AN APPROXIMATION OF INTEGRABLE FUNCTIONS BY STEP FUNCTIONS WITH AN APPLICATION

M. G. Crandall and A. Pazy

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

January 1979
(Received July 6, 1978)

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D. C. 20550
Let \(f \in L^1(0,\infty) \), \(\delta > 0 \) and \((G_\delta f)(t) = \delta^{-1} \int_0^t e^{(t-s)/\delta} f(s) \, ds \). Given a partition \(P = \{0 = t_0 < t_1 < \cdots < t_i < t_{i+1} < \cdots\} \) of \([0,\infty) \) where \(t_i \to \infty \), we approximate \(f \) by the step function \(A_p f \) defined by

\[
A_p f(t) = (G_\delta G_{\delta_1} \cdots G_{\delta_i} f)(0) \quad \text{for} \quad t_{i-1} < t < t_i,
\]

where \(\delta_i = t_i - t_{i-1} \). The main results concern several properties of this process, with the most important one being that \(A_p f \to f \) in \(L^1(0,\infty) \) as \(u(P) = \sup \delta_i \to 0 \). An application to difference approximations of evolution problems is sketched.
SIGNIFICANCE AND EXPLANATION

A method of approximating functions which are integrable on \((0, \infty)\) by piecewise constant functions is presented and studied in this paper. The method used and the properties established for it allow one to reduce the study of the convergence of a difference method of theoretical interest for nonlinear time-dependent problems with forcing terms to the simpler study of related problems without forcing terms.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
AN APPROXIMATION OF INTEGRABLE FUNCTIONS BY STEP
FUNCTIONS WITH AN APPLICATION

M. G. Crandall1) and A. Pazy1),2)

This note is concerned with an interesting method of approximating an integrable function \(f : (0,\infty) \to \mathbb{R} \) by step functions. The approximation process involves the integral transformation \(G_\delta : L^1(0,\infty) \to L^1(0,\infty) \) defined for \(\delta > 0 \) by

\[
(G_\delta f)(t) = \frac{1}{\delta} \int_0^\infty e^{(t-s)/\delta} f(s) \, ds.
\]

Equivalently, \(g = G_\delta f \) is the unique function \(g \in L^1(0,\infty) \) which satisfies \(g - \delta g' = f \).

Let

\[
P = \{0 = t_0 < t_1 < \ldots < t_i < t_{i+1} < \ldots \}
\]

be a partition of \((0,\infty)\) with \(\lim_{i \to \infty} t_i = \infty \). The step sizes of the partition are denoted by \(\delta_i \); \(\delta_i = t_i - t_{i-1} \). Each partition \(P \) determines a piecewise constant approximation \(A_p f \) of \(f \) defined by

\[
A_p f(t) = (G_{\delta_1} \ldots G_{\delta_i} f)(0) \text{ for } t_{i-1} \leq t < t_i, \quad i = 1, 2, \ldots.
\]

The mesh of the partition is denoted by \(\nu(P) ; \nu(P) = \sup_{1 \leq i \leq \infty} \delta_i \). The main results are summarized in the following theorem.

Theorem: Let \(P \) be as above, \(f \in L^1(0,\infty) \) and \(A_p f \) be defined by (2). Then

\[
A_p f \in L^1(0,\infty),
\]

\[
\int_0^\infty |A_p f(s)| \, ds \leq \int_0^\infty |f(s)| \, ds,
\]

\[
\int_0^\infty A_p f(s) \, ds = \int_0^\infty f(s) \, ds,
\]

and

\[
\lim_{\nu(P) \to 0} \int_0^\infty |A_p f(s) - f(s)| \, ds = 0.
\]

\[\text{Sponsored by:}\]

1) The United States Army under Contract No. DAAG29-75-C-0024; and

2) The National Science Foundation under Grant No. MCS78 01245.
The definition of the transformation \(f + A_p f \) as well as the questions resolved by the theorem arose naturally from considering difference approximations of certain nonlinear evolution problems. While this motivation is not relevant for the statement or the proof (given in Section 1) of the theorem, we do explain it briefly in Section 2.

We are indebted to Carl de Boor for his advice on this problem.

Section 1. (Proof of the Theorem).

