ERROR PROPAGATION AND SOLUTION RECONSTRUCTION IN NESTED DECOMPOSITION.

by

L. Nazareth

TECHNICAL REPORT SOL-78-27

December 1978

Research and reproduction of this report were partially supported by the Office of Naval Research Contract N00014-75-C-0267; the National Science Foundation Grants MCS76-20019 A01 and ENG77-0676 A01; and the Department of Energy Contract EY-76-S-03-00326 PA #18.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
Abstract

We study some of the numerical properties of the nested decomposition algorithm of Ho and Manne. In particular we seek to show how well developed theory in the area of computational linear algebra, due primarily to J.H. Wilkinson, carries over to linear programming and yields useful insight into the behavior of algorithms in this area.
Acknowledgment

My grateful appreciation to Professor G.B. Dantzig and the many others who helped make my visit to the Systems Optimization Laboratory an interesting and valuable learning experience.

My thanks also to the Applied Mathematics Division, Argonne National Laboratory, who jointly with the Systems Optimization Laboratory supported my appointment at Stanford University.

Special thanks to M. Aganagic and J. Ho for their help during the course of this research.
1. Introduction

The idea of a nested decomposition algorithm dates back to the fundamental paper of Dantzig and Wolfe [1960]. Many authors have since contributed to its development including Dantzig [1963, Ch. 23], Cobb and Cord [1967], Glassey [1973], Ho and Manne [1974], Ho [1974a, 1974b], Kallio [1975]. The major credit for the development of this algorithm goes to Ho [1974a,b], who put it on a sound algorithmic footing, implemented the algorithm and showed it to be a workable technique for solving LP problems with staircase structure, of the form:

\[
\begin{align*}
\text{minimize} & \quad \sum_{t=1}^{T} c_t x_t \\
\text{subject to} & \quad A_t x_t = d_t \\
& \quad B_{t-1} x_{t-1} + A_t x_t = d_t \\
& \quad x_t \geq 0 \quad \text{for} \quad t = 1, \ldots, T
\end{align*}
\] (1.1)

where \(x_t \) is \(n_t \times 1 \), \(A_t \) is \(m_t \times n_t \), \(B_t = m_{t+1} \times n_t \), \(c_t \) is \(1 \times n_t \), and \(d_t \) is \(m_t \times 1 \) in dimension. We shall call the above problem LP.

In this paper we look at Ho's algorithm from a numerical standpoint. This paper is organized into five sections as follows:
In Section 2 we provide background by briefly describing the algorithm and relating practical experience obtained by M. Aganagic* [1977] who extended the code of Ho and ran it on a version of the PILOT model of Dantzig and Parikh [1975]. It is this experimentation which motivated the research described here.

In Section 3 we give examples which illustrate numerical difficulties which can arise, and we discuss certain numerical properties of this algorithm.

In Section 4 we use some of the results of backward error analysis and perturbation theory of computational linear algebra, Wilkinson [1965], in order to study the propagation of error from stage to stage.

In Section 5 we examine further the reconstruction of the solution in nested decomposition, in the presence of numerical error. We propose an alternative method for doing this.

Finally in Section 6 we make some recommendations about the implementation of nested decomposition and describe some lessons we have learned from our research, about the development of structured LP algorithms and codes.

Our main aim in this paper is to look at LP algorithms based upon the decomposition principle, from a numerical standpoint and to show that such algorithms have some very interesting numerical properties. A complete investigation is, of course, well beyond the scope of this paper.

*Ph.D. student, Operations Research Department, Stanford University, California.
2. **Background**

2.1. **Brief description of algorithm**

We assume familiarity with the nested decomposition method for solving systems of the form (1.1) as described in Ho [1974a]. We summarize this by the schemata shown in Fig. 1, for a four-stage problem.

Notes on Figure 1.

(a) We distinguish extreme points and corresponding proposals by superscripts, to emphasize that we are dealing with vectors.

(b) The matrix of generated proposals is denoted by Q_j. In order to emphasize the distinction between a master problem and the corresponding restricted master problem we append the symbol

(c) The convexity row is denoted by \ldots.

(d) The objective row for a subproblem comes from the pricing out of proposals generated by the subproblem, as explained in the right-hand column.

2.2. **Reconstruction of the solution**

This has again been described in detail in Ho [1974a]. He gives two methods. In the first method (Method I), all extreme points developed for each subproblem are kept. Let (λ_4^*, x_4^*) be the optimal solution of S/P 4. In Fig. 1,
In the second method (Method II), it is unnecessary to keep all extreme points. Instead they can be regenerated, if necessary, in the following reconstruction algorithm. Let us again consider the four-stage problem. Fix \(x_4 \) at \(x_4^* \) and treat the problem as a three-stage decomposition in variables \(x_1, x_2, \) and \(x_3^* \). Following Figure 1, the last stage would then be of the form

\[
\begin{align*}
\left(\begin{array}{c}
\lambda_3^* \\
x_3^*
\end{array} \right) &= \sum_j \left(\begin{array}{c}
\lambda_3^j \\
x_3^j
\end{array} \right) \lambda_4^j, \\
\left(\begin{array}{c}
\lambda_2^*
\end{array} \right) &= \sum_j \left(\begin{array}{c}
\lambda_2^j \\
x_2^j
\end{array} \right) \lambda_3^j \\
\end{align*}
\]

and \(x_1^* = \sum_j x_1^j \lambda_2^j \).

