UNCLASSIFIED

AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA)

RELIABILITY AND STRUCTURAL FATIGUE IN ONE-CRACK MODELS, (U)

JUL 78 D G FORD

UNCLASSIFIED

ARL/STRUC. 369
RELIABILITY AND STRUCTURAL FATIGUE IN ONE-CRACK MODELS

by

D. G. FORD
SUMMARY

To be realistic, any model of structural fatigue should allow for attrition due to collapse and/or war damage, hijacking, etc. In one-crack structures, attrition adds a single term to the Fokker-Planck equation which statistically describes crack growth. This remarkably simplifies the reliability computation, and elucidates the interaction of fatigue, inspection, ultimate loads and other risks.
NOTATION

1. INTRODUCTION

2. GENESIS OF NEW MODEL

2.1 Inspection

2.2 Attrition

2.3 Notational Conventions

3. COMBINED CRACKING AND ATTRITION

3.1 Characteristic Equations

3.2 Initial Conditions

3.3 Distribution of Final Failures

3.4 Moment Generating Function for Lives

3.5 Allowance for Inspections

4. EXTENSIONS

4.1 Runaway Cracks

4.1.1 Discrete Analogy

4.1.2 Runaways as a Limiting Crack Law

4.1.3 Discreteness Errors

4.2 Non-Autonomous Cracks

4.3 Distribution of Failing Loads

4.3.1 Zero Cracks

4.3.2 Runaway Cracks

4.3.3 Marginal Density

5. DISCUSSION

6. ACKNOWLEDGMENTS

REFERENCES

TABLE 1—Cumulants of Fatigue Life in Terms of Initiation and Crack Time Moments

DOCUMENT CONTROL DATA

DISTRIBUTION
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Crack size</td>
</tr>
<tr>
<td>a_0</td>
<td>Crack size at initiation time</td>
</tr>
<tr>
<td>c</td>
<td>Critical crack size, $R(c)$ infinite</td>
</tr>
<tr>
<td>E</td>
<td>Expectation</td>
</tr>
<tr>
<td>$f(a</td>
<td>t)$</td>
</tr>
<tr>
<td>$F(a)$</td>
<td>Probability distribution of crack length</td>
</tr>
<tr>
<td>$f(t)$, $f(t_0)$</td>
<td>Density of initial life t or t_0</td>
</tr>
<tr>
<td>$F(t)$</td>
<td>Distribution of initial life t</td>
</tr>
<tr>
<td>$H(t)$</td>
<td>Attrition or hijack factor of initial life survivorship function</td>
</tr>
<tr>
<td>$M(u)$</td>
<td>Generic form of moment generating function, $E.exp(u)$</td>
</tr>
<tr>
<td>$R(a)$</td>
<td>Crack growth rate (local average)</td>
</tr>
<tr>
<td>$r(a)$</td>
<td>Risk function</td>
</tr>
<tr>
<td>$r_0 = r(0)$</td>
<td>Risk in the absence of a crack "hijack risk"</td>
</tr>
<tr>
<td>t</td>
<td>Equivalent time or cycles</td>
</tr>
<tr>
<td>t_0, t</td>
<td>Initiation time</td>
</tr>
<tr>
<td>$t_0 = t - t_0$</td>
<td>Elapsed time since initiation</td>
</tr>
<tr>
<td>T_a</td>
<td>Dominating time used in analysis of runaway cracks</td>
</tr>
<tr>
<td>$\phi(a)$, $\Phi(a)$</td>
<td>Marginal density and distribution of crack length at failure</td>
</tr>
<tr>
<td>$\phi(a</td>
<td>t)$</td>
</tr>
<tr>
<td>μ</td>
<td>Arithmetic mean life to initial failure</td>
</tr>
<tr>
<td>\cap</td>
<td>Symbol for set intersection, used here as "and"</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Since the early 1960s research in fatigue prediction has divided into the distinct areas of crack growth, reliability or inspection and finally structural fatigue.\(^1,2,3\) Until now, most of the models assumed for reliability have either been forced to make many simplifications\(^4\) which have been criticised\(^5,6\) or else the calculations have been inordinately lengthy and possibly ill-conditioned. These remarks apply more particularly to the assumptions used when inspections are included. Apart from this, many models involve structures or data that are highly idealised.\(^7,8,9\)

Structural fatigue is now seen to involve the statistical interaction between initiation (damage) and crack growth at several fatigue critical regions in a structure. This concept developed naturally from the separation of fatigue into distinct phases of damage, cracking and final failure which is now the subject of reliability theory. The basic problem is now to find the multivariate distribution of crack lengths at any time. Although the general theory is multivariate, the single crack case is not trivial and forms useful illustrations.

In the earlier thinking of Ford,\(^1\) the crack length distribution was used to find risk rates for reliability estimates in a separate but simultaneous computation. Thus until now general theory of structural fatigue has made no allowance for failures or retirements after inspection. In this paper, such an allowance is made for single cracks. In terms of structural fatigue theory the extension is almost trivial but the reliability theory is profoundly simplified and generalised. The success of this one-crack model means that prediction of structural fatigue must now intimately involve reliability or attrition, so that a multi-crack reliability theory is now needed.\(^9\)

2. GENESIS OF NEW ONE-CRACK MODEL

The long fatigue life normally expected lends itself to measurement in terms of pseudo-times such as flights, service hours, years, etc. These are pseudo-times because they indicate length of service rather than physical time. Since practical time units contain many fatigue cycles it is mathematically convenient to let time be continuous, the common but implied practice which we also follow. With such an idealisation, some events may be slightly anomalous in terms of discrete cycles.

We make a distinction between retirements after inspection at fixed times (termed “inspection” for brevity) and “attrition” at arbitrary times from a continuous combined risk of overload failure, war damage, hijacking, etc.

Following previous definitions,\(^1,2,3\) fatigue is now assumed to proceed in three distinct stages. The first of these ends with the initiation (at length \(a_0\)) of a crack whose subsequent length \(a\) is assumed herein to be a deterministic function of elapsed time in the second stage. The third stage is attrition (including overload failure), and the structural fatigue problem is to find the corresponding probability density function \(\Phi(t)\) of life, which may allow for inspection. Because initiation is determined by cumulative damage, the pre-crack stage may also be termed the damage stage; “damage” does not refer to cracks, except that the next stage begins with a crack (of length \(a_0\)).

These stages are described by the three given functions \(f(t), R(a)\) and \(r(a)\) relating to initiation, crack rate and risk. In practice of course, they are the output of preliminary estimations using relevant data and any fatigue method which averages the effects of load sequence. If inspections are included, an operating characteristic \(P(a)\) is also required relating success of inspection to defect size (see page 9).