Let \(h, k \in L^1(-\infty, 0) \) and \(f \in L^1(0, \infty) \). We define \(k \ast f \in L^1(0, \infty) \) and \(h \ast k \in L^1(-\infty, 0) \) according to

\[
(k \ast f)(t) = \int t k(t - s)f(s)ds
\]

and

\[
h \ast k(r) = \int r h(r - s)k(s)ds.
\]

The convolution operator "\(\ast \)" is commutative and associative, while

\[
h \ast (k \ast f) = (h \ast k) \ast f.
\]

For \(\delta > 0 \) we set

\[
k_{\delta}(r) = \delta^{-1}\exp(r/\delta).
\]

The transformation \(G_{\delta} \) in (1) is

\[
G_{\delta}f = k_{\delta} \ast f.
\]

Let \(D = \{0 = t_0 < t_1 < \cdots < t_i < t_{i-1} < \cdots \} \) and \(\delta_{i} = t_i - t_{i-1} \) be as in the introduction and \(A_p \) be given by (2). For simplicity of notation we will set

\[
k_{i} = k_{\delta_{i}} \quad \text{and} \quad K_{i} = k_{i} \ast k_{i-1} = k_{i} \ast k_{i-1} \ast \cdots k_{1} \quad \text{for} \quad i = 1, 2, \ldots.
\]

Since \(k_{i} > 0 \), \(A_p \) clearly satisfies

\[
|A_p f| \leq A_p |f|.
\]

Moreover by (2), (1.5), (1.6) and (1.3)

\[
\int_0^{t_i} A_p |f|(s)ds = \int_0^{t_i} \delta_{i}(k_{i} \ast \cdots \ast (k_{i-2} \ast \cdots (k_{i-1} \ast |f|) \cdots)))0
\]

\[
= \int_0^{t_i} \delta_{i}(K_{i} \ast |f|)(0) = \int_0^{t_i} \sum_{t=1}^i \delta_{t} K_{t}(-s)|f(s)|ds.
\]
Since each of the summands \(\delta_j K_i(-s) \) in the last integrand is nonnegative, we can establish (3) and (4) of the theorem by showing that

\[
\sum_{j=1}^{\infty} \delta_j K_i(r) \leq 1 \quad \text{for} \quad -\infty < r < 0
\]

while (5) requires

\[
\sum_{j=1}^{\infty} \delta_j K_i(r) = 1 \quad \text{a.e. on} \quad -\infty < r < 0 .
\]

The following lemma implies (1.9) since \(K_j \geq 0 \).

Lemma 1: For each \(j = 1, 2, \ldots \)

\[
\sum_{i=1}^{j} \delta_i K_i + K_j \equiv 1 .
\]

Proof of Lemma 1: We proceed by induction. If \(j = 1 \) the claim is that \(\delta_1 k_1 + k_1 \equiv 1 \). Indeed, for any \(\delta \),

\[
\delta k_1 + k_1 = e^{r/\delta} + \frac{1}{\delta} \int_0^\infty e^{(r-s)/\delta} ds \equiv 1 .
\]

We now assume the claim is true for \(j = i \) and verify it for \(j = i + 1 \). By (1.12) we have

\[
K_{i+1} = k_{i+1} K_i + k_{i+1} = (1 - \delta_i k_i) k_i = K_i + (1 - \delta_i k_i) k_i = 1 - \sum_{k=1}^{i+1} \delta_k K_k
\]

where the last equality follows from the induction hypothesis. Rearranging (1.13) yields (1.11) with \(j = i + 1 \) and the proof is complete.

We verify (1.10) indirectly. Let

\[
f_\delta(t) = e^{-\delta t} .
\]

If \(\delta > 0 \)

\[
(G_\delta f_\delta)(t) = \frac{1}{\delta} \int_0^\infty e^{(t-s)/\delta} e^{-\delta s} ds = \frac{1}{\delta + \delta^2} e^{-\delta t}
\]

from which it follows that

\[
(A_\delta f_\delta)(t) = \prod_{i=1}^{i} (1 + \delta e_i)^{-1} \quad \text{for} \quad t_{i-1} < t < t_i
\]
and hence

\[(1.17) \quad \int_0^\infty (A_p f_0)(s)ds = \sum_{i=1}^{\infty} \frac{1}{i} \prod_{k=1}^{i} (1 + \sigma \delta_i)^{-1}.\]