In the second method (Method II), it is unnecessary to keep all extreme points. Instead they can be regenerated, if necessary, in the following reconstruction algorithm. Let us again consider the four-stage problem. Fix \(x_4 \) at \(x_4^* \) and treat the problem as a three-stage decomposition in variables \(x_1, x_2, \) and \(x_3^* \). Following Figure 1, the last stage would then be of the form

\[
\begin{align*}
Q_3 &
A_3 = b_3 \\
\lambda_3^* &
= 1.
\end{align*}
\]

Variables

\[
\begin{align*}
B_3 &= b_4 - A_4 x_4^* \\
\lambda_3 &
= x_3
\end{align*}
\]

and the first and second stage would be as in Fig. 1. When this problem is solved \(x_3^* \) will be known, and let us say its optimal value is \(x_3^* \). We can now fix \(x_3 \) and \(x_4 \) at their optimal values, i.e. the last set of equations effectively drops out. We now solve the first three sets of equations as a two-stage decomposition in variables \(x_1, x_2, x_3^* \). This process is continued until the optimal value of all variables is known.

Note: Reconstructed solutions are not, in general, basic solutions for the original LP.
<table>
<thead>
<tr>
<th>(x_i^j) and (\lambda_2 = \sum_j x_i^j \lambda_2^j)</th>
<th>(x_j^2) and (\lambda_2 = \sum_j x_j^2 \lambda_2^j)</th>
<th>(x_j^3) and (\lambda_3 = \sum_j x_j^3 \lambda_3^j)</th>
<th>(x_4) and (\lambda_4 = \sum_j x_4 \lambda_4^j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_2^j) and (\lambda_3^j)</td>
<td>(\lambda_3^j) and (\lambda_4^j)</td>
<td>(\lambda_4^j) and (\lambda_2^j)</td>
<td>(\lambda_4^j) and (\lambda_3^j)</td>
</tr>
<tr>
<td>(A_1) and (B_1)</td>
<td>(A_2) and (B_2)</td>
<td>(A_3) and (B_3)</td>
<td>(A_4) and (B_4)</td>
</tr>
<tr>
<td>(\frac{A_1}{B_1}) and (\frac{B_1}{A_1})</td>
<td>(\frac{A_2}{B_2}) and (\frac{B_2}{A_2})</td>
<td>(\frac{A_3}{B_3}) and (\frac{B_3}{A_3})</td>
<td>(\frac{A_4}{B_4}) and (\frac{B_4}{A_4})</td>
</tr>
<tr>
<td>(\lambda_2^j) and (\lambda_3^j)</td>
<td>(\lambda_3^j) and (\lambda_4^j)</td>
<td>(\lambda_4^j) and (\lambda_2^j)</td>
<td>(\lambda_4^j) and (\lambda_3^j)</td>
</tr>
</tbody>
</table>

Figure 1. Nested Decomposition Schemata

Master 1

\[
\begin{array}{c}
A_1 = B_1 \\
B_1 A_2 = B_2 \\
B_2 A_3 = B_3 \\
B_3 A_4 = B_4 \\
\sum S_1 = S_2 = S_3 = S_4 \\
S_1, S_2, S_3, S_4,
\end{array}
\]

Cost Row

Variables

S/P 1

\[
\begin{array}{c}
A_1 = B_1 \\
B_2 A_3 = B_3 \\
B_3 A_4 = B_4 \\
\sum S_1 = S_2 = S_3 = S_4 \\
S_1, S_2, S_3, S_4,
\end{array}
\]

S/P 2

\[
\begin{array}{c}
Q_2 A_2 = B_2 \\
B_2 A_3 = B_3 \\
B_3 A_4 = B_4 \\
\sum S_1 = S_2 = S_3 = S_4 \\
S_1, S_2, S_3, S_4,
\end{array}
\]

S/P 3

\[
\begin{array}{c}
Q_2 A_2 = B_2 \\
B_2 A_3 = B_3 \\
B_3 A_4 = B_4 \\
\sum S_1 = S_2 = S_3 = S_4 \\
S_1, S_2, S_3, S_4,
\end{array}
\]

As below with S/P 3 replaced by S/P 2 and S/P 2 replaced by S/P 1.

S/P 4

\[
\begin{array}{c}
Q_4 A_4 = B_4 \\
B_4 A_3 = B_3 \\
B_3 A_2 = B_2 \\
\sum S_1 = S_2 = S_4 \\
S_1, S_2, S_4,
\end{array}
\]

When optimizing S/P 3 the pricing out of \(\lambda_3 \) variables defines the objective row of S/P 2 as

\[
\min_{p_{3j}} \left(p_{3j} - r_{3j} \right) \sum_j p_{3j} \leq \sum_j r_{3j} + \left(c_2 - r_{3j} \right) \sum_j x_2^j
\]

S/P 5

\[
\begin{array}{c}
Q_5 A_5 = B_5 \\
B_5 A_4 = B_4 \\
B_4 A_3 = B_3 \\
\sum S_1 = S_2 = S_4 \\
S_1, S_2, S_4,
\end{array}
\]

Pricing out \(\lambda_4 \) variables gives the objective row for S/P 3 as

\[
\min_{p_{4j}} \left(p_{4j} - r_{4j} \right) \sum_j p_{4j} \leq \sum_j r_{4j} + \left(c_3 - r_{4j} \right) \sum_j x_3^j
\]
2.2. **Practical experience**

By extending the code of Ho and running it on a version of the PILOT Model, of Dantzig and Parikh [1975], M. Aganagic [1977] obtained a great deal of valuable experience with the algorithm. He found

- that master/subproblems could become badly scaled
- that in certain cases, propagation of error from stage to stage was substantial
- that the technique for reconstructing the solution could fail.

