Intelligence Tests in the Year 2000: What Forms Will They Take and What Purposes Will They Serve?

Robert J. Sternberg

Department of Psychology
Yale University
New Haven, Connecticut 06520

Technical Report No. 16
April, 1979

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N0001478C0025, Contract Authority Identification Number NR 150-412.
Abstract

Six points of view regarding the future of intelligence testing are considered, and a combined, "prototypical" point of view is synthesized that seems to represent a consensus of authors regarding the directions in which intelligence testing and research on intelligence are going. The past history and present status of intelligence testing and research are briefly considered, and then their future is discussed. The future seems to include assessment of various kinds of components of intelligence.
performance components, acquisition components, transfer components, and metacomponents. The distinction between academic and everyday intelligence is discussed, as are the cultural and temporal limits of any one notion of intelligence. Finally, the usefulness of the notion of intelligence as a prototype of people's beliefs is considered.
Six Authors in Search of a Character:
A Play about Intelligence Tests in the Year 2000

Robert J. Sternberg
Yale University

Running head: Six Authors

Send proofs to Robert J. Sternberg
Department of Psychology
Yale University
Box 11A Yale Station
New Haven, Connecticut 06520
Abstract

Six points of view regarding the future of intelligence testing are considered, and a combined, "prototypical" point of view is synthesized that seems to represent a consensus of authors regarding the directions in which intelligence testing and research on intelligence are going. The past history and present status of intelligence testing and research are briefly considered, and then their future is discussed. The future seems to include assessment of various kinds of components of intelligence—performance components, acquisition components, transfer components, and metacomponents. The distinction between academic and everyday intelligence is discussed, as are the cultural and temporal limits of any one notion of intelligence. Finally, the usefulness of the notion of intelligence as a prototype of people's beliefs is considered.
Six Authors

Six Authors in Search of a Character:
A Play about Intelligence Tests in the Year 2000

It is with pleasure that I welcome you to the sixth and last act of
the world's premiere performance of "Six Authors in Search of a Character,"
a play about intelligence tests in the year 2000. The plan of the play is
clear and simple, although it is only now, as a prelude to the final act,
that the plan can be revealed: Put together an outrageous assemblage of six
authors and see whether a character emerges. The character is an important
one, because it is he (which I use in a generic sense to include she as well)
who will rule the Land of Intelligence. As you know, most inhabitants of
this land are required to take written tests demonstrating their competency
in the laws of the land, and the ruler largely determines what forms these
tests will take, and what functions they will serve.

As an author-critic in this particular play, I am happy to announce that,
in my opinion, a character has emerged. Before introducing you to this charac-
ter, however, I would like to reintroduce you to two of his progenitors. These
progenitors were creations of earlier plays and earlier times. In retrospect,
we may wonder how these earlier rulers ever ascended to their respective
thrones. But we must be cautious in our criticisms of earlier playwrights,
lest we too be ridiculed by the authors of a play on intelligence tests in the
year 3000, or even 2100.

Let me remind you first of Factorman, believed by some to have been created
by parthenogenesis. Factorman first appeared near the turn of the century, and
at times has seemed to have the staying power of Methuselah. Factorman divided
the Land of Intelligence into a series of governing districts called "factors,"
no doubt in honor of Factorman himself. A general factor contained the highest
Six Authors

2

governing body, which passed and enforced laws relevant to all of the factors considered collectively. Specific factors passed and enforced laws relevant to each of them individually.

Factorman encountered serious problems during his rule. One of these was that within a few years, a host of pretenders to the throne emerged, all of whom claimed to be the true Factorman. All of these putative Factormen agreed that the factorial organization of government was the proper one; but they disagreed as to how many factors there should be, how these factors should be organized, and what these factors should be called. One "Factorman" disdained the near-autocracy of the general factor, and argued for a system of states' rights, according to which each of seven or so factors would be viewed as equally primary. Another "Factorman" was a federalist, and believed that a strictly hierarchical arrangement of factors served best. Another "Factorman," believed by some to harbor anarchist sentiments, argued for as many as 120 independent factors, each responsible only to itself. And the worst problem of all was that after a while, it was clear neither who was the true "Factorman," nor how one could even devise a way of telling who this individual was. A desperate attempt was made to reveal the true Factorman by having the whole bunch of "Factormen" appear on a television show, "To Tell the Truth," but when the emcee asked the true Factorman to stand up, all chairs were vacated instantly. A system was suggested whereby each Factorman would rule in rotation, but no one could agree as to what rotational plan to use: There seemed to be no good criterion for choosing one over another. Most seriously, the governmental structure was not accompanied by a well-worked out governmental process: The system seemed not to provide for a clear way to execute and enforce laws once they were made.
During the 1960's and 1970's, the "Factorman" were overthrown by a young and hearty challenger for the throne, Componentman. The relative present strength of Componentman, and the concomitant weakness of Factorman (whoever he may be) is shown by the fact that Factorman has received only passing references during the course of this play, whereas Componentman has been a central figure, and seemingly, at times, villain: Neisser seems to have intimated that Componentman should be overthrown; Horn, Resnick, Brown, and Turnbull seem to have agreed that Componentman should be demoted to a position of lesser influence, and I find myself in agreement with these authors. Who is this Componentman, whose rule is in such jeopardy?

