This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

Watervliet Reservoir Dam was judged to be unsafe-emergency. Immediate replacement of the penstock.
HUDSON RIVER BASIN

WATERVLIET RESERVOIR DAM

ALBANY COUNTY, NEW YORK

INVENTORY NO. 88

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Prepared by: TIPPETTS-ABBETT-McCARTHY-STRATTON

NEW YORK DISTRICT CORPS OF ENGINEERS

JULY 5, 1978
LOWER HUDSON RIVER BASIN
WATERVLIET DAM
INVENTORY NO. 88
PHASE I INSPECTION REPORT

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT</td>
<td>-</td>
</tr>
<tr>
<td>OVERVIEW PHOTOGRAPH</td>
<td>-</td>
</tr>
<tr>
<td>PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td></td>
</tr>
<tr>
<td>a. Authority</td>
<td>1</td>
</tr>
<tr>
<td>b. Purpose of Inspection</td>
<td>1</td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF PROJECT</td>
<td>1</td>
</tr>
<tr>
<td>a. Description of the Dam</td>
<td>1</td>
</tr>
<tr>
<td>b. Location</td>
<td>2</td>
</tr>
<tr>
<td>c. Size Classification</td>
<td>2</td>
</tr>
<tr>
<td>d. Hazard Classification</td>
<td>2</td>
</tr>
<tr>
<td>e. Ownership</td>
<td>2</td>
</tr>
<tr>
<td>f. Use of Dam</td>
<td>2</td>
</tr>
<tr>
<td>g. Design and Construction History</td>
<td>2</td>
</tr>
<tr>
<td>h. Normal Operating Procedures</td>
<td>2</td>
</tr>
<tr>
<td>1.3 PERTINENT DATA</td>
<td></td>
</tr>
<tr>
<td>a. Drainage Areas</td>
<td>2</td>
</tr>
<tr>
<td>b. Discharge at Damsite</td>
<td>2</td>
</tr>
<tr>
<td>c. Elevation</td>
<td>3</td>
</tr>
<tr>
<td>d. Reservoir</td>
<td>3</td>
</tr>
<tr>
<td>e. Storage</td>
<td>3</td>
</tr>
<tr>
<td>f. Reservoir Surface</td>
<td>3</td>
</tr>
<tr>
<td>g. Dam</td>
<td>3</td>
</tr>
<tr>
<td>h. Spillway</td>
<td>3</td>
</tr>
<tr>
<td>i. Regulating Outlets</td>
<td>3</td>
</tr>
<tr>
<td>2 ENGINEERING DATA</td>
<td>4</td>
</tr>
<tr>
<td>2.1 DESIGN</td>
<td>4</td>
</tr>
<tr>
<td>2.2 CONSTRUCTION RECORDS</td>
<td>4</td>
</tr>
<tr>
<td>2.3 OPERATION RECORDS</td>
<td>4</td>
</tr>
<tr>
<td>2.4 EVALUATION OF DATA</td>
<td>4</td>
</tr>
</tbody>
</table>
3 VISUAL INSPECTIONS

3.1 FINDINGS
a. General
b. Dam
c. Spillway
d. Abutments
e. Outlets and Regulating Gates
f. Downstream Channel
g. Reservoir Area

3.2 EVALUATION

4 OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

4.2 MAINTENANCE OF DAM

4.3 MAINTENANCE OF OPERATING FACILITIES

4.4 WARNING SYSTEMS IN EFFECT

4.5 EVALUATION

5 HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

5.2 SPILLWAY CAPACITY

5.3 RESERVOIR CAPACITY

5.4 FLOODS OF RECORD

5.5 OVERFLOW POTENTIAL

5.6 EVALUATION

6 STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY
a. Visual Observations
b. Design and Construction Data
c. Operating Records
d. Post-Construction Changes
e. Seismic Stability
7 ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT
 a. Safety 12
 b. Urgency 12
 c. Additional Investigations 12
 d. Adequacy of Information 12

7.2 REMEDIAL MEASURES 12

APPENDICES

A. DRAWINGS
 Vicinity Map
 Topographic Map
 Contract Drawings
 General Map
 General Plan
 Details - Abutments and Flashboards
 Details - Low Level Outlet
 Details - Water Supply Penstock

B. PHOTOGRAPHS

C. ENGINEERING DATA CHECKLIST

D. VISUAL INSPECTION CHECKLIST

E. HYDROLOGIC DATA AND COMPUTATIONS
PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: WATERVLIET (I.D. NO. 88)
County Located: ALBANY COUNTY
Stream: LOWER HUDSON RIVER
Date of Inspection: 5 - 6 JUNE 1978

ASSESSMENT

Visual inspection of the Watervliet Dam at French’s Mills revealed a hazardous condition with potential for causing severe damage to and, possibly, structural collapse of the dam. The condition consists of severe corrosion of two sections of fabricated pipe in the penstock which passes through the dam in the first bay near the north abutment. Sudden rupture of the pipe could cause severe hydraulic impact loading on the downstream face of the dam, the buttresses and the buttress foundation.