However the code used was an experimental one, and the LP problem itself had coefficients which differed widely in magnitude. It is therefore unclear whether these difficulties are inherent in the nested decomposition algorithm, or whether some of them are the result of numerical instabilities in the code (associated with use of the product form of the inverse) or inherent in the LP problem being solved. Hence the analysis described here.
3. **Examples and Discussion**

We now discuss each of the difficulties mentioned in Section 2.2, mainly through numerical examples.

3.1. **Scaling.**

An LP problem which is well scaled for the simplex algorithm, can be badly scaled for the decomposition algorithm. Consider the problem

\[
\begin{align*}
\text{minimize } & \quad x + y \\
\text{subject to } & \quad x + \epsilon y \geq 0 \\
& \quad x - \epsilon y \geq 0 \\
& \quad x - \epsilon y \leq 1 \\
& \quad x + \epsilon y \leq 1 \\
& \quad y \leq 1 \\
& \quad -y \leq 1
\end{align*}
\]

where \(\epsilon \) is small.

If the simplex algorithm is applied to this problem, every basis is well-conditioned (i.e. has a reasonable condition number), and small variations in the coefficients will produce small variations in the extreme points of the problem.

Suppose however we decompose this LP into a master and subproblem as indicated above. The extreme points of the subproblem are
and the master problem becomes

\[\begin{align*}
(1/2c)\lambda_3 + (-1/2c)\lambda_4 + s_1 &= 1 \\
(-1/2c)\lambda_3 + (1/2c)\lambda_4 + s_2 &= 1 \\
\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= 1 \\
\lambda_1 \geq 0, &s_1, s_2 \geq 0
\end{align*} \]

This problem has basis matrices with a large condition number \(\approx 0(1/e) \) and the structural (non-slack) columns differ widely in magnitudes, so that their reduced costs can give misleading information about the value of introducing a particular column into the basis. In this sense, see Tomlin [1975], the master is badly scaled.

3.2. Error propagation

Consider the two-stage problem

\[\begin{align*}
A_1 x_1 &= b_1 \} & \text{S/P rows} \\
B_1 x_1 + A_2 x_2 &= b_2 \} & \text{Master rows (3.2a)} \\
x_1, x_2 &\geq 0
\end{align*} \]
Let \bar{x}^j_1 be the true extreme points of the S/P and \tilde{x}^j_1 the computed extreme points. If a stable algorithm is used, then by the backward error analysis of Wilkinson [1965], each \tilde{x}^j_1 is the exact solution of a perturbed system

$$(A^j_1 + E^j_1)\tilde{x}^j_1 = b_1$$

(3.2b)

where A^j_1 is the basis matrix corresponding to \tilde{x}^j_1 and E^j_1 is a small perturbation. For example, if we assume that all elements of A^j_1 satisfy $|(A^j_1)_{km}| \leq 1$, that partial pivoting in the LU factorization of A^j_1 is used and that $|U_{km}| \leq 1$, then $\|E^j_1\|_\infty \leq 3^n \cdot 2^{-t_1}$, where t_1 is the number of bits in a floating point word (see Wilkinson [1965]).

Note that \bar{x}^j_1 can be extremely different from \tilde{x}^j_1, this being determined by the condition number of A^j_1. We can show by perturbation theory, Wilkinson [1965], that

$$\frac{\|x^j_1 - \tilde{x}^j_1\|}{\|x^j_1\|} \leq \frac{k_j (\|E^j_1\|/\|A^j_1\|)}{(1 - k_j \|E^j_1\|/\|A^j_1\|)}$$

where $k_j = \|A^j_1\|\|(A^j_1)^{-1}\|$

If the exact solution to (3.2a) is $x_1 = \sum \lambda_j x^j_1$, $\sum \lambda_j = 1$, and the computed solution $\tilde{x}_1 = \sum \tilde{x}^j_1$, $\sum \tilde{x}^j_1 = 1$, then

$$\|x_1 - \tilde{x}_1\| = \|\sum \tilde{x}^j_1(A^j_1 + E^j_1)^{-1}b_1 - \sum \tilde{x}^j_1(A^j_1)^{-1}b_1\|$$

assuming $(A^j_1 + E^j_1)$ and A^j_1 are invertible,

$$= \|\sum \tilde{x}^j_1 (I + A^j_1 E^j_1)^{-1}(A^j_1)^{-1}b_1 - \sum \tilde{x}^j_1 (A^j_1)^{-1}b_1\|$$
Now, for any square matrix X, $(I + X)^{-1} = (I - X + X^2 - X^3 + \cdots)$, provided $\|X\| < 1$. If we assume, therefore, that $\|(A_j^d)^{-1}E_j\| < 1$

$$\|x - x_c\| = \|\sum \lambda_j - \lambda_j A_j^d B_1 + \sum \lambda_j (A_j^d)^{-1}E_j (I - (A_j^d)^{-1}E_j + \cdots) (A_j^d)^{-1}B_1\|$$

$$\leq \|\sum \lambda_j - \lambda_j (A_j^d)^{-1}B_1\| + \|\sum \lambda_j (A_j^d)^{-1}E_j (I + (A_j^d)^{-1}E_j)^{-1}(A_j^d)^{-1}B_1\|$$