Componentman organized a government that differed in a key respect from the government of Factorman: The new government emphasized the processes of governing rather than the structure of government. Componentman divided the Land of Intelligence into a set of components, again, no doubt, in honor of himself. Each component was to be responsible for a separate governmental process. Since single components would clearly be insufficient to carry out laws of any complexity, components were allowed to engage in cooperative ventures called "strategies." These strategies were able to solve complicated problems that no single component could have solved alone.

At one time, Componentman seemed to offer a nearly complete package of government. Through him it became possible to identify the elementary information processes (components) that carried out intelligent behavior; it became possible, moreover, to specify the representations upon which these components act; to estimate the latencies, difficulties, and probabilities of component execution; to identify the strategies into which components combined; and to assess how consistently these strategies were executed (see Sternberg, 1977, 1978a, 1979). Why, then, are even some of the strongest former backers of
Componentman, including some of the authors of this play (and certainly myself), backing off? The reason seems to be that although Componentman has offered a nearly complete package of government, what is missing is fundamental, and perhaps more fundamental to good government than what Componentman has to offer. What is missing is the set of higher-order processes that decide what lower-order processes should be used to solve problems. Components provide the means by which the laws of the Land of Intelligence can be carried out and enforced. But how are decisions made as to what laws to enact in the first place? How is it decided what components, representations, strategies, and speed-accuracy trade-offs to use? Componentman remains embarrassingly silent on these issues.

Enter Metacomponentman. If there is any consensus at all among the authors of this play, it is that Metacomponentman is the legitimate heir to the throne, and that he should take it over as soon as possible. Metacomponents supplement components by supplying the decision-making and planning that are necessary for the components to carry out their functions. Whereas components solve problems, metacomponents decide how the problems will be solved, and even what problems need to be solved in the first place (Sternberg, 1979).

When a new challenger seeks ascension to the throne, initial bursts of enthusiasm often substitute for empirical research. Some of this substitution has occurred in the study of metacomponents. Nevertheless, there has been at least some initial solid progress on the metacomponential front, which I will note here.

The work of Brown and her colleagues, cited in Brown and French's contribution to this play, represents one direction in which work on metacomponents is likely to progress. Comparing various kinds of atypical performance to more typical kinds of performance makes one aware not only of what particular decisions are made, but of what decisions actually need to be made. As
ethnomethodologists have so ably pointed out in the sociological realm, it is
often not until norms are violated that we become aware of what the norms are.
Markman’s (in press, Note 1) work on comprehension monitoring seems to fall
into the metacomponenental domain, as does some of the work that has been done
on metamemory (see Flavell & Wellman, 1977, for a review). My own work on
the development of intelligence (see Sternberg, Note 2) also addresses issues
in the metacomponenental domain. In this work, as in Brown’s, the contrast be-
tween more and less able groups provides a basis for understanding just what
decisions need to be made in intelligent functioning.

The problem in metacomponenental research (however it has been called)
has been that metacomponents have resisted experimental isolation in much the
same way that components once did (see Sternberg, 1977, 1978b): We have been
no more able to isolate metacomponenental decision times or difficulties than
we were once able to isolate componential execution times and difficulties.
As a result, we talk about metacomponents in a rather fuzzy way, identifying
them in indirect ways that do not permit systematic study of their properties.
Bill Salter and I have devised two methods we believe enable one to isolate
these metacomponents, however, and thus to go beyond somewhat obscure references
to homunculi, control processes, or executive processes. We are
studying these metacomponents in the laboratory now, in the hope that by the
year 2000 plus or minus, we will be able to isolate them in practical settings.
I will describe these two methods here for the first time.

The method of structural precueing is a development emanating from the
original method of precueing, which is used to isolate information-processing
components (Sternberg, 1977, 1978b). In the method of structural precueing,
each test trial occurs in two parts. In the first part, the subject receives
some advance (precueing) information that may or may not be helpful in solving
the test item; in the second part of the trial, the subject receives the full problem and solves it. The first part of the trial can vary in the amount of advance information presented. In one condition, subjects receive no advance information: The first part of the trial consists merely of the presentation of a blank, lighted field. As soon as they are ready, subjects press a button indicating their desire to see the full problem. In another condition, subjects receive the structure of the problem, but not its content. For example, if the problem consists of a standard analogy with three answer options, subjects would see the structure, $X : X :: X : (X, X, X)$, with each X indicating a word whose identity has yet to be disclosed. Subjects take as long as they need to view this structure, understanding that their task is to do as much strategy planning as is possible on the basis of this structural information. When a subject is ready to see the actual problem, he presses a button, and the actual analogy (with content) appears, for example, LAWYER : CLIENT :: DOCTOR : (MEDICINE, PATIENT, NURSE). The problem latencies of primary interest are contrasts between the two conditions of pre-cueing for each part of the trial. The facilitation obtained on account of structural pre-cueing is viewed as strategy-planning time. The facilitation can be measured either by taking differences between the first parts of the trials under each of the two conditions, or by taking differences between the second parts of trials under each of the two conditions. The second difference measure is probably of greater interest, since it involves actual solution of the full problem. In order to use this method, it is necessary that problems vary in their structures and in the strategies that can be employed to solve the problems of varying structure. In the analogies study, for example, problems vary in the number of locations in which variable options occur (one, two, or three), in the number of options at each location (two or three), and in the
particular locations in which options rather than given terms occur. Thus, one item might be a standard analogy such as the one presented earlier; another might be a nonstandard analogy of the form exemplified by LAWYER : (CLIENT, JUDGE, JURY) :: DOCTOR : (MEDICINE, PATIENT, NURSE). Each of the twenty structural variations used in our experiment requires at least some change in strategy, and each subject receives each variation under each condition of structural precueing. Note that it is essential that each structural variation require a different strategy: If each successive problem required the same strategy, the precueing would serve no purpose. This fact forms the basis for the second method Bill Salter and I are using to isolate strategy-planning time.