The extreme corrosion of the pipe sections is considered to represent an unsafe condition of the dam. The safest course of action would be to completely shut the 48-inch gate valve upstream of the corroded pipe sections until their replacement. However, bearing in mind that the penstock carries the City of Watervliet’s only water supply, a recommended alternative procedure would be to close the upstream gate valve so as to substantially reduce the water pressure in the corroded pipe sections and yet provide the water requirements of the city until the replacement is made. If this alternative is elected it is recommended that replacement of the corroded pipe sections be made within 30 calendar days of the date of this report and that surveillance and warning systems be put into effect until replacement has been made.

The spillway capacity without flashboards is 79 percent of the estimated Standard Project Flood and with about 1.5 feet flow over the abutments it would pass the entire flood. Therefore, from a hydraulic and hydrologic standpoint the spillway capacity is considered to be inadequate. However, as the dam is located in a confined valley with rock abutments, overflow of the abutments will not cause significant erosion or undermine the foundation of the dam. Surveillance of the dam should be standard practice during major floods.

Eugene O’Brien, P.E.
New York No. 29823

Approved by: Clark Benn
Col. Clark H. Benn
New York District Engineer

Date: 25 July 78
SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority
 The Phase I inspection reported herein was authorized by
 the DEPARTMENT OF THE ARMY, NEW YORK DISTRICT, CORPS OF ENGINEERS,
 by letter dated 31 March 1978, in fulfillment of the requirements of the

b. Purpose of Inspection
 The purpose of this inspection and report is to investigate
 and evaluate the existing conditions of subject dam in order to: identify
 deficiencies and hazardous conditions; determine if they constitute hazards
 to human life or property; and notify the State of New York of these results
 along with recommendations for remedial measures where necessary.

1.2 DESCRIPTION OF PROJECT

a. Description of the Dam
 The Watervliet Reservoir is formed by an Ambursen Dam
 (reinforced concrete flat slab and buttress) built across the Normans Kill
 at French's Mills.

 The principal dimensions of the dam are:

 - Length of dam at top (bank to bank) 380 feet
 - Length of overflow spillway crest 324 feet
 - Maximum height 36 feet
 - Maximum height with flashboards 39 feet
 - Width at foundation 74 feet

 The spillway is ungated and formed by the downstream
 face of the dam. Its crest is at El. 256 and flashboards which are permanently
 in place raise the reservoir level to El. 259. A 50-inch penstock through the
 dam near its northern end, controlled by a 48-inch gate valve, supplies water
 to the pumping station downstream for the City of Watervliet. A low-level
 outlet, 5 feet in diameter and controlled by a 4-foot sluice gate, goes
 through the dam toward its southern end.
b. **Location**
The dam is located on the Normans Kill at French's Mills approximately 3.5 miles south of Schenectady in Albany County.

c. **Size Classification**
The dam is less than 40 feet high and the usable storage volume is less than 50,000 acre feet; therefore, it is considered to be an "intermediate" size dam.

d. **Hazard Classification**
The dam is in the "high" hazard potential category. A pump station and several homes downstream would be affected by a breach of the dam.

e. **Ownership**
The Watervliet Dam is owned and operated by the City of Watervliet.

f. **Use of Dam**
The impoundment provided by the dam serves as a water supply reservoir for the cities of Watervliet and Guilderland.

g. **Design and Construction History**
The dam was designed by Solomon, Norcross & Keis, Engineers, of Atlanta, Georgia in 1915 and built in 1916.

h. **Normal Operating Procedures**
Water releases to supply Watervliet are approximately 3.5 mgd. When the reservoir level is high, an additional 3.5 mgd, flowing through the same penstock, powers the hydraulic turbines at the pumping station. The turbines are mechanically linked to two pumps which provide water for the city system. As the reservoir level gets lower, more water is required for pumping. When the level gets very low, to conserve water electric pumps at the pumping station are used instead. The electric pumps can be used at any reservoir level.

An additional 1.0 mgd is supplied to the Town of Guilderland through a separate penstock. Water flowing over the ungated spillway continues directly into the Normans Kill.

1.3 Pertinent Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Drainage Areas (sq. miles)</td>
<td>113.6</td>
</tr>
<tr>
<td>b. Discharge at Damsite (cfs)</td>
<td></td>
</tr>
<tr>
<td>Maximum known flood at damsite</td>
<td>10,900</td>
</tr>
<tr>
<td>(estimated)</td>
<td></td>
</tr>
<tr>
<td>Total spillway capacity at max.</td>
<td>30,500</td>
</tr>
<tr>
<td>pool elevation</td>
<td></td>
</tr>
</tbody>
</table>
c. **Elevation (ft above MSI)**
 - Top of dam: 264.5
 - Maximum pool—design surcharge: 264.5
 - Spillway crest (with flashboards): 259
 - Streambed at centerline of dam: 220