Assume further that $\lambda_j \neq 0 \iff \tilde{\lambda}_j \neq 0$.

$$\|x - x_c\| \leq \|\sum \lambda_j (A_j^d)^{-1}B_1\| + \|\sum \lambda_j (A_j^d)^{-1}E_j (I + (A_j^d)^{-1}E_j)^{-1}(A_j^d)^{-1}B_1\|$$

This bound is not an encouraging one, if $\|A_1^d\|\|(A_1^d)^{-1}\|$ is large or $\tilde{\lambda}_j$ differs substantially from λ_j.

Let us however now adopt the viewpoint of backward error analysis.

Ignoring, for the moment, errors in optimizing the master (see Section 4) then we are, in effect, exactly solving a system of the form (3.2b), in which each element of A_1 has a small uncertainty with a known bound.

NOTE that since E_j varies with A_1^d, we cannot have A_1 perturbed by a fixed matrix, i.e. by a static perturbation. We shall use the term dynamic perturbation to distinguish our case.
Now, if we assume that the solution of the LP is stable, then we would expect $\|x_C - x_t\|$ to be small. This implies a correlation of error, which the following example exhibits:

\[
\begin{align*}
\text{minimize} & \quad x_4 \\
\text{subject to} & \quad x_1 + (1 + \varepsilon_1)x_3 = a_1 \\
& \quad x_1 + x_2 + (1 + \varepsilon_2)x_3 = a_2 \\
& \quad x_3 + x_4 = a_3 \\
& \quad x_4 = a_4 \\
& \quad x_1 \geq 0
\end{align*}
\]

(3.2c)

There are only two feasible extreme points of S/P, and these are

\[
\begin{align*}
x_1^1 &= \begin{pmatrix} a_1 \\ a_2 - a_1 \\ 0 \end{pmatrix} \quad \text{and} \quad x_1^2 = \begin{pmatrix} a_1 - (1 + \varepsilon_1)k \\ 0 \\ k \end{pmatrix}
\end{align*}
\]

when $k = (a_2 - a_1)/(\varepsilon_2 - \varepsilon_1)$ and where we assume that ε_1 and ε_2 are small, $\varepsilon_2 > \varepsilon_1$ and $a_2 > a_1 > a_2(1 + \varepsilon_1)/(1 + \varepsilon_2)$. The master problem is:

\[
\begin{align*}
\text{minimize} & \quad x_4 \\
\text{subject to} & \quad \left(\frac{a_2 - a_1}{\varepsilon_2 - \varepsilon_1}\right)\lambda_2 + x_4 = a_3 \\
& \quad x_4 = a_4 \\
& \quad \lambda_1 + \lambda_2 = 1 \\
& \quad \lambda_1, \lambda_2, x_4 \geq 0
\end{align*}
\]
This has the solution

\[x_4 = a_4 \]
\[\lambda_2 = (a_3 - a_4)/k \]
\[\lambda_1 = 1 - (a_3 - a_4)/k \]

where we assume \(a_3 > a_4 > 0 \) and chosen so that \(\lambda_1, \lambda_2 > 0 \). The optimal solution \(x_{\text{opt}} \) is given by \(\lambda_1 x_1 + \lambda_2 x_2 \), which becomes

\[
x_{\text{opt}} = \begin{bmatrix}
 a_1 - (1+\varepsilon_1)(a_3-a_4) \\
 (a_2-a_1) - (a_3-a_4)(\varepsilon_2-\varepsilon_1) \\
 a_3-a_4 \\
 a_4
\end{bmatrix}
\]

Solving the system (3.2c) as an LP also yields the unique (optimal) solution and the associated \(4 \times 4 \) basis is well conditioned. This implies that \(x_{\text{opt}} \) is relatively insensitive to small changes in the matrix or r.h.s. elements. Suppose that \(a_1, a_2, \varepsilon_1, \varepsilon_2 \) are obtained by truncating \(\hat{a}_1, \hat{a}_2, \hat{\varepsilon}_1 \) and \(\hat{\varepsilon}_2 \) which are not machine representable numbers. Suppose also that the above derivation is carried out with \(\hat{a}_1, \hat{a}_2, \hat{\varepsilon}_1 \) and \(\hat{\varepsilon}_2 \) used in place of \(a_1, a_2, \varepsilon_1, \) and \(\varepsilon_2, \) and denote the quantities corresponding to \(k, \lambda_1 \) and \(\lambda_2 \) by \(\hat{k}, \hat{\lambda}_1 \) and \(\hat{\lambda}_2. \) Then the quantity \(\hat{k} \) which determines \(\hat{x}^2 \) can be drastically different from \(\hat{k} = (\hat{a}_2-\hat{a}_1)/(\hat{\varepsilon}_2-\hat{\varepsilon}_1). \) This is because the basis which determines \(\hat{x}^2 \) is ill-conditioned. The corresponding quantities \(\hat{\lambda}_1 \) and \(\hat{\lambda}_2 \) will also be quite different from \(\lambda_1 \) and \(\lambda_2. \) However the errors in \(\hat{\lambda}_1 \) and \(\hat{\lambda}_2 \) are correlated with the errors in \(\hat{x}^1 \) and \(\hat{x}^2, \) so that \(\hat{x}_{\text{opt}} \) does not change drastically.
3.3. Reconstruction

