

where

\[
K_{sp} = \text{spool flow constant (m³/s)}.
\]

A block diagram description of the complete two-stage servovalve is shown in figure 6. The spool position feedback term, \(r_N A_n \Delta P_{LP} \), is negligible so that this is essentially an open loop type of servovalve.¹ The complete valve transfer function is given as

Two-stage electrohydraulic servovalves are complex devices that exhibit high-order, nonlinear response. If a first-, second-, or third-order transfer function, \(H(s) \) (m³/Ns) is selected to represent servovalve dynamics, only an approximation to the actual response is possible. First-order approximations result in the expression "equivalent time constant" of the servovalve, \(r \). This approximation assumes that the servovalve can be described as a first-order system given by equation (14):

\[
H_1(s) = \frac{K_1}{\tau s + 1},
\]

where

\(K_1 = \text{servovalve gain (m³/Ns).} \)

This approximation should correspond to the 45-deg phase point rather than the 0.7 amplitude point (-3 dB). This representation of the servovalve dynamics is good through the low-frequency range, approximately 0 to 50 Hz.\(^4\) If the low-frequency range of the fluidic input valve is of interest, then the \(s^2 \) term in equation (13) can be neglected compared with the \((K_{an} + 2k_Br_B^3) \) term. This approximation implies that the fluid amplifier output inerance, \(L_A \), and the flapper polar moment of inertia, \(J \), are negligible in this frequency range. The valve transfer function then becomes

\[
\frac{Q_1(s)}{\Delta P_A(s)} = \frac{r_Br_NR_KA_sK_{a1}}{K_1} [1 + 2(r_BA_B)^{1/4}A_s^{1/4}][2(r_BA_B)^{1/2}B_{A}^{1/2}s + (K_{an} + 2k_Br_B^3)].
\]

where

\[r_B = r_N. \]

Thus, the servovalve time constant, \(\tau \), is given as

\[\tau = \left(\frac{2A_B}{K_{an}} \right) R_A. \] \hspace{1cm} (16)

where

\[2A_B/[(K_{an}/r_B^2) + 2k_B] = \text{effective capacitance of bellows.} \]

A phase lag of 45 deg occurs at the first-order break frequency, \(f_B \) (1/s), given by

\[f_B = \frac{1}{2\pi}. \] \hspace{1cm} (17)

Therefore, \(\tau \) should be minimized to achieve favorable high-frequency response. From equation (16), the design parameters affecting \(\tau \) are \(A_B, K_{an}, r_B, k_B \), and \(R_A \). \(R_A \) is determined by the available system flow, and \(K_{an} \) is fixed by the flapper nozzle and the second-stage spool design. Parameters \(A_B, r_B, \) and \(k_B \) can all be used to minimize \(\tau \). Decreasing \(r_B \) decreases \(\tau \); however, it decreases also the servovalve gain \(\{A_B K_{f} A_{sp}/[(K_{an}/r_B^2) + 2k_B]K_s\} \) from equation (15) by the same magnitude. Increasing \(k_B \) decreases \(\tau \), but it decreases also the servovalve gain by the same magnitude. Decreasing the bellows area decreases \(\tau \) by the area squared, \(A_B \). It decreases also the servovalve gain, but to the first power, \(A_B \). Since usually \(A_B < 1 \), then for any decrease in \(A_B \), the decrease is greater in \(\tau \), which has the factor \(A_B^2 \), than in the servovalve gain, which has the factor \(A_B \). Therefore, as a first step, the bellows area should be reduced to minimize \(\tau \).