Thus, the model developed below produces a life distribution \(\Phi(t)\) from the data functions \(f(t), R(a), r(a)\) and possibly \(P(a)\). It should also be noted that, like \(t\), the crack length \(a\) may be arbitrarily defined as long as it adequately describes the cracked structure. For example, crack length or area may be used, but the equally valid log (area) may be more convenient.
2.1 Inspections

If there is only one crack the damage is unaffected by crack growth for a given structure so that initial failure can be immediately predicted from an appropriate damage rule or, if inspections are of main interest, experimentally observed initiations may be used. If there is no inspection and no final failure then, with deterministic cracking, any crack that begins between any two initiation times retains the same probability measure from those times onwards (a runaway crack is a special case of this).

![Diagram of crack growth and inspection](image)

FIG. 1 EFFECT OF INSPECTION ON CRACK LENGTH DENSITY

In Figure 1 however, if there is an inspection at \(t \) the probability of having the crack between A and B will be discontinuously reduced at that time by an amount that depends on \(a_A, a_B \) the possible lengths at that time. The overall rejection rate is an average of such quantities.

Although deterministic cracking is assumed, local randomness can be included in a quasi-deterministic way and this has been done in the extensions. In the next section the possible cracks are also autonomous, i.e.

\[
\frac{da}{dn} = R(a)
\]

regardless of the time. If this is integrated then the inversion of

\[
\int_{a_0}^{a} \frac{da}{R(a)} = t - t_0 = t_a \quad \text{say}
\]

indicates that any crack length in this one dimensional case depends only on the growth time \(t_a \). Figure 2 shows some typical illustrations of this. However, although this is important in general structural fatigue it is not necessary here. The more general case is treated as an extension so that the first presentation is not too cluttered.
2.2 Attrition

If inspections are included in this manner, it is only fair that the continuous unscheduled “inspection” by the environment is also included. That is, the probability of overloads leading to failure should be covered; this is the subject of conventional reliability. As used below it will include the continuous risk of removal from any cause of interest, and the risk on an uncracked structure \(r_s \) will assume a particular importance. The latter will affect the probability density of initiation so that thus must also be included in the model.

In order to simplify the language it is convenient to introduce the term *attrition*, or (generalised) failure, for the process described by reliability theory. Thus

\[
\text{Risk function = Conditional probability of attrition.}
\]

2.3 Notational Conventions

In the following a generic notation will be used so that \(f(.) \) and \(F(.) \) will refer to the probability density and distribution functions of the arguments and the form of the function will differ with the argument. As a special case \(\phi(.) \) refers to any density affected by attrition, including life distribution. \(M.(u) \) will refer to the moment generating function of the random variable indicated by this subscript.

For example,

\[
M_\phi(u) = E e^{u\phi} = \int_0^1 e^{u\phi} \, dF(\phi), \quad (0 \leq F(\phi) \leq 1).
\]

In this standard definition we have also used a Stieltjes integral, mainly to abbreviate the formula. The reader who is not familiar with these will have no trouble if he remembers that when \(F \) is differentiable,

\[
dF(\phi) = \frac{dF}{d\phi};
\]

otherwise \(dF(\phi') \) is the concentrated probability \(\Pr(\phi = \phi') \). For similar brevity, Stieltjes integrals will be used below, when this is convenient, to improve the display of the relations obtained.

The main technical advantage of Stieltjes integrals is the simplification of expectations involving continuous and concentrated probabilities. When the latter are not zero, the continuous density will be termed *improper*, retaining the same notation. Thus in general

\[
\int_0^\infty dF = 1 \quad \text{but} \quad \int_0^\infty f(\phi) \, d\phi \leq 1
\]

As a practical example we have for crack lengths

\[
1 - \int_0^\infty dF(a|t) = \text{Probability that a structure will not survive to time } t \text{ (for a crack to start).}
\]

The vertical stroke above is the normal convention for conditional probability so that \(a|t \) reads as “\(a \) given \(t \)”. Without attrition, the conditioning event, that the structure has reached a life \(t \), is a certainty. In our context, however, the conditioning event is this or prior attrition; \(f(a|t) \) is then improper, summing only to the reduced probability of reaching life \(t \).

3. COMBINED CRACKING AND ATTRITION

Consider the transition of possible cracks in the upper part of Figure 3 over a time \(dt \).
(a) Channel specimens (ARL)

Integral 2024 – T3 stringers

Ditto 7075 – T6 5(E)

Bonded stringers
2024 – T3

Ditto 7075 – T6

100,000 cycles
200,000 cycles

KEY

Initiation Cracking

Standard deviation of:

<table>
<thead>
<tr>
<th>Riveted</th>
<th>Crack to 20%</th>
<th>Proportional crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles to initiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Box beam results
(NACA TN'S 3856, 4246)

FIG. 2 RELATIVE SCATTER OF INITIATION AND CRACKING TIMES
This point and all other points on the upper curve have been shifted by 130 program no.'s. This point is actually 380 programs.

FIG. 2 (cont.) CRACKING IN TWO IDENTICAL SPAR BOOMS
If there is no attrition and \(f \) or \(f(a(t)) \) is the density of crack length then by an analogy with fluid flow\(^4\) the constant probability that cracks will lie between the two shown may be expressed in the continuity equation

\[
\frac{Df}{Dt} = -\nabla \cdot R(a)
\]

(3.1)

where \(\frac{Df}{Dt} \) is a total derivative along the crack trajectory and for single cracks \(\nabla \cdot R(a) = \frac{dR}{da} \), a known function of \(a \).

Attrition for this particular case will correspond to the risk rate \(r(a) \) and the events of attrition and cracking are mutually exclusive. If the density \(f \) is allowed to be non-proper then attrition will decrease it at the rate \(f(a(t))r(a) \) so that (3.1) with attrition becomes

\[
\frac{Df}{Dt} = -f \left(\frac{dR}{da} + r(a) \right)
\]

(3.2)

with

\[
\frac{Df}{Dt} = \frac{\partial f}{\partial t} + R(a) \frac{\partial f}{\partial a}
\]

It is worth noting that if \(\nabla \cdot R \) is retained (3.2) holds for several cracks but \(r(a) \) becomes harder to calculate. Another point is that \(r(a) \) is the total rate of attrition including that from causes not related to the growth of fatigue cracks or from various modes of failure. Statistically, the attrition simply adds to the effect of the dilatation \(dR/da \).

FIG. 3 DERIVATION OF DEGENERATE FOKKER–PLANCK EQUATIONS

3.1 Characteristic Equations

Equation (3.2) is a linear first order partial differential equation and is also the Fokker–Planck equation for the Markov process represented by the successive states of damage, crack length and total attrition as a function of crack length. (The usual second order term is absent because (3.2) is based on deterministic cracking without local randomness.)