d. **Reservoir (miles)**
 - Length of maximum pool: 2

e. **Storage (acre-feet)**
 - Normal operating pool: 5,000
 - Design surcharge: 3,990
 - Top of dam: 8,990

f. **Reservoir Surface (acres)**
 - Maximum pool: 430

g. **Dam**
 - Type: Ambursen, reinforced concrete flat slab and buttress
 - Length: 380 feet
 - Height: 36 feet
 - Side Slopes:
 - U/S: 1.0 (V) on 1.0 (H) (scaled)
 - D/S: 1.7 (V) on 1.0 (H) (scaled)
 - Grout curtain: None

h. **Spillway**
 - Type: Concrete slab, D/S face of dam
 - Length of weir: 324 feet
 - Crest elevation: 256
 - with flashboards: 259
 - Gates: ungated
 - U/S channel: None
 - D/S channel: Normans Kill

i. **Regulating Outlets**
 - A 50-inch penstock passes through the dam near its northern end and is controlled by a 48-inch gate valve. The centerline of the penstock in the upstream face of the dam is at El. 240.

 A 5-foot diameter conduit through the dam near its southern end is controlled by a 4-foot sluice gate. The invert of the conduit at its upstream end is El. 222.6.
2.1 DESIGN

The design of the dam was made by Solomon, Norcross & Keis, Engineers, Atlanta, Georgia in 1915. There are no design computations or specific design memoranda available for the project. There are contract drawings of the dam in "Proposal, Contract and Specifications for a Municipal Water Supply from the Normans Kill at French's Mills for the City of Watervliet, New York".

A training wall at the north abutment was reportedly built during a ten-year period following the original construction because of erosion in that area due to heavy spillway flows. This wall was raised two to three feet in 1955, in accordance with a drawing and specifications by Keis & Holroyd, Consulting Engineers, Troy, New York.

A new concrete apron was added just downstream of the original structure in 1936, as shown on a drawing by V.G. Lamb, City Engineer of Watervliet.

In 1965, the spillway and concrete apron were resurfaced with gunite. Cavities in the concrete on the spillway face were filled, and joints between slabs were cleaned and filled with pitch. The extent of repairs is shown on a drawing by J. Kenneth Fraser & Associates, Rensselaer, New York. The work was reportedly carried out in the winter.

The three-foot high flashboards were reportedly replaced in the summer of 1975.

2.2 CONSTRUCTION RECORDS

No detailed construction records are available.

2.3 OPERATION RECORDS

There is no operation and maintenance manual for the project. Some work orders indicating repairs made are kept in the pumping station. There is no regular schedule of maintenance.

2.4 EVALUATION OF DATA

Existing data were made readily available at the Watervliet City Hall and at the Watervliet Reservoir Pumping Station.

The available data reviewed are considered adequate for this Phase I inspection and evaluation of safety.
SECTION 3 - VISUAL INSPECTIONS

3.1 FINDINGS

a. General
A visual inspection of Watervliet Dam at French's Mills was made on Monday and Tuesday, June 5 and 6, 1978. At that time, the reservoir level was at approximately one inch over the flashboards and flowing onto the spillway.

b. Dam
The concrete surfaces visible from the walkway through the dam were in good condition. There were no signs of seepage, movement or other distress. The toe drains were not visible due to the presence of water in the bays, and, in some bays, excavated rock which was not removed.

c. Spillway
At the time of inspection water was flowing over the spillway. However, excessive and widespread spalling of the gunite layer was clearly visible. At the vertical joints between slabs there were pockets of erosion which appeared to be several inches deep. Cracks in the spillway apron were visible.

It has been reported that the remaining gunite on the spillway is drummy and the gunite has been completely eroded off the new apron; also that the shale under the new apron has eroded away in spots.

Toward the north abutment, a number of the bars holding the flashboards are deflected several inches at the top, reportedly due to the effects of a hurricane in 1960. At the north abutment, the top flashboard (1 foot high) is broken off for about 5 feet.

d. Abutments
Seepage was observed through the rock at the south abutment within the dam, entering at approximately the top of the dam. It was estimated to be about 5 gpd. According to casual observations, there has supposedly been no increase in this flow. The water has reportedly been tested and is not from the reservoir, but from a spring within the abutment rock.

The training wall at the south abutment is visibly eroded and undermined with a cavity formed beneath the concrete up to 3 feet deep.

The training wall at the north abutment is in a similar condition with wire mesh exposed from under the eroded gunite layer on the concrete apron in this area.
From examination of the abutment rock, it was determined that the dam is founded on thinly bedded sound shale with foliations having a strike oriented approximately 30° with respect to the face of the dam in a northeasterly direction and dipping approximately 5° - 10° upstream.

e. Outlets and Regulating Gates
The low-level discharge system consists of a normally closed 48-inch sluice gate discharging to a 60-inch concrete pipe, which conducts water through the dam and discharges it on the downstream face. The gate is original equipment and, according to available drawings, is in a recess on the upstream face of the dam, at invert El. 224.5. It is operated by a manual valve stand located within the dam. Three years ago a motor operator was reportedly installed, but due to unsatisfactory operation, was replaced with the original manual stand two years later.