A second-order approximation to servovalve dynamics is used when response near the 90-deg phase lag point is of interest. This approximation is usually used in describing position control servomechanisms, that is, closed-loop position control systems. The 90-deg phase lag point is best associated with the apparent natural frequency (or natural frequency), \(\omega_n \) (1/s), of the servovalve, and the damping ratio, \(\xi \), is best associated with the amplitude characteristic.\(^8\) The second-order approximation to servovalve dynamics has the form

\[H_2(s) = \frac{\left(\frac{1}{\omega_n^2} \right)^2 K_2}{\left(\frac{s}{\omega_n^2} \right)^2 + \left(\frac{2}{\omega_n^2} \right)s + 1} \]

(18)

where

\[K_2 = \text{servovalve gain (m}^3/\text{N}^2\text{)} \]

If the frequency response near the 90-deg phase lag point is of interest for the fluidic input servovalve, then equation (13) can be rewritten to approximate the servovalve transfer function, \(Q_L(s)/\Delta P_A(s) \), as

\[
\frac{Q_L(s)}{\Delta P_A(s)} = \frac{\frac{r_B A_B K_f A_k}{K_i}}{\left(\frac{K_i + 2k_B r_B^2}{K_i + 2k_B r_B^2} \right)} \left[\frac{1 + 2(r_B A_B)^{s^2} L_A}{K_i + 2k_B r_B^2} \right] s^2 + \left[\frac{2(r_B A_B)^{s^2} R_A}{K_i + 2k_B r_B^2} \right] s + 1.
\]

(19)

where

\[\omega_n^s = \frac{K_i + 2k_B r_B^2}{J + 2(r_B A_B)^{s^2} L_A} \]

\[K_2 = \frac{r_B A_B K_f A_k}{K_i} \]

\[\frac{2\xi}{\omega_n} = \frac{2(r_B A_B)^{s^2} R_A}{K_i + 2k_B r_B^2} \]

\[\xi = \frac{(r_B A_B)^{s^2} R_A}{\left(\frac{K_i + 2k_B r_B^2}{(K_i + 2k_B r_B^2)[J + 2(r_B A_B)^{s^2} L_A]} \right)^{1/2}} \]
A better second-order approximation of servovalve response requires that the input dynamics and the transport delay of the fluidic amplifier be included in equation (19). A high-performance servovalve calls for the natural frequency to be as large as possible and the damping ratio to be in the range 0.7 ≤ ξ ≤ 1.0. From equation (19), a high natural frequency requires that the bellows area be as small as possible and, for a given bellows area, that the amplifier output resistance be adjusted so that ξ is in the desired range. Good first- or second-order servovalve dynamics call for the bellows area to be as small as possible.

2.2 Fluidic Amplifier Leakage Flow

The fluidic amplifier portion of the fluidic input servovalve (fig. 2) is part of the first stage of the valve. Therefore, the fluidic amplifier leakage flow adds to the existing first-stage leakage flow of the flapper nozzle valve. The amplifier leakage flow is the amplifier supply flow, Qₐ (m³/s). The necessary supply flow is a function of the amplifier output resistance and the desired servovalve time constant. The supply flow is derived in terms of these parameters.

The amplifier supply flow can be written as

\[Q_\text{a} = \frac{P_\text{a}}{R_\text{s}} = \frac{a \Delta P_\text{A}}{n R_\text{A}} \tag{20} \]

where

- \(P_\text{a} \) = amplifier supply pressure (Pa),
- \(R_\text{s} \) = amplifier power nozzle resistance (Ns/m²),
- \(a \) = constant (with values in range 0.5 ≤ a ≤ 0.6),
- \(n \) = constant (determined by amplifier height and number of parallel laminates used).

From equation (8), the maximum flapper deflection, \(\theta_{\text{max}} \) (rad), occurs when \(s \to 0 \) and is given as

\[\theta_{\text{max}} = \frac{r_B \Delta P_\text{A}}{K_{\text{an}} + 2k_B r_B} \tag{21} \]

From equation (21), \(\Delta P_\text{A} \) can be written as

\[\Delta P_\text{A} = \left[\frac{K_{\text{an}} + 2k_B}{r_B} \right] r_B \theta_{\text{max}} \frac{1}{\lambda_B} \tag{22} \]

If a first-order approximation is used to describe the servovalve dynamics, the time constant from equation (16) is
\[\tau = \frac{2A_B^r R_A}{\frac{K \tan}{r_B^2} + 2k_B} \]

From equation (16), \(R_A \) can be written as

\[R_A = \frac{\left[\frac{K \tan}{r_B^2} + 2k_B \right]^{\tau}}{2A_B^r} \] \hspace{1cm} (23)

and, by using equations (22) and (23), the supply flow can be written as

\[Q_s = \frac{2a r_B \theta_{\max} A_B}{\eta t} \] \hspace{1cm} (24)

Thus, minimizing the bellows area minimizes also the amplifier supply flow or the first-stage servovalve leakage flow.