The method of mixed-versus-blocked trials eliminates the need for precueing. Subjects receive full analogies (or other kinds of problems) with varying structures requiring varying strategies. Problems are presented either in blocked form or in mixed form. When presented in blocked form, all trials in a given set of items involve problems with identical structures. Once the subject has formulated a strategy for the first item, he can use that strategy for each successive item in the set. When presented in mixed form, each trial in a given set of items involves a problem with a different structure that requires a different strategy. The strategy used for a given problem is not applicable to the next problem, so that it is necessary to formulate a new strategy on each successive trial. Metacomponential time for strategy planning is obtained by subtracting for each subject mean blocked-trial time from mean mixed-trial time.

Although all authors of this play seem to agree that Metacomponentman should ascend to the throne as soon as possible, the authors seem determined not to repeat past mistakes, which have allowed essentially autocratic rule by
Six Authors

3

a single individual. The authors have specified other governmental roles as well, and although these roles are subordinate ones, they are important in their own right. Let us consider these roles now.

The role of learning in the government of the Land of Intelligence has been a variable one over the years. Some years, Learningman is to be found in the government; other years he's not. This year, apparently, he's been elected by a unanimous vote: All of the authors have mentioned the importance of learning to the theory and testing of intelligence, noting also that its importance has been ignored of late. Turnbull refers to the importance of short-term prediction of learning. Resnick has observed that although much recent research has been devoted to isolating components of performance on intelligence-test items, virtually no research has been devoted to understanding the acquisition of these components. Horn contrasts learning in different modalities. Brown and French have introduced to us the Vygotskian concept of a "zone of potential development," which seems to refer to the difference between developed ability and total (including unused) capacity.

Can learning be broken down into a set of elementary acquisition components, and if so, how can these components of acquisition be isolated? Brown and French suggest one way. In their method, based upon that used in Soviet psychology, subjects receive successive cues in a problem task, with the zone of potential development estimated on the basis of the number (and perhaps types) of cues needed before the subject can proceed to solve the problem on his own. This method resembles my own method of precueing in some respects, and the resemblance leads me to question whether the method suggested by Brown and French really isolates acquisition components, or whether instead it isolates performance components, as does the method of precueing. Suppose that a task requires information-processing components a, b, c, and d for its solution, and suppose that the components are executed in that order. Suppose
also that each of two subjects would be able to solve the problem, but for the lack of one component. Subject 1 lacks component a, and Subject 2 lacks component d. If cues are presented in a successive order, allowing problem solution from beginning to end, then one cue may be sufficient to enable Subject 1 to pursue solution independently: Subject 2, however, might need as many as three cues before being able to solve the problem in its entirety. There may be ways of getting around this problem, but whatever they may be, the method still seems like one for isolating components of performance rather than components of acquisition. It functions much the way the method of precueing does in componential analysis, removing certain components from information processing to allow isolation of other components. The results reported by Brown and French are consistent with this type of analysis. If, for example, learning disabled subjects are able to solve problems with fewer prompts than are mentally retarded subjects, it could well be because they lack fewer components, or are able to access these components with less cueing.

Janet Powell and I are currently engaged in attempting to isolate components of acquisition in one of the tasks mentioned by Resnick—vocabulary. It is not surprising that vocabulary items have been neglected in the current wave of research on information-processing components of performance on intelligence-test items: The items simply provide no basis for the analysis of task performance. But they do seem to provide a basis for the analysis of what we call acquisition components. We believe that these acquisition components are responsible for vocabulary's being the best single measure of intelligence available. In our current research, subjects are presented with a series of narrative passages of the kind found in newspapers, textbooks, magazines, and other everyday sources of information. The passages are typical in every respect except that they contain embedded within them one or more words of extremely low frequency in the
English language. After reading each passage, subjects answer a number of questions about it, including one about the meaning of one of the low-frequency words. Structural variables in the narrative passages are used to predict the relative difficulties of learning the various words from context, and to predict individual differences in learning from context. These variables are the independent variables used to estimate the difficulties of the various acquisition components: Presumably, subjects who are better able to use these structural variables in acquiring the meanings of words are those who ultimately end up with better vocabularies.

Still another representative in the government of the Land of Intelligence would seem to be Transferman. The importance of transfer to the government of the land is mentioned by several authors of this play: Horn discusses the importance of transfer between sensory modalities; Brown and French discuss the role of transfer in their learning tasks; Turnbull notes the problem of transferring measured ability from a primary language to a secondary one, or vice versa. The importance of Transferman follows almost immediately from the importance of Learningman, since they are twins: You can't have one in a theory without the other. Fortunately, the two cooperate rather than compete.