Finally we give an example which illustrates difficulties associated with reconstruction of the solution. We wish to show that Method 2 of Section 2.2 can result in numerical instability.

Consider the problem:

\[
\begin{align*}
\text{maximize} & \quad x_4 \\
\text{subject to} & \quad x_1 + (1+\epsilon_1)x_3 = b_1 \\
& \quad x_2 + (1+\epsilon_2)x_3 = b_2 \\
& \quad x_1 + x_2 + 2(1+\epsilon_3)x_3 + x_4 = b_3 \\
& \quad x_1 \geq 0
\end{align*}
\]

(3.3a)

There are only two feasible extreme points and these are given by

\[
\begin{align*}
& x_1^1 = \begin{pmatrix} b_1 \\ b_2 \\ 0 \end{pmatrix}, &
& x_1^2 = \begin{pmatrix} \frac{b_1 - b_2(1+\epsilon_1)(1+\epsilon_2)}{b_1 - b_2} \\ 0 \\ \frac{b_2}{(1+\epsilon_2)} \end{pmatrix}
\end{align*}
\]

(3.3b)

where we assume that \(b_1 \) and \(b_2 \) are chosen so that \(x_1^1, x_1^2 \geq 0 \). All bases corresponding to these are well-conditioned. The master problem is given by
maximize

\[x_4 \]

subject to \((b_1 + b_2)\lambda_1 + \left[b_1 - \frac{b_2(1+\epsilon_1)}{(1+\epsilon_2)} + \frac{2(1+\epsilon_3)b_2}{(1+\epsilon_2)} \right] \lambda_2 + x_4 = b_3 \)

\[\lambda_1 + \lambda_2 = 1 \]

\(\lambda_1, \lambda_2, x_4 \geq 0 \)

Assume \((2\epsilon_3 - \epsilon_1) < \epsilon_2\). Then the coefficient of \(\lambda_2 < \) coefficient of \(\lambda_1 \)
and so the optimal solution is given by \(\lambda_1 = 0, \lambda_2 = 1 \) and \(x_4 \) determined
by (3.3c). Then the optimal solution, by Method I of Section 2.2,

\[x_{opt} = \begin{bmatrix}
\frac{b_1 - b_2(1+\epsilon_1)/(1+\epsilon_2)}{b_2/(1+\epsilon_2)} \\
0 \\
\frac{b_3 - \left(b_1 + b_2(1 + 2\epsilon_3 - \epsilon_1)/(1 + \epsilon_2)\right)}{b_2/(1+\epsilon_2)}
\end{bmatrix} \]

(The basis corresponding to variables \(x_1, x_3 \) and \(x_4 \) in the original LP
is well-conditioned and the solution \(x_{opt} \) can be alternatively obtained
from this basis.) If Method II (cf. Section 2.2) is however used, we must
then solve the system
\[
\begin{bmatrix}
1 & 0 & 1^{4e_1} \\
0 & 1 & 1^{4e_2} \\
1 & 1 & 2(1+e_3)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_1 + \frac{(1 + 2(e_3 - e_1))b_2}{(1 + e_2)}
\end{bmatrix}
\]

This is an ill-conditioned problem, and thus numerical error could result in the reconstructed solution being substantially different from the true well-conditioned optimal solution, even possibly infeasible. We return to the problem of reconstruction in Section 5.
4. Analysis of Error Propagation

In this section we use some of the results in Wilkinson [1965], Chap. 4 on backward error analysis and perturbation theory of linear systems of equations, in order to study the propagation of error from stage to stage. A complete error analysis is beyond the scope of this paper.

4.1. In backward error analysis one seeks to show that the computed solution x_c of a problem, say P, is the exact solution of a problem obtained by perturbing P. In the nested decomposition algorithm, a typical restricted subproblem is of the form (see Fig. 1)

$$
\begin{align*}
\text{rows:} & \quad Q^{\lambda}_t + A^{x}_t x = b_t \\
\text{convexity rows:} & \quad e^T_t \lambda_t = 1 \\
\lambda_t, x_t & \geq 0
\end{align*}
\quad S/P - t
\tag{4.1a}
$$

where $Q_t = B_{t-1} X_{t-1}^c$, and X_{t-1}^c is the matrix whose columns are computed extreme points and rays of the previous subproblem $S/P - (t-1)$. e^T_t is a row vector whose j'th element is 1 if the corresponding column of X_{t-1}^c is an extreme point and 0 if it is an extreme ray. A typical basis of $S/P - t$ consists of a set of $m_t + 1$ columns, and is of the form

$$
\mathcal{B} = \begin{bmatrix}
B_{t-1} & \hat{X}_{t-1}^c & \hat{A}_t \\
\hat{e}^T_t & 0
\end{bmatrix}
\tag{4.1b}
$$
where \(\hat{x}_{t-1}^c, \hat{A}_t \) and \(\hat{e}_t^T \) denote columns of \(x_{t-1}^c, A_t \) and \(e_t^T \).

