UNITED STATES ARMY
ENVIRONMENTAL HYGIENE
AGENCY
ABERDEEN PROVING GROUND, MD 21010

DETERMINATION OF URINE METABOLITE LEVELS FOLLOWING
INHALATION OF THE INSECTICIDE PERMETHRIN IN RATS
STUDY NO. 75-53-0053-79
MAY - AUGUST 1978

Approved for public release; distribution unlimited.
Determination of Urine Metabolite Levels Following Inhalation of the Insecticide Permethrin in Rats.

Jeffrey A. Gere, Ph.D.
Roger E. Boldt, Ph.D.

The pyrethroid insecticide Permethrin, 3-phenoxybenzyl-(+)-cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate, was administered to rats as an aerosol. Metabolite studies of the urine showed the presence of significant quantities of Permethrin metabolites for several days following exposure. The pattern of metabolite excretion indicates an extremely efficient mechanism for the metabolism and excretion of this compound.
SUBJECT: Determination of Urine Metabolite Levels Following Inhalation of the Insecticide Permethrin in Rats, Study No. 75-53-0053-79, May-August 1978

A summary of the pertinent findings of the inclosed report follows:

The pattern of primary excretion in rats of Permethrin during and following inhalation exposure was measured. The urine was found to contain metabolite that quickly reaches a dose related concentration permitting measurement of adsorption and excretion rates.

FOR THE COMMANDER:

BRENDAN E. JOYCE, Ph.D.
LTC, MSC
Director, Laboratory Services
DEPARTMENT OF THE ARMY
U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY
ABERDEEN PROVING GROUND, MARYLAND 21010

HSE-LR-B/WP

DETERMINATION OF URINE METABOLITE LEVELS FOLLOWING
INHALATION OF THE INSECTICIDE PERMETHRIN IN RATS
STUDY NO. 75-53-0053-79
MAY - AUGUST 1978

1. AUTHORITY.
 a. Memorandum of Understanding between the Department of the Army, Office of The Surgeon General, the US Army Health Services Command, the US Army Environmental Hygiene Agency, the Armed Forces Pest Control Board (AFPCB), and the US Department of Agriculture, effective December 1970 with Amendment No. 1, effective August 1974.

2. REFERENCES.

3. PURPOSE. The purpose of this investigation was to determine the pattern of Permethrin metabolite excretion in the urine of rats which were being used in an inhalation toxicology study. The results of the toxicology study will be detailed in a separate USAEHA report. Results of the present investigation are for advising the AFPCB on the possible hazard in use of this compound with human subjects.

The use of company names or their product does not imply endorsement by the US Army, but is intended only to assist in identification of a specific compound.

Approved for public release; distribution unlimited.
4. GENERAL.

 a. Permethrin [3-phenoxybenzyl-(+)-cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate], a synthetic pyrethroid, is an amber colored liquid having a specific gravity of 1.2, melting point of 35°F and boiling point of 220°F. It is soluble in organic solvents (acetone, hexane). The sample studied was SBP-1513, lot No. RAX-6*.

 b. Detailed descriptions of the inhalation exposures will be reported elsewhere*. Four male Sprague-Dawley rats per group were exposed to Permethrin aerosols at concentrations of 0, 125, 250, and 500 mg/M³. The animals were exposed for 6 hours per day, 5 days per week for 13 weeks. No exposures were performed on Saturdays or Sundays. The metabolite excretion determinations were begun on Monday of the thirteenth week of exposure.

 c. The animals were removed from the inhalation chambers or holding cages (Saturday and Sunday), where they were individually caged, and placed into individual metabolism cages. Urine was collected in plastic cups until 8:00 AM the following morning, when the animals were again placed in inhalation chambers or holding cages.

 d. The volume of the individual urine samples was measured each morning and the concentration of 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (CIVA) was determined by the as yet unpublished procedure of Cridland and Weatherley². Excreted almost exclusively as the glucuronide and sulfate esters, this metabolite is known to appear rapidly in the urine of animals exposed to Permethrin, and to represent over 50% of an administered oral dose. The method of analysis includes the enzymatic hydrolysis of the metabolite, esterification and determination by gas chromatography. Authentic CIVA was used for standardization.

 e. Literature cited in this report is shown in the Appendix.