Judy Sprotzer and I have been investigating what we refer to as "transfer components" in the context of (what else?) an analogical reasoning task. Trials of analogy solution are presented in pairs. In the first trial of the pair, subjects are presented with a standard analogy, such as LAWYER : CLIENT :: DOCTOR : (MEDICINE, PATIENT, NURSE). In the second trial of the pair, subjects receive an analogy that overlaps with the first analogy in some subset of analogy terms, for example, LAWYER : PARALEGAL :: DOCTOR : (PATIENT, MEDICINE, NURSE). In fact, for each base analogy, there are fifteen other analogies that differ in all
possible subsets of terms (including the null set). It is possible to construct a set of linear equations that provides the basis for estimating components of transfer for the different operations used to solve analogies (see Sternberg, 1977) for example, encoding of analogy terms, inference of the relation between the first term of the analogy and the second, or mapping of the relation between the first term of the analogy and the third. These transfer components measure the time saved by the subject’s ability—in the second analogy of a pair—to profit from having already performed an operation. For example, in the pair of analogies above, five of the six terms to be encoded in the second problem have already been encoded in the first problem; the inference between the first and second terms of the second analogy is new (that is, different from the inference in the first analogy); the mapping between the first and third terms is the same as in the first analogy. Isolating transfer components should enable us to determine the loci of transfer of training in reasoning and other tasks.

The idea of a distinction between academic and everyday intelligence appears explicitly in two acts of this play—those of Neisser and of Brown and French—and implicitly in other acts as well. The idea of a distinction between academic and everyday (or social) intelligence has long been an appealing one, and has even made its way into some theories of intelligence (e.g., Guilford, 1967). The problem with the distinction is that evidence in support of a separate unified construct of everyday or social intelligence has been practically nonexistent (see, for example, Keating, 1978). It is hard to know what to make of the lack of evidentiary support for the construct. Tests of everyday intelligence, like those of creativity, are so inadequate to the construct they seek to measure that one cannot decide the theoretical issue on the basis of the operational measures currently used to address the issue.
The issue is unlikely to die, anymore than the issue of creativity and how to measure it has died. Despite the inadequacy of the tests that are presently available, it is difficult to believe that there are not forms of everyday intelligence (and creative intelligence) that differ from what standard intelligence tests measure. It may be that there is no one unified construct of everyday intelligence, but several constructs. Such multiplicity of constructs would explain why no one trait has emerged in the research that has been done to date. The problem seems to remain one of finding appropriate tests to measure the trait or traits.

Another theme common to several acts of this play—particularly to those of Neisser, Horn, and Turnbull—is that of cultural relativity in the meaning of intelligence. Horn supplements this theme with one of temporal relativity—what we call intelligence at a given time in a given culture may not be the same as what we call (or should call) intelligence at a different time in (ostensibly) the same culture. This change may occur in part because of subtle changes in the culture that we are only barely aware of. Previous research certainly reinforced the notion that what is viewed as intelligent behavior in one culture may be viewed as quite unintelligent in another (see, for example, Cole, Gay, Glick, & Sharp, 1971; Goodnow, 1976). To the extent that intelligence is defined, stipulatively, in terms of behaviors that are adaptive within a given culture, there can be no doubt that intelligence must be defined relatively, that is, within a given cultural context. However, this divergence in stipulative definitions of intelligence should not obscure communalities in basic processes that probably do exist cross-culturally: The same performance components, acquisition components, transfer components, and metacomponents seem likely to be used by all people, regardless of their culture.

What probably differs across cultures is the importance of these components in
adapting to everyday life, and it is for this reason that the nature of intelligence is variable across cultures.

I have saved for last a discussion of what I believe to be one of the most interesting ideas to have emerged from this play—the idea of intelligence as a prototype, as suggested by Neisser. My agreement with this framework for viewing intelligence could not be expressed any more strongly than by my pointing out that this entire act of the play has consisted of an attempt to form a prototype representing the collective views of the six authors who have contributed to the play. The techniques used by Rosch (see, for example, Rosch, 1978) for studying prototypes, plus new techniques, might open up new avenues of research on intelligence. I think a few caveats need to be stated, however.

First, the idea of intelligence as a prototype, as the idea now stands, is a point of view rather than a theory. I find it useful heuristically in much the same way that I find the notion of scripts (or frames) useful. In the case of the present notion, the theoretical content needs to be filled in, and empirical demonstrations are required to show that the point of view really does have interesting researchable implications. Such research, I think, is most worthy of further pursuit, and likely to be profitable.

Second, because the notion of intelligence as a prototype is a point of view, it is not inconsistent with my own or other theories of intelligence. Society has created an essentially arbitrary concept, and society's prototype would seem to give us a fair representation of what that stipulative concept is. But I believe that there are fundamental aspects of human cognition that are nonarbitrary—namely, the performance components, acquisition components, transfer components, and metacomponents of human information processing. And a useful purpose would be and has been served by
Six Authors

14

trying to relate these various kinds of components to intelligence as it is defined by society. Today, the intelligence test seems to serve this reference function, at least for what Neisser refers to as academic intelligence. Perhaps one direction in which Neisser's thoughts might lead is toward better reference criteria; but for the time being, there seems to be no well worked out alternative to intelligence tests.

