RESPONSE CHARACTERISTICS OF KNOLLENBERG LIGHT-SCATTERING AEROSOL COUNTERS

FEBRUARY 1979

By

R. G. PINNICK
H. J. AUVERMANN

Approved for public release; distribution unlimited

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
Response characteristics of Knollenberg light-scattering aerosol counters

Authors: R. G. Pinnick, H. J. Auvermann

Performing organization: Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002

Controlled office: US Army Electronics Research and Development Command, Adelphi, MD 20783

Report date: Feb 1979

Number of pages: 52

Distribution statement: Approved for public release; distribution unlimited.

Key words: Light-scattering aerosol counters, In-situ measurement techniques, Knollenberg aerosol counters

Abstract: Response calculations are presented for four commercially available "Knollenberg" light-scattering aerosol counters: the classical scattering aerosol spectrometer probe (CSASP), the active scattering aerosol spectrometer probe (ASASP), the forward scattering spectrometer probe (FSSP), and the axially scattering spectrometer probe (ASSP). These instruments are widely used in the Department of Defense for measurement of fog, haze, dust, smoke, and battlefield-debris aerosols, in many cases without adequate understanding of their response characteristics and limitations. The results presented here show sensitivity of the...
20. (ABSTRACT)

Response to aerosol refractive index for values of indexes characteristic of atmospheric aerosols, and for a particular index, multivalued response for particles in the 0.5\(\mu \text{m} \) to 4\(\mu \text{m} \) radius range. The response calculations have been validated for two of these instruments (the CSASP and ASASP) by measurement of monodisperse spherical particles. The size resolution of these two instruments is significantly less than advertised by the manufacturer and measurement of irregular particles causes additional loss of resolution.
PREFACE

The authors gratefully acknowledge the constructive review of this report by Glenn B. Hoidale and S. G. Jennings. In addition, we are indebted to Gerald W. Garms for use of his Mie computer programs, Ernest B. Stenmark for his programming assistance, and Robert McGrew for providing the scanning electron microscope micrographs that appear in this report.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>GENERATION OF MONODISPERSE AEROSOLS</td>
<td>3</td>
</tr>
<tr>
<td>THE PARTICLE COUNTERS</td>
<td>4</td>
</tr>
<tr>
<td>THEORETICAL RESPONSE CALCULATIONS</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>12</td>
</tr>
<tr>
<td>FIGURES</td>
<td>13</td>
</tr>
<tr>
<td>TABLES</td>
<td>30</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>34</td>
</tr>
</tbody>
</table>
INTRODUCTION

Light-scattering aerosol counters are used for determination of size distribution and number concentration of aerosol particles. These devices work on the principle that as aerosol flows through an illuminated volume, light scattered by a single particle into a particular solid angle is measured and used to determine particle size by electronically classifying response pulses according to their magnitude. Determination of particle size from the response is indirect because of the dependence of the response on factors other than particle size, namely, particle shape and complex index of refraction; lens geometry of the counter optical system; and for broadband sources, phototube spectral sensitivity. A number of theoretical and experimental studies of response characteristics of light scattering counters have been done for several commercially available instruments [1-5] and those of special design [6-14]. In the research discussed in this report, the response characteristics of four models of "Knollenberg" (after R. C. Knollenberg, the developer) light scattering counters that have recently become commercially available (Particle Measurement Systems [PMS], Boulder, Colorado) were investigated. These instruments are widely used for aerosol measurement, perhaps indiscriminately and without adequate understanding of their response characteristics and limitations. An understanding of these factors is needed to assess errors in measurements made with them. In this report an attempt is made to gain this understanding.

Measurements of known monodisperse aerosols are highly desirable for investigating counter response. Thus, the next section gives a brief account of techniques used for generation of both spherical and irregular monodisperse aerosols. The third section presents a general description of the optical systems of the four Knollenberg counters: the classical scattering aerosol spectrometer probe (CSASP), the active scattering aerosol spectrometer probe (ASASP), the forward scattering spectrometer probe (FSSP), and the axially scattering spectrometer probe (ASSP). The fourth section presents the theoretical methods used for calculation of these counters' response for spherical particles, and the fifth section presents a comparison of theoretical and experimental results for the CSASP and ASASP using both monodisperse spherical and irregular particles. Finally, theoretical response calculations of all the instruments are presented for spherical particles with refractive indexes representative of atmospheric aerosol constituents.

GENERATION OF MONODISPERSE AEROSOLS

To definitively measure the response characteristics of aerosol counters, one must be able to generate aerosols of uniform size and different composition (or refractive index). For these studies uniform particles of nigrosin dye, sodium chloride, and potassium chlorate were generated by the vibrating orifice technique described earlier [6]. In this technique, the aerosol material is dissolved in a volatile solvent (water) and the resulting solution is forced at high pressure through a small (5μm to 20μm diameter) orifice. A transducer is attached to the
orifice, and at certain resonant frequencies the jet of solution squirting through the orifice breaks under the action of surface tension into droplets of uniform size. The volatile components of the droplets evaporate, leaving the residual aerosol.

The size of the aerosol depends on the concentration of material in solution, orifice size, orifice pressure, viscosity of the solvent used, and resonant frequency. For example, one part per thousand nigrosin dissolved in water forced through a 10μm orifice at 20 psi results in a resonance at 163 kHz and generation of aerosol of 2.92μm radius following evaporation of the solvent. An aerosol particle is generated for each complete vibration of the orifice. The standard deviation in particle size of aerosol made with this technique is on the order of 2 percent of the mean diameter, not counting particles that coalesce before drying, forming particles two, three, and four times larger in volume. This aerosol generation technique is essentially the same as that of Bergland and Liu [15]. In fact, a modified Bergland and Liu generator (commercially available from Thermal Systems, Inc., Minneapolis, MN) was used. The modification consisted of replacing the syringe pump with a compressed air source held at constant pressure.

Monodisperse spherical aerosols of polystyrene, polyvinyltoluene, and styrene divinylbenzene latexes available from Dow Chemical in the hydrosol were generated by nebulizing hydrosol samples diluted with distilled water. Also, nearly monodisperse crown glass beads available from Particle Information Services were generated by simply shaking the beads from their vial container. A summary of monodisperse aerosols utilized in this study is shown in table 1.