3. TEST RESULTS

The Harry Diamond Laboratories (HDL) purchased two fluidic input servovalves with essentially identical performance specifications (fig. 2). Cursory tests were conducted on one servovalve at HDL. Since HDL does not have the facilities for thoroughly testing servovalves, the other one was further developed and thoroughly tested on contract. The additional development allowed the servovalve to be driven by an electrical signal or a fluidic signal. The electrical signal energized the torque motor, which in turn drove the flapper nozzle valve. The fluidic signal was amplified by a fluidic amplifier, which drove a set of bellows, which in turn drove the flapper nozzle valve. This servovalve had an initial set of bellows with an area smaller than normal, \(A_B = 31.9 \text{ mm}^2 \). The test program called for replacing this set of bellows with a smaller set, \(A_B' = 18.1 \text{ mm}^2 \), and then with a larger set, \(A_B'' = 44.5 \text{ mm}^2 \). This procedure was set up as a means of verifying the conclusions reached in the design considerations (sect. 2). The servovalve was tested with the initial set of bellows, \(A_B = 31.9 \text{ mm}^2 \). Figure 7 shows the dynamic response of the servovalve driven by an electrical signal and by a fluidic signal. The curve of phase lag versus frequency for the fluidically driven servovalve shows 45 deg of phase lag at 20 Hz. From equation (16), the servovalve time constant can be given as

\[\tau = \frac{1}{\omega} \tan \theta = \frac{1}{2a} \tan 45 = 8 \text{ ms} . \] \hspace{1cm} (25)

where
\[\theta = 45 \text{ deg.} \]
\[f = 20 \text{ Hz.} \]

This servovalve response to fluidic input represents a significant improvement over previous fluidic input valve responses. This improvement was accomplished by using (1) smaller bellows and (2) a fluidic amplifier with little low-frequency phase shift. The initial set of bellows, \(A_B \), was not replaced after the testing reported by Lee and Wormley,\(^*\) that is, with the smaller set of bellows, \(A'_B \), or the larger set of bellows, \(A''_B \), because the servovalve response with the initial set of bellows was close to the desired response and because the bellows were a cost and reliability problem. For a normal production run of bellows, the spring rates vary \(\pm 30 \) percent from the nominal value. To obtain two bellows with identical spring rates increases the cost considerably. Moreover, the bellows ruptured very easily due to either overpressuring or mishandling.

Even though the servovalve response to fluidic input represents a significant improvement, the response is not comparable to the response to electrical input as seen in figure 7. The added phase shift using fluidic input is due to phase lag in the fluidic amplifier and the amplifier output.

![Diagram](image)

Figure 7. Fluidic input servovalve (fig. 2) frequency response (data from D. Lee and D. N. Wormley, Massachusetts Institute of Technology HDL-CR-77-191-1, December 1977).

resistance and bellows capacitance time constant. The phase shift observed with the fluidic input valve due to the time constant is described by equation (15), and the added phase shift due to the fluidic amplifier dynamics can be described by equation (13) with the addition of the amplifier input dynamics and transport delay. The added phase shift observed using fluidic input to the servovalve in the 20- to 120-Hz region became significant when the valve was tested in a closed-loop servo control system. These results indicate that servovalve response to fluidic input cannot be meaningfully approximated as a first-order system (sect. 2). The frequency response of the amplifier must be considered. The results indicate also that further development is needed to make the valve response to fluidic input comparable to valve response to electrical input, possibly by using an approach that does not require bellows. This development is crucial because, at present, fluidic control system performance is degraded by the servovalve, and this degradation is independent of any fluidic sensing, amplification, and signal processing errors.

