AERODYNAMIC CHARACTERISTICS OF THE CLOSE-COUPLED CANARD AS APPLIED TO LOW-TO-MODERATE SWEPT WINGS
VOLUME 2: SUBSONIC SPEED REGIME

by

David W. Lacey

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AVIATION AND SURFACE EFFECTS DEPARTMENT
RESEARCH AND DEVELOPMENT REPORT

January 1979

DTN3RDC-79/002
PAGES___
ARE
MISSING
IN
ORIGINAL
DOCUMENT
MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER 00
TECHNICAL DIRECTOR 01

OFFICER-IN-CHARGE
CARDEROCK 05

SYSTEMS
DEVELOPMENT
DEPARTMENT 11

SHIP PERFORMANCE
DEPARTMENT 15

STRUCTURES
DEPARTMENT 17

SHIP ACOUSTICS
DEPARTMENT 19

SHIP MATERIALS
ENGINEERING
DEPARTMENT 28

OFFICER-IN-CHARGE
ANNAPOLIS 04

AVIATION AND
SURFACE EFFECTS
DEPARTMENT 16

COMPUTATION,
MATHEMATICS AND
LOGISTICS DEPARTMENT 18

PROPULSION AND
AUXILIARY SYSTEMS
DEPARTMENT 27

CENTRAL
INSTRUMENTATION
DEPARTMENT 29
An analysis of the effects of canard size, shape, position and deflection on the aerodynamic characteristics of two general research models having leading edge sweep angles of 25 and 50 degrees is presented. The analysis summarizes the findings of four experimental subsonic wind-tunnel programs conducted at the David W. Taylor Naval Ship Research and Development Center between 1970 and 1974. The analysis is based on four canard geometries varying in planform from a 60-degree delta to a 25-degree swept wing.
High aspect ratio canard. The canards were located at seven different positions and deflected from -10 to 25 degrees.

Significant findings include: the excellent correlation between canard exposed area ratio and changes in lift, drag, and pitching moment; the detrimental effect of positive canard deflection; and the optimum longitudinal position for each canard shape for maximum improvements in lift and drag. It is further concluded that the favorable aerodynamic changes caused by interference of the close-coupled canard are not significantly dependent on wing leading edge sweep or wing leading edge modifications.
FOREWORD

This report summarizes the findings of close-coupled canard research performed by the Aviation and Surface Effects Department of the David W. Taylor Naval Ship Research and Development Center. The work was performed between 1970 and 1974 and was funded by the Naval Air Systems Command (AIR 320). The purpose of the report is to provide a summary of the aerodynamic findings obtained from a series of wind tunnel evaluations involving three general research models and the F-4 aircraft. The report is presented in four volumes—Volume 1: General Trends; Volume 2: Subsonic Speed Regime; Volume 3: Transonic-Supersonic Speed Regime; and Volume 4: F-4 Phantom II Aircraft.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>NOTATION</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LIFT</td>
<td>4</td>
</tr>
<tr>
<td>SIZE</td>
<td>5</td>
</tr>
<tr>
<td>SHAPE</td>
<td>6</td>
</tr>
<tr>
<td>POSITION</td>
<td>9</td>
</tr>
<tr>
<td>DEFLECTION</td>
<td>16</td>
</tr>
<tr>
<td>WING LEADING EDGE CHANGES</td>
<td>25</td>
</tr>
<tr>
<td>PITCHING MOMENT</td>
<td>28</td>
</tr>
<tr>
<td>SIZE</td>
<td>30</td>
</tr>
<tr>
<td>SHAPE</td>
<td>35</td>
</tr>
<tr>
<td>POSITION</td>
<td>35</td>
</tr>
<tr>
<td>DEFLECTION</td>
<td>43</td>
</tr>
<tr>
<td>WING LEADING EDGE CHANGES</td>
<td>50</td>
</tr>
<tr>
<td>DRAG</td>
<td>51</td>
</tr>
<tr>
<td>SIZE</td>
<td>55</td>
</tr>
<tr>
<td>SHAPE</td>
<td>58</td>
</tr>
<tr>
<td>POSITION</td>
<td>60</td>
</tr>
<tr>
<td>DEFLECTION</td>
<td>70</td>
</tr>
<tr>
<td>WING LEADING EDGE CHANGES</td>
<td>79</td>
</tr>
<tr>
<td>FLOW VISUALIZATION</td>
<td>84</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>89</td>
</tr>
<tr>
<td>SIZE</td>
<td>90</td>
</tr>
<tr>
<td>SHAPE</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1 - Sketch of Models .. 2
2 - Canards .. 2
3 - Geometrically Similar Canards 3
4 - Canard Positions .. 3
5 - Typical Lift Characteristics 4
6 - C_L^{20} versus Canard Exposed Area Ratio 5
7 - Incremental Lift Characteristics of the Various Canard Shapes .. 7
8 - Lift Characteristics of 25- and 50-Degree Wing Models .. 8
9 - Position Effects of Incremental Lift 10
10 - Maximum Incremental Lift Variation with Canard Position ... 13
11 - Incremental Lift at 32-Degree Angle of Attack 15
12 - Variation in Lift Coefficient at $\alpha = 20$ Degrees versus Canard Deflection Angle δ_c 17
13 - Incremental Lift Variation with Canard Deflection 19
14 - Variation of ΔC_{L}^{32} with Canard Deflection 22
15 - Variation of ΔC_{L}^{32} with Canard-Wing Vertical Gap ... 23
16 - Variation of a \(\Delta C_{\text{M}} / \Delta C_{\text{M}} \) with Canard-Wing Vertical Gap. ... 24

17 - Geometry of Wing Leading Edge Droops and Radii. ... 25

18 - Effect of Wing Leading Edge Droop and Radius on Lift Characteristics. 26

19 - Lift Characteristics of 25-Degree Model Modified with -9-Degree Wing Leading Edge Droop. ... 27

20 - Incremental Lift due to Canard for Basic and -9-Degree Droop, 25-Degree Wing Model ... 28

21 - Typical Pitching Moment Characteristics ... 29

22 - Variation of Pitching Moment Coefficient at \(\Delta M_0 \) with Canard Deflection Angle \(\delta \). ... 31

23 - Zero Lift Pitching Moment versus Projected Area Ratio. ... 33

24 - Zero Lift Pitching Moment versus Exposed Area Ratio. ... 33

25 - Zero Lift Pitching Moment Variation with Canard Exposed Volume Coefficient. 34

26 - Neutral Point Shift Variation with Canard Exposed Volume Coefficient. 34

27 - Incremental Moment Variation with Canard Shape ... 36

28 - Incremental Moment Variation with Canard Position. ... 37

29 - Variation of a \(\Delta C_{\text{M}} \) with Canard Position ... 40

30 - Incremental Moment Slope Variation with Canard Position ... 42

31 - Correlation of Neutral Point Change with Canard Exposed Volume Coefficient. 43
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Incremental Moment Change due to Canard Deflection</td>
<td>44</td>
</tr>
<tr>
<td>33</td>
<td>Variations of A_{CM} with Canard Deflection</td>
<td>48</td>
</tr>
<tr>
<td>34</td>
<td>Canard Control Power</td>
<td>49</td>
</tr>
<tr>
<td>35</td>
<td>Moment Characteristics of Basic 25-Degree Wing and 25-Degree Wing with -9-Degree Droop</td>
<td>51</td>
</tr>
<tr>
<td>36</td>
<td>Incremental Moments due to Canard on Basic and Modified 25-Degree Wing</td>
<td>52</td>
</tr>
<tr>
<td>37</td>
<td>Typical Drag Characteristics</td>
<td>53</td>
</tr>
<tr>
<td>38</td>
<td>Typical Lift-to-Drag Ratio Characteristics</td>
<td>54</td>
</tr>
<tr>
<td>39</td>
<td>Effect of Deflection on Zero Lift Drag C_{D0}</td>
<td>56</td>
</tr>
<tr>
<td>40</td>
<td>Variation of Canard Drag Coefficient with Canard Lift</td>
<td>57</td>
</tr>
<tr>
<td>41</td>
<td>Variation of (L/D) with Canard Exposed Area Ratio</td>
<td>57</td>
</tr>
<tr>
<td>42</td>
<td>Lift-to-Drag Ratio Variation with Canard Shape</td>
<td>59</td>
</tr>
<tr>
<td>43</td>
<td>Induced Drag Factor</td>
<td>61</td>
</tr>
<tr>
<td>44</td>
<td>Lift-to-Drag Ratio Variation with Canard Position</td>
<td>62</td>
</tr>
<tr>
<td>45</td>
<td>Effect of Canard Position on Minimum Drag Coefficient</td>
<td>66</td>
</tr>
<tr>
<td>46</td>
<td>Induced Drag Factor Variation with Canard Position for the 50-Degree Wing</td>
<td>67</td>
</tr>
<tr>
<td>47</td>
<td>Induced Drag Factor Variation with Canard Position for the 25-Degree Wing</td>
<td>69</td>
</tr>
<tr>
<td>48</td>
<td>Locus of Minimum Induced Drag Factor</td>
<td>71</td>
</tr>
<tr>
<td>49</td>
<td>Lift-to-Drag Ratio Variation with Canard Deflection</td>
<td>72</td>
</tr>
<tr>
<td>50</td>
<td>Minimum Drag Variation with Canard Deflection</td>
<td>75</td>
</tr>
</tbody>
</table>
51 - Effect of Canard Deflection on Induced Drag Factor: 76
52 - Effect of -9-Degree Droop on Lift-to-Drag Ratio: 80
53 - Incremental Change in Lift-to-Drag Ratio due to -9-Degree Droop: 83
54 - Tuft Patterns of the 50-Degree Wing: .. 85
55 - Effect of Canard on Unseparated Flow Region: 86
56 - Effect of Canard Shape: ... 88
57 - Effect of Position: ... 88
58 - Research Aircraft Fuselage: ... 96
59 - Planform View of the Wings: .. 97
60 - Planform View of the Canards: ... 98
61 - Canard Pivot Locations: ... 99
62 - Wind Tunnel Model Components: .. 100