THE PARTICLE COUNTERS

Figure 1 shows a schematic of the CSASP optical system modified from a drawing supplied by the manufacturer. The instrument is essentially a dark-field microscope with silicon photodiodes used as the detectors. Air containing aerosol being sampled is drawn through the focal point of the collecting optics where individual particles scatter light into the microscope and photodetectors. The source of illumination is a 5 mW He-Ne laser tuned to a high order random mode. The optical system has axial symmetry with respect to the direction of the laser source and permits collection of light scattered 4 to 22 degrees from the direction of forward scattering.

The output of the photodetector is a measure of the intensity of light scattered by single particles and is fed into a 15-channel pulse-height analyzer. Figure 2 shows a typical CSASP spectrum for monodisperse aerosol of nigrosin dye together with a scanning electron microscope micrograph of several of these particles collected onto a Nuclepore filter. The peak in channel 12 corresponds to the most frequently occurring scattered intensity for this aerosol and its position is proportional to the counter response. The spread in the peak is caused by statistical broadening, nonuniform illumination of the sample volume,
and variation in aerosol size. For irregular particles a broader spectrum of pulse heights is measured, as different particle orientations result in distinctly different response pulses, even for particles nearly identical in shape. The spectrum in figure 3 shows this effect for uniform slightly irregular particles of sodium chloride; the figure also shows a micrograph of typical salt particles corresponding to this spectrum. This spectrum would be more nearly Gaussian if pulse height were plotted on the abscissa rather than channel number, as the channels are not of equal width. The size resolution of the instrument is obviously degraded for irregular particles.

The light-collecting optics of the ASASP instrument are identical to those of the CSASP, but in this case the particle illumination source is the intracavity standing wave radiation of a hybrid 2 mW He-Ne laser [16]. An advantage of utilizing the open-cavity source is the high energy density available (about 1 kW/cm² according to PMS), permitting measurement of particles down to about 0.1μm radius. Pulse height spectra for monodisperse spherical and irregular particles for this instrument are similar to those for the CSASP.

Only a small fraction of the particles which pass through the relatively large intakes of the CSASP and ASASP instruments, which consist of a conical horn with minimum diameter 3.3 cm, is counted. The relatively small volume through which particles must pass before they are counted is determined opto-electronically. Signals which derive from particles that do not flow through a particular volume which is within a sufficiently uniformly illuminated part of the laser beam are out-of-focus and electronically rejected.

Both FSSP and ASSP instruments are similar to the CSASP in that they are forward-scattering instruments and the illumination source is a He-Ne laser. The optical systems permit collection of light scattered 3 to 13 degrees (for the FSSP) and 5.3 to 12.4 degrees (for the ASSP) from the direction of forward scattering. In both instruments the coincidence scheme for particle detection involves a time-of-flight measurement of single particles traversing the laser beam and subsequent rejection of particles passing through the beam edges.

Table 2 summarizes the characteristics of the light-scattering counters. THEORETICAL RESPONSE CALCULATIONS

In this section the theoretical methods used for calculating particle counter response are outlined by using Mie theory for the CSASP, FSSP, and ASSP instruments and a solution for scattering of standing wave radiation by a spherical particle for the ASASP.

From Mie theory for a polarized plane wave having wavenumber k incident on a sphere with radius r, the scattering cross section (in cm² per
particle) for radiation scattered into a solid angle having axial symmetry with respect to the direction of the light source is:

\[R = \frac{\pi}{k^2} \int_\Omega \left| S_1 \right|^2 + \left| S_2 \right|^2 \sin \theta \, d\theta \]

(1)

where \(S_1(x,m,\theta) \) and \(S_2(x,m,\theta) \) are the Mie scattering amplitude functions corresponding to light polarized with electric vector perpendicular and parallel to the plane of scattering. They depend on the particle size parameter \(x = kr \), the refractive index \(m \), and the scattering angle \(\theta \). The angular integration is over the solid angle \(\Omega \) subtended by the light-collecting optics.

Because the scattering for the ASASP is for a particle in a standing wave, the scattering amplitude \(S' \) is calculated by adding the Mie scattering amplitudes for plane waves traveling in opposite directions: \(S'(\theta) = S(\theta) + S(\pi - \theta) \). The response for the ASASP is then

\[R = \frac{\pi}{k^2} \int_\Omega \left| S_1(\theta) + S_1(\pi - \theta) \right|^2 + \left| S_2(\theta) + S_2(\pi - \theta) \right|^2 \sin \theta \, d\theta \]

(2)

RESULTS

Measurements of the CSASP and ASASP response to monodisperse spherical latex and nigrosin dye aerosols are presented in figures 4 and 5 as open and solid circles. The radii of the latex particles are those advertised by Dow Chemical; those for nigrosin were measured by scanning electron microscope. The error in radius is not more than the width of the circles marking the measurements.

The measured response is expressed in cross section per particle normalized to the computer calculated theoretical results (solid-line curves) for best fit to the theoretical response for latex aerosols. This single normalization was used for all experimental results for each instrument. Polystyrene, polyvinyltoluene and styrene divinylbenzene latex aerosols actually have three similar but distinct indexes of refraction (see table 1); however, the response curves for these indexes are not significantly different and therefore only the response curve for polystyrene latex with index 1.592-01 is shown. Error in measurement of response is due to the finite width of the instrument pulse height channels and instrument drift. Repeated measurement of polystyrene latex particles showed instrument drift to be \(\pm 10 \) percent in pulse height over a period of 1 month.

Also shown in figure 4 is the CSASP response to relatively narrow polydispersions of glass beads having refractive index 1.51-01. The measured response is denoted by the squares and the theoretical response by the dashed curve. The standard deviation in particle size of the beads is indicated by the horizontal "error" bars and at least 68 per-
cent of the signals for these particles have pulse heights falling between the vertical "error" bars.

Figure 4 indicates that the theoretical response for the CSASP is corroborated by measurements on uniform aerosols with three markedly different indexes of refraction and with radii 0.30µm to 10µm. Therefore the Mie theory calculated response according to equation (1) adequately predicts the CSASP response for spheres, regardless of effects that may be caused, as suggested by the manufacturer, by multimode operation of the instrument laser source. The theoretical results according to equation (2) for the ASASP instrument are also verified by the response measurements in figure 5, with the exception of particles with radii greater than about 1µm. The extinction cross section of these larger particles is apparently sufficient to cause appreciable reduction in laser power and consequent deviation from the theoretical response curve.