Computed extreme points and rays for the next subproblem

\[S/P - (t + 1) \text{ are exact solutions of} \]

\[(\mathcal{S} + \delta \mathcal{B})x_t^c = \begin{pmatrix} \mathbf{b}_t \\ 1 \end{pmatrix} \tag{4.1c} \]

e.g., if

(i) \(|\mathcal{B}_{ij}| \leq 1 \)

(ii) partial pivoting in the LU factorization

of \(\mathcal{B} \) is used

(iii) \(|u_{ij}| \leq 1 \)

Then \(\|\delta \mathcal{B}\|_m \leq (m_x + 1)2^{-t_x} \), see Wilkinson [1965] and Section 3.2.

Under what circumstances can we cast errors in \(\mathcal{B} \) back into the data of the original problem and into the convexity row?

Let us partition \(\delta \mathcal{B} \) in the same way that \(\mathcal{B} \) is partitioned in (4.1b). Then

\[
\delta \mathcal{B} = \begin{bmatrix}
\delta \mathcal{B}_{11} & \delta \mathcal{B}_{12} \\
\delta \mathcal{B}_{21} & \delta \mathcal{B}_{22}
\end{bmatrix} \tag{4.1e}
\]

The errors \(\delta \mathcal{B}_{12} \) can be attributed to \(\hat{A}_t \), in (4.1b) and \(\delta \mathcal{B}_{21}, \delta \mathcal{B}_{22} \) to the convexity row in (4.1b). In addition let us seek \(\delta \mathcal{B}_{t-1} \) such that
\[(B_{t-1} + \delta B_{t-1})\hat{x}^c_{t-1} = B_{t-1}\hat{x}^c_{t-1} + \delta \Theta_{11}\]

or

\[\delta B_{t-1}\hat{x}^c_{t-1} = \delta \Theta_{11}\]

A strong assumption which ensures this is that every matrix \(\hat{x}^c_{t-1}\) is a feasible basis has full column rank and that

\[\hat{x}^{c+}_t = (\hat{x}^c_{t-1}^T \hat{x}^c_{t-1})^{-1} \hat{x}^c_{t-1} \text{ satisfies } ||\hat{x}^c_{t-1}^T|| \leq k,\]

where \(Z^+\) denotes the generalized inverse of \(Z\). Then

\[||\delta B_{t-1}||_\infty \leq ||\delta \Theta_{11}||_\infty ||\hat{x}^{c+}_t||_\infty \leq 3k(m_t + 1)2^{-t}\]

when (4.1d) holds.

Note that \(\delta B_{t-1}\) varies with \(\hat{x}^c_{t-1}\). We can however say that when the above assumptions hold, the computed solution is the exact solution obtained by nested decomposition, applied to an LP (1.1), whose matrices \(A_t\) have a dynamic perturbation bounded by \(3(m_t + 1)^2^{-t-1}\), and whose matrices \(B_t\) have a dynamic perturbation bounded by \(3k\cdot(m_{t+1} + 1)^2^{-t-1}\). Further each convexity row in the nested decomposition has a dynamic perturbation bounded by \(3\cdot(m_t + 1)^2^{-t-1}\).

The above assumptions are very restrictive. Less restrictive assumptions would require \(\delta \Theta_{11}\) to be cast into errors in the data of previous stages. Also in order to circumvent having to explicitly introduce error into the convexity row, we could force it to be satisfied, by using a method similar to that used in the GUB algorithm, Dantzig and Van Slyke [1967].
4.2. Perturbation theory complements backward error analysis, see Wilkinson [1965]. We study the following questions:

Define LP^1 by perturbing each matrix A_t by δA_t and each B_t by δB_t in (1.1), where δA_t or δB_t are small fixed (static) perturbations. If the matrices Q_t in the decomposition of LP are in consequence perturbed to Q^1_t we ask: Will each column of Q^1_t be close to the corresponding columns of Q_t?

We make the following strong assumptions:

Assumption 4.2: Every basis \mathcal{G}_t of $S/P - t$ (see (4.1a)) is well-conditioned and

$$\|\mathcal{B}_t\|\mathcal{B}^{-1}_t\| \leq c$$

Assumption 4.3: The subproblems in the decomposition of LP^1 match those in the decomposition of LP in the following sense: each has the same number of columns; furthermore, if a basis \mathcal{B}_t is feasible for $SP - t$ in the nested decomposition of LP, the basis \mathcal{B}^r_t for the corresponding set of columns in $SP^1 - t$, in the decomposition of LP^1, is also feasible.