Finally, as Neisser points out, the existence of a "positive manifold" for intelligence tests argues in favor of a prototype, or underlying unitary construct, of intelligence. This construct has often been referred to as g. Calling this general factor or common something a prototype seems like a good first step toward understanding it. Discovering people's intuitions regarding what behaviors characterize the prototype seems like a good second step. But there is a third step that must follow these two, namely, the seeking of understanding of the psychological mechanisms underlying the objects of people's intuitions. If one of the characteristics of an intelligent person is (according to Cornell undergraduates) that he or she is "able to think logically," then we must understand how people do logical thinking. As it happens, this has been a major goal of my own research program directed toward the understanding of intelligence. I believe, therefore, that Neisser's notions complement, rather than contradict, many of my own regarding the nature of intelligence.

I would like to conclude by thanking the authors of this play for not taking its title too seriously. If they had, a one-liner might have sufficed for any given act: "Intelligence Tests in the Year 2000: They're Here!" Instead, the authors have pointed out multifarious directions in which intelligence testing might move, if not by the year 2000, then by some years thereafter, hopefully, not too many. My interpretation of their suggestions is that we will
see more, not less, of what I have called componential analysis. But the scope of componential analysis will have to be expanded to include kinds of components other than the performance components I and others have concentrated upon to date. We will seek to understand as well the components of acquisition and transfer, as well as the metacomponents that control componential activities. It is not clear to me, as it is not clear to Turnbull, that componential types of tests will replace refinements of the tests now in existence. But if our ultimate goal is to understand as well as to measure intelligence, it seems that as a bare minimum, componential tests will be wanted to supplement what we already have.
Reference Notes

Six Authors

References

Sternberg, R. J. Isolating the components of intelligence. Intelligence, 1978, 2, 117-128. (b)

Footnote

Preparation of this article was supported by Contract N0001478C0025 from the Office of Naval Research to Robert J. Sternberg. I am grateful to Bill Salter, whose coining of "Componentman" in another context led me to pursue Componentman's family tree.
Technical Reports Presently in this Series

NR 150-412, ONR Contract N0001478C0025

Navy

1 Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Ereux
Code N-71
NAVTRAEQUIPCEN
Orlando, FL 32813

1 MR. MAURICE CALLAHAN
Pers 23a
Bureau of Naval Personnel
Washington, DC 20370

1 Mr. James S. Duva
Chief, Human Factors Laboratory
Naval Training Equipment Center
(Code N-215)
Orlando, Florida 32813

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 CDR John Ferguson, MSC, USN
Naval Medical R&D Command (Code 44)
National Naval Medical Center
Bethesda, MD 20014

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Richard Gibson
Bureau of Medicine and Surgery
Code 513
Navy Department
Washington, DC 20372

Navy

1 CAPT. D.M. GRAGG, MC, USN
HEAD, SECTION ON MEDICAL EDUCATION
UNIFORMED SERVICES UNIV. OF THE
HEALTH SCIENCES
6917 ARLINGTON ROAD
BETHESDA, MD 20014

1 LT Steven D. Harris, MSC, USN
Code 6047
Human Factors Engineering Division
Crew Systems Department
Naval Air Development Center
Warminster, Pennsylvania 18974

1 CDR Wade Helm
PAC Missile Test Center
Point Mugu, CA 93041

1 LCDR Charles W. Hutchins
Naval Air Systems Command
444 Jefferson Plaza # 1
1411 Jefferson Davis Highway
Arlington, VA 20360

1 CDR Robert S. Kennedy
Naval Aerospace Medical and
Research Lab
Box 29407
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

1 CHAIRMAN, LEADERSHIP & LAW DEPT.
DIV. OF PROFESSIONAL DEVELOPMENT
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508
<table>
<thead>
<tr>
<th></th>
<th>Navy</th>
</tr>
</thead>
</table>
| 1 | CAPT Richard L. Martin
USS Francis Marion (LPA-249)
FPC New York, NY 09501 |
| 1 | Dr. James McBride
Code 301
Navy Personnel R&D Center
San Diego, CA 92152 |
| 2 | Dr. James McGrath
Navy Personnel R&D Center
Code 306
San Diego, CA 92152 |
| 1 | William Montague
LRDC
UNIVERSITY OF PITTSBURGH
3939 D'HARIA STREET
PITTSBURGH, PA 15213 |
| 1 | Commanding Officer
Naval Health Research Center
Attn: Library
San Diego, CA 92152 |
| 1 | Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014 |
| 1 | CAPT Paul Nelson, USN
Chief, Medical Service Corps
Code 7
Bureau of Medicine & Surgery
U. S. Department of the Navy
Washington, DC 20372 |
| 1 | Library
Navy Personnel R&D Center
San Diego, CA 92152 |
| 1 | Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390 |
| 1 | JOHN OLSEN
CHIEF OF NAVAL EDUCATION & TRAINING SUPPORT
PENSACOLA, FL 32509 |
| 1 | Psychologist
ONR Branch Office
405 Summer Street
Boston, MA 02210 |
| 1 | Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605 |
| 1 | Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217 |
| 1 | Office of Naval Research
Code 441
800 N. Quincy Street
Arlington, VA 22217 |
| 5 | Personnel & Training Research Programs
(Code 456)
Office of Naval Research
Arlington, VA 22217 |
| 1 | Psychologist
OFFICE OF NAVAL RESEARCH BRANCH
223 OLD MARYLEBONE ROAD
LONDON, NW, 15TH ENGLAND |
| 1 | Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101 |
| 1 | Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo American Embassy
APO San Francisco, CA 96503 |
Navy