The CSASP and ASASP response to slightly irregular randomly oriented uniform particles of sodium chloride and potassium chlorate have also been measured. These results, shown compared to theoretical response calculations again according to equations (1) and (2) for spheres of equivalent cross-sectional area, are shown in figures 6 through 9. As before, the experimental results are normalized to the measured response for polystyrene so that the comparison of experiment and theory here is absolute. Measurements of uniform irregular particles with these instruments result in a range of pulse heights and hence broader spectra than for spheres, as can be seen by comparing spectra in figures 2 and 3. Here the response plotted corresponds to the most frequent scattered intensity for the randomly oriented particles and at least 68 percent of the monodisperse aerosol counted have pulse heights falling between the vertical "error bars."

Figures 10 and 11 show micrographs of typical monodisperse particles of sodium chloride and potassium chlorate collected onto Nuclepore filters. Although it may not be obvious from these telescoping micrographs, sodium chloride particles with equivalent radius less than 3µm (as in figure 10, lower micrographs) consist of assemblies of cubes with a hollow center; larger particles (as in figure 10, upper micrographs) have five flat sides and one rounded side with a hole in the center. Potassium chlorate particles are prolate ellipsoids with rough surfaces and also some irregularly shaped voids within.

Thus, comparison of measurements in figures 6 and 7 (for the CSASP) and figures 8 and 9 (for the ASASP) shows comparable response for particles of markedly different shape (sodium chloride and potassium chlorate).

Potassium chlorate is birefringent; however, no theory exists for calculating scattering for birefringent particles. Consequently in figures 7 and 9 the measured response for potassium chlorate is compared to two theoretical curves: one curve for homogeneous spherical particles having index of refraction of the ordinary ray (n = 1.52-0i), and one
for particles having index of refraction of the extraordinary ray
($m = 1.409-01$). These two response curves are only significantly dif-
erent in the 0.5µm to 2µm radius range. It is noteworthy that both of
the theoretical curves are in poor agreement with the measurements for
particles in this size range, although for smaller and larger sizes,
where the two theoretical curves are similar, the measurements are in
better agreement with the theoretical response curves.

For the CSASP both the sodium chloride and potassium chlorate results
show: (1) rough agreement of measurement and theory for equivalent
radii $1.5\mu m < r < 4\mu m$, (2) the resonance behavior in the calculated
response is not evident in the measured response, (3) slightly smaller
response measured than predicted for particles with equivalent radius
$>4\mu m$, and (4) a resonance in the measured response for particles with
equivalent radius $0.8\mu m$ which may be a consequence of the shell-like
structure of the particles.

The following geometrical optics argument is offered to explain the
general agreement of the measured response for irregular particles and
that predicted for spheres of equal cross-sectional area, providing
equivalent radii are between $1.5\mu m$ and about $4\mu m$. First, particles
must have equivalent radii $r \gtrsim 1.5\mu m$ (or size parameters $x \gtrsim 15$) for
geometric optics to apply. Thus, if particles have $r \gtrsim 1.5\mu m$, and if
light scattered within the forward lobe is sensed, diffraction is domi-
nant; and to the first order only the projected area of the particle
is important. Thus, low-angle scattering constitutes a somewhat reliable
measure of particle projected area for particles of irregular shape, pro-
viding they are sufficiently large ($r \gtrsim 1.5\mu m$). On the other hand, they
cannot be too large, since if light scattered primarily outside the for-
ward lobe is sensed, as it is for particles with equivalent radius $r \lesssim
4\mu m$, reflection and refraction contributions are liable to produce a
response which deviates considerably from that of a sphere of equal
area, as the measurements show in figures 6 and 7. These measurements
suggest that the CSASP response to even larger ($\lesssim 6\mu m$ equivalent radius)
irregular particles might result in significant underestimation of
particle sizes. Response measurements for more irregular and larger
particles is an obvious deficiency of this work.

For the ASASP the irregular particle measurements show agreement of
measured and theoretical response for particles with equivalent radius
$r \gtrsim 0.5\mu m$ but disagreement for larger sizes and virtually no size resolu-
tion for particles with $r \gtrsim 0.5\mu m$.

For the special case of spherical particles, the measurements corroborate
the theoretical response curves for both the CSASP and ASASP, with the
extinction of particles having radius $\lesssim 1\mu m$ for the ASASP, which appar-
ently cause significant reduction in laser power. Confidence can thus
be placed in response calculations for materials with refractive indexes
different from those studied here. Response calculations for refractive indexes typical of atmospheric constituents at $\lambda = 6328\text{Å}$ ranging from the refractive index of water ($m = 1.33-01$) to carbon ($m = 1.95-0.66i$) were consequently carried out and are presented in figures 12 (CSASP) and 13 (ASASP). The pulse height discriminator levels, as set by the manufacturer for our particular models of these instruments, are shown by the tick marks in these figures. There are 15 particle size channels for each "range" of the instruments; channels 1, 5, 10, and 15 are labeled between the appropriate tick marks. Changing range is merely an adjustment of amplifier gain for the CSASP (for the ASASP both amplifier gain and discriminator level settings are different for each range) and has the effect of shifting the size range of sensitivity.

Users of these counters are warned that discriminator levels for different CSASP and ASASP instruments are not necessarily set as shown in figures 12 and 13, as the manufacturer has a number of different schemes for setting these levels. Nevertheless, the manufacturer utilizes several sizes of polystyrene, polyvinyltoluene and styrene divinylbenzene latex particles and glass beads in the factory "calibration," identified according to what channel they are counted as per the instrument manual supplied with each instrument. This information enables the user to infer positions of discriminator level settings relative to the theoretical results presented here.

Comparison of the CSASP and ASASP theoretical response curves for both absorbing and nonabsorbing aerosols show they are quite similar, the ASASP having high frequency wiggles in its response for particles in the resonance region (i.e., in the region where particles have sizes comparable to the wavelength), which are not found in the CSASP response. This result for a particular refractive index can be seen in figure 14, where the CSASP and ASASP response to particles with $m = 1.54-01$ are compared.

It is hardly necessary, in light of these results, to stress the fact that for spherical particles both the CSASP and ASASP responses are sensitive to aerosol refractive index over the range of realistic values for these indexes. For example, for the CSASP (figure 12), water particles ($m = 1.33-01$) with radii 5µm have identical response to dust particles ($m = 1.50-0.005i$) with radii 10µm. Even for aerosol of known composition there are, on some ranges of the instruments, discriminator levels set in regions of multivalued response. Thus for the CSASP, water particles with radii 0.63µm, 0.94µm, and 1.3µm all have the same response. Nevertheless, size distribution information for a polydispersion of homogeneous particles can be determined by reducing the number of channels to avoid these regions.