Setting \(r_i = (1 + \sigma \delta_i)^{-1}\) we claim that

\[(1.18) \quad \delta_{1,1}^r + \delta_{2,2}^r + \ldots + \delta_{i,1}^r + \ldots + \delta_{1,1}^r \ldots + \delta_{2,2}^r + \ldots + \delta_{i,1}^r \ldots + \delta_{1,1}^r = \sigma^{-1}\]

for \(i = 1, 2, \ldots\). The proof parallels the proof of Lemma 1. Since \(\sum_{i=1}^{\infty} \delta_i = \infty\), we have \(r_i r_{i-1} \ldots r_1 \to 0\) as \(i \to \infty\) and (1.17), (1.18) together imply

\[\int_0^\infty (A_p f_0)(s)ds = \frac{1}{\sigma} \int_0^\infty f_0(s)ds.\]

Setting \(f = f_0\) in (1.8), letting \(i \to \infty\) and using the above implies (1.10).

It remains to verify (6). (We remark that the previous results did not require \(\mu(P) = \infty\).) In view of (4), which is independent of \(P\), it suffices to verify (6) for a dense subset \(F\) of \(L^1(0,1)\). It is convenient to choose \(F = \text{span}(f_0 : n > 0)\). (In fact, \(\text{span}(e^{-nt} : n = 1, 2, \ldots)\) is dense in \(L^1(0,\infty)\), as is well known. To see this, use the change of variables \(x = e^{-t}\) which exchanges \((0,\infty)\) and \((0,1)\) while \(e^{-nt}\) becomes \(x^n\).) To proceed, we estimate \(|A_p f_0 - f_0|\) in terms of \(\mu(P)\). For convenience of future referencing the simple lemma which does so is stated without using the notation above.

Lemma 2: Let \(\{\delta_i\}_{i=1}^\infty\) be a sequence of positive numbers satisfying \(\sum_{i=1}^{\infty} \delta_i = \infty\) and \(\sigma > 0\). Let \(t_0 = 0, t_i = \delta_i + \delta_1 + \ldots + \delta_i\) for \(i = 1, 2, \ldots\) and \(\mu = \sup \delta_1\). If

\[g(t) = \prod_{k=1}^{i} (1 + \sigma \delta_k)^{-1} \quad \text{for} \quad t_{i-1} \leq t < t_i\]

then

\[|g(t) - e^{-\sigma t}| \leq e^{-\sigma t} \max(\mu^{t_1} e^{2\sigma^2} - 1, 1 - e^{-\mu})\]

Proof of Lemma 2: It is enough to treat \(\sigma = 1\), for then the general result follows upon replacing \(\{\delta_i\}\) by \(\{\sigma \delta_i\}\) and \(t\) by \(\sigma t\). Elementary calculus yields

\[(1.19) \quad e^{-\delta} \leq (1 + \delta)^{-1} \leq e^{-\delta + \delta^2} \quad \text{for} \quad \delta > 0.\]
Multiplying these inequalities yields

\[
\left(\delta_1 + \cdots + \delta_i\right) e^{\sum_{k=1}^{i} (1 + \delta_k)} \leq \prod_{k=1}^{i} (1 + \delta_k) \leq e^{\sum_{k=1}^{i} (1 + \delta_k)} \left(\delta_1^2 + \cdots + \delta_i^2\right)
\]

Using (1.20) and the inequalities

\[
\delta_1^2 + \cdots + \delta_i^2 \leq \mu(\delta_1 + \cdots + \delta_i) \quad \text{and} \quad t \leq \delta_1 + \cdots + \delta_i \leq t + \mu
\]

for \(t_{i-1} \leq t < t_i \) establishes

\[
e^{-t} (e^{-\mu} - 1) \leq g(t) - e^{-t} \leq e^{-t} (e^{t+\mu} - 1)
\]

and hence Lemma 2 in the case \(\sigma = 1 \).

End of proof of the Theorem: By (1.16) and Lemma 2

\[
\int_0^\infty |A_p f_0 - f_0| \, ds \leq \int_0^\infty e^{-\sigma s} \max\{e^{\mu s} e^{\sigma^2} - 1, 1 - e^{-\sigma^2}\} \, ds
\]

where \(\mu = \mu(P) \). The right hand side above tends to zero as \(\mu \to 0 \), and the proof is complete.