LIST OF TABLES
1 - Geometric Characteristics of the Wings: .. 94
2 - Geometric Characteristics of the Canards: ... 95
NOTATION

AR Aspect ratio
R Body
RC Canard projected span
CD Drag coefficient, D/qSw
CDc Drag coefficient of canard referenced to total canard exposed area
CD0 Minimum drag coefficient
CL Canard
CL Lift coefficient, L/qSw
CLB Lift coefficient of body alone
CLB+C Lift coefficient of body and canard
CLmax Maximum lift coefficient
CLWB Lift coefficient of wing and body
CL0 Lift coefficient evaluated at minimum drag value
CL20 Lift coefficient evaluated at α = 20 degrees
CL32 Lift coefficient evaluated at α = 32 degrees
CDα δCL/δα

CLαc \(\frac{\partial CL}{\partial \alpha} \) lift curve slope of canard, referenced to canard exposed area
\(Cl_{c} \)
\[\left(\frac{3C_{M}}{\delta} \right) \text{lift curve slope of canard due to deflection} \]
\[c \text{ referred to canard exposed area} \]

\(C_{M} \)
Pitching moment coefficient, pitching moment/qS_w

\(C_{M_{B}} \)
Pitching moment coefficient of body alone

\(C_{M_{B+C}} \)
Pitching moment coefficient of body and canard

\(C_{M_{WB}} \)
Pitching moment coefficient of body and wing

\(C_{N_{0}} \)
Zero lift pitching moment

\(C_{M_{32}} \)
Pitching moment coefficient evaluated at \(\alpha = 32 \) degrees

\(C_{N_{8}} \)
\[\delta C_{N}/\delta \]

\(C_{M_{\alpha}} \)
\[\delta C_{N}/\delta \alpha \]

\(c \)
Mean aerodynamic chord, inches

\(D \)
Drag, pounds

\(i \)
Canard shape

\(j \)
Canard position

\(L \)
Lift, pounds

\(L/D \)
Lift-to-drag ratio

\((L/D)_{\text{max}} \)
Maximum lift-to-drag ratio

\(\ell_{c} \)
Distance between center of gravity of wing and canard pivot location, inches

\(P \)
Canard position

\(q \)
Dynamic pressure, pounds per square foot
S_C Canard projected area, square feet

S_{1_c} Canard exposed area, square feet

S_W Wing reference area, square feet

W Wing

x Longitudinal distance, inches

z Vertical distance, inches

z_e Vertical gap measured from canard trailing edge to wing upper surface, inches

α Angle of attack, degrees

ΔC_L $C_L - C_{L_w}$

ΔC_{L_c} $C_{L_{B+C}} - C_{L_B}$

$\Delta C_{L_{max}}$ Maximum value of incremental lift

$\Delta C_{L_{32}}$ Incremental lift evaluated at $\alpha = 32$ degrees

ΔC_M $C_M - C_{M_{WB}}$

$\Delta C_{M_{c}}$ $C_{M_{B+C}} - C_{M_B}$

$\Delta C_{M_{32}}$ ΔC_M evaluated at $\alpha = 32$ degrees

δ_c Canard deflection angle, degrees

λ Wing leading edge sweep angle, degrees

λ_{25} Quarter chord sweep angle of canard, degrees
ABSTRACT

An analysis of the effects of canard size, shape, position and deflection on the aerodynamic characteristics of two general research models having leading edge sweep angles of 25 and 50 degrees is presented. The analysis summarizes the findings of four experimental subsonic wind-tunnel programs conducted at the David W. Taylor Ship Research and Development Center between 1970 and 1974. The analysis is based on four canard geometries varying in planform from a 60-degree delta to a 25-degree swept wing high aspect ratio canard. The canards were located at seven different positions and deflected from -10 to 25 degrees.

Significant findings include: the excellent correlation between canard exposed area ratio and changes in lift, drag, and pitching moment; the detrimental effect of positive canard deflection; and the optimum longitudinal position for each canard shape for maximum improvements in lift and drag. It is further concluded that the favorable aerodynamic changes caused by interference of the close-coupled canard are not significantly dependent on wing leading edge sweep or wing leading edge modifications.

ADMINISTRATIVE INFORMATION

This work was undertaken by the Aircraft Division of the Aviation and Surface Effects Department of the David W. Taylor Naval Ship Research and Development Center. The program was sponsored by the Naval Air Systems Command (AIR 320) and was funded under WF 41432-09, Work Unit 1600-078.

INTRODUCTION

This is the second volume of a four-volume report summarizing the close-coupled canard work accomplished at the David W. Taylor Naval Ship Research and Development Center between 1970 and 1974. This volume summarizes the findings of a series of wind-tunnel programs conducted at subsonic speeds.

Volume 1 of this report presented the general trends of close-coupled canards on aircraft of low to moderate wing sweep. It was shown that close-coupled canards can significantly improve stall angle of attack, increase
the maximum lift coefficient, and reduce drag. The extent to which these improvements occur is a function of canard size, shape, position, and deflection. These variables, as well as the influence of wing leading edge modifications, are discussed in detail in this volume.

The discussion is based on four wind-tunnel programs conducted in the DTNSRDC 8 x 10 foot subsonic wind tunnel. Two general research models were utilized in this program. The models had leading edge sweep angles of 25 and 50 degrees. Sketches of the models are shown in Figure 1. Four canards of different planform were evaluated. The shapes were a 45-degree clipped delta designated C_0, a 60-degree pure delta C_1, a 45-degree high aspect ratio canard C_2, and a 25-degree canard C_3, as shown in Figure 2. In addition, four geometrically similar versions of canard C_0 were evaluated with projected area ratios of 0.10, 0.15, 0.20, and 0.25. Relative sizes of the four canards are shown in Figure 3.
Figure 3 - Geometrically Similar Canards

The models have seven positions at which the canards can be located (see Figure 4). Positions are numbered from fore to aft and top to bottom. Position 1 is the highest, most forward and position 7 is the lowest position. Deflection range varied from -10 to 25 degrees. Detailed dimensions of the models, canards, and positions are given in the Appendix.

NOTE: ALL DIMENSIONS ARE IN INCHES (CENTIMETERS)
The discussion is organized into major topics of lift, pitching moment, and drag. Subtopics include the effect of canard size, shape, position, deflection, and wing leading edge changes. The data are primarily presented as incremental changes in lift and pitching moment due to the above parameters. Drag is presented primarily as lift-to-drag ratio at constant lift coefficient. Data for both 25- and 50-degree wings are presented to indicate that the favorable effects of close-coupled canards are applicable to aircraft of relatively arbitrary wing planforms.

LIFT

Typical variation of lift coefficient with angle of attack for the 25- and 50-degree wing are presented in Figure 5. Data are shown for three canard shapes: a 60-degree delta, a 45-degree high aspect ratio canard, and a 25-degree high aspect ratio canard. For all configurations there is a sizeable increase in lift when the canard is installed to the basic
wing-body. The increase in lift varies somewhat with the particular canard size, shape, position, and deflection. These differences in lift are discussed in the following sections.

SIZE

One of the prime variables of the first canard wind tunnel program conducted at DTNSRDC was the effect of canard size on the aerodynamic characteristics of the 50-degree research model. Four geometrically similar canards having projected area ratios of 0.10, 0.15, 0.20, and 0.25 were evaluated. Relative sizes of each canard are shown in Figure 3. Data from this wind tunnel evaluation were limited to an angle of attack of 20 degrees. The variation of lift coefficient at 20 degrees is presented in Figure 6 for seven canard positions.

Figure 6 - $C_{L_{20}}$ versus Canard Exposed Area Ratio

A complete listing of references is given on page 101.
The effect on canard size varied somewhat with canard position. At those positions where the canard is fairly close to the wing, P_2, P_3, P_5, P_6, there is a distinct curvature to the data, however, as the canard is moved further forward the variation of $C_{L_{1.20}}$ with size becomes linear.

Little favorable effect would be expected because the interference is minimized. Included in the figure is the value of the lift coefficient for the 0.25 canard and wing body if no interference were present.

Comparison between this value and the data shows favorable interference for the high canard locations (P_1, P_2, P_3), and unfavorable interference when the canard is in the plane of the wing (P_7).

SHAPE

Incremental lift is presented in Figure 7 for the various canard shapes. The canard location is position P_3 for all four canard shapes. As stated in Volume 1, P_3 was near optimum for all canard shapes. The figure is for both 25- and 50-degree research models and contains isolated data for each canard shape.

The most significant conclusion which can be drawn from the figure is that the large difference in incremental lift between 25- and 50-degree wing configurations is in the angle of attack range between 12 and 28 degrees. This difference is attributable to the poor stall characteristics at the 25-degree wing.

A comparison between the canard-off characteristics of the two configurations is given in Figure 8. The 25-degree wing configuration exhibits as expected a higher lift curve slope than the 50-degree configuration but the stall angle of attack is only 10 degrees for the 25-degree wing versus 20 degrees for the 50-degree wing.

The favorable interference between canard and wing, therefore, delays stall at a lower angle of attack for the 25-degree wing.

This reduction in angle of attack due to favorable interference is clearly seen in the low cross-over point between the isolated canard data.
Figure 7 - Incremental Lift Characteristics of the Various Canard Shapes
and the complete configuration. Favorable interference occurs at approximately 12 degrees for the 25-degree wing, whereas favorable interference does not occur until the angle of attack reaches approximately 16 to 20 degrees for the 50-degree wing. It can be said that the poorer the wing design, the more the canard can help.
Examination of the data with regard to the individual canard shape indicates that the 60-degree delta canard C_1 maximizes the increase in lift for both wings. The 60-degree canard is closely followed by the 45-degree high aspect ratio canard C_2 and the 45-degree clipped delta C_0.