4. CONCLUSIONS

This design study is concerned with two-stage fluidic input servovalves using bellows to drive a first-stage flapper nozzle valve. The study shows that minimizing the bellows area reduces (1) the servovalve time constant and (2) the first-stage fluidic amplifier leakage flow. A reduced fluidic input servovalve time constant in the 1- to 5-ms range is desired. Experimental tests were conducted to verify the results of the design study. These tests of a dual-input (electrical and fluidic) servovalve conducted at the Massachusetts Institute of Technology show that a time constant, \(\tau = 8 \text{ ms} \), was obtained by using very small bellows. The first-order approximation to a servovalve response used in the design consideration was found to be valid up to 20 Hz or for a phase lag to 45 deg. This servovalve response to fluidic input represents a significant improvement over previous fluidic input servovalve response. However, the response of the servovalve to fluidic input is not comparable to the response to electrical input beyond 20 Hz. The two servovalve responses differ in that there is additional phase lag by using fluidic input. The added phase shift was due to (1) the fluidic amplifier phase lag and (2) the amplifier output resistance and bellows capacitance time constant. This added phase lag degraded the system performance when the servovalve was used with fluidic input in a closed-loop servo system. The experimental results indicate that servovalve response to fluidic input must be approximated as a second- or higher-order system when used in a closed-loop servo system. The approximate response must take into account (1) the phase shift of the fluidic amplifier and (2) the amplifier output resistance and bellows capacitance time constant. The results indicate also that further development is needed to make the fluidic input valve response comparable to the electrical input valve response.

a D. Lee and D. N. Wormley, Hydraulic Signal-Processing Amplifier Performance in Position Control Systems, Massachusetts Institute of Technology, Cambridge, MA, HDL-CT-77-191-1 (December 1977).
LITERATURE CITED

(4) L. R. Kelly and W. H. Booth, Hydraulic Fluidics, American Society of Mechanical Engineers (1968).

NOMENCLATURE

a Constant (with values in range $0.5 < a < 0.6$)
A_b Bellows cross-sectional area (m^2)
A_s Spool end area (m^2)
A_N Nozzle exit area (m^2)
C Fixed volume capacitance of bellows (m^3/N)
f Frequency (Hz)
f_B Break frequency (1/s)
$H(s)$ Transfer function (m^3/Ns)
$H_1(s)$ Servovalve transfer function, first-order approximation (m^3/Ns)
$H_2(s)$ Servovalve transfer function, second-order approximation (m^3/Ns)
J Polar moment of inertia of flapper ($m\cdot N\cdot s^2$)
k_B Spring rate of bellows (N/m)
k_{an} Net torque spring rate due to torsional spring, magnetic effects, and flow forces on flapper ($m\cdot N/rad$)
k_{cf} Spring constant of cantilevered flapper arm, which is assumed to be fixed at pivot (N/rad)
k_f Flapper nozzle pressure gain (N/m^3)
k_s Differential spring constant of centering springs attached to ends of spool (N/m)
k_p Spool flow constant (m^3/s)
k_1 Servovalve gain, first-order approximation (m^3/Ns)
k_2 Servovalve gain, second-order approximation (m^3/Ns^2)
L_A Amplifier output inertance (Ns^2/m^3)
n Constant (determined by amplifier height and number of parallel laminates used)
P_A Amplifier output pressure (Pa)
P_B Bellows pressure (Pa)
P_c Amplifier control pressure (Pa)
P_{LP} Differential pressure (Pa)
P_s Amplifier supply pressure (Pa)
Q_i Flow into bellows (m^3/s)
Q_L Load flow (m^3/s)
Q_o Flow out of bellows (m^3/s)
Q_s Amplifier supply flow (m^3/s)
r_B Bellows moment arm (m)
r_N Flapper moment arm (m)
R_A Amplifier output resistance (Ns/m^3)
R_s Amplifier power nozzle resistance (Ns/m^3)
NOMENCLATURE (Cont'd)

\(s \) Laplace transform variable (1/s)
\(T_1 \) Fluidic input torque (Nm)
\(x_f \) Flapper displacement (m)
\(x_s \) Spool displacement (m)
\(\dot{y} \) Load velocity (m/s)
\(\theta \) Angular deflection of flapper or torque arm (rad)
\(\theta_{\text{max}} \) Maximum flapper deflection (rad)
\(\theta(s) \) Flapper deflection (rad)
\(\xi \) Damping ratio
\(\tau \) Equivalent servo valve time constant (s)
\(\phi(s) \) Single side flapper bending angle (rad)
\(\omega_n \) Apparent natural frequency or natural frequency (1/s)
DEPARTMENT OF MECHANICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING
323 HIGH STREET
NEWARK, NJ 07102
ATTN DR. A. Y. CHEH