Given a basis \mathcal{B}_t for subproblem t of LP, let $\mathcal{B}_t' = \mathcal{B}^r_t + \delta \mathcal{B}_t$ for some $\delta \mathcal{B}_t$ be the corresponding basis for the subproblem of LP^1. Let the two feasible solutions be x_t and $x_t + \delta x_t$, respectively.

Thus

$$\mathcal{B}_t x_t = b_t$$

$$(\mathcal{B}_t + \delta \mathcal{B}_t)(x_t + \delta x_t) = b_t$$
As in Section 3.2,

\[
\frac{\|5x_t\|}{\|x_t\|} \leq \frac{c\|5B_t\|/\|B_t\|}{(1 - c\|5B_t\|/\|B_t\|)} \tag{4.2b}
\]

where \(c\) is defined in Assumption 4.2.

The proposal transmitted to \(SP - (t+1)\) is \(q_{t+1} = B_t x_t\) and to \(SP^1 - (t+1)\) is \(q_{t+1}^1 = (B_t + 5B_t)(x_t + 5x_t)\). So

\[
\|q_{t+1}^1 - q_{t+1}\| \leq \|5B_t x_t\| + \|B_t 5x_t\|
\]

\[
\frac{\|q_{t+1}^1 - q_{t+1}\|}{\|q_{t+1}\|} \leq \left[\frac{\|5B_t\|/\|x_t\|}{\|B_t x_t\|} + \frac{\|B_t\|c(\|5B_t\|/\|B_t\|)\|x_t\|}{(1 - c(\|5B_t\|/\|B_t\|))\|B_t x_t\|} \right] \tag{4.2c}
\]

If we assume that each \(q_{t+1}^1(q_{t+1})\) in a basis \(\mathcal{B}_{t+1}\) (\(\mathcal{B}_{t+1}^1\)) is of the same order of magnitude, the left hand side of (4.2c) is also an estimate of \(\|5B_{t+1}\|/\|\mathcal{B}_{t+1}\|\).

If we therefore let \(\|5\mathcal{B}_1\|/\|\mathcal{B}_1\| \leq 2^{-t_1}\), and note that \(\|B_t x_t\| \leq \|B_t\|\|x_t\|\) so that

\[
\frac{c(\|5\mathcal{B}_1\|/\|\mathcal{B}_1\|)}{(1 - c(\|5\mathcal{B}_1\|/\|\mathcal{B}_1\|))}
\]

underestimates the 2nd term in (4.2c), then it is readily seen by induction that the leading term in the right hand side of (4.2c) contains the factor
(c^t 2 - t^t_1). This suggests that the columns of \(Q_t \) could depart substantially from the columns of \(Q_t \) when \(t \) is large. Note however that the solution of LP^1 will be very close to the solution of LP if the optimal basis is stable. Again, as in Section 3.2, we have the effect of correlation of errors.
5. Reconstruction of the Solution

In Section 2.3 we showed an example of how numerical difficulties can arise with reconstruction of the solution. In this section we discuss further difficulties associated with solution reconstruction.

5.1. Returning to the two-stage problem (3.2a) of Section 3.2, suppose now that computed proposals \tilde{x}_1^j, which are exact solutions of (3.2b), are such that $\|E_j\|$ is no longer small—e.g. where an unstable algorithm is used to solve the system of equations $A_1x_1^j = b_1$. In this case, the optimal solution, say $(x_1^*, x_2^*) > 0$, of a linear programming problem LP^1, obtained by dynamically perturbing (3.2a), may be such that no vector $x_1 > 0$ for which (x_1^*, x_2^*) is feasible for $LP (3.2a)$. (Recall that the (dynamic) perturbation is determined by the pattern of decomposition.) Thus method II of Section 2.2, which solves directly the LP

$$\begin{align*}
\text{minimize} & \quad T^T x_1^1 \\
\text{subject to} & \quad \begin{pmatrix} A_1 \\ B_1 \end{pmatrix} x_1 = \begin{pmatrix} b_1 \\ b_2 - A_2x_2^* \end{pmatrix} \quad (5.1a) \\
x_1 & > 0
\end{align*}$$

could fail. A similar situation could arise when the assumptions of Section 4.2 do not hold, and it is not possible to account for computational errors in the master problem in terms of small (dynamic) perturbations in the original data A_1, A_2, B_1. Note that Method I will succeed, in the sense that it reconstructs a solution which is feasible for the perturbed LP. Thus in the
presence of numerical error Method II does not adequately reproduce Method I. Similarly, arguments also hold for a t-stage problem. It is also clear from these arguments how crucial it is to use a stable implementation of the simplex method for solving the subproblems.