The sluice gate was completely submerged, not allowing for inspection. The gate stand operator was lubricated and appeared to be in operating order, although the gate was difficult to operate. No leakage at the operating stand was observed.

The low-level discharge pipe inside the dam appeared in good condition.

A 50-inch penstock, with invert El. 238.5 on the upstream face of the dam, conducts water through the dam to a pumping station approximately 0.5 miles downstream. The flow through the penstock can be regulated by a gate valve within the dam or by valves at the pumping station, the latter being the usual procedure.

The penstock section inside the dam consists of riveted and flanged pipe sections, two cast iron flanged quarter bends and the gate valve. The penstock is 50 inches in diameter entering the dam, reduces to 48 inches at the gate valve, and increases to 50 inches upon leaving the dam. All are reported to be original equipment.

The gate valve appeared to be in good condition. The gear actuator was clean and lubricated and appeared to be completely operable. About 1964, the valve stem was replaced. During the inspection, the packing was slightly damp. Arrangements have reportedly been made to add an electric motor operator to the valve.

The cast-iron sections appeared to be in good condition.

Two 4-foot sections of penstock, adjacent to the cast-iron bends, were observed to have heavy surface corrosion over their entire surface including the flanges. Large amounts of corrosion by-products could be removed from the pipe surface, many of the rivet heads holding the pipe to the flange could be broken from their stems and strips of material could be peeled from the flange, all by hand. Due to the severity of the corrosion,
the depth of the pits from the original surface was indeterminable. Many of
the bolts through the flanges were also observed to have severe material
losses.

f. **Downstream Channel**
 The downstream channel, the Normans Kill, is riprap-lined
 for some distance. The piers of two active railroad bridges are about 75 yards
downstream of the dam.

 g. **Reservoir Area**
 in the vicinity of the dam, there was no evidence of sloughing,
potentially unstable slopes or other unusual conditions which would adversely
affect the dam.

3.2 **EVALUATION**

 The severe corrosion on fabricated penstock sections within the
dam is considered to be a hazardous condition. Sudden rupture of the pipe
could cause severe hydraulic impact loading on the downstream face of the dam,
the buttress and the buttress foundation.

 The spalling and drumminess of the gunite layer on the spillway
face and the erosion of rock and concrete at the abutments and the apron
are not considered to be conditions which are hazardous to the safety of the
dam.
SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

The minimum required water release at Watervliet Dam is 3.5 mgd for the City of Watervliet and one mgd for the Town of Guilderland, through separate penstocks. The water supply for Watervliet requires an additional 3.5 mgd or more, depending on reservoir level, to power the hydraulic turbines for pumping the water. When the reservoir is low and much more water is required to power the turbines, a switch is made to electric power. There is generally little or no regulation other than maintaining the required release.

4.2 MAINTENANCE OF DAM

There is no operation and maintenance manual for the project. A pump tender is always on duty at the pumping station, approximately 0.5 miles downstream of the dam. He visits the dam as required, in relation to the release of water, but does not necessarily examine the dam. There is no formally established program of inspection visits or maintenance procedures for the dam.

4.3 MAINTENANCE OF OPERATING FACILITIES

The sluice gate stand operator was lubricated and appears to be operational although the gate was difficult to operate. It was reportedly "exercised" about 3 years ago when new gate seals were installed. Prior to that, the gate was "exercised" every 1 to 2 years.

The gate valve on the water supply penstock appeared to be operational and was reportedly completely open during the inspection. It was "exercised" about 6 months ago, and prior to that, every 6 to 24 months.

No records of gate or valve operation were kept.

4.4 WARNING SYSTEMS IN EFFECT

There is no warning system in effect or in preparation.

4.5 EVALUATION

Considering the severe corrosion of sections of the penstock cited previously, there appear to be deficiencies in the present operational or maintenance procedures which could adversely affect the safety of the project. A periodic inspection program should be established.
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

The Watervliet Dam is located on Normans Kill, about four miles south of Schenectady, and about eight miles west of Albany. The total drainage area at the dam is 113.6 square miles, computed from the difference between the drainage areas at the dam site and at the gaging station downstream near Westmere, New York.

The drainage area is glaciated region cut by steep hills and ridges oriented generally in a northeast-southwest direction. Cover in the basin consists of open fields or woodland. There is little natural storage in the area. The drainage area slopes and the pattern of tributaries is not conducive to high flood flows.

5.2 SPILLWAY CAPACITY

The spillway length is 324 feet and the maximum head possible to the top of the endwalls is 8.5 feet, assuming no flashboards. No data are available on the discharge rating of the spillway, so a weir coefficient of 3.8 was assumed. The computed spillway discharge, at maximum head is 30,500 cfs (280 cfs per square mile). The spillway rating curve, shown on Figure 1, was computed assuming that the weir coefficient varied from 3.8 at 8.5 feet, to 3.0 at 0.5 feet head.