The low sweep canard C_3 exhibited the lowest incremental lift for the 25-degree sweep model, and, in fact, the canard appears to have stalled at approximately 20-degree angle of attack.

Incremental lift for the low sweep canard is approximately the same as the other canards for the 50-degree wing model. It thus appears that while low sweep canards are inadequate for the low sweep wing, the low sweep canard does delay separation sufficiently for the wing of higher sweep if located at the proper position. The effect of position change on incremental lift for the various canard shapes and the two wing sweeps is discussed in the next section.

POSITION

Incremental lift versus angle of attack is presented in Figure 9 for both 25- and 50-degree sweep research models. Data are presented for seven positions for the 50-degree model and three positions for the 25-degree model. The data are for the four canard configurations at zero degrees canard deflection.

Incremental lift was, in general, maximized at 28-degrees angle of attack for the canards on the 50-degree model and between 20- and 24-degrees angle of attack for the 25-degree model.

The variation of maximum incremental lift with canard position is shown in Figure 10. The interference free value of canard lift at the corresponding angle of attack for each position are also shown in the figure.

For all configurations, as the canard was moved to the most forward position, $l_c/c \sim 1.5$ for the 50-degree wing, $l_c/c \sim 1.30$ for the 25-degree wing, the maximum incremental lift dropped off. Similarly, lowering the canard reduced maximum incremental lift. The only exceptions to the latter statement were the low sweep 25-degree canard C_3, and the high aspect ratio 45-degree canard C_2. Canard C_3 had an increase in maximum lift at the lowest, most aft position for both 25- and 50-degree wing models. Similarly, lift was maximized at P_6 for the 45-degree high aspect ratio canard C_2.

9
Figure 9 - Position Effects of Incremental Lift

Figure 9a - Canard \(C_0 \) on 50-Degree Wing

Figure 9b - Canard \(C_1 \) on 50-Degree Wing
Figure 9 (Continued)

Figure 9c - Canard C_2 on 50-Degree Wing

Figure 9d - Canard C_3 on 50-Degree Wing
Figure 9e - Canards on 25-Degree Wing
Figure 10 - Maximum Incremental Lift Variation with Canard Position

Figure 10a - Lift on 50-Degree Wing

Figure 10b - Lift on 25-Degree Wing
Examination of the data relative to the interference free value indicates that the incremental lift is approximately double that of the interference free lift, if the canard is properly located. Improper location, i.e., too far forward or too low, reduces the value of the incremental lift to approximately 1 1/2 times the interference free value.

The value of incremental lift obtained is approximately the same for both 25- and 50-degree research models for properly located canards. The only exception is the 45-degree high aspect ratio canard which had significantly higher values of incremental lift when mounted on the 25-degree research model.

The data presented in Figure 10 are not at a constant angle of attack, hence, they do not represent the maximum lift coefficient obtained by the complete configuration. The angle of attack where maximum lift for the complete configurations occurred was generally at 32 degrees. Figure 11 presents the canard incremental lift at 32 degrees versus canard position, thus also showing the influence of canard placement on the maximum lift coefficient. Included in each figure is the interference free lift for each canard shape. In Figure 10, the incremental lift was always greater than the interference free lift. This is not the case at 32 degrees, particularly for the 50-degree research model. For all but the 60-degree delta canard C_1, there are canard locations where the incremental lift is less than what would be obtained from the interference free value, thus indicating unfavorable interference. The onset of this unfavorable interference occurs at ℓ_c/\bar{c} of approximately 1.4 for canards C_0 and C_2 and approximately ℓ_c/\bar{c} of 1.2 for canard C_3. Lowering the canard further moved the intersection point aft and reduced the lift.

The trends for the 25-degree research model are similar to those of the 50-degree model, although the only intersection point noted is for the 25-degree canard C_2. This intersection point occurs at approximately the same ℓ_c/\bar{c} value as that of the 50-degree wing model.
Figure 11a - Lift on 50-Degree Wing

Figure 11b - Lift on 25-Degree Wing

Figure 11 - Incremental Lift at 32-Degree Angle of Attack
Canard deflection has a direct influence on the maximum lift generated. This influence, either favorable or unfavorable, is dependent on canard position and size.

The variation of lift coefficient at 20-degree angle of attack are presented in Figure 12 for the four sizes of the 45-degree truncated delta canard C_0. In general at low deflection angles, $\delta_c \leq 10$ degrees, there is little change in the lift coefficient for all positions and sizes. As deflection is increased different trends occur. The smaller canards $S_c/S_w = 0.10$, and 0.15 located in the high positions P_1, P_2, P_3 exhibit little change in lift coefficient with increasing deflection angle. As the canard size is increased or moved closer to the wing, there is a decrease in lift coefficient with increasing deflection angle. This reduction in lift occurs primarily at P_6 and P_7 for the smallest canard $S_c/S_w = 0.10$, and Positions 3, 6 and 7 for larger sizes. Thus, for canards which might be used for control purposes, i.e., removed from the wing, there is little lift loss due to the canard. Canards which are located close to the wing, however, exhibit lift losses with increasing deflection angle. The previous discussion is based on data at 20-degree angle of attack. At higher angles of attack it should be remembered that when the canard is moved longitudinally away from the wing the likelihood of canard stall increases and, thus, the above discussion is not likely to hold.

The effect of canard deflection on the incremental lift characteristics of the four different canard shapes is presented in Figure 13 for both 25- and 50-degree research models. Data are presented for canard deflection angles of ± 10, ± 5, and 0 degrees for the 50-degree wing and 0 and -10 degrees for the 25-degree wing model. Canard positions represented are Positions 3 and 6 ($L_c/c = 1.0$).

Canard deflection has little effect on the incremental lift characteristics at low angle of attack and, as reported in Volume 1, $C_{l_{\delta}}$ is approximately $1/2 C_{l_{\alpha}}$ of the isolated canard. At higher angles of attack distinct differences in incremental lift appear as shown in Figure 14 for the case of 32-degree angle of attack. Examination of the figure reveals the large
Figure 12 - Variation in Lift Coefficient at $\alpha = 20$ Degrees versus Canard Deflection Angle δ_c

Figure 12a - Canard 0.10

Figure 12b - Canard 0.15
Figure 13 - Incremental Lift Variation with Canard Deflection

Figure 13a - Canard C_0 on 50-Degree Wing
Figure 13 (Continued)

Figure 13b - Canard C_1 on 50-Degree Wing

Figure 13c - Canard C_2 on 50-Degree Wing
Figure 13 (Continued)

Figure 13d - Canard C3 on 50-Degree Wing

Figure 13e - Canards on 25-Degree Wing
Figure 14a - Lift on a 25-Degree Wing

Figure 14b - Lift on a 50-Degree Wing

Figure 14 - Variation of ΔC_L_{32} with Canard Deflection
dependence of position on lift at equal canard deflection angles. This is seen most clearly for the 60-degree delta canard C_1 and for both 25- and 50-degree models. When the canard is at the low position P_6, positive deflections cause a severe lift loss and negative deflections cause a lift gain. Similar trends occur for both the high aspect ratio canards C_2 and C_3 on the 50-degree wing model.

Figure 15 utilizing the data from Figure 14 presents incremental lift versus the canard trailing edge gap measured between the wing upper surface and the canard trailing edge. The gap was made nondimensional with respect to projected canard span.

![Graph](image)

Figure 15 - Variation of ΔC_{L32} with Canard-Wing Vertical Gap

Without taking into account differences in canard lift curve slope, a pattern of incremental lift versus gap height can be seen which is somewhat similar to a ground effect plot albeit in an inverted sense. In true ground effect, C_L increases with respect to proximity to the ground. In the case of the canard, close proximity of the canard to the wing causes a lift loss.
By taking the incremental moment data presented in a later section at the same angle of attack and dividing by the corresponding incremental lift, Figure 16 has been developed.

![Graph showing variation of $\frac{\Delta C_M}{\Delta C_L}$ with Canard-Wing Vertical Gap](image)

Figure 16 - Variation of $\frac{\Delta C_M}{\Delta C_L}$ with Canard-Wing Vertical Gap

It is seen that at gap ratios greater than 0.1 the ratio $\frac{\Delta C_M}{\Delta C_L}$ is approximately 1 which is where the canards are located, i.e., $l/c = 1$. However, as gap height is decreased $\frac{\Delta C_M}{\Delta C_L}$ moves rapidly forward indicating that the canard is very highly loaded (typical of ground effect) and the wing is unloading. This behavior of the wing is perhaps due to the canard downwash having an unfavorable effect on the lift. It thus appears that for good high angle of attack characteristics the canard should be at least 0.10 canard spans above the wing plane.
WING LEADING EDGE CHANGES

The research models utilized in the previous discussions had symmetrical leading edges and the normal leading edge radius associated with the 65A008 airfoil. It is well known that increases in performance can be obtained by suitable changes in wing leading edge radius or droop. In order to examine the effect of such changes on the aerodynamic characteristics, three radius changes and four leading edge droops were evaluated on the 50-degree model. Details of the radius changes and droops are given in Figure 17.

![Figure 17 - Geometry of Wing Leading Edge Droops and Radii](image-url)
Lift versus angle of attack is presented in Figure 18 for the 50-degree wing both with and without the canard for the varying radius and droops. The canard is the 45-degree truncated delta C_0 located at position P_3 and 0 degree deflection. As can be seen in the figure, neither radius change nor droop causes any appreciable change in lift for either canard-on or -off configurations.

Figure 18a - Droids

Figure 18b - Radius

Figure 18 - Effect of Wing Leading Edge Droop and Radius on Lift Characteristics
This lack of change was not the case for the 25-degree research model as shown in Figure 19. In the case of the 25-degree model, the -9-degree droop delays stall by approximately 4-degree angle of attack and improves the maximum lift coefficient by 0.24. The effect of adding the canard to the modified model is presented in Figure 19. Data are presented for the 60-degree delta canard C_{x} located at P_{3} and 0 degree deflection. Incremental lift versus angle of attack for the baseline and -9-degree droop models is presented in Figure 20 for the 60-degree canard at Positions 3 and 6 for deflections of 0 and -10 degrees.