The second point we would like to make is that loss of feasibility occurs in a particular way, as we now show. Consider a three-stage problem of the form (1.1). As summarized in Fig. 1, the true extreme points of the first stage are denoted by \(\bar{x}_1 \), and we assume that the corresponding subproblem is bounded. The true extreme points of the second stage also assumed bounded are

\[
\left(\begin{array}{c}
\bar{x}_2 \\
\bar{x}_2
\end{array} \right),
\]

and we shall assume that these are deliberately perturbed to

\[
\left(\begin{array}{c}
\bar{x}_2 \\
\bar{x}_2
\end{array} \right),
\]

with \(\sum_k \lambda_{2k} = 1 \) for \(j \). The third stage master is then given by

\[
\begin{align*}
\sum_j (0|B_2) \begin{pmatrix} \lambda_{2j} \\ \bar{x}_{2j} \end{pmatrix} \lambda_{3j} + A_3 \bar{x}_3 &= b_3 \\
\sum_j \lambda_{3j} &= 1 \\
\lambda_{3j}, \bar{x}_3 &\geq 0
\end{align*}
\]

(5.1b)
Let the optimal solution obtained by solving (5.1b) exactly be

\[
\begin{pmatrix}
\lambda_3^* \\
x_3^*
\end{pmatrix}
\]

Then by Method I

\[
\begin{pmatrix}
\lambda_2^* \\
x_2^*
\end{pmatrix} = \sum_j \begin{pmatrix}
\lambda_{2j}^* \\
x_{2j}^*
\end{pmatrix} \lambda_3^*
\]

and

\[
x_1^* = \sum_j x_{1j}^* \lambda_{2j}^*
\]

Note now that \((x_1^*, x_2^*, x_3^*)\) satisfies stage 1 and stage 3 constraints exactly. Only stage 2 constraints are violated. (We have assumed that \(\sum_k \lambda_{2k}^* = 1\), again demonstrating the values of solving sub-problems by a GUB type algorithm.) Error has however propagated to stage 3 in the sense that allocation of resources to each stage is affected and hence so is the computed optimal solution. However feasibility of stage 3 is retained.

5.2. In the light of the above two observations, we seek a method of reconstruction which

(1) uses the same pattern of decomposition as the Phase 1 and 2 procedures, and avoids numerical difficulties discussed earlier.

(2) is able to reconstruct at any point, not just at optimality.

(3) accurately mirrors Method I, but gets around having to save all
extreme points generated. We accept it to be reasonable that if a proposal B_{i-1}^j is saved, then the corresponding x_{i-1}^j is also saved. When B_{i-1}^j is thrown away, then the corresponding x_{i-1}^j can be dispensed with.

(4) is able to utilize a strategy akin to that used in a standard simplex method, when the optimal values of a set of variables say x_j^*, are known.

We suggest the following strategy:

Method III:

Step 1: Let $\lambda_t^* + \lambda_m^*$ and $t + m$

Step 2: At stage t use λ_t^* to compute x_{t-1}^* by

$$x_{t-1}^* = \sum_j \lambda_t^* x_j^t$$

(Recall (3) above.)

If $(t-1) = 1$, then STOP.

Step 3: Omit stage t and all subsequent stages, put upper and lower bounds on x_{t-1}^*, constraining these variables to be close to x_{t-1}^*, and solve the $(t-1)$ stage problem for λ_{t-1}^* using nested decomposition.

Step 4. $t + (t-1)$ and GOTO Step 2.

The major difference in Phase 3 between Method III and Method II is that Method III uses the same pattern of decomposition as the one used in Phase 2. The price one pays for this is the added information that must be saved, as discussed under (3) above in this Section.
6. Conclusions

We conclude by recounting some lessons we have learned from this effort for the implementation of large scale LP algorithms, and some specific recommendations for nested decomposition.

(a) This effort has benefited substantially from the numerical experiences of M. Aganagic [1977] on a real life model, and we reiterate the importance of gathering such practical experience. Indeed this is one of the points emphasized in Dantzig and Parikh [1977], who discuss how the activities of algorithms and model development complement each other.

(b) at the same time it is clear that the experimental information gathered will be suspect, unless the experimental implementation is sound and is designed to fail gracefully, i.e. it does not have to deal with all possible cases, but it must at least provide reasonably good clues when the algorithm encounters difficulties. This is the theme of Nazareth [1978a], where a set of software aids for developing good experimental implementations is described.

(c) our research demonstrates that a fairly substantial reformulation of the nested decomposition algorithm may be necessary before setting about developing a robust user oriented version, which is capable of handling a diverse set of LP applications.

(d) because error propagation may be an inherent problem we have been prompted to look at other decompositions, see Nazareth [1978b].

(e) It is clear that some extremely interesting numerical problems arise in nested decomposition. Our results are only a small contribution, and we feel that a more complete error analysis and perturbation theory, which we now plan to undertake, would be a substantial contribution.
There is also a definite need for a sound experimental implementation, in order to carry out further experimentation. This code should, for example,

(i) use stable factoring and updating techniques as described in Reid [1976].

(ii) use the method of reconstruction described in Section 5.

(iii) use the techniques of structured programming, since the data flow in the algorithm is quite complex. Data flow and numeric considerations should be separated when possible.

(iv) be able to start from an arbitrary feasible (not necessarily basic) solution, either user supplied or developed from an intermediate reconstruction.

(v) use a technique similar to that in the GUB algorithm, Dantzig and Van Slyke [1967] with LU factorization of the basis, see Tomlin [1974], to ensure that convexity rows are closely satisfied.
REFERENCES

We study some of the numerical properties of the nested decomposition algorithm of Ho and Manne. In particular we seek to show how well developed theory in the area of computational linear algebra, due primarily to J.H. Wilkinson, carries over to linear programming and yields useful insight into the behavior of algorithms in this area.