Office of the Chief of Naval Operations
Research, Development, and Studies Branch
(0P-102)
Washington, DC 20350

Scientific Advisor to the Chief of Naval Personnel (Pers-Or)
Naval Bureau of Personnel
Room 4410, Arlington Annex
Washington, DC 20370

LT Frank C. Petho, MSC, USNR (Ph.D)
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32508

Dr. Richard A. Pollak
Academic Computing Center
U.S. Naval Academy
Annapolis, MD 21402

Roger W. Remington, Ph.D
Code L52
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

Mr. Robert Smith
Office of Chief of Naval Operations
OP-987E
Washington, DC 20350

Dr. Alfred F. Smode
Training Analysis & Evaluation Group (TAEG)
Dept. of the Navy
Orlando, FL 32813

CDR Charles J. Theisen, JR. MSC, USN
Head Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974

Dr. Ronald Weitzman
Department of Administrative Sciences
U.S. Naval Postgraduate School
Monterey, CA 93940

Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

A. A. Sjoholm
Tech. Support, Code 201
NAVY PERSONNEL R & D CENTER
SAN DIEGO, CA 92152
| 1 | Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333 |
|---|---|
| 1 | Hq USAAREUE & 7th Army
ODCSOPS
USAAREUE Director of GED
APC New York 09403 |
| 1 | DR. RALPH CANTER
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 | DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 | Dr. Myron Fischl
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 | Dr. Ed Johnson
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333 |
| 1 | Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 | Dr. Milton S. Katz
Individual Training & Skill
Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 | Dr. Beatrice J. Farr
Army Research Institute (PERI-OK)
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 | Dr. Harold F. O'Neil, Jr.
ATTN: PERI-OK
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 |
| 1 | Dr. Frederick Steinheiser
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 | Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333 |
Air Force

1 Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 Dr. Philip De Leo
AFHRL/TT
Lowry AFB, CO 80230

1 CDR. MERCER
CNET LIAISON OFFICER
AFHRL/FLYING TRAINING DIV.
WILLIAMS AFB, AZ 85224

1 Dr. Ross L. Morgan (AFARL/ASR)
Wright-Patterson AFB
Ohio 45433

1 Dr. Roger Pen nell
AFHRL/TT
Lowry AFB, CO 80230

1 Personnel Analysis Division
HQ USAF/DPXXA
Washington, DC 20330

1 Research Branch
AFMPC/DPHYP
Randolph AFB, TX 76148

1 Dr. Malcolm Ree
AFHRL/PED
Brooks AFB, TX 78235

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Jack A. Thorpe, Capt, USAF
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

Air Force

1 Brian K. Waters, LCOL, USAF
Air University
Maxwell AFB
Montgomery, AL 36112
Other DoD

1 Dr. Stephen Andriole
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Dr. William Graham
Testing Directorate
MEMCOM
Ft. Sheridan, IL 60037

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 MAJOR Wayne Sellman, USAF
Office of the Assistant Secretary of Defense (MRA&L)
3B93O The Pentagon
Washington, DC 20301

Civil Govt

1 Dr. Susan Chipman
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. William Gormann, Director
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street NW
Washington, DC 20415

1 Dr. Joseph I. Lipson
Division of Science Education
Room W-636
National Science Foundation
Washington, DC 20550

1 Dr. Joseph Markowitz
Office of Research and Development
Central Intelligence Agency
Washington, DC 20205

1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Arthur Meled
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Andrew R. Molnar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314
Civil Govt

1 Dr. Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Michael Atwood
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110