5. FINDINGS.

 a. Extraction of CIVA, after enzymatic hydrolysis of the metabolite, was accomplished with hexane followed by centrifugation to separate the phases. Phase separation was difficult because of an apparent increase in lipid content of the rat urine, becoming impossible in those urine samples collected within 24 hours after exposure of the animals to the highest dose of Permethrin. Phases were well resolved in urine from rats receiving lower doses, or on Saturday or Sunday when the animals were not exposed to Permethrin.

* SBP-1513 is a company designation of CPC International, Inc., S.B. Penick and Co., 160 Church Street, NY, NY 10007.
† Obtained from Dr. James Hubbell, Burroughs-Wellcome Co., Research Triangle Park, NC 27709.
b. Permethrin metabolite concentration analyses were performed on the urine collected as described. The results of analyses are shown in the Table and Figure. The concentration of Permethrin metabolite increased during the week, reaching a maximum on Thursday and Friday. A dramatic decrease took place on Saturday, when no exposure occurred; a further decrease was apparent on Sunday. This pattern was true for all dose levels, animals receiving the highest dose excreted approximately three times more of the metabolite than those exposed to the lower dose levels. Control animals uniformly excreted a very low (below 20 g/day) quantity of the metabolite.

<table>
<thead>
<tr>
<th></th>
<th>500 mg/M³</th>
<th>250 mg/M³</th>
<th>125 mg/M³</th>
<th>0 mg/M³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>2140 ± 172</td>
<td>401 ± 67</td>
<td>365 ± 16</td>
<td>< 20</td>
</tr>
<tr>
<td>Tuesday</td>
<td>2360 ± 401</td>
<td>540 ± 100</td>
<td>550 ± 4</td>
<td>< 20</td>
</tr>
<tr>
<td>Wednesday</td>
<td>2843 ± 343</td>
<td>415 ± 30</td>
<td>788 ± 76</td>
<td>< 20</td>
</tr>
<tr>
<td>Thursday</td>
<td>2879 ± 190</td>
<td>663 ± 63</td>
<td>1058 ± 124</td>
<td>< 20</td>
</tr>
<tr>
<td>Friday</td>
<td>2777 ± 60</td>
<td>827 ± 24</td>
<td>959 ± 35</td>
<td>< 20</td>
</tr>
<tr>
<td>Saturday</td>
<td>884 ± 88</td>
<td>446 ± 37</td>
<td>195 ± 19</td>
<td>< 20</td>
</tr>
<tr>
<td>Sunday</td>
<td>598 ± 36</td>
<td>329 ± 26</td>
<td>229 ± 15</td>
<td>< 20</td>
</tr>
</tbody>
</table>

6. DISCUSSION. Administration of the pyrethroid insecticide, Permethrin, by inhalation caused a gradual increase in the rate of urinary Permethrin metabolite excretion, reaching a maximum in 3-4 days. It is especially interesting that the urine concentration rapidly fell after inhalation exposures were discontinued. Animals receiving the highest dose of Permethrin excreted approximately three times as much of the metabolite as those receiving the lower doses. Only 2 days after the cessation of exposures, the excretion rate of all animals had dropped to roughly the same level. These data indicate that the animals possess a very efficient mechanism for the detoxification and excretion of Permethrin. This permits a drop in the excretion level to only 20-45 percent of the test levels by the second day after the end of the exposure period. Support for this view comes from a recent report on the purification and characterization, from rat liver microsomes, of the enzyme pyrethroid carboxylesterase, which hydrolyzes esters of chrysanthemumic acid such as Permethrin.
Note: Urine was collected from the time inhalation was discontinued each afternoon until 8AM the following morning, i.e. the designation "Mon" represents collection from Monday afternoon thru Tuesday morning.

FIGURE I: PERMETHRIN CONTENT OF RAT URINE, µg/RAT/DAY
7. CONCLUSION. The urine of rats exposed to Permethrin by inhalation has been found to contain a pyrethroid metabolite which very quickly reaches a dose-related concentration showing that an inhaled aerosol of the pesticide is readily absorbed, metabolized and excreted in the urine.

GERE, Ph.D.
Biochemist
Radiological & Biological Chemistry Division

APPROVED:

D. JONES
Chief, Radiological & Biological Chemistry Division
APPENDIX

LITERATURE CITED