OHIO STATE UNIVERSITY LIBRARIES
SERIAL DIVISION, MAIN LIBRARY
1858 Neil Avenue
Columbus, OH 43210

OKLAHOMA STATE UNIVERSITY
School of Mech & Aerospace Engr.
Stillwater, OK 74074
ATTN PROF KARL H. REID

PENNSYLVANIA STATE UNIV.
UNIVERSITY PARK, PA 16802
ATTN DR. J. L. SHEPARD

PENNSYLVANIA STATE UNIVERSITY
215 Mechanical Engineering Bldg
UNIVERSITY PARK, PA 16802
ATTN PROF S. B. RIEDMAN

Purdue University
School of Mechanical Engineering
Lafayette, IN 47907
ATTN PROF. VICTOR M. GOLDSCHMIDT
ATTN PROF. ALAN T. MCDONALD

Rock Valley College
3301 North Mulford Road
Rockford, IL 61101
ATTN DR. EMIL BAUDOIN

Rutgers University New Brunswick
Library of Science & Medicine
New Brunswick, NJ 08903
ATTN GOVERNMENT DOCUMENTS DEPT.
MS. SANDRA R. LIVINGSTON

Stratford University
Dept of Mech & Aerospace Engineering
139 E. A. Link Hall
Stratford, WV 25160
ATTN PROFESSOR D. S. DOSANAH

University of Texas at Austin
Dept of Mechanical Engineering
Austin, TX 78713
ATTN DR. A. J. REALEY

The University of Texas at Arlington
Mechanical Engineering Department
Arlington, TX 76019
ATTN DR. ROBERT L. WOODS

Tulane University
Dept of Mechanical Engineering
New Orleans, LA 70118
ATTN H. F. KRENEKE

UNION COLLEGE
MECHANICAL ENGINEERING
Schenevscy, NY 12306
ATTN ASSOC PROF W. C. AUBREY
MECH ENGR DEPT, STEINTHAL HALL

VIRGINIA POLYTECHNIC INSTITUTE
OF STATE UNIV
MECHANICAL ENGINEERING DEPARTMENT
Blacksburg, VA 24061
ATTN PROF. H. ROGERS

WASHINGTON UNIVERSITY
School of Engineering
P.O. BOX 1185
ST. LOUIS, MO 63130
ATTN W. M. SHARON

West Virginia University
MECHANICAL ENGINEERING DEPARTMENT
Morgantown, WV 26505
ATTN DR. RICHARD A. SAKUSA

Wichita State University
Wichita, KS 67208
ATTN DEPT AERO ENGR., R. J. HENDERS

UNIVERSITY OF WISCONSIN
MECHANICAL ENGINEERING DEPARTMENT
1515 UNIVERSITY AVENUE
Madison, WI 53706
ATTN FEDERAL REPORTS CENTER
ATTN RONALD M. BEASLEY, DIR.
DESIGN ENGINEERING LABORATORIES

Worcester Polytechnic Institute
Worcester, MA 01609
ATTN GEORGE C. GORDON LIBRARY (TR)
ATTN TECHNICAL REPORTS

Air Research
P.O. BOX 5217
402 South 36th Street
Phoenix, AZ 85034
ATTN DAVID SCHEFFER
ATTN THOMAS SUTTON
ATTN TON MITTETS

AVCO SYSTEMS DIVISION
201 Lowell Street
Wilmington, MA 01887
ATTN W. K. CLARK

Bell Helicopter Company
P.O. BOX 482
Fort Worth, TX 76101
ATTN MR. R. D. YEARY

Bendix Corporation
Electro-Optics Division
11600 Sherman Way
North Hollywood, CA 91605
ATTN MR. D. COOPER

Bendix Corporation
Research Laboratories Div.
Bendix Center
Southfield, MI 48075
ATTN C. J. ARENB

Boeing Company
P.O. BOX 3707
Seattle, WA 98124
ATTN HENRY STRAUB

Borges Fluidics Corporation
9347 Fraser Avenue
Silver Spring, MD 20910
ATTN VIC PRES./ENG.