For example, if the CSASP is used to measure fog droplets, the channels can be grouped according to the response curve for water to avoid regions of multivalued response. This channel grouping is indicated by the heavy tick marks in figure 12. The channels are grouped with less size resolution than the response curve dictates because, in practice,
statistical spectra broadening effects result in some channel cross sensitivity. As was pointed out previously, even measurements of mono-disperse spherical aerosol result in a range of pulse heights, and identical particles are not counted entirely in one particle size channel. Therefore, use of discriminator levels set near regions of multi-valued response has been avoided. This scheme reduces the number of size channels for each range from 15 to 8. Specific channel size limits for the different ranges of the instrument can be determined for figure 12 by noting at what radii on the water response curve the appropriate heavy tick marks correspond.

A comparison of channel size limits determined in this way compared to limits advertised by the manufacturer is given in table 3. Not only is the size resolution of the CSASP generally reduced, but the channel limits differ by as much as a factor of two from the advertised values. Measurements of spherical particles having refractive indexes different from water would of course require different channel groupings and size definitions.

If the manufacturer's calibration is used in determination of size distribution of polydispersions of spherical particles, artificial knees or bumps in the distribution will appear in regions of multivalued response. These knees or bumps appear because in these regions particles with a relatively large range of sizes produce response pulses in a small range of pulse heights; whereas, between regions of multivalued response, particles with a relatively narrow range of sizes produce response pulses in a comparable range of pulse heights. The resulting artifacts have been seen in the manufacturer calibration-derived distribution for the CSASP both in measurements of atmospheric fog and in measurements of laboratory generated polydispersions of oil droplets. The positions of these knees in the distributions are of course different for particles with different refractive indexes. Recently reported measurements of atmospheric aerosols by Livingston [17] with the Knollenberg ASSP show knees in the distribution in the region of multivalued response for water droplets (as per figure 13) which we suggest are simply artifacts of the instrument response, and not real.

The FSSP and ASSP light scattering counters are similar to the CSASP; the essential difference being geometry of their light-collecting optics (see table 2). Theoretical response calculations for these instruments, again according to equation (1), are presented in figures 15 and 16. Like the CSASP, the response is sensitive to particle refractive index over a range of indexes characteristic of atmospheric aerosols; the ASSP has particularly poor resolution in the 1μm to 4μm radius range. The positions of the factory-adjusted discriminator level settings relative to the theoretical results presented here can be determined by noting in what channel sodalime glass beads or polystyrene spheres of a particular size are counted. This information is given in the manual supplied with each instrument. The position of the channel in question can then be determined from the theoretical response curves. In the case of glass beads, the response curves for refractive index m = 1.50-01 in figures
15 and 16 can be used (although the refractive index of the glass beads is \(m = 1.51 - 0.1 \), the response curve for \(m = 1.51 - 0.1 \) is well approximated by that for \(m = 1.50 - 0.1 \)). In the case of polystyrene or polyvinyltoluene latex spheres, the response curves for \(m = 1.592 - 0.1 \) given in figure 17 may be used.

Both the FSSP and ASSP instruments utilize near-forward scattering and as argued previously should offer a somewhat reliable measure of particle cross section for irregular particles less than a certain size. Otherwise, measurement of their response to known irregular particles is needed.

A terse summary of findings for the four Knollenberg light scattering counters is given in table 4. For the CSASP and ASASP instruments, the manufacturer generally specifies more particle size channels than can be justified, particularly for particles with radii greater than 0.5\(\mu \)m. The theoretical results suggest the same is true for the FSSP and ASSP, although the authors do not have information on the discriminator level settings for these instruments.

Finally, although the question of the counting efficiency of these light scattering counters is not addressed in this report, the authors are aware of two potential problems with the CSASP instrument that might be important for the other instruments too. The first problem concerns the coincidence scheme utilized in the CSASP to reject or accept particles depending on whether or not they pass through the relatively small "sample volume." Only a small fraction (~0.003 percent) of particles flowing through the instrument are actually measured. The purpose of the coincidence scheme is to reject particles which are not within a sufficiently uniform part of the laser beam by opto-electronically discriminating against out-of-focus particles. According to the manufacturer there are on the order of ten particles rejected for every one counted. There is evidence to suggest that this scheme results in a sample volume that is somewhat dependent on particle size. In other words, the instrument flow rate may be different for different size channels. However, simultaneous measurements made on uniform aerosols in our laboratory with both the CSASP and a particle counter of a special design developed by Rosen [18] show agreement in absolute aerosol concentration to within 30 percent for particles with radii of about 1\(\mu \)m. Some preliminary results on the ASASP indicate much larger errors for submicron particles.

The second potential problem concerns errors due to nonisokinetic sampling. Air containing aerosol sampled under a no-wind condition with the particular aspirated CSASP the researchers used flows at 340 liters per minute through a conical intake tube 45 cm long with maximum diameter 10 cm and minimum diameter 3.3 cm. The fraction of particles lost in this tube due to gravitational settling depends strongly on size and is estimated 7 percent for 15\(\mu \)m radius particles, increasing to 18 percent for 25\(\mu \)m radius particles, under the assumption particle density is
1 g cm\(^{-3}\). The magnitude of errors due to nonisokinetic sampling during windy conditions is unknown.

CONCLUSIONS

Theoretical response calculations for two models of Knollenberg light scattering aerosol counters (the CSASP and ASASP) have been compared to measurements of monodisperse aerosols of different size and refractive index. The theoretical predictions for the CSASP, which are based on Mie theory, are verified by the measurements on spherical particles with radii 0.3\(\mu m\) to 10\(\mu m\). The ASASP predictions are derived from a solution for scattering by a sphere in a standing wave and are also validated by measurements on spherical particles with radii 0.12\(\mu m\) to 1\(\mu m\). Particles larger than 1\(\mu m\) radius, which is near the upper limit of detectability for the ASASP, apparently have sufficiently large extinction cross section to cause significant reduction in laser power and disagreement of predicted and measured response results. In any case both instruments show sensitivity of response to aerosol refractive index over the range of values of indexes realistic for atmospheric aerosol. This sensitivity results in poorer size resolution than advertised for these counters, as two aerosol particles differing in size by as much as a factor of three may be counted in the same size channel. For aerosol of known composition, size resolution is much improved, although not as good as advertised since size channels must be grouped to avoid regions of multivalued response. As might be expected, measurement of irregular particles causes further degradation in resolution, because of the importance of particle orientation.