Better stall characteristics of the wing, modified with the -9-degree droop, delays the effect of the canard by approximately 4-degree angle of attack. As angle of attack is increased beyond stall angle of attack; the value of incremental lift is approximately the same or slightly higher for the modified wing. It is thus seen that as the basic wing characteristics are improved the influence of the canard is delayed to higher angles of attack.

Figure 19 - Lift Characteristics of 25-Degree Model Modified with -9-Degree Wing Leading Edge Droop
Figure 20 - Incremental Lift due to Canard for Basic and -9-Degree Droop, 25-Degree Wing Model

PITCHING MOMENT

The variation of pitching moment with angle of attack is presented in Figure 21. The data are for the same three canard geometries and positions as those presented in Figure 5 of the section of lift, mainly, the 60-degree delta, and the 45-degree and 25-degree sweep high aspect ratio on
canards. As with lift, differences occur due to canard shape. The data, however, indicate a fairly linear variation of pitching moment over the angle of attack range when the canards are installed. The influence of size, shape, and position on pitching moment are discussed in this section.

Examination of the data presented in Figure 21 indicates that the pitching moment behavior of the basic wing-body is not linear. This
nonlinear behavior is most pronounced for the 50-degree sweep wing model. To determine the effect of the canard, incremental pitching moments ΔC_M will be used almost exclusively in the following discussion. The basic data from which these incremental moments have been obtained can be found in the references.

SIZE

The influence of canard size on pitching moment at zero lift C_{M0} is presented in Figure 22. Shown is C_{M0} versus deflection for canard projected area ratios S_c/S_w from 0.10 to 0.25. As indicated, the increase in moment with deflection is reasonably linear for each canard position and size.

Figure 23 presents zero lift pitching moment at 10-degree deflection versus canard area ratio at Positions 1 and 3. As shown, the data do not intercept the zero value at zero canard size, therefore, indicating that the canard projected area ratio is too large a parameter for good agreement. The data, when plotted versus canard exposed area ratio, converge to zero at zero canard size as indicated in Figure 24. Data are presented for each of the seven canard positions evaluated and, as shown, linear fits of the data are obtained at each position. As expected, moving the canard forward increases the pitching moment; not so expected is the fact that lowering the canard reduces the magnitude of the pitching moment change.

The data from Positions 1, 2, and 3 have been plotted versus canard exposed volume coefficient and are presented in Figure 25. Canard volume coefficient is defined as $\frac{z_c}{\bar{c}} \times \frac{S_c}{S_w}$, where z_c is measured from the 0.27 \bar{c} position of the wing to the 40 percent exposed root chord of the canard. The variation in C_{M0} with exposed volume coefficient is linear as shown.

The forward shift in neutral point due to canard size is presented in Figure 26. The parameters chosen are incremental moment slope evaluated at zero lift versus canard exposed volume coefficient. Data are presented
Figure 22 - Variation of Pitching Moment Coefficient at Zero Lift C_{m0} with Canard Deflection Angle δ_c

Figure 22a - Canard 0.10

Figure 22b - Canard 0.15
Figure 22 (Continued)

Figure 22c – Canard 0.20

Figure 22d – Canard 0.25
Figure 23 - Zero Lift Pitching Moment versus Projected Area Ratio

Figure 24 - Zero Lift Pitching Moment versus Exposed Area Ratio
at 0- and 10-degree canard deflection. The variation of $\frac{\partial (\Delta C_w)}{\partial C_L}$ is linear for both deflection angles and ranges from a forward shift of 0.04 \bar{c} for the smallest canard tested at the ait position ($\delta_c/\bar{c} \approx 1, S_c/S_w = 0.1$) to a shift of 0.20 \bar{c} for the largest canard at the most forward position ($\delta_c/\bar{c} \approx 1.5, S_c/S_w = 0.25$).
SHAPE

The variation of incremental moment with canard shape is shown in Figure 27. Data are presented for the four canard shapes located at P3 for both 25- and 50-degree sweep models. Included on each figure are the values for each isolated canard shape at P3.

As with incremental lift, the most significant changes noted are the early differences between the 25-degree data and the isolated data. This is undoubtedly due to the early stall of the 25-degree wing.

At low angles of attack, the incremental moment has the same value and slope as that of the isolated canard data for the four canard shapes and both wings, thus indicating little if any upwash effects due to the wing. As angle of attack is increased, significant differences occur primarily in magnitude. This is due to the fact that the canard is delaying stall over the root position of both wings. Thus, the center of pressure has moved inboard and forward for each wing thereby generating increased, nose-up moments.

Comparison between the incremental and isolated canard data indicates reasonable agreement between the slopes and general shape of the curves for each canard shape—most notably for the 25-degree sweep model. For example, the isolated 25-degree high aspect ratio canard C3 has a stall at angles of attack between 12 and 16 degrees; similarly, the incremental data indicate a reduction in slope in this angle of attack region. Reductions in slope are also evident for both the 45-degree high aspect ratio canard C2 and the 45-degree truncated delta canard C0 and these reductions occur for both isolated and incremental data. No reduction in slope is evident for the 60-degree canard isolated data and no reduction is seen for the incremental data.

It is thus apparent that the general shape of the incremental moment curve is the same as that of the isolated surface.

POSITION

Incremental moment versus angle of attack is presented in Figure 28 for seven positions for the 50-degree wing model and three positions for
Figure 27 - Incremental Moment Variation with Canard Shape
Figure 28 - Incremental Moment Variation with Canard Position

Figure 28a - Canard C_1 on 50-Degree Wing

Figure 28b - Canard C_2 on 50-Degree Wing

Figure 28c - Canard C_3 on 50-Degree Wing
Figure 28 (Continued)

Figure 28d - Canard C\textsubscript{0} on 50-Degree Wing

Figure 28e - Canard C\textsubscript{1} on 25-Degree Wing
Figure 28 (Continued)

Figure 28f - Canard C₂ on 25-Degree Wing

Figure 28g - Canard C₂ on 25-Degree Wing
the 25-degree wing configuration. The data are for the four canards at 0-degree canard deflection. In general, the incremental moments behave as expected at low angles of attack, that is, moving the canard forward increases the incremental moment for all configurations. At higher angles of attack, the effectiveness of the forward position drops off and the incremental moment is often less than that generated by the canards at further lift positions. This is shown in Figure 29 where incremental pitching

Figure 29 - Variation of ΔC_{m32} with Canard Position

![Graph showing variation of ΔC_{m32} with canard position](image)

Figure 29a - Moment on a 50-Degree Wing
moment at 32-degree angle of attack is presented. As can be seen, maximum incremental moment occurs at the most forward position in only one case, that case being the 60-degree delta canard C1 located in the highest most forward position P1. Maximum moment in general occurred at P2 for most configurations. One exception to the rule was the 25-degree high aspect ratio canard C3 where maximum moment occurred in the lowest most aft position. It is interesting to compare the shape of the variation of maximum lift coefficient with canard position shown in Figure 10 and the above variation of incremental moment. In both instances the shapes of the curves for each canard are extremely similar. Thus it appears that it is the lift being generated by the canard rather than the absolute canard position which is the primary determining factor of the moment generated.

Returning to Figure 28 it is seen that the incremental pitching moment slope is reasonably linear with angle of attack up to angles of attack of approximately 8 degrees. This variation of incremental pitching moment slope is presented in Figure 30 for both 25- and 50-degree models. In contrast with the moment data at 32-degree angle of attack, the variation of
ΔC_{\alpha} behaves in a linear manner, in that increasing moment arm increases incremental pitching moment slope. As noted, lowering the canard reduces the slope slightly. The data from Figure 30 show a varying degree of slope change with canard shape as expected, due to the differences in canard lift curve slope and canard exposed area. The data from Figure 30 have been divided by the isolated canard lift curve slope and plotted in Figure 31 against canard exposed volume coefficient.

The plotted data fit a straight line reasonably well, thus indicating very little upwash with canard position and that the linear approximation

$$\frac{\partial (\Delta C_{\alpha})}{\partial \alpha} = C_{L_{\alpha}} \times \frac{V_c}{e}$$

is reasonable at low angles of attack.

Figure 30 - Incremental Moment Slope Variation with Canard Position
The variation of incremental moment with canard deflection is presented in Figure 32. Data are presented for both 25- and 30-degree sweep models and the four canard shapes. The canards are located at Positions 3 and 6 and the deflection range is from -10 to +10 degrees for the 30-degree model and -10 to 0 degrees for the 25-degree model. When the canards are located in the high position P₃, there is little change in incremental slope throughout the deflection range. An exception to this is the 25-degree high aspect ratio canard C₃ at low angles of attack. This canard has a varying incremental slope which is progressively reduced with increasing canard deflection. This reduction in slope is due to stall of the canard.
Figure 32 - Incremental Moment Change due to Canard Deflection

![Graph showing incremental pitching moment coefficient vs. angle of attack for various canard deflections.]

Figure 32a - Canard C₀ on 50-Degree Wing

![Graph showing incremental pitching moment coefficient vs. angle of attack for various canard deflections.]

Figure 32b - Canard C₁ on 50-Degree Wing
Figure 32 (Continued)

![Graph](image)

Figure 32c - Canard C_2 on 50-Degree Wing

![Graph](image)

Figure 32d - Canard C_3 on 50-Degree Wing

45
Figure 32 (Continued)

Figure 32c - Canard C_1 on 25-Degree Wing

Figure 32f - Canard C_2 on 25-Degree Wing
While the data indicated little change in incremental moment slope with deflection at Position 3, this is not the case at the lower position P6. At this position the incremental slope is decreasing with increasing deflection angle indicating that the interference between canard and wing is no longer favorable or that the canard is stalled. This decrease in moment is seen more clearly in Figure 33 when incremental pitching moment at 32-degree angle of attack is presented versus canard deflection angle. At the high position P3 incremental moment increases with canard deflection, however, at the low position P6 the converse is true. This is most notable for the 60-degree canard C1, and for the 45-degree high aspect ratio canard C2. These canards have a reduction in incremental moment at positive deflection angles. Similar trends were noted for the incremental lift at 32 degrees due to deflection presented in the previous section.