DR. RONALD BOYLES
2105 Sondra Court
Silver Spring, MD 20904

Continental Can Company
Tech Center
1350 W. 76TH STREET
Chicago, IL 60620
ATTN P. A. BAYER

Cordis Corporation
P.O. BOX 429
Miami, FL 33137
ATTN STEPHEN F. VADAS, K-2

Corning Glass Works
Fluidics Products
Mooghton Park, B-2
Corning, NY 14830
ATTN MR. W. SCHERMERHORN

Chrysler Corporation
P.O. BOX 110
CINC-419-10-2
Detroit, MI 48231
ATTN MR. L. GAT

Emm Engineering, Inc
BOX 216 - 216 Little Falls Rd
CEDAR GROVE, NJ 07009
ATTN ANTHONY P. CORRADO, PRESIDENT

Fluidics Quarterly
P.O. BOX 2989
STANFORD, CA 94305
ATTN D. H. TAKEUCHI

General Electric Company
Space/Read Divisions
P.O. BOX 8555
PHILADELPHIA, PA 19101
ATTN MR. L. L. WAERN

General Motors Corporation
Delco Electronics Div
HANFORD G. WRIGHT
NEW COMMERCIAL PRODUCTS
P.O. BOX 1104
KOKOMO, IN 46901
ATTN R. E. SPARKS

Grumman Aerospace Corporation
Technical Information Center
South Oyster Bay Road
Bethpage, L.I., NY 11714
ATTN C. H. TUCKER, DOCUMENTS LIBRARIAN

Hamilton Standard
Division of United Aircraft Corporation
WINDSOR LOCKS, CT 06096
ATTN MR. PHILLIP WALKER
<table>
<thead>
<tr>
<th>Company</th>
<th>Address/Location</th>
<th>Contact Person</th>
<th>Additional Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell, Inc.</td>
<td>Minneapolis, MN 55413</td>
<td>J. Redden</td>
<td></td>
</tr>
<tr>
<td>Johnson Controls, Inc</td>
<td>Milwaukee, WI 53201</td>
<td>M. Lemmerman</td>
<td></td>
</tr>
<tr>
<td>Moore Products Company</td>
<td>Spring House, PA 19477</td>
<td>R. Adams</td>
<td></td>
</tr>
<tr>
<td>Martin Marietta Corporation</td>
<td>Orlando, FL 32805</td>
<td>R. Bryden</td>
<td>MP 326</td>
</tr>
<tr>
<td>McDonnell Aircraft Company</td>
<td>St. Louis, MO 63144</td>
<td>R. Ludden</td>
<td>DIR OF TECH SERVICES</td>
</tr>
<tr>
<td>Plessey Aerospace Ltd</td>
<td>St. Ann, MO 63074</td>
<td>G. Upton</td>
<td></td>
</tr>
<tr>
<td>Richard White & Associates</td>
<td>Sudbury, MA 01776</td>
<td>R. White</td>
<td></td>
</tr>
<tr>
<td>Rockwell International Corporation</td>
<td>Columbus, OH 43216</td>
<td>M. Schreiber</td>
<td></td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>Kirtland AFB, NM 87115</td>
<td>W. Zieglerberger</td>
<td>DIV 2323</td>
</tr>
<tr>
<td>Tritec, Inc</td>
<td>Columbia, MD 21045</td>
<td>L. Sieracki</td>
<td></td>
</tr>
<tr>
<td>United Technologies Research Center</td>
<td>E. Hartford, CT 06108</td>
<td>R. Olson</td>
<td>ENG FLUID DYNAMICS LABORATORY</td>
</tr>
<tr>
<td>Harry Diamond Laboratories</td>
<td>Ft. Belvoir, VA 22060</td>
<td>R. E. W. Stott</td>
<td>ENG FLUID DYNAMICS LABORATORY</td>
</tr>
</tbody>
</table>

DISTRIBUTION (Cont'd)