5.3 RESERVOIR CAPACITY

The total reservoir capacity at El. 259.0 (i.e., the spillway crest elevation of 256.0 plus 3.0 ft of flashboards) is 1,630 million gallons (5,000 acre-feet). From a capacity curve, supplied by Malcolm Pirnie Engineers, a surcharge storage of 1,300 million gallons (3,990 acre-feet) is available between the crest (El. 256.0), and the top of the dam (El. 264.5). This storage is equivalent to only 0.66 inch of runoff over the drainage basin.

5.4 FLOODS OF RECORD

Before 1967 there were no continuous records of the flows in Normans Kill. However, indirect discharge measurements taken after the August-October 1955 floods indicated a maximum discharge of 13,300 cfs at Slingerlands from a drainage area of 169 square miles. Transposed by the ratio of square roots of the drainage areas, this would be about 10,900 cfs at the dam or about 96 cfs per square mile. At the gaging station established at Westmere in 1967 (drainage area, 131 square miles) the maximum discharge is 4390 cfs in November 1972.
5.5 OVERFLOW POTENTIAL

Derivations of the Standard Project Flood (SPF) for the Mohawk River Basin are available in a report prepared by the New York District, U.S. Corps of Engineers. Data in this report permitted interpolation of the SPF for Normans Kill at the Watervliet Dam. The indicated SPF was 380 cfs per square mile, or a total of 38,600 cfs, or 1.2 times the spillway discharge capacity. Such a flood discharge is 3.5 times the estimated maximum flood at the dam since 1955.

A second criteria for evaluating a design flood is the Probable Maximum Flood (PMF), which is usually about twice the SPF. A PMF of 78,000 cfs (708 cfs per square mile) was estimated from a plot of Probable Maximum Floods versus drainage area for several selected rivers (Ref. 2, Table B.1). This would indicate an SPF of 39,000 cfs which agrees with the first estimate.

5.6 EVALUATION

The spillway capacity without flashboards is 79 percent of the estimated Standard Project Flood and with about 1.5 feet flow over the abutments it would pass the entire flood. Therefore, from a hydraulic and hydrologic standpoint the spillway capacity is considered to be inadequate. However, as the dam is located in a confined valley with rock abutments, overflow of the abutments will not cause significant erosion or undermine the foundation of the dam. Surveillance of the dam should be standard practice during major floods.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
Visual observations did not indicate either existing or potential conditions of the structure itself which would adversely affect the structural stability of the dam. However, as previously cited, a sudden rupture of one of the heavily corroded penstock sections could cause severe hydraulic impact on parts of the dam or its foundation, possibly leading to structural collapse.

b. Design and Construction Data
There exists no design computations or other data regarding the structural stability of the dam.

Performance experience with the water level approximately 3 feet above the spillway flashboards is good.

c. Operating Records
No operating records are kept. No major operational problems which would affect the stability of the dam were reported. However, considering the severe corrosion of sections of the penstock cited previously, which could indirectly affect the stability of the dam, a periodic maintenance and inspection program should be established.

d. Post-Construction Changes
There are no records of construction changes other than the north abutment training wall and extension and the new concrete apron.

e. Seismic Stability
The dam is located in Seismic Zone No. 2; therefore, no seismic analyses are warranted.
7.1 DAM ASSESSMENT

a. Safety
 Visual inspection of the Watervliet Dam at French's Mills revealed a hazardous condition with potential for causing severe damage to and, possibly, structural collapse of the dam. The condition consists of severe corrosion of two sections of fabricated pipe in the penstock which passes through the dam in the first bay near the north abutment. Sudden rupture of the pipe could cause severe hydraulic impact loading on the downstream face of the dam, the buttresses and the buttress foundation.

b. Urgency
 The extreme corrosion of the pipe sections is considered to represent an unsafe condition of the dam. The safest course of action would be to completely shut the 48-inch gate valve upstream of the corroded pipe sections until their replacement. However, bearing in mind that the penstock carries the City of Watervliet's only water supply, a recommended alternative procedure would be to close the upstream gate valve so as to substantially reduce the water pressure in the corroded pipe sections and yet provide the water requirements of the city until the replacement is made. If this alternative is elected it is recommended that replacement of the corroded pipe sections be made within 30 calendar days of the date of this report and that surveillance and warning systems be put into effect until replacement has been made.

c. Additional Investigations
 It is recommended that the remaining penstock sections and fittings within the dam be tested by non-destructive methods, such as ultrasonic testing, to determine their soundness.

d. Adequacy of Information
 The information and data available were adequate for performance of this investigation. However, there is a lack of information with regard to operation and maintenance, as follow:
 1. Operations and maintenance manuals and records.
 2. Records of inspections.