The incremental lift presented in Figure 14 showed a reduction in lift of approximately 0.28 due to a positive 10-degree deflection for the 60-degree canard at P6. The incremental moment, however, does not indicate a change of this magnitude, for, if all the incremental lift were due to the canard stalling, the expected change in moment would be $\Delta C_l \times \frac{l_c}{c}$.
Figure 33a - Moment on 50-Degree Wing

Figure 33b - Moment on 25-Degree Wing

Figure 33 - Variation of $\frac{\Delta C_m}{M_{32}}$ with Canard Deflection
or approximately 0.28. Thus it appears that while the canard may have suffered a slight reduction in lift (hence a reduction in moment) the major loss of lift is on the wing.

The variation of control power \(C_{\delta M} \), with angle of attack is shown in Figure 34 for both 25- and 50-degree wing models. The data are evaluated from 0 to +10 degrees and from 0 to -10 degrees.

At \(P_3 \) no significant differences in \(C_{\delta M} \) occur if the value of \(C_{\delta M} \) is computed from either positive or negative deflections, although differences do occur at low angles of attack for the 25-degree sweep canard \(C_3 \) which, as noted is due to canard stall. More significant differences occur at \(P_6 \). At \(P_6 \), \(C_{\delta M} \) is higher when computed with the negative deflection than with positive, thus indicating a possible canard stall. In general, there are only slight differences in control power between the 25- and 50-degree sweep models over most of the angle of attack range.

Control power was not as sensitive to canard position for the 25-degree wing model as was the 50-degree sweep model. Control power for the 25-degree sweep model was based only on negative deflection and thus the influence of positive deflection is not known.

WING LEADING EDGE CHANGES

The effect of a -9-degree leading edge droop on the 25-degree wing model is presented in Figure 35. As for the previously discussed lift, the -9-degree droop delays stall of the basic wing by approximately 4-degree angle of attack. The incremental moments due to the canard, presented in Figure 36, reflect this change in stall because in the region between 8 to 20-degree angle of attack the canard, located on the normal wing, has a slight increase in incremental moment when compared with the drooped leading edge configuration. This increase in moment is not as large as that which would be expected from the incremental lift data, i.e., \(\Delta C_m = \Delta C_L \frac{L_c}{\hat{c}^2} \), thus indicating that the primary moment change is due to delay of separation on the wing rather than a lift increase on the canard.
Figure 35 - Moment Characteristics of Basic 25-Degree Wing and 25-Degree Wing with -9-Degree Droop

DRAG

The primary aerodynamic influence of the close-coupled canard is to delay separation on the wing. This delay in separation results in a sizeable reduction in induced drag at moderate to high angles of attack. This reduction in induced drag is seen quite dramatically in Figures 37 and 38.

Figure 37 presents the variation of drag with lift coefficient for the 60-degree delta canard C_1, the 45-degree high aspect ratio canard C_2,
Figure 36a - Position 3

Figure 36b - Position 6

Figure 36 - Incremental Moments due to Canard on Basic and Modified 25-Degree Wing
and the 25-degree high aspect ratio canard C_3. Data are presented for both 25- and 50-degree sweep models and the canard is located at P_2. As seen in the figure the canard configured vehicles have less drag at lift coefficients of approximately 0.3 and 0.6 for the 50- and 25-degree sweep models, respectively. Figure 38 presents the corresponding variation of lift-to-drag ratio versus lift coefficient for the data presented in Figure 37. As noted in the figures, there is a decrease in maximum lift-to-drag ratio $(L/D)_\text{max}$ when the canard is installed. The magnitude of this reduction in $(L/D)_\text{max}$ is a function of canard planform, position, and deflection. The influence of these parameters on lift-to-drag ratio and induced drag will be discussed in the following sections.
Figure 38a - Lift-to-Drag Ratio for a 50-Degree Wing

Figure 38b - Lift-to-Drag Ratio for a 25-Degree Wing

Figure 38 - Typical Lift-to-Drag Ratio Characteristics
The data available on the effect of canard size on drag are somewhat limited. Only one wind-tunnel program at AFWL evaluated canard size as a parameter and the angle of attack was limited to 20 degrees. Significant data regarding drag was obtained only with the two largest canards having projected area ratios of 0.20 and 0.25. Certain trends, however, can be obtained from these data. The first trend noted is the behavior of the drag developed on the canard due to deflection at zero lift coefficient. Figure 39 presents this variation of drag versus deflection for the two canard sizes. As indicated in the figure, the shape of \(C_D \) versus deflection is approximately parabolic in shape suggesting that the data may be analyzed in the form of
\[
C_D = C_D^{\delta = 0} + K_1 (C_L) \delta^2.
\]

Utilizing the zero lift moment data due to deflection and dividing by the corresponding canard distance ratio, \(C_L \delta \) has been obtained. The variation of \(C_D \) with \((C_L \delta)^2 \) is presented in Figure 40. Data have been referenced to the canard exposed area. For up to approximately 15 degrees deflection, the data approximates a linear fit. At deflection angles greater than 15 degrees, the slope becomes steeper indicating canard stall. It thus appears that as with the incremental lift and moment, drag due to the canard is a function primarily of exposed area ratio rather than total area ratio. This is further verified by Figure 41, which presents the variation of aircraft lift-to-drag ratio at a lift coefficient of 1.0 versus exposed area ratio. As shown, the change is linear albeit based on only three data points. Data, however, from the F-4 aircraft where canard exposed ratios of 0.05 and 0.10 were evaluated also exhibit this increase in lift-to-drag ratio with canard exposed area ratio. Thus, for at least up to 20-degree angle of attack, a linear increase in lift-to-drag ratio with canard exposed area ratio appears to be valid.
Figure 39a - Drag for a 0.20 Canard

Figure 39b - Drag for a 0.25 Canard

Figure 39 - Effect of Deflection on Zero Lift Drag C_{D0}
Figure 40 - Variation of Canard Drag Coefficient with Canard Lift

Figure 41 - Variation of (L/D) with Canard Exposed Area Ratio
SHAPE

The effects of canard shape on maximum lift-to-drag ratio \((L/D)_{\text{max}}\) and lift-to-drag ratio at lift coefficients of 0.6, 0.8, and 1.2 are presented in Figure 42. Lift-to-drag ratio is plotted versus the quarter chord sweep angle of each canard \(\lambda_{25}\). Data are presented for both 25- and 50-degree sweep models. The canards are located at \(P_3\) at 0-degree canard deflection. Also presented in the figure are the corresponding lift-to-drag ratios of the individual wing-bodies. Maximum lift-to-drag ratio is lower for the canard configurations than for the wing-body alone for both sweep models. This is to be expected since a penalty must be paid for the zero lift drag increase due to the canard. The penalty in lift to drag varies from 9 percent to 15 percent for the 25-degree wing model and from 4 to 7 percent for the 50-degree model. These losses in \((L/D)_{\text{max}}\) can be reduced by proper placement and deflection which will be discussed in following sections. As angle of attack and thus lift coefficient are increased, the canard configurations have better lift-to-drag ratios than the basic wing-body. The lift coefficient where this increase first occurs is approximately 0.7 for the 25-degree wing and 0.4 for the 50-degree wing model.

At low lift coefficients \(C_L \leq 0.6\) the loss in lift-to-drag ratio is clearly a function of the quarter chord sweep angle as shown by the linear variation. At higher lift coefficients this is not the case because the amount of variation with canard quarter chord sweep angle is minimal for the 50-degree wing model. The canards on the 25-degree model exhibit a nonlinear behavior with canard sweep angle at a \(C_L\) of 0.8 (\(\alpha \approx 10\) degrees), \(L/D\) increased with decreasing sweep angle up to \(\lambda_{25}\) of 40 degrees and then decreased. This behavior is due to the early stall of the 25-degree canard \(C_3\) when located on the 25-degree wing model.

The improvement in lift-to-drag ratio is due to a reduction in induced drag. Using the definition of drag as

\[
C_D = C_{D_{\text{min}}} + K_1 \left[C_L - C_{L_0} \right]^2
\]
Figure 42 - Lift-to-Drag Ratio Variation with Canard Shape
Figure 43 has been developed for the four canard shapes on each model as well as each wing-body. The value of C_{L0} is approximately zero for each configuration. At the value of C_L for $(L/D)_{max}$ ($\alpha \approx 4$ degrees), the induced drag factor is higher than the basic wing-body for all configurations. This is due to the unfavorable interference of the canard on the wing.

Then the angle of attack is increased, the canards have a lower induced drag factor than the basic wing-body. This reduction occurs at an angle of attack of approximately 8 degrees. No strong influence of shape on the induced drag factor is seen for the 50-degree wing model.

Shape does influence the induced drag on the 25-degree wing. At low lift coefficients, the 25-degree canard C_3 had the lowest induced drag and the 60-degree canard C_1 the highest. As angle of attack is increased, their trends were reversed and the C_3 canard had the highest induced drag and the C_1 canard the lowest.

POSITION

The effect of canard position on maximum lift to drag ratio $(L/D)_{max}$ and lift to drag ratios at lift coefficients of 0.6 and 1.2 are presented in Figure 44. Data are presented for both 25- and 50-degree sweep models. Shown for each canard is the position where the canard exposed root trailing edge initially overlaps the exposed wing root leading edge.