Remark: If \(m \in L^1(\mathbb{R}, 0) \cap L^\infty(\mathbb{R}, 0) \), \(m_\delta(r) = \delta^{-1} m(r/\delta) \) and (1) is replaced by

\[
G_\delta f = m_\delta \ast f, \quad \text{the first part of the above proof adapts to establish that}
\]

\[
\int_0^\infty |A_p f(s)| \, ds \leq C \int_0^\infty |f(s)| \, ds
\]

provided \(C > 0 \) can be chosen to satisfy

\[
|m(r)| + C \int_0^r |m(s)| \, ds \leq C \quad \text{a.e.} \quad -\infty < r < 0.
\]

This last estimate is equivalent to \(|m_\delta| + |m_\delta| * C \leq C \). If \(\|m\|_{L^1(\mathbb{R}, 0)} < 1 \) we may set

\[
C = \frac{\|m\|_{L^1(\mathbb{R}, 0)}}{1 - \|m\|_{L^\infty(\mathbb{R}, 0)}}.
\]

(Consideration of the case \(m(r) = 2e^r \) shows some such restriction is necessary.) By contrast, our proofs of (5) and (6) required special properties of the exponential kernel.
Section 2. Motivation

Let X be a Banach space and A be an accretive operator in X (see, e.g., [1], [2] for terminology). If $f \in L^1(0, T; X)$ and $x \in X$, we say that

\begin{equation}
\begin{aligned}
\left\{ \begin{array}{l}
u' + Au = f \\
u(0) = x
\end{array} \right.
\end{aligned}
\tag{2.1}
\end{equation}

has an ϵ-approximate solution on $[0, T]$ if there are finite sequences $0 = t_0 < t_1 < \cdots < t_N$, and \{\delta_1, \epsilon_1, \ldots, \delta_N, \epsilon_N\} $\subset X$ such that

\begin{equation}
\begin{aligned}
\frac{x_{i+1} - x_i}{t_{i+1} - t_i} + Ax_{i+1} \approx f_{i+1}, \quad i = 0, 1, \ldots, N
\end{aligned}
\tag{2.2}
\end{equation}

and

\begin{equation}
\begin{aligned}
t_N > T, \ t_i + 1 - t_i < \epsilon, \ ||x_0 - x|| < \epsilon \quad \text{and} \quad \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} ||f_{i+1} - f(s)|| \, ds < \epsilon.
\end{aligned}
\tag{2.3}
\end{equation}

In this case, the step function whose value on $(t_i, t_{i+1}]$ is x_{i+1} is called an ϵ-approximate solution of (2.1). It is shown in [3] that if (2.1) has an ϵ-approximate solution on $[0, T]$ for each $\epsilon > 0$, then these solutions converge uniformly as $\epsilon \to 0$ to a unique limit $u \in C([0, T]; X)$ which is the solution (in a certain sense) of (2.1).

The estimates which prove this are considerably more involved in the case that $f \not\equiv 0$ than in the simpler case $f \equiv 0$. The approximation theorem proved in this note allows us to reduce the problem (2.1) with a general $f \in L^1(0, T; X)$ to the case $f \equiv 0$ in the following way: Define an operator A in $X \times L^1(0, T; X)$ by

$$D(A) = D(A) \times W^{1,1}(0, T; X)$$

and

$$A(x, g) = (y - g(0), -g') : y \in Ax.$$

We show below that A is accretive. Given an ϵ-approximate solution of (2.1) on $[0, T]$ as above, define \{\delta_1, \epsilon_1, \ldots, \delta_N, \epsilon_N\} $\subset W^{1,1}(0, T; X)$ by $g_0 = f, \delta_1 = t_1 - t_0, \epsilon_0 = 0, \delta_1 = 0, \epsilon_0 = 0$. Then the function whose value on $(t_i, t_{i+1}]$ is (x_{i+1}, g_{i+1}) is an

$$\epsilon + \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} ||g_{i+1}(0) - f(s)|| \, ds$$

approximate solution of the equation

$$u' + Au = f, \quad u(0) = x.$$

-6-
By the (clearly valid) version of Theorem 1 in which $L^1(0,\omega)$ is replaced by $L^1(0,\omega;X)$, the term

$$
\sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} \| q_{i+1}(0) - f(s) \| ds
$$

tends to zero as $u = \max \delta_i \to 0$.