From well known results\(^{10,11,12}\) the characteristic equations are

\[
dt = \frac{da}{R(a)} = -\frac{d}{f} \left[\frac{dR}{da} + r(a) \right].
\]

(3.3)
The first equality here indicates that the crack trajectories are base characteristics along which
\[
- \frac{d}{da} \log f = \frac{dR/da + r(a)}{R(a)}
\]
(3.4)
with the solution
\[
f = f(a_0|t_0) \frac{R(a_0)}{R(a)} \exp \left(- \int_{a_0}^{a} \frac{r(a)}{R(a)} \, da \right)
\]
(3.5)
where \(t_0 \) is the time for initial failure or \(a(t_0) = a_o \).

3.2 Initial Conditions

Equation (3.5) is the complete formal solution of (3.2) but the initial density \(f_0 = f(a_o|t_0) \) is still to be found. It follows from the same type of continuity considerations, but it must now be remembered that the density of initial failures is reduced in general by attrition of uncracked structures (e.g. static overload, hijacking, etc.). The attrition of cracked structures is already accounted for by (3.2) where \(r(a) \) includes any risk of interest, as well as the failure of fatigue weakened structures.

Let \(F(t) \) be the probability distribution of initial lives in the absence of attrition but in its presence suppose that the proportion of uncracked survivors is reduced to
\[
H(t)(1 - F(t)).
\]
(3.6)
Among these survivors there are two mutually exclusive forms of attrition, namely,
(a) Failure or removal of the uncracked structure with a risk rate \(r_o = r(0) \), and
(b) Transition to being a cracked structure for which the risk rate is the same as it is without attrition, i.e. \(f(t)/(1 - F(t)) \).

For the survivors (3.6) the usual reliability equation then takes the form
\[
- \frac{d}{dt} \log H(1 - F) = r_o + \frac{f(t)}{1 - F(t)}
\]
(3.7)
in which only \(H(t) \) is not known. If \(H(0) = 1 \) the solution is
\[
H(t) = e^{-r_o t}
\]
(3.8)
It is now possible to find initial conditions for (3.5) from the preservation of probability between AB and CD in Figure 4. The probability of initiation between A and B is

\[Pr(\text{Survival}) \cdot Pr(\text{Initiation} | \text{Survival}) \]

\[H(t)(1 - F(t))(1 - \exp[-f(t)dt/(1 - F(t))]) = H(t)f(t)dt \]
(3.9)
to the first order. This is not obviously the same as the probability of a crack between C and D because some attrition may occur during the time \(dt \) with the risk \(r(a_0) \). If survival of this is included, like the risk in (3.9), and equated to the probability of an initial crack between C and D then the preservation of probability, with allowance for attrition, is expressible as

\[Hf \exp(-r(a_0 + dt)). dt = f(a_0|t + dt)R(a_0)dt. \]

The term for attrition here is of second order and the initial condition reduces to

\[f(a_0|t) = H(t)f(t)/R(a_0) \]
(3.10)
When this, with (3.8), is substituted into (3.5) we finally obtain

\[f(a_0|t) = e^{-r_0}f(t_0) \cdot \exp \left(- \int_{a_0}^{a} \frac{r(a)}{R(a)} da \right) \]
(3.11)
where the initial conditions are expressed on the axis of time or cycles and \(t_0 \) is the initiation time corresponding to the crack at \(t_0 \). The neglected second order term in (3.10) corresponds to simultaneous initiation and hijacking.

3.3 Distribution of Final Failures

First these are considered without inspections. For a given crack at \(t_0 \) the risk of failure is \(r(a) \) so that the probability of fatigue failure during \((t, t + dt)\) is \(r(a)f(a_0)dt \), remembering that \(f(a|t) \) here has been defined to allow for previous attritions. At time \(t \) these previous attritions (the chance that the structure will be overloaded, hijacked or removed before initial cracking), continue at the rate \(r_0 \exp(-r_0) (1 - F(t)) \). When this is added to the expected attrition of cracked structures the density of lives to failure from all causes appears as

\[\phi(t) = r_0e^{-r_0}(1 - F(t)) + \int_{a_0}^{\infty} r(a)f(a|t)da \]
(3.12)
which includes infinite cracking rates. The notation \(\phi \) is a convention to indicate the presence of attrition. The occurrence of infinite cracking rates at finite lengths is the case of runaway cracking and is discussed below. The two terms in (3.12) form improper densities for failure of uncracked and cracked structures respectively. Now consider the second term and substitute for the density from (3.11). This corresponds to the attrition of cracked structures so that

\[\phi(t \cap \text{Crack}) = \int_{a_0}^{\infty} e^{-r_0}f(t_0) \cdot \frac{r(a)}{R(a)} \exp \left(- \int_{a_0}^{a} \frac{r(c)}{R(c)} dc \right) da \]
(3.13)
and for autonomous cracks the integrals may be simplified by a change of variable. Replace \(c \) by \(t_a \), the time that the crack requires to grow from \(a_0 \) to \(c \). This is defined for an autonomous crack and a moment’s thought will convince the reader that \(da/dt_a = R(a) \). With these changes, and the hijack term of (3.12), (3.13) becomes

\[\phi(t) = r_0e^{-r_0}(1 - F(t)) + \int_{0}^{\infty} e^{-r_0}f(t - t_a) \cdot r(t_a) \exp \left(- \int_{0}^{t_a} r(c)dc \right) dt_a \]
(3.14)

In the integral the factors depending on \(t - t_a \) form an improper density of initiation, since the first term allows for prior attrition by ultimate loads. The remaining factors could obviously be the result of attrition with the risk \(r(t_a) = r(a|t_a) \) on the set of structures which start to crack at \(t_a = 0 \); they are the probability density of the time spent with cracks in the structure before final failure. If \(r_0 = 0 \) then the convolution integral in (3.14) would be a proper
density reflecting the fact that the total life is the sum of the initiation period and an independently distributed time of crack growth.

3.4 Moment Generating Function for Lives

With (3.14) the life distribution (3.12) becomes

\[\phi(t) = r_0 e^{-r_0 t} (1 - F(t)) + e^{-r_0 t} f(t) * f(t_a) \]

so that the Moment Generating Function \(E(\exp(ut)) \) is

\[M_u(t) = r_0 \int e^{-r_0 t} (1 - F(t)) dt + \int dt \int_0^1 e^{-r_0 t} f(t - t_a) dF(t_a) = \frac{r_0}{u - r_0} \int (1 - F(t)) d\rho(u - r_0) + \int dF(t) e^{-r_0 t} \]

\[= M_\rho(u - r_0)M_u(u) + \frac{r_0}{u - r_0} (M_u(u) - 1) \]

where \(M_\rho \) and \(M_u \) refer to the initiation and cracking times respectively. When there are no ultimate loads \(r_0 = 0 \) and the independence of \(t \) and \(t_a \) is confirmed. The result is exact for autonomous cracks and some expansions of the cumulants of final life are shown in Table 1.