For the Knollenberg FSSP and ASSP light scattering counters, the theoretical predictions of response for spheres again show sensitivity to aerosol refractive index and the attending loss of size resolution.

Generally, the best size resolution is obtained with these instruments for measurement of homogeneous spherical aerosols such as fog and some military smokes (such as FS, RP, fog oil, nitric acid, diesel oil, and silicone oil). However, measurement of battlefield-debris aerosol, which might contain irregular dust and high explosive debris particles of mixed composition, would result in relatively poor size resolution.
Figure 1. Schematic of the Knollenberg CSASP light scattering aerosol counter
Figure 2. A typical CSASP pulse height spectrum for monodisperse aerosol. This particular spectrum is for solid particles of nigrosin dye with mean radius 1.78 μm; a scanning electron microscope micrograph of several of these particles collected onto a Nuclepore filter is also shown.
Figure 3. A typical CSASP pulse height spectrum for monodisperse aerosol particles that are irregular in shape. This spectrum is for sodium chloride particles with mean equivalent radius 1.53μm (in the sense of spheres of equal cross-sectional area); a micrograph of several of these particles collected onto a Nuclepore filter is also shown.
Figure 4. Knollenberg CSASP response: measured (circles and squares) and calculated using Mie scattering theory (curves) for single spherical particles versus particle size. The measurements have been normalized for best fit to the calculated response for polystyrene latex particles with refractive index $m = 1.592 - 0i$. The theoretical curve for glass beads with refractive index 1.51 - 0i extends down only to about 5µm radius.
Figure 5. Knollenberg ASASP response: measured (circles) and calculated using a solution for particle scattering in a standing wave (curves) for single spherical particles versus particle size. The measurements have been normalized for best fit to the calculated response for polystyrene latex particles with refractive index $n = 1.592-01$.

\[1.592 - 0i \] \[1.67 - 0.26i \]
Figure 6. Knollenberg CSASP response: measured for irregular particles of sodium chloride (circles) and calculated for spheres of equal cross-sectional area using Mie scattering theory (curve) for single particles versus particle size. The measurements are relative to the polystyrene measurements which have been normalized for best fit to the calculated response for those particles (see fig. 4).
Figure 7. Same as fig. 6, except for irregular particles of potassium chlorate. Potassium chlorate is birefringent and theoretical curves are shown for particles having refractive indexes of both the ordinary ($n = 1.52 - 0i$) and extraordinary ($n = 1.409 - 0i$) waves. The measurements are relative to the polystyrene measurements which have been normalized for best fit to the calculated response for those particles (see fig. 4).
Figure 8. Knollenberg ASASP response: measured for irregular particles of sodium chloride (circles) and calculated for spheres of equal cross-sectional area using the theory for particle scattering in a standing wave (curve) for single particles versus particle size. The measurements are relative to the polystyrene measurements which have been normalized for best fit to the calculated response for these particles (see fig. 5).
Figure 9. Same as fig. 7, except for irregular particles of potassium chlorate. Potassium chlorate is birefringent and theoretical curves are shown for particles having refractive indexes of both the ordinary \(n = 1.52 - 0.1 \) and extraordinary \(n = 1.409 - 0.1 \) waves. The measurements are relative to the polystyrene measurements which have been normalized for best fit to the calculated response for those particles (see fig. 5).
Figure 10. Scanning electron micrographs of typical monodisperse particles of sodium chloride used to measure the CSASP and ASASP response characteristics.
Figure 11. Scanning electron micrographs of typical monodisperse particles of potassium chlorate used to measure the CSASP and ASASP response characteristics.
Figure 12. Mie theory response calculations for the Knollenberg CSASP particle counter for water particles with refractive index 1.33–0.1, ammonium sulfate with approximate index 1.5–0.1, atmospheric dust with indexes 1.50–0.0051 and 1.5–0.051, and carbon with index 1.95–0.661. The tick marks indicate the pulse height discriminator levels as set by the manufacturer for the counter. Channels 1, 5, 10, and 15 are labeled between the appropriate tick marks for the different ranges of the instrument. The heavy tick marks indicate the pulse height discriminator levels used to avoid regions of multivalued response under the assumption that particles are water.
Figure 13. Response calculations for the Knollenberg ASASP particle counter using a solution for particle scattering in a standing wave for particles with refractive indexes as in fig. 12. The tick marks indicate the pulse height discriminator levels as set by the manufacturer for the counter. Channels 1, 5, 10, and 15 are labeled between the appropriate tick marks for the different ranges of the instrument.
Figure 14. A comparison of response calculations for the Knollenberg CSASP and ASASP particle counters for refractive index $m = 1.54 - 0i$. The differences are a result of using Mie theory (for the CSASP) and using a theory for particle scattering in a standing wave (for the ASASP) for calculation of the response.
Figure 15. Mie theory response calculations for the Knollenberg FSSP particle counter for particles with refractive indexes as in fig. 12.
Figure 16. Mie theory response calculations for the Knollenberg ASSP particle counter for particles with refractive indexes as in fig. 12.
Figure 17. Response calculations for the Knollenberg CSASP, FSSP, and ASSP particle counters for latex particles having refractive index $m = 1.592 - 01$. These curves may be used to infer positions of pulse height discriminator levels (as set by the manufacturer) relative to other theoretical response curves presented in previous figures.
Table 1. Monodisperse Aerosols Used in the CSASP and ASASP Response Measurement Studies