For all configurations maximum lift to drag ratio occurs at a position forward of the exposed overlap position. In general the maximum value occurred at P_2, however, the 60-degree delta canard had a maximum value at P_6 for the 50-degree wing model. Lowering the canard reduced $(L/D)_{max}$ except in the case of the 60-degree canard as mentioned above. A comparison with data for the basic wing-body shows only small losses in $(L/D)_{max}$ for each canard if the canard is at the optimum position. These losses in $(L/D)_{max}$ were on the order of 3 and 7 percent for the 50- and 25-degree sweep models, respectively. As lift coefficient is increased, canard configurations have less drag than the basic wing-body for the 50-degree wing model. Lift to drag ratio is still optimized at positions forward of the canard wing overlap. As with $(L/D)_{max}$, lowering the canard reduced the lift to drag ratio.
Figure 43a - Drag for a 25-Degree Wing

Figure 43b - Drag for a 50-Degree Wing

Figure 43 - Induced Drag Factor
Figure 44 - Lift-to-Drag Ratio Variation with Canard Position

Figure 44a - Canard C_0 on 30-Degree Wing

Figure 44b - Canard C_1 on 30-Degree Wing
Figure 44 (Continued)

Figure 44c - Canard C₂ on 50-Degree Wing

Figure 44d - Canard C₃ on 50-Degree Wing
Figure 44 (Continued)

Figure 44e - Canards on 25-degree Wing
At $C_L = 1.2$, only slight changes occur in the lift-to-drag ratio, the location for maximum value of L/D has, however, moved aft of the overlap juncture. Lift-to-drag ratio at this C_L tended to be lower at the forward and low positions.

The effect of position on the minimum drag coefficient C_{D0} is presented in Figure 45. Position has a minimal effect of C_{D0} but moving the canard and downward increased minimum drag.

As stated earlier the major effect of the canard on drag is to reduce the induced drag component of the total drag. The effect of canard position on the induced drag factor K_1, is presented in Figure 46 for the 50-degree model. The influence of canard position on induced drag is somewhat dependent on canard geometry. The 60-degree delta canard C_1 has the smallest change in K_1 due to position. Minimum K_1 occurred at P^2 over most of the angle of attack range.

Moving the canard aft increased induced drag. The three other canards show a greater dependence on canard position. Maximum induced drag occurred at the most forward positions P_1 and P_4. Minimum induced drag occurred at P_2 for the 45-degree sweep canards C_0 and C_2 and P_3 for the 25-degree canard C_3. For all canards lowering the canard increased the induced drag factor.

Figure 47 presents similar data for the 25-degree wing model. More variation of K_1 with position is evident for the canards on the 25-degree wing model than for the 50-degree wing model. At low lift coefficients K_1 did not vary significantly for the 50-degree model, whereas for the 25-degree model these differences are more evident. At low C_L, P_2 clearly has a lower induced drag factor for all three canards. As lift coefficient is increased the induced drag factor at P_2 increases to larger values than those obtained at Positions 3 and 6 for the 45- and 25-degree canards, C_2 and C_3, and Position 3 for the 60-degree canard C_1. This increase in K_1 was relatively large for both C_2 and C_3 indicating a large loss in effectiveness of the canard at P_2. The increase in K_1 for the 60-degree canard was relatively small. Over most of the angle of attack range evaluated, lowering the canards to position P_6 increased the induced drag factor.

65
Figure 45 - Effect of Canard Position on Minimum Drag Coefficient
Figure 46 - Induced Drag Factor Variation with Canard Position for the 50-Degree Wing

Figure 46a - Canard C_0

Figure 46b - Canard C_1
Figure 46 (Continued)

Figure 46c - Canard C\textsubscript{2}

Figure 46d - Canard C\textsubscript{3}
Figure 47 - Induced Drag Factor Variation with Canard Position for the 25-Degree Wing
Figure 48 indicates the minimum level of induced drag obtainable for each canard. The figure is a locus of the minimum induced drag factor based on all canard positions. Minimum induced drag is obtained for the 25-degree canard at low lift coefficients for both research models regardless of canard position.

The 60-degree canard had the highest value of induced drag at low lift coefficients and the lowest value at lift coefficients near \(C_L \text{ max} \). The intermediate canards \(C_0 \) and \(C_2 \) have values between the 25- and 60-degree canards. Thus, for good low lift performance characteristics, i.e., range and endurance, the low sweep canard is best. When maneuvering capability is the dominant design factor, the highly swept canard generates the best performance. The intermediate canards are good compromises having lower induced drag than the 60-degree delta at low lift coefficients and slightly higher values of induced drag near maximum lift. Examination of the figures indicates that while the range of induced drag between the 25- and 60-degree canards is not large for the 50-degree sweep model, large differences in induced drag plus the poor stall characteristics exhibited by the 25-degree canard preclude its use on the 25-degree swept wing model.

DEFORMATION

Positive canard deflections reduce \((L/D) \text{ max} \) significantly, whereas small negative deflection improves \((L/D) \text{ max} \). This behavior is illustrated in Figure 49 which presents the variation of lift-to-drag ratio versus canard deflection. Data are presented for Positions 3 and 6 for a canard deflection range from -10 to +30 degrees in 5-degree increments for the 50-degree sweep model and at -10 and 0 degrees for the 25-degree sweep model.

At both positions and for all canard shapes, a 10-degree deflection causes a loss in \((L/D) \text{ max} \) of approximately 40 percent. The influence of negative canard deflection on \((L/D) \text{ max} \) varied somewhat with canard position and shape. For nearly all configurations on the 50-degree wing model, a canard deflection of -5 degrees increased \((L/D) \text{ max} \). The sole exception to this was a slight decrease in \((L/D) \text{ max} \) when the 45-degree high aspect ratio canard \(C_2 \) was at \(P_4 \).
Figure 48a - Drag for a 50-Degree Wing

Figure 48b - Drag for a 25-Degree Wing

Figure 48 - Locus of Minimum Induced Drag Factor
Figure 49 - Lift-to-Drag Ratio Variation with Canard Deflection

Figure 49a - Canard C₀ on 50-Degree Wing

Figure 49b - Canard C₁ on 50-Degree Wing
Figure 49 (Continued)

Figure 49c - Canard C_2 on 50-Degree Wing

Figure 49d - Canard C_3 on 50-Degree Wing

Figure 49e - Canards on 25-Degree Wing
A deflection of -10 degrees caused a reduction in \((L/D)_{max}\) for all canards with the exception of the 60-degree delta canard \(C_1\). On the 25-degree model, negative 10-degree deflection caused reductions in \((L/D)_{max}\) for the 25-degree canard at both positions. The 45-degree high aspect ratio canard \(C_2\) and a slight increase in \((L/D)_{max}\) at the low position \(P_6\) and a decrease at the high position \(P_3\). The value of \((L/D)_{max}\) was increased for both positions of the 60-degree canard with negative deflections.

With increasing lift coefficient the effect of canard deflections becomes less dramatic. Positive deflections still cause reduction in lift-to-drag ratio yet the magnitude of these losses is reduced. Lift-to-drag ratio was improved by a negative 5-degree canard on the 50-degree swept wing model. Canard deflection had only a small effect on lift-to-drag ratio at maneuvering lift coefficients \((C_L>1.0)\). Slight losses do occur, however, due to positive deflection. Negative deflections had little effect on \(L/D\) at \(C_L = 1.2\) on the 50-degree model. Negative deflections had a detrimental effect on lift-to-drag ratio for canards \(C_1\) and \(C_2\) on the 25-degree model. The lift-to-drag ratio was slightly increased for the 25-degree canard \(C_3\) on this model.

The losses in \((L/D)_{max}\) and \(L/D\) occurring at positive deflections are due to an increase in minimum drag and an increase in the induced drag factor \(K_1\). The slight gain in \(L/D\) occurring at negative deflections is due to a decrease in \(K_1\). The variation of \(C_D\) with canard deflection is shown in Figure 50. The curves are roughly parabolic in shape and the minimum value in general occurs at 0-degree deflection. The curves, however, have a slight bias in that the drag coefficient for negative values of deflection is, in general, slightly less than that of the corresponding positive deflection. This bias may be due to the downwash of the canard when positively deflected causing an increase in drag of the wing.

The effect of canard deflection on the induced drag factor \((K_1)\) is presented in Figure 51 for deflections of -5, 0, and 5 degrees in the 50-degree sweep model and -10 and 0 degrees for the 25-degree sweep model. As indicated in the figure a positive 5-degree deflection increases induced drag significantly over that of the basic wing-body at low lift coefficients.
Figure 50a - Drag for a 50-Degree Wing

Figure 50b - Drag for a 25-Degree Wing

Figure 50 - Minimum Drag Variation with Canard Deflection
Figure 51 - Effect of Canard Deflection on Induced Drag Factor

Figure 51a - Canard C_0 on 50-Degree Wing

Figure 51b - Canard C_1 on 50-Degree Wing
Figure 51 (Continued)

Figure 51c - Canard C_2 on 50-Degree Wing

Figure 51d - Canard C_3 on 50-Degree Wing
Figure 51 (Continued)

Figure 51c - Canards on 25-Degree Wing
The canard is carrying much of the load at these lift coefficients and thus has significant induced drag of its own. In addition, the downwash from this high loading is modifying the load distribution of the wing in an unfavorable manner. Lift is being suppressed on the inboard position of the wing causing a nonelliptical distribution. With increasing angle of attack the favorable effects of the canard become evident and the induced drag factor is less than that of the basic wing-body.

A negative 5-degree deflection of the canards reduced the induced drag factor to values below the basic wing-body and 0-degree deflection canard configurations throughout most of the angle of attack range. Positive deflection configurations had higher values of induced drag than the 0-degree canard configurations. At high lift coefficients only small differences in K_I occur for either positive or negative deflections when compared to the 0-degree deflection canard configuration.

Negative 10-degree deflections on the 25-degree swept model reduced K_I at low lift coefficients. Negative deflection caused an increase in K_I at high lift coefficients when the canards were located at P_3. The increase in K_I did not occur to any extent when the canards were located at the lower position nor did it occur to the 25-degree sweep canard C_3. A possible explanation of this behavior is that the canard trailing edge gap may be too large and thus the favorable interference effect from the wing may be diminished somewhat.