3.5 Allowance for Inspections

The effect of an inspection may be regarded as a concentrated attrition applied instantaneously. In terms of the Fokker-Planck Equation (3.2) and Figure 5 the boundary conditions are altered for different crack lengths along the inspection boundaries \(t_i = T_i \). The computation of \(f(a|t) \) and therefore of \(\phi(t) \) proceeds in turn from regions \(I_0, \ldots, I_i \) to \(I_{i+1} \) with changes of boundary conditions at \(T_i \).

Let \(P(a) \) be the operating characteristic of the method of inspection so that

\[P(a) = Pr (\text{Not acting about a crack|Length } a) \]

In general \(P(a) \) will be the result of operating experience but the more exotic possibilities of
finding cracks and not acting or randomly rejecting structures can be included in subsidiary calculations for it. After the first inspection the boundary conditions along t_1 become

$$f(a|T_1+) = P(a)f(a|T_1-)$$

but this will only affect the cracks that have already begun, that is those in the domain of dependence

$$(a, i) \in I_1 \text{ and } a < a(i - T_1)$$

which is that part of I_1 above the characteristic crack trajectory starting at (a_0, T_1) (Fig. 5). Similarly the trajectories from the other $(a_0, T_1)_s$ will divide all the I_1 into other domains of dependence which depend on conditions set at the inspection boundaries $i = T_1, a < a_0$ or else the initiation boundaries $T_i < i < T_{i+1}, a = a_0$. Along each of the latter the probability of initiation will be greatly affected by the inspection policy. The study of these policies and their effect is related to renewal theory. Because little is known at present and the subject promises to be vast it will not be pursued here except for the mention of four typical possibilities. These are

(a) the structure is removed from service;
(b) it is repaired as new, i.e. the damage is the same as that of a new structure;
and finally there are the more difficult
(c) repaired to $a = 0$ but with residual fatigue damage (this means that the repair will tend to fail more rapidly than originally);
(d) replaced by new structure selected at random from the population.

4. EXTENSIONS

For the model above the obvious need is more investigation of inspection policies. However, there are other simple extensions which are either interesting or related to current practice.

The first of these is that the initial crack length a_0 could be taken as zero in the context of the present development although there are physical reasons why it should not be.

4.1 Runaway Cracks

In Forman, Kearney and Engle's relation for da/dt and for practical purposes in some experimental results, it is possible for $R(a)$ to become infinite at some finite length c, after the growth time t_e say. If this happens (defining a "runaway crack") then obviously such structures survive no longer; in the basic statistical terms $r(c) = 1$ and it will transpire that $c \to \infty$ makes no difference. The effect of this is to telescope all of the failures which would have occurred later on (had da/dt not become infinite) into the instant at $t_e + t_e$.

This is the continuous idealisation of the final cycle in a discrete sequence of loads.

4.1.1 Discrete Analogy

It may be argued that a risk approaching $r(c)$ when $t < t_e + t_e$ would leave no survivors for such a wholesale demise when the risk become unity. However, we shall demonstrate the effect for physically more realistic discrete time, i.e. individual load cycles. It is sufficient to postulate a fixed crack always "beginning" at the origin with the induced risks $r_0, r_1, \ldots, r_{N-1}$ and of course $r_N = 1$.

Then for $j \geq N - 1$

$$Pr(\text{Surviving } j \text{ cycles}) = (1 - r_0) \ldots (1 - r_j) = (1 - F_j), \text{ say}$$

(4.1)

In particular the nature of r_j ensures strictly that

$$0 < 1 - F_{N-1} < 1,$$

(4.2)

since N is finite. The attrition on the next cycle is complete,

$$r_N(1 - F_{N-1}) = 1 - F_{N-1},$$
and the range of the life distribution is \((0, N)\) with
\[
 f_N = 1 - F_{N-1}, \tag{4.3}
\]
the telescoping effect.

If this simplified case is repeated in continuous time then (4.1) is replaced by
\[
 1 - F(t_\infty) = \exp \left(- \int_0^{t_\infty} r(t_a) dt_a \right) > 0 \tag{4.4}
\]
as in (4.2) if the integral converges, as it may.

As in (4.3) \(f(t_\infty)\) is a concentrated probability, an exceptional case in continuous time, but only because (4.4) is an approximation to (4.1). It is easily shown that there exists a believable \(r(t)\) for which (4.4) uniformly exceeds (4.1).

4.1.2 Runaways as a Limiting Crack Law

In this section, runaway cracks will be approached as the limiting case of an inequality for the distribution function of crack lengths \(F(a)\). For this purpose suppose that \(c = a(t_\infty)\) is some arbitrary length above which the rate is "fast" so that \(t(\infty) - t(c)\) is "short".

In the notation of (3.15) let us divide the infinite range in (3.14) at the arbitrary times \(t_o\) and \(T_a \geq t_o\). The first of these will become the time until a crack runs away whilst \(T_a\) is to allow for the infinite limit in (3.14).
Thus (3.14) may be written

\[\phi(t) = \int_0^\infty e^{-r(t)} f(t) \, dt \]

where \(\phi(t) \) is zero when \(t < 0 \) this inequality can be sharpened to \(0 \leq t < t_e \) since \(\Pr(t + t_0 > t) \) is then zero.

The third term is essentially positive and its neglect indicates that always

\[\phi(t) \leq \int_0^{t_e} \ldots dF(t_a) + e^M \cdot e^{-r(t - t_0)} f(t - t_0) \, [F(t_a) - F(t_0)] \]

(4.5)

with equality when \(F(t_a) = 1 \). This happens when \(T_e \) is infinite or at finite values when \(r(c) = 1 \), i.e. there is runaway cracking. This is the case we discuss. In (4.5)

\[M = r_0 f + \ln(f(t) - f(t)) \]

\[= r_0 f + \ln(1 - f'/f) + O(f^2) \sim \ln(f - f'/f(t - t_0)). \]

So far the introduction of \(M \) or \(t \) has avoided the use of unit risk. In this Section risk must be correlated with cracking so that \(r(c) \to 1 \) is implied by \(f, M \to 0 \), i.e. certain failure follows instantaneous fracture.