We now briefly sketch the proof that A is accretive. If Z is any Banach space, set

$$
[p,q]^Z = \lim_{\lambda \to 0} \frac{\| p + \lambda q \|_Z - \| p \|_Z}{\lambda} = \inf_{\lambda > 0} \frac{\| p + \lambda q \|_Z - \| p \|_Z}{\lambda}.
$$

If $Y = X \times L^1(0,\omega;X)$ is equipped with the norm

$$
\|(x,g)\|_Y = \| x \|_X + \int_0^\infty \| g(s) \|_X ds \quad \text{for} \quad (x,g) \in X
$$

then one computes that

$$
[(x,g),(y,h)]_Y = [x,y]_X + \int_0^\infty [g(s),h(s)]_X ds.
$$

It follows that A is accretive in Y if for every $(x,y), (\hat{x}, \hat{y}) \in A$ and $g, \hat{g} \in W^{1,1}(0,\omega;X)$ we have

$$
[(x,\hat{x},g-\hat{g}),(y-g(0)) - (\hat{y} - \hat{g}(0)), (g' - \hat{g}')_X]_Y
$$

$$
= [(x,\hat{x},y-\hat{y}) - (g(0) - \hat{g}(0))]_X + \int_0^\infty [g(s) - \hat{g}(s), (g'(s) - \hat{g}'(s))]_X ds \geq 0.
$$

The first term in (2.5) is estimated by

$$
[x,\hat{x},(y-\hat{y}) - (g(0) - \hat{g}(0))]_X \geq \| x - \hat{x}, (y - \hat{y}) \|_X - \| g(0) - \hat{g}(0) \|_X \geq -\| g(0) - \hat{g}(0) \|_X
$$

where the first inequality is due to the fact that $[p,q]^Z$ is Lipschitz in q with constant 1 and the second inequality is because $(x,y), (\hat{x}, \hat{y}) \in A$ and A is accretive.

The second term in (2.5) is given by

$$
\int_0^\infty [g(s) - \hat{g}(s), -g'(s) + \hat{g}'(s)]_X ds = \int_0^\infty \frac{d}{ds} \| g(s) - \hat{g}(s) \|_X ds = \| g(0) - \hat{g}(0) \|_X.
$$
since \(\frac{d}{ds} \left\| k(s) \right\|_{X} = [k(s), k'(s)]_{X} \) wherever \(\left\| k(s) \right\|_{X} \) and \(k(s) \) are both differentiable. Together, (2.6) and (2.7) imply (2.5) and hence that \(A \) is accretive.

The system (2.4) was introduced in [4] for another purpose. The results we have just obtained reduce many questions concerning (2.1) to the same questions for \(f = 0 \).

REFERENCES

[3] M. G. Crandall and L. C. Evans, On the relation of the operator \(\frac{3}{3s} + \frac{3}{3\tau} \) to evolution governed by accretive operators, Israel J. Math. 21 (1975), 261-278.

AN APPROXIMATION OF INTEGRABLE FUNCTIONS BY STEP
FUNCTIONS WITH AN APPLICATION.

M. G. Crandall and A. Pazy

Mathematics Research Center, University of
610 Walnut Street
Madison, Wisconsin 53706

January 1979

January 1979

Technical summary report.

Let \(f \in L^1(0,\infty) \), \(\delta > 0 \) and \((G_{\delta}f)(t) = \delta^{-1} \int_0^\infty e^{(t-s)/\delta} f(s)ds \). Given a
partition \(P = \{0 = t_0 < t_1 < \ldots < t_i < t_{i+1} < \ldots \} \) of \((0,\infty) \) where \(t_i \to \infty \),
we approximate \(f \) by the step function \(\Lambda_P f \) defined by
20. **ABSTRACT - Cont'd.**

\[A_p f(t) = (G_{\delta_i} G_{\delta_{i-1}} \cdots G_{\delta_1} f)(0) \text{ for } t_{i-1} < t < t_i, \]

where \(\delta_i = t_i - t_{i-1} \). The main results concern several properties of this process, with the most important one being that \(A_p f \to f \) in \(L^1(0,\infty) \) as \(\mu(P) = \sup\delta_i \to 0 \). An application to difference approximations of evolution problems is sketched.