WING LEADING EDGE CHANGES

In the earlier section on lift, it was stated that wing leading edge modifications can have a beneficial effect on aircraft performance. The increases in performance, in general, take the form of an increase in lift-to-drag ratio and increases in lift and stall angle of attack. Increases in lift and stall angle of attack did occur for the 25-degree wing model, however, leading edge droop and radius changes and little effect on the 50-degree wing. Leading edge droop increased lift-to-drag ratio for both the 25- and 50-degree swept wing models. The variation in L/D with C_L is presented in Figure 52. Data are presented for a -9-degree droop with and
Figure 52 - Effect of -9-Degree Drogue on Lift-to-Drag Ratio

Figure 52a - Drag of 50-Degree Wing
Figure 52 (Continued)

Figure 52b - Drag of 25-Degree Wing
without the close-coupled canard installed. The data for the 50-degree wing are based on the 45-degree truncated delta canard C_0 at 0-degree deflection located at P_1.

The 60-degree delta canard C_1, located at P_3, was used for the 25-degree wing. The data are for deflection angles of -10 and 0 degrees.

Adding the droop to the 50-degree wing increased lift-to-drag ratio for both canard on and off configurations throughout the angle of attack range evaluated $4 < \alpha < 33$ degrees. The incremental change in L/D due to the addition of the -9-degree droop is shown in Figure 53. At low lift coefficients the droop improved the lift-to-drag characteristics of the basic configuration by $\Delta L/D \approx 1.5$ or approximately 14 percent. The gain in L/D for the canard configuration with droop was approximately 10 percent. These improvements in lift-to-drag ratio remained fairly constant with increasing C_L for the canard configuration but were reduced for the wing-body.

The gains in lift-to-drag ratio due to the droop are far more impressive on the 25-degree wing model than those increases noted for the 50-degree model. Maximum lift-to-drag ratio was increased from 12.5 to 14.8 when the droop was installed. The value of lift coefficient where $(L/D)_{\text{max}}$ occurred was increased for C_L from 0.3 to 0.54.

The amount of increase in L/D due to the droop of the canard configuration was dependent on the canard deflection angle as can be seen in Figure 53 which presents the change in L/D due to the droop for the three configurations. As shown, the gains in L/D exhibited by the -10-degree canard configuration are similar in shape and magnitude to those of the basic wing-body. The zero degree canard configuration data has the same general shape as that of the -10-degree canard configuration but the magnitude of the increase is significantly smaller. A possible explanation for these differences is that the combination of the droop and downwash from the canard are having a detrimental effect on the improved flow created by the droop. Similar results were seen on the F-4 when the inboard slat and canard were both installed. Deflecting the canard negatively,
Figure 53a - Lift to Drag for 50-degree Wing

Figure 53b - Lift to Drag for 25-degree Wing

Figure 53 - Incremental Change in Lift-to-Drag Ratio due to -9-degree Droop
however, will not change the wing flow significantly at low angles of attack—hence, the similarity of improvements in lift-to-drag ratio for the basic wing-body and the -10-degree canard configuration.

Thus it appears that it is possible to overdo the canard interference at low angles of attack and the full performance potential of the canard wing interaction will not be attained.

FLOW VISUALIZATION

The previous discussion presented in this volume has been based primarily on force and moment data. A limited amount of flow visualization data has also been obtained on the 50-degree sweep model in the angle of attack range between 0 and 20 degrees. Tufts were installed on canards and wing and photographed with a motion picture camera. Results from these motion pictures, at angles of attack of 10, 15, and 20 degrees, are shown in the accompanying figures. The canards were, in general, located at P_6.

Sketches of the tuft directions for the basic 50-degree wing with canard off are shown in Figure 54 for $\alpha = 10, 15,$ and 20 degrees. At 10 degrees the basic wing has a region of flow near the body where the tufts are in the streamwise direction (unseparated) and a leading edge vortex which starts off the body. Increasing the angle of attack to 15 degrees reduces the streamwise flow area and causes the wing leading edge vortex to break down at approximately half the semispan. The outboard portion of the wing is stalled. At 20-degree angle of attack the region of streamwise flow is very small and most of the surface of the wing is in reverse flow.

The primary influence of the canard is to increase the area of streamwise flow (unseparated) and move the point where the wing leading edge vortex begins outward. This increase in unseparated flow is seen in Figure 55. Figure 55a shows the boundaries of unseparated flow for the 60-degree canard located at P_6. Data are shown for canard deflection angles of $-10, 0,$ and 10 degrees. Also shown on the figure are the corresponding boundaries for the basic wing-body. As indicated, the area of unseparated flow is greatly increased when the canard is installed; in addition, the vortex initiation point is moved outward. The line of flow is approximately at the location
Figure 54 - Tuft Patterns of the 50-Degree Wing
Figure 55 - Effect of Canard on Unseparated Flow Region

- \(\alpha = 10 \text{ DEGREES} \)
- \(\alpha = 15 \text{ DEGREES} \)
- \(\alpha = 20 \text{ DEGREES} \)

- \(C_1 P_6 \delta_0 \)
- \(C_1 P_6 \delta_{-10} \)
- \(C_1 P_6 \delta_{+10} \)

Figure 55a - Canard \(C_1 \) at Position 6

- \(\alpha = 10 \text{ DEGREES} \)
- \(\alpha = 15 \text{ DEGREES} \)
- \(\alpha = 20 \text{ DEGREES} \)

- \(C_2 P_6 \delta_0 \)
- \(C_2 P_6 \delta_{-10} \)
- \(C_2 P_6 \delta_{+10} \)

Figure 55b - Canard \(C_2 \) at Position 6
Figure 55 (Continued)

\[\alpha = 10 \text{ DEGREES} \quad \alpha = 15 \text{ DEGREES} \quad \alpha = 20 \text{ DEGREES} \]

- Dashed line: CANARD OFF
- Solid line: \(C_3 \rho \delta_0 \)
- Dotted line: \(C_3 \rho \delta_{10} \)

Figure 55c - Canard \(C_3 \) at Position 6
Figure 56 - Effect of Canard Shape

Figure 57 - Effect of Position
of the canard tip for deflections of 0 and 10 degrees. Negative deflec-
tions moved this location inboard, whereas a positive deflection moved the
line outboard. The region of unseparated flow is relatively constant with
angle of attack for the 60-degree canard.

The same trend with deflection occurred for the 45-degree high aspect
ratio canard C_2 and the 25-degree canard C_3 as seen in Figures 55h and 55c.
The separation point is, again, at approximately the canard tip but moves
rapidly inboard with angle of attack. Both of these canards exhibited early
stall on the upper surface and the region of unseparated flow tended to move
inboard as the canard stall progressed towards the root. The 60-degree
delta canard did not exhibit any pronounced stall and the region of unsepa-
rated flow did not change to any great extent.

A comparison of the three canards at zero-degree deflection is shown
in Figure 56. At 10-degree angle of attack the largest region of unsepa-
rated flow is due to the 25-degree canard with the 60-degree canard having
the smallest region. At 15 degrees there is little difference between the
3 canards. At 20 degrees the 60-degree canard had the greatest influence
on increasing the area of unseparated flow.

The 60-degree canard was also evaluated at P_2. Data from P_2 are com-
pared with data at P_6 in Figure 57. Moving the canard upward and forward
to P_2 moved the vortex initiation point inwards, however, the surface area
of unseparated flow is relatively unchanged.

The limited flow data are in agreement with the results obtained from
the force data in that the effectiveness of the higher aspect ratio canards
declines with increasing angle of attack, and that the 60-degree canard
has only minimal loss in effectiveness with increasing angle of attack.

SUMMARY

In the preceding analysis it will be noted that the presence of a
close-coupled canard modifies the aerodynamic characteristics of the basic
wing-body on which it is mounted. These changes, which are due to favor-
able interference, occur regardless of canard shape, size, position, or
wing planform. The aerodynamic changes consist primarily of an increase in
stall angle of attack and maximum lift coefficient, and a decrease in drag at angles of attack greater than approximately 8 degrees. The extent to which these aerodynamic improvements occur is a function of canard size, shape, position, and deflection. A summary of the effects of the above parameters is given below:

SIZE
1. Changes in lift and pitching moment at low-to-moderate angles of attack ($\alpha \leq 20$) are proportional to canard exposed area ratio S_e / S_w and exposed volume coefficient $S_e / S_w * S / c$, respectively, for canards of geometrically similar planform.
2. Neutral point shift at low angles of attack is proportional to exposed volume coefficient.
3. Incremental changes in lift-to-drag ratio are proportional to canard exposed area ratio.

SHAPE
1. Lift is maximized by high sweep canards $\lambda \approx 60$ degrees.
2. The incremental moment characteristics of each canard shape were similar in shape and magnitude to the isolated characteristics of each canard.
3. At low lift coefficients, incremental changes in lift-to-drag ratio are proportional to the quarter chord sweep angle of the canard for canards of equal exposed area.
4. Induced drag factor is reduced by the canard.
5. Induced drag factor was lowest for low sweep canards at low lift coefficients and highest at high lift coefficients. High sweep canards exhibit opposite trends.

POSITION
1. Moving the canard longitudinally forward and downward reduces maximum lift increments.
2. Maximum lift increments occur when the canard exposed root trailing edge is slightly forward of the exposed wing root leading edge.
3. At low lift coefficients, moving the canard forward increases incremental moment. Maximum incremental moments, in general, occur at the same position where maximum lift occurs.

\[
\frac{\partial (\Delta C_M)}{\partial \alpha} \text{ is a linear function of isolated canard lift curve slope multiplied by the canard exposed volume coefficient.}
\]

4. At low angles of attack, incremental pitching slope \(\frac{\partial (\Delta C_M)}{\partial \alpha} \) is a linear function of isolated canard lift curve slope multiplied by the canard exposed volume coefficient.