For runaway cracks in continuous time then \(\phi(t) \) becomes

\[\int_0^{t_e} e^{-r(t - t_0)} f(t - t_0) \, dF(t_a) + e^{-r(t - t_0)} f(t - t_0) \, [F(t_a) - F(t_0)]. \]

From Section 3.3

\[1 - F(t_e) = \int_0^\infty dF(t_0) = \exp \left(- \int_0^{t_e} r(t_a) \, dt_a \right) \]

(4.6)

and in the limit (3.12) or (3.15) take the most general form

\[\phi(t) = r_0 e^{-r(t)} (1 - F(t)) + \int_0^{t_e} e^{-r(t - t_0)} f(t - t_0) \exp \left(- \int_0^{t_a} r(t') \, dt' \right) \, dt_a \]

\[+ e^{-r(t - t_0)} f(t - t_0) \exp \left(- \int_0^{t_e} r(t') \, dt' \right) \]

(4.7)

The last term is the "risk of fatigue fracture" as defined by Payne and Diamond.4 The moment generating function (3.16) is not altered but if \(R(a(t_0)) \) is infinite then \(M(a) \) needs to be computed using the concentrated probability (4.6) at \(t_e \).

4.1.3 Discreteness Errors

In (4.5) \(\exp M \sim 1 + M \) indicates the effect of fracture not being instantaneous. If \(r(c) = 1 \) then \(f \) cannot "exceed" one load cycle and with this extreme bound we now show that \(M \) is negligible.

Suppose that unit time allows an average of \(m \) cycles so that heuristically

\[r_0 = m r_m(0) \]

\[f'/f = \Delta f_m / \Delta m \]

where the subscript \(m \) indicates discrete load quantities. Substitution with \(t \sim 1/m \) then indicates that

\[M < r_m(0) - \Delta f_m / m r_m(t - t_0) \]

which is small for practical cases.
4.2 Non-Autonomous Cracks

So far, the crack rate has depended only on the current length so that any possible growth curve is a translation in time or cycles of one that begins at the origin. In practice, the rate, say $\frac{da}{dt} = R(a, \omega)$, depends randomly on the particular specimen, here itemised as ω. For a two stage model of fatigue this variability can either be neglected in comparison to the scatter from the damage phase or else (4.7) can be repeated for different cases and averaged. Within the present model the crack rate can also be modified to allow approximately for random crack rates.

In other cases, notably for some welded structures, it may be more realistic to assume that a crack begins immediately or at some fixed time and another further idealisation would be that the time to a given crack length has some given probability density.\(^4\)

Such cases are included by taking a crack rate $R(a, t)$ depending both on time and length which also generalises the two stage model. Equation (3.2) still holds together with the subsequent argument except that the dilatation of R is now a partial derivative depending on time. The first effect of this is that (3.5) fails, which in turn means that the simple form (3.16) for the moment generating function must be abandoned; the propagation time and initiation are not independent.

However, some salvage is possible. Crack growth trajectories are still characteristics and along these

$$-\frac{d}{dt} \log f = \frac{\frac{\partial R(a, t)}{\partial a} + r(a)}{R(a, t)}$$

leading to a formal solution with the previous boundary conditions. Consider the total derivative of R along the crack trajectory,

$$\frac{DR}{Da} = \frac{\partial R}{\partial a} + \frac{\partial R}{\partial t} \frac{dt}{da}.$$

Replacing $\frac{\partial R}{\partial a}$ in (4.8) and integrating

$$\log f = A - \log R - \int_{a_o}^{a} \frac{r(a)}{R(a, t)} da + \int_{a_o}^{a} R^{-1} \frac{\partial R}{\partial t} da.$$

Initially

$$f_o = e^{-r_o a_o} f(t_o)/R(a_o, t_o)$$

$$= A/R (a_o, t_o), \quad t_o \text{ depending on } a,$$

whence

$$f(a|t) = e^{-r_o a_o} f(t_o) (R(a, t))^{-1} \exp \left(- \int_{a_o}^{a} \frac{r(a)}{R(a, t)} da + \int_{a_o}^{a} R^{-1} \frac{\partial R}{\partial t} da \right)$$

which corresponds to (3.11). The integrals here are defined by relating a and t along the characteristics; (3.12) follows as before with the changes above.

The modifications needed to display runaway cracking may also be extended to non-autonomous cracks. The argument is similar but must begin at (3.12) which now becomes

$$\phi(t) = r_o e^{-r_o t} (1 - F(t)) + \left(\int_{a_o}^{c} + \int_{c}^{\infty} \right) e^{-r_o a_o} R(a, t) \times$$

$$\times \exp \left(- \int_{a_o}^{a} \frac{r(a)}{R(a, t)} da \right) \exp \left(\int_{a_o}^{a} R^{-1} \frac{\partial R}{\partial t} da \right)$$

Since $R(c)$ is infinite the last term becomes unity for the range of integration (c, ∞) and this leaves

$$\frac{r}{R} = \int_{a_o}^{a_o}$$
as a probability density from an attrition along the characteristic through \((c, t)\) with the risk rate \(r/R\). In addition there is no longer any reason why \(c\) need be independent of \(t\). All of these considerations lead to

\[
\phi(t) = r e^{-\int_0^t \rho_s \, dt} \left(1 - F(t) \right) + \int_{a_0}^c e^{-\int_0^t \rho_s \, dt} f(t_a(a)) \exp \int_{a_0}^a \frac{rR \, da}{dt} dF \\
+ e^{-\int_0^t \rho_s \, dt} f(t_a(c))(1 - F(a|a = c)), \quad c = c(t).
\]

(4.10)

as the most general one-crack form of (4.2), where

\[
f(a) = 1 - \exp \left(-\int_{a_0}^a \frac{r(a')}{R(a', t')} \, da' \right)
\]

along the crack trajectory through \((a, t)\).

4.3 Distribution of Failing Loads

In the context of this paper failing loads may be inferred from the crack length when the structure fails so that we address the problem of finding the density of crack lengths at failure. With respect to the overall probability

\[
r(a)f(a|t) = Pr(\text{Attrition } \cap \text{Survival to } t \cap \text{Crack length } a).
\]

By definition

\[
\phi(t) = Pr(\text{Attrition at } t)
\]

in overall measure whence the crack length density conditional upon attrition,

\[
\phi(a|t) = r(a)f(a|t)/\phi(t)
\]

(4.11)

at a given number of cycles; \(f(a|t)\) refers to cracks which may be merely present at time \(t\). For autonomous cracks and \(a_0 \gg a \gg c\), substitution from (3.11) produces

\[
\phi(t)\phi(a|t) = e^{-\int_0^t \rho_s \, dt} f(t_a) \frac{r(a)}{R(a)} \exp \left(-\int_{a_0}^a \frac{r(a)}{R(a)} \, da \right) \\
= e^{-\int_0^t \rho_s \, dt - t_0} f(t - t_0) \frac{r(a)}{R(a)} \exp \left(-\int_{a_0}^a \frac{r(a)}{R(a)} \, da \right) \\
= e^{-\int_0^t \rho_s \, dt - t_0} f(t - t_0) f(t_a)/R(a)
\]

(4.12)

with the change of variable \(a \rightarrow t_a\) used for (3.14).