7.2 REMEDIAL MEASURES

Aside from the replacement of penstock sections mentioned in Paragraph 7.1b, the following remedial measures should be taken as soon as feasible:

a. The 48-inch gate valve motor operator which, reportedly, will be installed should be waterproof and should include a control unit outside the dam.

b. The concrete training wall and rock erosion at both abutments should be repaired.
c. The concrete apron should be inspected for reported undermining, and repairs made as required.

d. The spalling of the spillway surface, the reported drumminess of the remaining gunite on the spillway and the cavities at the vertical joints on the spillway should be repaired.

e. After the testing and replacement of the required penstock sections, all exposed metal surfaces should be cleaned, primed with a rust inhibitor, and painted with an appropriate coating.

f. The bent flashboards bars and the broken flashboards at the northern end of the spillway should be repaired.

Other measures which are recommended are as follow:

b. Establish a program of periodic inspections and maintenance, including "exercising" of the sluice gate and gate valve.

c. A system should be instituted to monitor the seepage through the south abutment within the dam.

d. Daily observations of the reservoir level should be made.
WATERVLIET DAM
AT FRENCH'S MILLS

TOPOGRAPHIC MAP & RESERVOIR
WATERVLIET DAM
THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO US.
WATER SUPPLY
City of WATERBURY, ALBANY, NY
STORAGE RESERVOIR DAM
DETAILS

Scale: 1 ft = 20 ft

DESIGNED BY:
J. M. HOPP & CO.

ENGINEERS

ATLANTA, GA
PHOTOGRAPHS

APPENDIX B
DOWNSTREAM TRAINING WALL AT NORTH ABUTMENT. NOTE EROSION OF CONCRETE AT BASE OF WALL (SEE NEXT PHOTO), BEDDING PLANES OF SHALE, AND RAILROAD BRIDGE DOWNSTREAM.

ERODED CONCRETE AT DOWNSTREAM EDGE OF NORTH ABUTMENT TRAINING WALL.
DOWNSTREAM TRAINING WALL AT SOUTH ABUTMENT SHOWING ENTRANCE TO DAM. NOTE EROSION OF CONCRETE AT BASE OF WALL (SEE NEXT PHOTO).
ERODED CONCRETE AT DOWNSTREAM EDGE OF SOUTH ABUTMENT TRAINING WALL.
VALVE STEM OPERATOR FOR SLUICE GATE ON LOW LEVEL OUTLET.
48" GATE VALVE ON WATER SUPPLY PENSTOCK FACING DOWNSTREAM
OVERVIEW OF PENSTOCK DOWNSTREAM OF GATE VALVE PASSING THROUGH BUTTRESS. NOTE CORROSION ON PENSTOCK.

CLOSE-UP OF CORROSION ON PENSTOCK SECTION PASSING THROUGH BUTTRESS.
PENSTOCK SECTION THROUGH DOWNSTREAM FACE OF DAM.
ROUGH EDGE ALONG RIGHT SIDE OF PENSTOCK INDICATES
EXTENT OF CORROSION.
CHECKLIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

NAME OF DAM WATERULIET DAM AT FRENCH'S MILLS
ID # 88

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-BUILT DRAWINGS</td>
<td>None available. Contract drawings included in "Proposal, Contract and Specifications for Municipal Water Supply from the Normanskill at French's Mills for the City of Wateruliet, N.Y."</td>
</tr>
<tr>
<td>REGIONAL VICINITY MAP</td>
<td>USGS</td>
</tr>
<tr>
<td>CONSTRUCTION HISTORY</td>
<td>Not available.</td>
</tr>
<tr>
<td>TYPICAL SECTIONS OF DAM</td>
<td>Shown on contract drawings.</td>
</tr>
<tr>
<td>OUTLETS-PLAN</td>
<td>Shown on contract drawings.</td>
</tr>
<tr>
<td>-DETAILS</td>
<td>as above.</td>
</tr>
<tr>
<td>-CONSTRAINTS</td>
<td>None cited.</td>
</tr>
<tr>
<td>-DISCHARGE RATINGS</td>
<td>None available.</td>
</tr>
</tbody>
</table>
| RAINFALL/RESERVOIR RECORDS | Rainfall: Albany County Airport
Reservoir: None |
<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN REPORTS</td>
<td>None available</td>
</tr>
<tr>
<td>GEOLOGY REPORTS</td>
<td>None available</td>
</tr>
<tr>
<td>DESIGN COMPUTATIONS</td>
<td>None available</td>
</tr>
<tr>
<td>HYDROLOGY & HYDRAULICS</td>
<td>None available</td>
</tr>
<tr>
<td>DAM STABILITY</td>
<td>None available</td>
</tr>
<tr>
<td>SEEPAGE STUDIES</td>
<td>None available</td>
</tr>
<tr>
<td>MATERIALS INVESTIGATIONS</td>
<td>None</td>
</tr>
<tr>
<td>BORING RECORDS</td>
<td>None</td>
</tr>
<tr>
<td>LABORATORY</td>
<td>None</td>
</tr>
<tr>
<td>FIELD</td>
<td>None</td>
</tr>
<tr>
<td>POST-CONSTRUCTION SURVEYS OF DAM</td>
<td>None available</td>
</tr>
<tr>
<td>BORROW SOURCES</td>
<td>Not applicable</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MONITORING SYSTEMS</td>
<td>None.</td>
</tr>
<tr>
<td>HIGH POOL RECORDS</td>
<td>None made. Recollection of 3 ft 5 of water passing over spillway.</td>
</tr>
<tr>
<td>POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS</td>
<td>Gunting of spillway and apron 1965.</td>
</tr>
<tr>
<td>N.Y.S. Dept. of Health Joint Municipal Water Survey Committee, Albany County, N.Y. Malcolm Pirnie Engineers 1968</td>
<td></td>
</tr>
<tr>
<td>PRIOR ACCIDENTS OR FAILURE OF DAM</td>
<td>Hurricane 1960 - Flashboard bars bent.</td>
</tr>
<tr>
<td>MAINTENANCE OPERATION RECORDS</td>
<td>No O&M Manual. Maintenance as deemed required.</td>
</tr>
<tr>
<td>No records.</td>
<td></td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SPILLWAY PLAN</td>
<td>On contract dwgs.</td>
</tr>
<tr>
<td>SECTIONS</td>
<td></td>
</tr>
<tr>
<td>DETAILS</td>
<td></td>
</tr>
<tr>
<td>OPERATING EQUIPMENT</td>
<td>On contract dwgs.</td>
</tr>
<tr>
<td>PLANS & DETAILS</td>
<td></td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECKLIST

APPENDIX D
VISUAL INSPECTION CHECKLIST

1. Basic Data
 a. General
 Name of Dam: WATERVIERT DAM
 Hazard Category: High
 County: Albany
 ID#: 88
 Stream Name: Normans Kill
 Tributary of: —
 Location: Albany County Nearest Town (P.O.): Guilderland Center
 Longitude: 73° 51' 30" E
 Latitude: 42° 42' 30" N
 Other Directions: 3.5 miles south of Schenectady
 Date of Inspection: June 5-6, 1975
 Weather: Sunny
 Temperature: 70° +
 b. Inspection Personnel
 K. Stang, Structural Engr.;
 G. Gaydar, Mechanical Engr.; A. Dole, Mascolo,
 Geotechnical Engr.; V. Khlopotenikova,
 Observer.
 c. Persons Contacted: N. Ostrachovich, City Hall Clerk, WATERVIERT.
 d. History: Date Constructed: Approx. 1910
 Present Owner: City of WATERVIERT
 Designed by: Solomon, Novocross & Co.
 Constructed by: —
 Recent History: —

2. Technical Data
 Type of Dam: AMBULSEN
 Drainage Area: Acres
 Height: 36 ft
 Length: 380 ft
 Upstream Slope: 1 (V): 1 (H)
 Downstream Slope: 1.7 (V): 1 (H)
 Crest Width: —
 Freeboard at spillway crest: —
Low Level Control: (Type and Size) **4' sluice gate**

Valve Condition

Spillway Type (Material) **Concrete** Width 324 ft

Side Slopes

Height (Crest to Top)

Exit Slope

Exit Length

Ponded Surface Area __________________________ Acres

Capacity (Normal Level) ______________ Acre Feet

Capacity Emergency Spillway Level __________ Acre Feet

3. Embankment

 Not Applicable

 a. Crest

 (1) Vertical Alignment

 (2) Horizontal Alignment

 (3) Longitudinal Surface Cracks

 (4) Transverse Surface Cracks

 (5) General Condition of Surface

 (6) Miscellaneous
b. Upstream Slope

(1) Undesirable Growth or Debris

(2) Sloughing, Subsidence, or Depressions

(3) Slope Protection

(a) Condition of Riprap

(b) Durability of Individual Stones

(c) Adequacy of Slope Protection Against Waves and Runoff

(d) Gradation of Slope Protection - Localized Areas of Fine Material

(4) Surface Cracks

c. Downstream Slope

(1) Undesirable Growth or Debris

(2) Sloughing, Subsidence, or Depressions; Abnormal Bulges or Non-Uniformity

(3) Surface Cracks on Face of Slope

(4) Surface Cracks or Evidence of Heaving at Embankment Toe

(5) Wet of Saturated Areas or Other Evidence of Seepage on Face of Slope; Evidence of "Piping" or "Boils"

(6) Fill Contact with Outlet Structure

(7) Condition of Grass Slope Protection
d. Abutments

(1) Erosion of Contact of Embankment with Abutment from Surface Water Runoff, Upstream or Downstream

(2) Springs or Indications of Seepage Along Contact of Embankment with the Abutments
(3) Springs or Indications of Seepage in Areas a Short Distance Downstream of Embankment - Abutment Tie-in

(4) Unusual Muddy Water in Downstream Channel

(5) Sloughing or Erosion

(6) Surface Cracks or Evidence of Heaving Beyond Embankment, Toe

e. Area Downstream of Embankment, Including Tailrace Channel

(1) Localized Subsidence, Depressions, Sinkholes, Etc.