<table>
<thead>
<tr>
<th>Type</th>
<th>Shape</th>
<th>Isotropic or anisotropic</th>
<th>Complex refractive index</th>
<th>Size(s)</th>
<th>Size determination</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene latex</td>
<td>spherical</td>
<td>isotropic</td>
<td>1.592-0i*</td>
<td>6 sizes, 0.12–0.545 μm in radius</td>
<td>manufacturer</td>
<td>Dow Chemical Midland, Michigan</td>
</tr>
<tr>
<td>Polyvinyltoluene latex</td>
<td>spherical</td>
<td>isotropic</td>
<td>1.581-0i*</td>
<td>1 size, 1.01 μm radius</td>
<td>manufacturer</td>
<td>Dow Chemical Midland, Michigan</td>
</tr>
<tr>
<td>Styrene-divinylbenzene latex</td>
<td>spherical</td>
<td>isotropic</td>
<td>1.587-0i‡</td>
<td>1 size, 2.85 μm mean radius</td>
<td>manufacturer</td>
<td>Dow Chemical Midland, Michigan</td>
</tr>
<tr>
<td>Sodalime crown glass beads</td>
<td>spherical</td>
<td>isotropic</td>
<td>1.51-0i*</td>
<td>2 sizes, 5.5 and 10 μm mean radii</td>
<td>manufacturer</td>
<td>Particle Information Services Inc., Grants Pass, Oregon</td>
</tr>
<tr>
<td>Nigrosin dye</td>
<td>spherical</td>
<td>isotropic</td>
<td>1.67-0.26†</td>
<td>13 sizes, 0.20–3.4 μm in radius</td>
<td>scanning electron microscope (SEM)</td>
<td>Vibrating Orifice Generator</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>cubes or assemblies of cubes with hollow centers</td>
<td>isotropic</td>
<td>1.544-0i*</td>
<td>17 sizes, 0.34–6.54 μm equivalent radius</td>
<td>SEM</td>
<td>Vibrating Orifice Generator</td>
</tr>
<tr>
<td>Potassium chlorate</td>
<td>ellipsoids with hollow centers</td>
<td>anisotropic</td>
<td>1.52-0i ordinary ray*</td>
<td>20 sizes, 0.25–4.2 μm equivalent radius</td>
<td>SEM</td>
<td>Vibrating Orifice Generator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.409-0i extraordinary ray*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Measured at λ = 0.5893 μm (sodium light).
‡ Measured at λ = 0.6328 μm (He Ne laser light).
† Measured at λ = 0.5400 μm.
TABLE 2. CHARACTERISTICS OF KNOLLENBERG LIGHT SCATTERING AEROSOL COUNTERS

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Light source</th>
<th>Light-collecting optics*</th>
<th>Flow rate or active area</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSASP</td>
<td>5 mW He-Ne laser</td>
<td>4—22°</td>
<td>0.15 cm³/sec</td>
</tr>
<tr>
<td>ASASP</td>
<td>2 mW He-Ne laser (intra-cavity)</td>
<td>4—22°</td>
<td>0.1 cm³/sec</td>
</tr>
<tr>
<td>FSSP</td>
<td>5 mW He-Ne laser</td>
<td>3—13°</td>
<td>0.25 mm²†</td>
</tr>
<tr>
<td>ASSP†</td>
<td>5 mW He-Ne laser</td>
<td>5.3—12.4°</td>
<td>0.4 mm²†</td>
</tr>
</tbody>
</table>

* All instruments have axial symmetry with respect to the direction of the laser source and the polar angles α, β refer to a cone subtending angles α through β from the direction of forward scattering.

† Flow rate can be determined from active area by multiplying by the speed at which air (containing aerosol) passes through the instrument.

‡ The manufacturer has produced two models of the ASSP having different optics, but only one of these has been studied here. The other collects light scattered 6.7°—14.4° from the direction of forward scattering.
<table>
<thead>
<tr>
<th>Channel</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1.00-1.44</td>
<td>0.45-</td>
<td>0.50-0.73</td>
<td>0.34-0.47</td>
</tr>
<tr>
<td>2</td>
<td>1.44-2.08</td>
<td>-1.50</td>
<td>0.73-1.03</td>
<td>0.47-</td>
</tr>
<tr>
<td>3</td>
<td>2.08-2.90</td>
<td>1.50-2.50</td>
<td>1.03-1.39</td>
<td>-1.30</td>
</tr>
<tr>
<td>4</td>
<td>2.90-3.82</td>
<td>2.5-3.75</td>
<td>1.39-1.82</td>
<td>1.30-</td>
</tr>
<tr>
<td>5</td>
<td>3.82-4.83</td>
<td>3.75-4.7</td>
<td>1.82-2.31</td>
<td>-1.55</td>
</tr>
<tr>
<td>6</td>
<td>4.83-5.92</td>
<td>4.7-</td>
<td>2.31-2.86</td>
<td>1.55-2.4</td>
</tr>
<tr>
<td>7</td>
<td>5.92-7.05</td>
<td>-6.0</td>
<td>2.86-3.47</td>
<td>2.4-</td>
</tr>
<tr>
<td>8</td>
<td>7.05-8.22</td>
<td>6.0-</td>
<td>3.47-4.14</td>
<td>-3.6</td>
</tr>
<tr>
<td>9</td>
<td>8.22-9.39</td>
<td>-8.0</td>
<td>4.14-4.86</td>
<td>3.6-</td>
</tr>
<tr>
<td>10</td>
<td>9.39-10.56</td>
<td>8.0-</td>
<td>4.86-5.63</td>
<td>-4.7</td>
</tr>
<tr>
<td>11</td>
<td>10.56-11.7</td>
<td>-</td>
<td>5.63-6.43</td>
<td>4.7-</td>
</tr>
<tr>
<td>12</td>
<td>11.7-12.84</td>
<td>-11.0</td>
<td>6.43-7.27</td>
<td>-5.6</td>
</tr>
<tr>
<td>13</td>
<td>12.84-13.9</td>
<td>11.0-</td>
<td>7.27-8.15</td>
<td>5.6-</td>
</tr>
<tr>
<td>14</td>
<td>13.9-15.0</td>
<td>-</td>
<td>8.15-9.06</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>15.0-16.0</td>
<td>-14</td>
<td>9.06-10.0</td>
<td>-7.0</td>
</tr>
</tbody>
</table>
Table 4. Summary of Findings of Response Characteristics of Knollenberg Light-Scattering Aerosol Counters