5. Lift-to-drag ratio was maximized at the same location where lift was maximized.

6. Moving the canard forward and downward increased minimum drag.

DEFLECTION

1. Neither positive nor negative deflections of the canard have any significant effect on lift if the gap between canard trailing edge and wing surface divided by canard span is greater than 0.1. Reducing this gap ratio by positive canard deflection caused large reductions in maximum lift.

2. Similar reductions in incremental moment occurred if the gap was reduced. The reductions in incremental moment were not as correspondingly large as the reductions in lift. These characteristics indicate a loss of effectiveness of the canard on delaying wing stall.

3. Positive deflections cause a large increase in drag and a reduction in maximum lift-to-drag ratio.

4. The increase in drag with positive deflection is due to an increase in minimum drag and in the induced drag factor.

5. Small negative deflections \((\delta_c = -5) \) can increase maximum lift-to-drag ratio and reduce the induced drag factor when compared with zero-degree deflection configurations.

6. The gains or penalties in lift-to-drag ratio at large lift coefficients \(C_L \geq 1.0 \) are small for either positive or negative deflections.

WING LEADING EDGE CHANGES

1. Increasing the canard-off stall characteristics of the 25-degree wing by 4 degrees, delayed the favorable influence of the canard by a similar amount. Maximum incremental lift due to the canard was the same for both basic and improved configurations.
2. Incremental improvements in lift-to-drag ratio due to installation of a -9-degree droop were approximately the same for both canard on and off configurations of the 50-degree wing.

3. A similar -9-degree droop on the 25-degree wing model required a -10-degree canard setting to obtain the incremental improvement due to the droop.

4. Neither droops nor wing leading radii change significantly modified the benefits in lift, drag, or pitching moments due to the canard.

ACKNOWLEDGMENTS

The author wishes to thank Stephen J. Chorney, John R. Krouse, and Jonah Ottensosser for their help in obtaining and evaluating the data presented in this report. Additional acknowledgment is given to James H. Nichols and Dr. Roger J. Furey for their guidance and support.
The data presented in this report are based on two research models. The models consist of steel wings and a steel central core. Fuselages are wooden fairings surrounding the central core. The canards and horizontal tail are wood and fiberglass fairings built up around a steel spar. Attachment of the canards and horizontal tail is provided by steel plates flush with the fuselage. Seven canard and three horizontal tail mounting positions are provided. Each canard can be rotated through a deflection range from -10 to +25 degrees in 5-degree increments. Horizontal tail deflection range is from -25 to +10 degrees. Rotation point for both canards and horizontal tail is 40 percent of the exposed surface root chord. Moment reference point for both research models is 0.27 c.

Detailed dimensions of the wings are given in Table 1. Table 2 presents dimensions of the four canards. Figure 58 shows the common fuselage shape for both models. Wing planform geometries are given in Figure 59. Canard geometry is given in Figure 60. Canard locations are presented in Figure 61. A photograph of the various model components is shown in Figure 62.
<table>
<thead>
<tr>
<th>Airfoil Section (NACA)</th>
<th>W1 ((\Lambda = 50) degrees)</th>
<th>W2 ((\Lambda = 25) degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64A008</td>
<td></td>
</tr>
<tr>
<td>Projected Area, square inches</td>
<td>304</td>
<td>295</td>
</tr>
<tr>
<td>Span, inches</td>
<td>35.50</td>
<td>42.00</td>
</tr>
<tr>
<td>Chord, inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root (centerline)</td>
<td>15.38</td>
<td>12.20</td>
</tr>
<tr>
<td>Tip</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>Mean Aerodynamic Chord, inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>10.30</td>
<td>8.30</td>
</tr>
<tr>
<td>Spanwise Location from Body Centerline</td>
<td>6.70</td>
<td>7.90</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>4.15</td>
<td>6.00</td>
</tr>
<tr>
<td>Taper Ratio</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Sweepback Angle, degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leading Edge</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Quarter Chord</td>
<td>45.5</td>
<td>20.0</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td>23.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>Incidence Angle, degrees</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Dihedral Angle, degrees</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Twist Angle, degrees</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*64A008 Airfoil swept 25 degrees around 0.27\(c\) chord line.
TABLE 2 - GEOMETRIC CHARACTERISTICS OF THE CANARDS

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfoil Section (NACA)</td>
<td>64A008</td>
<td>64A006</td>
<td>64A008</td>
<td>64A008</td>
</tr>
<tr>
<td>Exposed Area, square inches</td>
<td>39.8</td>
<td>39.8</td>
<td>47.2</td>
<td>49.3</td>
</tr>
<tr>
<td>Projected Area, square inches</td>
<td>76.0</td>
<td>89.5</td>
<td>76.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Exposed Semi-Span, inches</td>
<td>5.74</td>
<td>4.79</td>
<td>7.60</td>
<td>7.60</td>
</tr>
<tr>
<td>Total Span, inches</td>
<td>16.28</td>
<td>14.38</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Chord, inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root (centerline)</td>
<td>8.73</td>
<td>12.45</td>
<td>6.70</td>
<td>6.12</td>
</tr>
<tr>
<td>Root (exposed)</td>
<td>6.33</td>
<td>8.30</td>
<td>5.31</td>
<td>5.00</td>
</tr>
<tr>
<td>Tip</td>
<td>0.59</td>
<td>0</td>
<td>0.90</td>
<td>1.48</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>3.50</td>
<td>2.31</td>
<td>5.52</td>
<td>5.26</td>
</tr>
<tr>
<td>Taper Ratio</td>
<td>0.07</td>
<td>0</td>
<td>0.13</td>
<td>0.24</td>
</tr>
<tr>
<td>Sweepback Angle, degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leading Edge</td>
<td>45</td>
<td>60</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td>0</td>
<td>0</td>
<td>22.8</td>
<td>0</td>
</tr>
<tr>
<td>Dihedral Angle, degrees</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
NOTE: VERTICAL TAIL WAS NOT TESTED WITH THE 25-DEGREE LEADING-EDGE SWEEP-WING (W2)

(a) Top View

SECTION A-A

ALL DIMENSIONS ARE IN INCHES (CENTIMETERS)

WIDTH = 4.75 (12.06); HEIGHT = 4.15 (10.54)
UPPER CORNER RADIUS = 1.00 (2.54)
LOWER CORNER RADIUS = 0.25 (0.64)

(b) Side View

Figure 58 - Research Aircraft Fuselage
Figure 59 - Planform View of the Wings
Figure 60 - Planform View of the Canards
NOTE: ALL DIMENSIONS ARE IN INCHES (CENTIMETERS)

W1 (Λ = 50 DEGREES): \(x_c = 10.00 \) (25.40); \(z = 1.40 \) (3.56); \(x_H = 15.00 \) (38.10)

W2 (Λ = 25 DEGREES): \(x_c = 7.18 \) (18.24); \(z = 1.14 \) (2.90)

Figure 61 - Canard Pivot Locations
Figure 62 - Wind Tunnel Model Components
REFERENCES

INITIAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>OUSD (R&E)/Mr. Makepeace</td>
<td>MIT/Lib</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>DARPA/COL. Krone</td>
<td>N. Carolina State U./ Raleigh Lib</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>CHONR</td>
<td>Stanford U./Lib</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>704/R. Whitehead</td>
<td>Virginia Polytech Inst/Lib</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>NAVMAT</td>
<td>Boeing Aerospace Company/ H. Yoshihara</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>08T23</td>
<td>General Dynamics/Fort Worth/ C.E. Kuchar</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>NADC</td>
<td>Grumman Aerospace Corporation/ Nick Dannerhoffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Terry Miller (V/STOL Project Office)</td>
<td>Lockheed-California/ Andy Byrnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Bill Becker</td>
<td>McDonnell Douglas Corp/ St. Louis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Carman Mazza</td>
<td>1 Jim Sinnett/MCAIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAVPSCSOL</td>
<td>1 Jim Hess/MCAIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Lou Schmidt</td>
<td>Northrop Corp Labs/ I. Waller</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>NAVAIRSYSCOM</td>
<td>Rockwell International, Columbus/Lib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 AIR 03E</td>
<td>Rockwell International, Science Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 AIR 03PA</td>
<td>Vought Corporation/H. Diggers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 AIR 320</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 AIR 530</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>DDC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>AFFDL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 CAPT Bill Sotumayer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 R. Dyer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>NASA, HQ/Scientific Tech Info Branch</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>NASA Ames/Preston Nelms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>NASA Langley</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Joe Chambers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Blair Gloss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Bill Henderson</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Calif. Inst of Tech Grad Aero Labs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>U. of Cincinnati.Lib</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>N. Carolina State U./ Raleigh Lib</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Stanford U./Lib</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Virginia Polytech Inst/Lib</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Boeing Aerospace Company/ H. Yoshihara</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>General Dynamics/Fort Worth/ C.E. Kuchar</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Grumman Aerospace Corporation/ Nick Dannerhoffer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Lockheed-California/ Andy Byrnes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>McDonnell Douglas Corp/ St. Louis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Jim Sinnett/MCAIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Jim Hess/MCAIR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Northrop Corp Labs/ I. Waller</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Rockwell International, Columbus/Lib</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Rockwell International, Science Center</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Vought Corporation/H. Diggers</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5211.1</td>
<td>Calif. Inst of Tech Grad Aero Labs</td>
<td>Reports Distribution</td>
</tr>
<tr>
<td>1</td>
<td>522.1</td>
<td>U. of Cincinnati.Lib</td>
<td>Library (C)</td>
</tr>
<tr>
<td>1</td>
<td>522.2</td>
<td>U. of Maryland.Lib</td>
<td>Library (A)</td>
</tr>
<tr>
<td>2</td>
<td>522.3</td>
<td>Calif. Inst of Tech Grad Aero Labs</td>
<td>Aerodynamics Library</td>
</tr>
</tbody>
</table>

105
DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.