1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John S. Brown</td>
<td>XEROX Palo Alto Research Center</td>
</tr>
<tr>
<td></td>
<td>3333 Coyote Road</td>
</tr>
<tr>
<td></td>
<td>Palo Alto, CA 94304</td>
</tr>
<tr>
<td>Dr. C. Victor Bundersohn</td>
<td>WICAT INC.</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY PLAZA, SUITE 10</td>
</tr>
<tr>
<td></td>
<td>1160 SO. STATE ST.</td>
</tr>
<tr>
<td></td>
<td>OREM, UT 84057</td>
</tr>
<tr>
<td>Dr. John B. Carroll</td>
<td>Psychometric Lab</td>
</tr>
<tr>
<td></td>
<td>Univ. of No. Carolina</td>
</tr>
<tr>
<td></td>
<td>Davie Hall 013A</td>
</tr>
<tr>
<td></td>
<td>Chapel Hill, NC 27514</td>
</tr>
<tr>
<td>Dr. William Chase</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>Dr. Micheline Chi</td>
<td>Learning R & D Center</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>3939 O'Hara Street</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>Dr. John Chiorini</td>
<td>Litton-Mellonics</td>
</tr>
<tr>
<td></td>
<td>Box 1286</td>
</tr>
<tr>
<td></td>
<td>Springfield, VA 22151</td>
</tr>
<tr>
<td>Dr. Kenneth E. Clark</td>
<td>College of Arts & Sciences</td>
</tr>
<tr>
<td></td>
<td>University of Rochester</td>
</tr>
<tr>
<td></td>
<td>River Campus Station</td>
</tr>
<tr>
<td></td>
<td>Rochester, NY 14627</td>
</tr>
<tr>
<td>Dr. Norman Cliff</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td>Univ. of So. California</td>
</tr>
<tr>
<td></td>
<td>University Park</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90007</td>
</tr>
<tr>
<td>Dr. Allan M. Collins</td>
<td>Bolt Beranek & Newman, Inc.</td>
</tr>
<tr>
<td></td>
<td>50 Moulton Street</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>Dr. Meredith Crawford</td>
<td>Department of Engineering Administration</td>
</tr>
<tr>
<td></td>
<td>George Washington University</td>
</tr>
<tr>
<td></td>
<td>Suite 805</td>
</tr>
<tr>
<td></td>
<td>2101 L Street N. W.</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20037</td>
</tr>
<tr>
<td>Dr. Ruth Day</td>
<td>Center for Advanced Study</td>
</tr>
<tr>
<td></td>
<td>in Behavioral Sciences</td>
</tr>
<tr>
<td></td>
<td>202 Junipero Serra Blvd.</td>
</tr>
<tr>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Hubert Dreyfus</td>
<td>Department of Philosophy</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Berkely, CA 94720</td>
</tr>
<tr>
<td>Dr. Marvin D. Dunnette</td>
<td>N492 Elliott Hall</td>
</tr>
<tr>
<td></td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td>Univ. of Minnesota</td>
</tr>
<tr>
<td></td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Eric Facility-Acquisitions</td>
<td>4833 Rugby Avenue</td>
</tr>
<tr>
<td></td>
<td>Bethesda, MD 20014</td>
</tr>
<tr>
<td>Dr. Ed Feigenbaum</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Richard L. Ferguson</td>
<td>The American College Testing Program</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 168</td>
</tr>
<tr>
<td></td>
<td>Iowa City, IA 52240</td>
</tr>
<tr>
<td>Dr. Victor Fields</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td>Montgomery College</td>
</tr>
<tr>
<td></td>
<td>Rockville, MD 20850</td>
</tr>
<tr>
<td>Non Govt</td>
<td>Non Govt</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1 Dr. Edwin A. Fleishman</td>
<td>1 Dr. Lloyd Humphreys</td>
</tr>
<tr>
<td>Advanced Research Resources Organ.</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>Suite 900</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>4330 East West Highway</td>
<td>Champaign, IL 61820</td>
</tr>
<tr>
<td>Washington, DC 20014</td>
<td></td>
</tr>
<tr>
<td>1 Dr. John R. Frederiksen</td>
<td>1 Library</td>
</tr>
<tr>
<td>Bolt Beranek & Newman</td>
<td>HumRRO/Western Division</td>
</tr>
<tr>
<td>50 Moulton Street</td>
<td>27857 Berwick Drive</td>
</tr>
<tr>
<td>Cambridge, MA 02138</td>
<td>Carmel, CA 93921</td>
</tr>
<tr>
<td>1 DR. ROBERT GLASER</td>
<td>1 Dr. Earl Hunt</td>
</tr>
<tr>
<td>LRDC</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>UNIVERSITY OF PITTSBURGH</td>
<td>University of Washington</td>
</tr>
<tr>
<td>3939 O'HARA STREET</td>
<td>Seattle, WA 98105</td>
</tr>
<tr>
<td>PITTSBURGH, PA 15213</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Ira Goldstein</td>
<td>1 Mr. Gary Irving</td>
</tr>
<tr>
<td>XEROX Palo Alto Research Center</td>
<td>Data Sciences Division</td>
</tr>
<tr>
<td>3333 Coyote Road</td>
<td>Technology Services Corporation</td>
</tr>
<tr>
<td>Palo Alto, CA 94304</td>
<td>2811 Wilshire Blvd.</td>
</tr>
<tr>
<td></td>
<td>Santa Monica CA 90403</td>
</tr>
<tr>
<td>1 DR. JAMES G. GREENO</td>
<td>1 Dr. Steven W. Keele</td>
</tr>
<tr>
<td>LRDC</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>UNIVERSITY OF PITTSBURGH</td>
<td>University of Oregon</td>
</tr>
<tr>
<td>3939 O'HARA STREET</td>
<td>Eugene, OR 97403</td>
</tr>
<tr>
<td>PITTSBURGH, PA 15213</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Ron Hambleton</td>
<td>1 Dr. Walter Kintsch</td>
</tr>
<tr>
<td>School of Education</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td>University of Colorado</td>
</tr>
<tr>