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Manufacturer specifications: size range and resolution</th>
<th>Manufacturer recommended use*</th>
<th>Findings (this work): size range and resolution</th>
<th>Findings (this work): homogeneous spherical aerosols of uniform composition</th>
<th>Findings (this work): homogeneous spherical aerosols of mixed and unknown composition</th>
<th>Findings (this work): irregular particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSASP</td>
<td>Size range: 0.22–16 μm radius. Resolution: ± 5% of maximum size for each range setting.</td>
<td>Fog, haze, dust, smoke.</td>
<td>Size range depends on aerosol refractive index: for water droplets (m = 1.33–0.1) 0.23–14 μm, for dust (m = 1.50–0.0051) 0.21–50 μm radius. Resolution less than advertised; channels must be grouped to avoid regions of multivalued response.</td>
<td>Size range: 0.20–50 μm radius. Resolution severely degraded for particles with radius greater than 0.5 μm.</td>
<td>Size range unknown; however, slightly irregular particles have response comparable to spheres of equal area, providing equivalent radii are between 1.5 and 4 μm.</td>
<td></td>
</tr>
<tr>
<td>ASASP</td>
<td>Size range: 0.085–1 50 μm radius. Resolution: ± 5% of maximum size for each range setting.</td>
<td>Haze, dust, smoke.</td>
<td>Lower size limit depends on aerosol refractive index and is 0.096 μm radius for water droplets (m = 1.33–0.1) and 0.080 μm radius for dust (m = 1.50–0.0051). Upper size limit about 1–1.5 μm radius; particles larger than 1.5 μm radius; particles larger than 1.0 μm apparently cause reduction of laser power. Good size resolution for particles with radius less than 0.5 μm; multivalued response and generally poor resolution for larger sizes.</td>
<td>Size range: 0.05 μm to about 1–1.5 μm radius; see previous comment concerning particles larger than 1.0 μm radius. Relatively good resolution for particles with radius less than 0.5 μm; poor resolution for larger sizes.</td>
<td>Size range for slightly irregular particles about the same as for spheres of equal area. Spectra broadening significantly degrades resolution.</td>
<td></td>
</tr>
<tr>
<td>FSSP and ASSP</td>
<td>Size range: 0.22–22 μm radius. Resolution: ± 5% of maximum size for each range setting.</td>
<td>Fog, clouds, dust.</td>
<td>Size range and resolution depends on aerosol refractive index. Multivalued response for particles with radii greater than 0.5 μm. Resolution comparable to CSASP.</td>
<td>Resolution severely degraded for particles with radii greater than 0.5 μm.</td>
<td>Unknown.</td>
<td></td>
</tr>
</tbody>
</table>

*Manufacturer comments that caution should be exercised in measurement of high aerosol concentrations for all probes.
REFERENCES

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Aviation Center</td>
<td>ATTN: ATZQ-D-MA</td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Aviation School</td>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>Commander</td>
<td>Ballistic Missile Defense Advanced Technology Center</td>
<td>ATTN: ATC-R</td>
<td>PO Box 1500</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Lockheed-Huntsville Msl & Space Co.</td>
<td>ATTN: Dr. Lary W. Pinkley</td>
<td>PO Box 1103</td>
</tr>
<tr>
<td>Chief, Atmospheric Sciences Div</td>
<td>Code ES-81, NASA</td>
<td>Marshall Space Flight Center, AL 35812</td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>Patriot Missile Systems</td>
<td>ATTN: DRCPM-MD-T</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-CGA (B. W. Fowler)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Redstone Scientific Information Center</td>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-TBD</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-TEM (R. Haraway)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-TRA (Dr. Essenwanger)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missiles and Munitions Center & School</td>
<td>ATTN: ATCIC-CD</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-REO (Dr. Maxwell Harper)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-RRE (Dr. Julius Lilly)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-TEO (Dr. Gene Widenhofer)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-HRO (Dr. D.B. Guenter)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-TDO (Dr. Hugh Anderson)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile R&D Command</td>
<td>ATTN: DRDMI-YLA (Mr. W.S. Rich)</td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Intelligence Center & School</td>
<td>ATTN: ATSI-CD</td>
<td>Fort Huachuca, AZ 85613</td>
</tr>
</tbody>
</table>
US Department of Commerce
Institute for Telecommunication Sciences
ATTN: Dr. H. J. Liebe
Boulder, CO 80303

HQDA (SAUS-OR/Hunter Woodall)
Rm 2E614, Pentagon
Washington, DC 20301

Dr. Herbert Fallin
ODUSA-OR
Rm 2E621, Pentagon
Washington, DC 20301

COL Elbert Friday
OUSDR&E
Rm 3D129, Pentagon
Washington, DC 20301

Defense Communications Agency
Technical Library Center
Code 205
Washington, DC 20305

Director
Defense Nuclear Agency
ATTN: Technical Library
Washington, DC 20305

Director
Defense Nuclear Agency
ATTN: RAAE (MAJ Ed Mueller)
Washington, DC 20305

Director
Defense Nuclear Agency
ATTN: SPAS (Mr. A.T. Hopkins)
Washington, DC 20305

Defense Intelligence Agency
ATTN: Scientific Advisory Committee
Washington, DC 20310

HQDA (DAMA-ARZ-D/Dr. Verderame)
Washington, DC 20310

HQDA (DAMI-ISP/Mr. Beck)
Washington, DC 20310

Department of the Army
Deputy Chief of Staff for
Operations and Plans
ATTN: DAMO-RQ
Washington, DC 20310

Department of the Army
Director of Telecommunications and
Command and Control
ATTN: DAMO-TCZ
Washington, DC 20310

Department of the Army
Deputy Chief of Staff for Research,
Development and Acquisition
ATTN: DAMA-AR
Washington, DC 20310

Department of the Army
Assistant Chief of Staff for Intelligence
ATTN: DAMI-TS
Washington, DC 20310

HQDA (DAEN-RDM/Dr. de Percin)
Forrestal Building
Washington, DC 20314

Director
Naval Research Laboratory
ATTN: Code 5530
Washington, DC 20375

Director
Naval Research Laboratory
ATTN: Code 2627
Washington, DC 20375

Director
Naval Research Laboratory
ATTN: Code 1409
(Dr. J. M. MacCallum)
Washington, DC 20375

Director
Naval Research Laboratory
ATTN: Code 5567
(Dr. James A. Dowling)
Washington, DC 20375
Director
Naval Research Laboratory
ATTN: Code 5567
(Dr. Steve Hanley)
Washington, DC 20375

US Army Signal School
ATTN: ATSN-CD
Fort Gordon, GA 30905

ATTN: Code 8320
(Dr. L.H. Ruhnke)
Washington, DC 20375

USAFETAC
Scott AFB, IL 62225

Naval Research Laboratory
ATTN: Code 8320
Commander
Air Weather Service
ATTN: DNPP (LTC Donald Hodges)
Scott AFB, IL 62269