In words, the bivariate density of life and crack length, for life at final failure, is the product of growth time density and the density of initiation of the characteristic divided by the current rate of cracking.

4.3.1 Zero Cracks

The density (4.12) should be augmented by concentrated probabilities that the cracks in the failed structure either did not exist or possibly were runaway cracks.

The first of these is the conditional probability \(\Phi(0|t)\) of attrition by the risk \(r_0\). From the first term of (3.15) or (4.10), normalised by \(\phi(t)\),

\[
\phi(t)\Phi(0|t) = r_0 e^{-r_0 t}(1 - F(t))
\]

(4.13)

which may be integrated as it stands for the marginal probability of failure or removal without cracking. Partial integration with respect to the factor in \(r_0\) leads to
where \(\mu_t \) = Mean cycles to initiation.

It is suggested that (4.14), the product of arithmetic mean life to initiation with risk rate of uncracked structures, is an appropriate measure of “fatigue sensitivity” since it is the probability that failure will not be related to fatigue.

4.3.2 Runaway Cracks

By arguments the same as above the last term of (4.7) may be normalised to the conditional probability of runaway cracking whence

\[
\phi(t)(1 - \Phi(c)) = e^{-rt_s - t_s}f(t - t_s)(1 - F(t_0|a = c))
\]

(4.15)

with \(f(t_0) \) from (4.6). Since \(f(t) \) is zero for negative times this integrates over \(t \) to the marginal probability of runaway cracking

\[
(1 - \Phi(c)) = M(-r_0)(1 - F(t_0|a = c))
\]

(4.16)

When \(R(c) \) is not necessarily infinite but large enough to be considered dangerous (4.16) may be regarded as a rough measure of “fatigue danger”. The interpretation is precise for runaway cracks but otherwise clouded by considerations such as those of Section 4.1.

4.3.3 Marginal Densities

When (4.12) is integrated with respect to \(t - t_a \) one obtains the marginal density

\[
\phi(a) = M(-r_0)f(t_0)/R(a)
\]

(4.17)

which follows from (3.11) and (4.11). Inspection of these original equations indicates that, just as \(f(t_0) \) is the outcome of an attrition process with the risk \(r(a) \) and \(a = \alpha(t_0), f(t_0)/R(a) \) is both the transformation of that density to that of \(\alpha(t_0) \) and the result of attrition along crack length with the risk \(r(a)/R(a) \) (see Section 3.3).

It can be shown that (4.14), (4.16) and (4.17) provide the complete marginal distribution of length at failure.

5. DISCUSSION

The preceding evolution of two stage fatigue depends only on the density of initial life \(f(t) \) and the average crack rate \(R(a) \). If failure is included a risk \(r(a) \), averaged over stress sequence, material toughness and untoward circumstance is also needed. These three functions then completely define fatigue and life of the structure. They may be estimated by any standard method, experimental or theoretical.

The computer programs may also allow for inspections if the operating characteristic \(P(a) \) of the overall inspection method is known.

Most current experimentation about crack rates tacitly assumes that, apart from the stress, they depend only on the configuration of the crack at the time. This is the assumption of autonomous cracking which is suited to the use of fracture mechanics and supported by the small selection of data in Figure 2 and most of that in the literature.

For single cracks we have shown that the assumption of autonomous cracking, which is essentially that fatigue has two stages, leads to remarkable simplifications of the associated reliability theory provided that this is incorporated into the structural fatigue analysis. There is a parallel increase in understanding of the interaction of ultimate loads and the fatigue of structures which may be summarised by Equations (3.16) and (4.7).

Both of these are exact for a very general model with automatic allowance for the increasing strength of structures with time as the weaker ones are weeded out by higher risks. Some infor-
mation about this will be contained in the crack length distribution results of (4.12), (4.13) and (4.15) though interpretation in terms of strength depends on the nature of the subsidiary problem of estimating the risk \(r(a) \). In the same section it can be seen that the marginal distribution of strength particularly the virgin strength and that for runaway cracks provides natural measures of the sensitivity of the structure both to fatigue in general and to fatigue which may be regarded as dangerous.

Finally, many of the results can be extended to cracks that are not autonomous with no loss of accuracy and very little loss of simplicity.

The representation of the crack length density as a Markov process governed by a partial differential equation also allows an exact solution for the results of general inspections with realistic operating characteristics. Although this is exact in principle the calculations involve following boundary conditions across many contiguous domains of dependence. For single cracks the optimisation of such computations for either speed or accuracy is the major question in the application to structural fatigue and reliability.

For structures with several cracks the success of the results here demonstrates that any theory of structural fatigue must intimately include reliability and the latter subject must now become multi-dimensional. In practice many structures fail by a single dominant crack and, if this is so, many of the present results will apply if the initial crack length \(a_0 \) is taken to be some length exceeding that of non-dominant cracks.

When they coalesce, non-dominant cracks will thus affect the stress distribution and qualify for our definition of a crack. Before this, however, their progress would be described as contributing to damage.

6. ACKNOWLEDGMENTS

The author is indebted to Miss Beryl Green for the computation of Table 1 and to Dr. G. S. Jost and P. J. Howard for some of the data of Figure 2.
REFERENCES

TABLE 1
Cumulants of Fatigue Life in Terms of Initiation and Crack Time Moments

\[M_k(u) = \text{MGF of cycles to initiation} \]
\[M_k^{(1)}(-r_o) = \mu_k + O(r_o) \quad \text{where } \mu_k = k\text{th moment}, \mu_0 = 1. \]
\[M_d(u) = 1 + a_1u + \frac{1}{2}a_2u^2 \ldots, \quad a_0 = 1, \]
\[= \text{MGF of cracking time, moments } a_k. \]

Put
\[m_k = j[\ell^{(k)}(-r_o)]; \quad A_k = a_k - k\alpha_{k-1}r_o, \]
where
\[r_o = \text{Risk of loads above ultimate.} \]