(2) Evidence of "Piping" or "Boils"

(3) Unusual Presence of Lush Growth, such as Swamp Grass, etc.
(7) Stability of Tailrace Channel Sideslopes

(8) Condition of Tailrace Channel Riprap

(9) Adequacy of Slope Protection Against Waves, Currents and Surface Runoff

(10) Miscellaneous

f. Drainage System

(11) Condition of Relief Wells, Drains and Appurtenances

(12) Unusual Increase or Decrease in Discharge from Relief Wells

4. Instrumentation

NONE

(1) Monumentation/Surveys

(2) Observation Wells None

(3) Weirs None

(4) Piezometers None

(Other)

5. Reservoir

a. Slopes Portions of reservoir slopes visible from the dam show no signs of distress, instability or other adverse conditions.
b. Sedimentation Not visible.

6. Spillways
 Spillway over almost entire length of dam.
 a. Principal Spillway: Inlet Condition 324 ft long
 Pipe Condition 2/5 face of dam, concrete slab.

 General Remarks (include information such as recently repaired,
 potential for debris accumulation, special items of note, etc.)
 Recently (1965) applied gunite layer shows
 excessive spalling. At vertical joints concrete
 is eroded several inches deep. Spillway
 apron cracked. Several bars supporting
 b. Emergency Spillways: General Condition flashboards are
deflected. Top flashboard at North abutment
 broken for 5’ length.

 Tree Growth ________________________________

 Erosion _________________________________

 Other Observations ______________________

7. Structural (if required) See Attached Appendix

 THIS PAGE IS BEST QUALITY PRACTICABLE
 FROM COPY FURNISHED TO DOG
8. Downstream Channel

Normans Kill

a. Condition (obstructions, debris, etc.) Riprap, piers for two railroad bridges.

b. Slopes Steep slopes change to wider valley ½ mile D/S.

c. Approximate No. Homes and Population Pump station, and several homes D/S would be affected by flood.

d. General

K. Staudig, Jr.
A. Dolcimascolo
TEAM CAPTAIN
STRUCTURAL INSPECTION CHECKLIST

PHASE I DAM INSPECTION

1. Concrete Surfaces **Good condition.**

2. Structural Cracking **None visible.**

3. Movement - Horizontal and Vertical Alignment **None noticeable.**

4. Junctions with Abutments or Embankments **Training walls at both abutments eroded.**

5. Drains - Foundation, Joint, Face **Not visible.**

6. Water Passages, Conduits, Sluices **Low level outlet appears in good condition. Excessive corrosion visible on water supply penstock. Sluice gate not visible.**

7. Seepage or Leakage **Seepage at south abutment is reportedly from a spring within the rock.**

8. Monolith Joints - Construction Joints **Good condition, no leakage.**

9. Foundation **Thickly bedded, sound shale with foliation having strike oriented ~30° with respect to face of dam in NE direction & dipping ~5°-10° u/s.**
10. Abutments Seepage at south abutment.

12. Approach and Outlet Channels Riprap & bridge piers in 0/5 channel.

14. Intake Structure None

15. Settlement None

16. Stability
 a. Overturning
 b. Sliding
 c. Seismic Not required - Seismic Zone No. 2

17. Instrumentation None
 a. Alignment
 b. Uplift
 c. Seismic

18. Miscellaneous

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DOC
HYDROLOGIC DATA AND COMPUTATIONS

APPENDIX E
TAMS

Job No. 1487-09
Project NEW YORK DAM INSPECTION - PHASE I
Subject Watervliet Dam - Spillway Rating Curve
Date May 23, 78
Ch’k. by D.L.C.

<table>
<thead>
<tr>
<th>Head feet</th>
<th>$H%$</th>
<th>C</th>
<th>$Q\cdot c\text{fs.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.0</td>
<td></td>
<td>343.7</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>3.1</td>
<td>100.4</td>
</tr>
<tr>
<td>1.5</td>
<td>1.84</td>
<td>3.2</td>
<td>1905.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.83</td>
<td>3.3</td>
<td>3024.4</td>
</tr>
<tr>
<td>3.0</td>
<td>5.2</td>
<td>3.4</td>
<td>5724.4</td>
</tr>
<tr>
<td>4.0</td>
<td>8.0</td>
<td>3.5</td>
<td>9072.5</td>
</tr>
<tr>
<td>5.0</td>
<td>11.2</td>
<td>3.6</td>
<td>13,041.4</td>
</tr>
<tr>
<td>6.0</td>
<td>14.7</td>
<td>3.7</td>
<td>17,691.4</td>
</tr>
<tr>
<td>8.0</td>
<td>22.6</td>
<td>3.8</td>
<td>27,859.4</td>
</tr>
<tr>
<td>8.5</td>
<td>24.8</td>
<td>3.8</td>
<td>30,511.4</td>
</tr>
</tbody>
</table>

Length 324.0’

Note: THIS PAGE IS BEST QUALITY PRACTICABLY FROM COPY FURNISHED TO DDG.
Spillway Rating Curve

1487-09 Watervliet Dam.