ATTN: (Dr. L.H. Ruhnke)
ATTN: Code 8320
Air Weather Service
ATTN: DNPP (LTC Donald Hodges)
Scott AFB, IL 62269

The Library of Congress
ATTN: Exchange & Gift Div
Washington, DC 20540

Commander
US Army Combined Arms Center
ATTN: ATCA-CAA-Q (Kent Pickett)
Fort Leavenworth, KS 66027

Head, Atmos Rsch Section
Div Atmospheric Science
National Science Foundation
1800 G. Street, NW
Washington, DC 20550

Commander
US Army Combined Arms Center
ATTN: ATCA-CS
Fort Leavenworth, KS 66027

ADTC/DLODL
Eglin AFB, FL 32542

Commander
US Army Combined Arms Center
ATTN: ATCA-CDC
Fort Leavenworth, KS 66027

Naval Training Equipment Center
ATIN: AT2B-CD
Orlando, FL 32813

Commander
US Army Combined Arms Center
ATTN: ATCA-CDE
Fort Leavenworth, KS 66027

Georgia Institute of Technology
ATTN: Dr. James Wiltse
Atlanta, GA 30332

Commander
US Army Combined Arms Center
ATTN: ATCA-CDE
Fort Leavenworth, KS 66027

Georgia Institute of Technology
ATTN: Dr. Robert McMillan
Atlanta, GA 30332

Commander
US Army Combined Arms Center
ATTN: ATCA-CCM
Fort Leavenworth, KS 66027

Georgia Institute of Technology
ATTN: Mr. James Gallagher
Atlanta, GA 30332

Commander
US Army Armor Center
ATTN: ATZK-AE-TA
(Dr. Charles Leake)
Fort Knox, KY 40121
Commander
US Army Cold Regions Resch & Engr Lab
ATTN: Mr. George Aitken
Hanover, NH 03755

Commander
US Army Cold Regions Resch & Engr Lab
ATTN: CRREL-RD (Dr. K.F. Sterrett)
Hanover, NH 03755

Commander
US Army Cold Regions Resch & Engr Lab
ATTN: CRREL-RD (Dr. K.F. Sterrett)
Hanover, NH 03755

Commander
US Army Armament R&D Command
ATTN: DRDAR-TSS (Bldg 59)
Dover, NJ 07801

Commander
US Army Armament R&D Command
ATTN: DRDAR-AC (J. Greenfield)
Dover, NJ 07801

Project Manager
Cannon Artillery Weapons Systems
ATTN: DRCPM-CAWS
Dover, NJ 07801

Project Manager
Cannon Artillery Weapons Systems
ATTN: DRCPM-CAWS-GP (G.H. Waldron)
Dover, NJ 07801

Commander
HQ, US Army Avionics R&D Activity
ATTN: DAVAA-0
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target
Acquisition Laboratory
ATTN: DELCS-D
Fort Monmouth, NJ 07703

Director
US Army Electronics Technology &
Devices Laboratory
ATTN: DELET-D
Fort Monmouth, NJ 07703

Commander
US Army Electronic Warfare Laboratory
ATTN: DELEW-D (Mr. George Haber)
Fort Monmouth, NJ 07703

Commander
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Rudolf Buser)
Fort Monmouth, NJ 07703

Commander
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Robert Rodhe)
Fort Monmouth, NJ 07703

Commander
ERADCOM Technical Support Activity
ATTN: DELSD-L
Fort Monmouth, NJ 07703

Project Manager, FIREFINDER
ATTN: DRCPM-FF
Fort Monmouth, NJ 07703

Project Manager, REMBASS
ATTN: DRCPM-RBS
Fort Monmouth, NJ 07703

Commander
US Army Satellite Comm Agency
ATTN: DRCPM-SC-3
Fort Monmouth, NJ 07703

Commander
ERADCOM Scientific Advisor
ATTN: DRDEL-SA
Fort Monmouth, NJ 07703

Project Manager
Army Tactical Data Systems
ATTN: DRCPM-TDS
Fort Monmouth, NJ 07703

6585 TG/WE
Holloman AFB, NM 88330

AFWL/WE
Kirtland, AFB, NM 87117

AFWL/Technical Library (SUL)
Kirtland AFB, NM 87117
Institute for Defense Analysis
ATTN: Mr. Lucian Biberman
Arlington, VA 22202

Institute for Defense Analysis
ATTN: Dr. Robert Roberts
Arlington, VA 22202

Director
ARPA
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Steve Zakanyez
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. Carl Thomas
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. James Tegneilia
1400 Wilson Blvd
Arlington, VA 22209

Commander
US Army Foreign Sci & Tech Center
ATTN: Dr. Orville Harris
220 7th Street, NE
Charlottesville, VA 22901

Commander
US Army Foreign Sci & Tech Center
ATTN: Dr. Bertram Smith
220 7th Street, NE
Charlottesville, VA 22901

Naval Surface Weapons Center
ATTN: Code G65
Dahlgren, VA 22448

Commander
Operational Test & Evaluation Agency
Columbia Pike Bldg
5600 Columbia Pike
Falls Church, VA 22041

Commander
US Army Night Vision
& Electro-Optics Lab
ATTN: DELNV-D (Mr. John Johnson)
Fort Belvoir, VA 22060

Commander
US Army Night Vision
& Electro-Optics Lab
ATTN: DELNV-VI (Mr. J.R. Moulton)
Fort Belvoir, VA 22060

Commander
US Army Night Vision
& Electro-Optics Lab
ATTN: DELNV-VI (Luanne Overt)
Fort Belvoir, VA 22060

Commander
US Army Night Vision
& Electro-Optics Lab
ATTN: DELNV-VI (Tom Cassidy)
Fort Belvoir, VA 22060
Director
Development Center MCDEC
ATTN: Firepower Division
Quantico, VA 22134

US Army Nuclear & Chemical Agency
ATTN: MONA-WE (Dr. Jack Berberet)
7500 Backlick Road
Springfield, VA 22150

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-OS (Dr. R. Burkhardt)
Vint Hill Farms Station
Warrenton, VA 22186

Commander
US Army Cold Regions Test Center
ATTN: STECR-OP-PM
APO Seattle, WA 98733
42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 to 3.0 \mu m Using a Cary 171 Spectrophotometer," ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, "Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region," ECOM-5817, May 1977.