Then for total life:
\[\kappa_1 = m_oA_1 + r_o^{-1} \quad \text{(Mean)} \]
\[\kappa_2 = 2m_1A_1 + m_oA_2 - m_o^2A_1^2 + r_o^{-2} \quad \text{(Variance)} \]
\[\kappa_3 = 3m_2A_1 + 3m_1A_2 + m_oA_3 - 6m_o m_1A_1A_2 - 3m_o^3A_1A_3 + 2m_o^3A_1^2 + 2/r_0^3 \]
\[\kappa_4 = 4m_3A_1 + 6m_2A_2 + 4m_1A_3 + m_oA_4 - 12m_o m_2A_1A_2 - 24m_o m_1A_2A_3 + 24m_o^2 m_1A_1A_3 \]
\[- 12m_o^2A_2^2 - m_o^3(4A_1A_2 + 3A_3^2) + 12m_o^3A_1^2A_2 - 6m_o^4A_1^4 + 6/r_0^4 \]
To be realistic, any model of structural fatigue should allow for attrition due to collapse and/or war damage, hijacking, etc. In one-crack structures, attrition adds a single term to the Fokker-Planck equation which statistically describes crack growth. This remarkably simplifies the reliability computation, and elucidates the interaction of fatigue, inspection, ultimate loads and other risks.
DISTRIBUTION

AUSTRALIA
DEPARTMENT OF DEFENCE

<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central Office</td>
</tr>
<tr>
<td>2</td>
<td>Chief Defence Scientist</td>
</tr>
<tr>
<td>3</td>
<td>Executive Controller, ADSS</td>
</tr>
<tr>
<td>4</td>
<td>Superintendent, Defence Science Administration</td>
</tr>
<tr>
<td>5</td>
<td>Australian Defence Scientific and Tech. Rep. (UK)</td>
</tr>
<tr>
<td>6</td>
<td>Counsellor, Defence Science</td>
</tr>
<tr>
<td>7</td>
<td>Defence Library</td>
</tr>
<tr>
<td>8–23</td>
<td>JIO</td>
</tr>
<tr>
<td></td>
<td>Assistant Secretary, DISB</td>
</tr>
<tr>
<td>24</td>
<td>Aeronautical Research Laboratories</td>
</tr>
<tr>
<td>25</td>
<td>Chief Superintendent</td>
</tr>
<tr>
<td>26</td>
<td>Superintendent, Structures Division</td>
</tr>
<tr>
<td>27–28</td>
<td>Structures Divisional File</td>
</tr>
<tr>
<td>29</td>
<td>Author: D. G. Ford</td>
</tr>
<tr>
<td>30</td>
<td>Library</td>
</tr>
<tr>
<td>31</td>
<td>A. O. Payne</td>
</tr>
<tr>
<td>32</td>
<td>G. S. Jost</td>
</tr>
<tr>
<td></td>
<td>D. Graham</td>
</tr>
<tr>
<td>33</td>
<td>Materials Research Laboratories</td>
</tr>
<tr>
<td>34</td>
<td>Library</td>
</tr>
<tr>
<td>35</td>
<td>Defence Research Centre</td>
</tr>
<tr>
<td>36</td>
<td>Library</td>
</tr>
<tr>
<td>37</td>
<td>Central Studies Establishment Information Centre</td>
</tr>
<tr>
<td>38</td>
<td>Library</td>
</tr>
<tr>
<td>39</td>
<td>Engineering Development Establishment</td>
</tr>
<tr>
<td></td>
<td>Library</td>
</tr>
<tr>
<td>40</td>
<td>RAN Research Laboratory</td>
</tr>
<tr>
<td>41</td>
<td>Library</td>
</tr>
<tr>
<td>42</td>
<td>Defence Regional Office</td>
</tr>
<tr>
<td>43</td>
<td>Library</td>
</tr>
<tr>
<td>44</td>
<td>Navy Office</td>
</tr>
<tr>
<td></td>
<td>Naval Scientific Adviser</td>
</tr>
<tr>
<td>45</td>
<td>Army Office</td>
</tr>
<tr>
<td></td>
<td>Army Scientific Adviser</td>
</tr>
<tr>
<td></td>
<td>Royal Military College, Library</td>
</tr>
<tr>
<td>46</td>
<td>Air Force Office</td>
</tr>
<tr>
<td>47</td>
<td>Air Force Scientific Adviser</td>
</tr>
<tr>
<td>48</td>
<td>D. Air Eng.</td>
</tr>
<tr>
<td>49</td>
<td>Engineering (CAFTS) Library</td>
</tr>
<tr>
<td>50</td>
<td>HQ Support Command (SENGSO)</td>
</tr>
</tbody>
</table>
DEPARTMENT OF PRODUCTIVITY
- Government Aircraft Factories, Library
- Mr. R. Hutton

DEPARTMENT OF TRANSPORT
- Director General/Library
- Airworthiness Group: Mr. K. O'Brien
- Mr. C. Torkington
- Accident Group (Mr. I. S. Milligan)

STATUTORY, STATE AUTHORITIES AND INDUSTRY
- CSIRO Central Library
- CSIRO Mechanical Engineering Division, Chief
- CSIRO Materials Science Division, Director
- Qantas, Library
- Trans Australia Airlines, Library
- Ansett Airlines, Library
- BHP Central Research Laboratories, NSW
- BHP Melbourne Research Laboratories
- Commonwealth Aircraft Corporation, Manager
- Commonwealth Aircraft Corporation, Manager of Engineering
- Commonwealth Aircraft Corporation, Mr. R. C. Beckett
- Commonwealth Aircraft Corporation, Dr. R. H. Keays
- Hawker de Havilland Pty. Ltd. (Librarian), Bankstown

UNIVERSITIES AND COLLEGES
<table>
<thead>
<tr>
<th>University</th>
<th>Library/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide</td>
<td>Barr Smith Library</td>
</tr>
<tr>
<td>Australian National</td>
<td>Library</td>
</tr>
<tr>
<td>Deakin</td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>B. Bathgate</td>
</tr>
<tr>
<td>Flinders</td>
<td>Library</td>
</tr>
<tr>
<td>James Cook</td>
<td>Library</td>
</tr>
<tr>
<td>La Trobe</td>
<td>Library</td>
</tr>
<tr>
<td>Melbourne</td>
<td>Engineering Library</td>
</tr>
<tr>
<td></td>
<td>Engineering, Dr. J. Williams</td>
</tr>
<tr>
<td>Monash</td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>Professor I. J. Polmear, Materials Engineering</td>
</tr>
<tr>
<td>Newcastle</td>
<td>Library</td>
</tr>
<tr>
<td>New England</td>
<td>Library</td>
</tr>
<tr>
<td>New South Wales</td>
<td>Physical Sciences Library</td>
</tr>
<tr>
<td>Sydney</td>
<td>Engineering Library</td>
</tr>
<tr>
<td>Queensland</td>
<td>Engineering Library</td>
</tr>
<tr>
<td>Tasmania</td>
<td>Engineering Library</td>
</tr>
<tr>
<td>Western Australia</td>
<td>Library</td>
</tr>
<tr>
<td>RMIT</td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>Mr. H. Millicer, Aeronautical Engineering</td>
</tr>
<tr>
<td></td>
<td>Mr. Pugh, Mechanical Engineering</td>
</tr>
</tbody>
</table>