<td>Amherst, MA 01002</td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>1 Dr. Barbara Hayes-Roth</td>
<td>1 Dr. David Kieras</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>1700 Main Street</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>Santa Monica, CA 90406</td>
<td>Tuscon, AZ 85721</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Dr. Frederick Hayes-Roth</td>
<td>1 Mr. Marlin Kroger</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>1117 Via Goleta</td>
</tr>
<tr>
<td>1700 Main Street</td>
<td>Palos Verdes Estates, CA 90274</td>
</tr>
<tr>
<td>Santa Monica, CA 90406</td>
<td></td>
</tr>
<tr>
<td>1 Dr. James R. Hoffman</td>
<td>1 LCOL. C.R.J. LAFLEUR</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>PERSONNEL APPLIED RESEARCH</td>
</tr>
<tr>
<td>University of Delaware</td>
<td>NATIONAL DEFENSE HQS</td>
</tr>
<tr>
<td>Newark, DE 19711</td>
<td>101 COLONEL BY DRIVE</td>
</tr>
<tr>
<td></td>
<td>OTTAWA, CANADA K1A OK2</td>
</tr>
<tr>
<td>Non Govt</td>
<td>Non Govt</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1 Dr. Jill Larkin</td>
<td>1 Dr. Jesse Orlansky</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Institute for Defense Analysis</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>400 Army Navy Drive</td>
</tr>
<tr>
<td>Pittsburgh, PA 15213</td>
<td>Arlington, VA 22202</td>
</tr>
<tr>
<td>1 Dr. Alan Lesgold</td>
<td>1 Dr. Robert Pachella</td>
</tr>
<tr>
<td>Learning R&D Center</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>Human Performance Center</td>
</tr>
<tr>
<td>Pittsburgh, PA 15260</td>
<td>330 Packard Road</td>
</tr>
<tr>
<td>1 Dr. Robert Linn</td>
<td>Ann Arbor, MI 48104</td>
</tr>
<tr>
<td>College of Education</td>
<td></td>
</tr>
<tr>
<td>University of Illinois</td>
<td></td>
</tr>
<tr>
<td>Urbana, IL 61801</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Frederick K. Lord</td>
<td>1 Dr. Seymour A. Papert</td>
</tr>
<tr>
<td>Educational Testing Service</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Princeton, NJ 08540</td>
<td>Artificial Intelligence Lab</td>
</tr>
<tr>
<td>1 Dr. Robert R. Mackle</td>
<td>545 Technology Square</td>
</tr>
<tr>
<td>Human Factors Research, Inc.</td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>6780 Cortona Drive</td>
<td></td>
</tr>
<tr>
<td>Santa Barbara Research Pk.</td>
<td></td>
</tr>
<tr>
<td>Goleta, CA 93017</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Richard B. Millward</td>
<td>1 Dr. James A. Paulson</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>Portland State University</td>
</tr>
<tr>
<td>Hunter Lab.</td>
<td>P.O. Box 751</td>
</tr>
<tr>
<td>Brown University</td>
<td>Portland, OR 97207</td>
</tr>
<tr>
<td>Providence, RI 82912</td>
<td>1 Dr. MR. LUIGI PETRULLO</td>
</tr>
<tr>
<td>1 Dr. Allen Munro</td>
<td>2431 N. EDGEWOOD STREET</td>
</tr>
<tr>
<td>Univ. of So. California</td>
<td>ARLINGTON, VA 22202</td>
</tr>
<tr>
<td>Behavioral Technology Labs</td>
<td></td>
</tr>
<tr>
<td>3717 South Hope Street</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90007</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Donald A. Norman</td>
<td>1 Dr. KRISTEN M. PINE</td>
</tr>
<tr>
<td>Dept. of Psychology C-009</td>
<td>4950 Douglas Avenue</td>
</tr>
<tr>
<td>Univ. of California, San Diego</td>
<td>Golden Valley, MN 55416</td>
</tr>
<tr>
<td>La Jolla, CA 92093</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Melvin R. Novick</td>
<td>1 DR. PETER POLSON</td>
</tr>
<tr>
<td>Iowa Testing Programs</td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>UNIVERSITY OF COLORADO</td>
</tr>
<tr>
<td>Iowa City, IA 52242</td>
<td>BOULDER, CO 80302</td>
</tr>
<tr>
<td>1 MIN. RET. M. RAUCH</td>
<td>1 DR. DIANE M. RAMSEY-KLEE</td>
</tr>
<tr>
<td></td>
<td>R-K RESEARCH & SYSTEM DESIGN</td>
</tr>
<tr>
<td></td>
<td>3947 RIDGEMONT DRIVE</td>
</tr>
<tr>
<td></td>
<td>MALIBU, CA 90265</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 MIN. RET. M. RAUCH</td>
</tr>
<tr>
<td></td>
<td>F II 4</td>
</tr>
<tr>
<td></td>
<td>BUNDESMINISTERIUM DER VERTEIDIGUNG</td>
</tr>
<tr>
<td></td>
<td>POSTFACH 161</td>
</tr>
<tr>
<td></td>
<td>53 BONN 1, GERMANY</td>
</tr>
</tbody>
</table>
1 Dr. Peter B. Read
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MC 65201

1 Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkeley, CA 94720

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92032

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 Dr. Irwin Sarason
Department of Psychology
University of Washington
Seattle, WA 98195

1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Brad Symson
Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Kikumi Tatsukawa
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801
Non Govt

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 DR. PERRY THORDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Varial Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston: IL 60201

1 Dr. Howard Wainer
Bureau of Social Science Research
1990 M Street, N. W.
Washington, DC 20036

1 Dr. David J. Weiss
M660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104