CANADA
- Aluminium Labs. Ltd., Library
- CAARC Co-ordinator (Structures)
- NRC, National Aeronautical Establishment, Library
- NRC, National Aeronautical Establishment, Div. of Mech. Eng. (Dr. D. McPhail)
Universities
McGill Library 93
Toronto Institute of Aerophysics 94
Waterloo Dept. of Mech. Eng.: Professor L. F. Topper Dr. D. J. Burns 95 96

FRANCE
ONERA, Library 97
Service de Documentation, Technique de L'Aeronautique Mr. W. Barrois, Ingenieur en chef de l'air 98 99

GERMANY
LBF, Dr. D. Schütz DVLR, Dr. W. Schütz 100 101

INTERNATIONAL COMMITTEE ON AERONAUTICAL FATIGUE
Per Australian Representative, G. S. Jost 102-125

INDIA
CAARC Co-ordinator (Structures) 126 Civil Aviation Department, Director 127
Defence Ministry, Aero. Development Est., Library 128
Indian Institute of Science, Library 129
Indian Institute of Technology, Library 130
National Aeronautical Laboratory, Director 131

ITALY
Associazone Italiana di Aeronautica and Astronautica, Prof. Evla 132
Fiat Co., Dr. G. Gabrielli 133
Universita Degli Studi di Pisa, Dr. A. Salvetti 134

ISRAEL
Technion-Israel Institute of Technology, Prof. J. Singer 135
Technion-Israel Institute of Technology, Prof. A. Buch 136

JAPAN
National Aerospace Laboratory, Library 137

Universities
Tokyo Institute of Space and Aerospace, Library 138
Tohoku (Sendai), Library 139
Research Institute of Strength and Fracture of Materials: Professor Yamanaka 140
Professor T. Yokobori 141
M. Ichikawa 142
Kobe, Professor T. Nakagawa 143
Kyushu Institute of Technology, Library 144

NETHERLANDS
Central Org. for Applied Science 145
National Aerospace Laboratory 146

NEW ZEALAND
RNZAF Air Department, Aero. Documents Section 147
Transport Ministry, Civil Aviation Division Library 148

Universities
Canterbury Library 149
SWEDEN
- Aeronautical Research Institute, Sigge Eggwertz
- Chalmers Institute of Tech. Library
- Kungl Tekniska Högskolens
- SAAB, Library

SWITZERLAND
- F. & W. Ltd.

UNITED KINGDOM
- CAARC, Secretary
- Aeronautical Research Council
- Royal Aircraft Establishment:
 - Farnborough, Library
 - Bedford, Library
- CATC Secretariat
- British Library, Science Reference Library
- British Library, Lending Division
- Fulmer Research Institute Ltd., Research Director
- Science Museum Library
- Welding Institute Library
- National Engineering Laboratories, Superintendent
- Naval Construction Research Establishment, Superintendent
- CAARC Co-ordinator Structures
- Aircraft Research Association, Library
- British Ship Research Association
- Central Electricity Generating Board
- Motor Industries Research Association, Director
- Rolls-Royce Aeronautics Division, Library
- Rolls-Royce Bristol Siddeley Division, Library
- Hawker Siddeley Aviation Ltd., Brough
- Hawker Siddeley Aviation Ltd., Greengate
- Hawker Siddeley Aviation Ltd., Kingston-upon-Thames
- British Aircraft Corporation (Holdings) Ltd.:
 - Commercial Aircraft Division
 - Military Aircraft Division
 - Commercial Aviation Division
- British Hovercraft Corporation Ltd. (E. Cowes)
- Short Brothers & Harland
- Westland Helicopters Ltd.

Universities and Colleges
- Bristol: Library, Engineering Department
- Cambridge: Library, Engineering Department
- London, Queen Mary College: Library, Department of Aeronautics
- Manchester: Library, Engineering
- Nottingham: Library
- Southampton: Library
- Strathclyde: Library
- Cranfield Institute of Technology: Library
- Imperial College: The Head, Professor of Mechanical Engineering, Library, Department of Aeronautics
<table>
<thead>
<tr>
<th>Institutions and Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES OF AMERICA</td>
</tr>
<tr>
<td>NASA Scientific and Technical Information Facility</td>
</tr>
<tr>
<td>Sandia Group Research Organisation</td>
</tr>
<tr>
<td>American Institute of Aeronautics and Astronautics</td>
</tr>
<tr>
<td>Applied Mechanics Reviews</td>
</tr>
<tr>
<td>The John Crerar Library</td>
</tr>
<tr>
<td>US Atomic Energy Commission, Division of Tech. Information</td>
</tr>
<tr>
<td>Cessna Aircraft Co., Executive Engineer</td>
</tr>
<tr>
<td>Battelle Memorial Institute: Library</td>
</tr>
<tr>
<td>Dr. D. Broek</td>
</tr>
<tr>
<td>Metals Abstracts</td>
</tr>
<tr>
<td>Air Force Flight Dynamics Labs., Wright-Patterson AFB</td>
</tr>
<tr>
<td>NASA Langley (Virginia): John H. Crews Jr.</td>
</tr>
<tr>
<td>J. R. Davidson</td>
</tr>
<tr>
<td>National Bureau of Standards, Library</td>
</tr>
<tr>
<td>Library of Congress, Gift & Exchange Dept.</td>
</tr>
<tr>
<td>US Dept of Transportation, Transportation Systems Center, Dr. Elaine I. Savage</td>
</tr>
<tr>
<td>US Naval Research Laboratory, Washington, DC</td>
</tr>
<tr>
<td>Universities and Colleges</td>
</tr>
<tr>
<td>Brown</td>
</tr>
<tr>
<td>Cornell (New York)</td>
</tr>
<tr>
<td>Harvard</td>
</tr>
<tr>
<td>Illinois</td>
</tr>
<tr>
<td>Iowa State</td>
</tr>
<tr>
<td>George Washington</td>
</tr>
<tr>
<td>Brooklyn</td>
</tr>
<tr>
<td>California</td>
</tr>
<tr>
<td>New Mexico</td>
</tr>
</tbody>
</table>

Spares 220–229